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Plan

I Discrete logs and Diffie-Hellman

I Pollard rho and kangaroo

I Generalisations of Diffie-Hellman

I Isogenies

I SIDH/SIKE

I CSIDH

Please interrupt and ask questions.
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Discrete Logarithm Problem and Diffie-Hellman

Let G be a subgroup of F∗q or E (Fq) of prime order.
Given g ∈ G and a ∈ N it is easy to compute h = g a.
Given g ∈ G and h = g a, it is hard to compute a.

Diffie-Hellman key exchange:

I Alice chooses a and sends tA = g a to Bob.

I Bob chooses b and sends tB = gb to Alice.

I Alice computes taB = g ab.

I Bob computes tbA = g ab.
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Diffie-Hellman key exchange

g

g a

gb

g ab
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How hard is Discrete Logarithm Problem (DLP)?
I Let g have prime order r . Baby step giant step solves

DLP in (deterministic) O(
√
r) time and space.

I Pollard rho solves DLP in (expected) O(
√
r) time and

poly space.
I Idea: If can find integers a1, a2, b1, b2 such that

g a1hb1 = g a2hb2 .

then solve the DLP as a = (a2 − a1)(b1 − b2)−1 (mod r).
I Approach: Generate pseudorandom walks

xi = g aihbi

such that (ai , bi) are known.
I Pollard’s big idea: Use walks where the next step only

depends on the current position.
I Van Oorschot and Wiener’s big idea: Use

distinguished points.
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Pollard rho
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Discrete logarithm “in an interval”

I Let g have order r , and let 0 < N < r .
The interval DLP is: Given h = g a where 0 ≤ a < N , to
compute a.

I BSGS in O(
√
N) time and O(

√
N) space.

I Pollard kangaroo method using distinguished points (van
Oorschot and Wiener) solves problem in average case

expected (2 + o(1))
√
N group operations.
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Pollard kangaroo algorithm

I Key properties: one-dimensional space with a sense of
direction to the right.

I Let h = g a with a ∈ [0,N].

I The tame kangaroo starts in the middle of the interval
[0,N].

I The wild kangaroo starts at a.

I Steps in the walk are, on average, distance m =
√
N/2.

I Average case expected running time (2 + o(1))
√
N group

operations.
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Generalised Diffie-Hellman 1: Endomorphisms

Fix an element g in a group G .
The map φA(x) = xa is group homomorphism.
DLP: Given g and φA(g) = g a it is hard to compute φA.

g

φA(g)

φB(g)

φA(φB(g))

φA

φB

The maps φA(x) = xa and φB(x) = xb are group
homomorphisms such that φA ◦ φB = φB ◦ φA.
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Generalised Diffie-Hellman 1: Homomorphisms

Let E be an elliptic curve and GA,GB finite subgroups such
that GA ∩ GB = {0}.

E

EA = E/GA

EB = E/GB

E/〈GA,GB〉
φA

φB

Alice and Bob need to give each other enough information
that they can compute φA(GB) and φB(GA).
Alice computes EB/φB(GA) and Bob computes EA/φA(GB).
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\begin{scary isogeny section}
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Example of an isogeny

I Let E1 : y 2 = x3 + x and E2 : Y 2 = X 3 − 4X .

I The point (0, 0) on E1 has order 2.

I There is an isogeny φ : E1 → E2 with kernel generated by
(0, 0), given by the rational function

φ(x , y) =

(
x2 + 1

x
, y

x2 − 1

x2

)
.
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Isogenies

I An isogeny φ : E1 → E2 of elliptic curves is a
(non-constant) morphism and a group homomorphism.

I An isogeny has finite kernel.

I Given a finite subgroup G ⊆ E1(Fq) there is a (unique
separable) isogeny φG : E1 → E2 with kernel G .

I Can compute φG using Vélu in time linear in #G using
operations in Fqt where G ⊆ E1(Fqt ).

I We will write E2 = E1/G .

I We focus on separable isogenies, in which case
deg(φ) = # ker(φ).

I End(E ) = {isogenies φ : E → E over Fq} ∪ {0}.
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Jao and De Feo key exchange (SIDH)

I Let p = 2u3v f − 1 be prime, where 2u ≈ 3v .

I Let E over Fp2 be a supersingular elliptic curve.

I Then #E (Fp2) = (p + 1)2 group structure of E (Fp2) is a
product of two cyclic groups of order 2u3v f .

I WTF? E is a supersingular curve with smooth group
order?!?!

I They do this because we want to compute isogenies
whose kernel is a point of order 2 or 3 defined over Fp2 .

I Fix points R1, S1 ∈ E [2u] such that 〈R1, S1〉 = E [2u].

I Fix R2, S2 such that 〈R2, S2〉 = E [3v ].

I The system parameters are (E ,R1, S1,R2, S2).
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Jao and De Feo key exchange (SIDH)

E

EA = E/GA, φA(R2), φA(S2)

EB = E/GB , φB(R1), φB(S1)

E/〈GA,GB〉
φA

φB
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Jao and De Feo key exchange (SIDH)

I Alice chooses a secret subgroup of E [2u] by choosing an
integer 0 ≤ a < 2u and setting T1 = R1 + [a]S1.

I Alice computes an isogeny φA : E → EA with kernel
generated by T1 and publishes (EA, φA(R2), φA(S2)).

I Bob chooses 0 ≤ b < 3v , computes φB : E → EB with
kernel generated by T2 = R2 + [b]S2 and publishes
(EB , φB(R1), φB(S1)).

I Alice computes

T ′1 = φB(R1) + [a]φB(S1) = φB(R1 + [a]S1) = φB(T1)

and then computes an isogeny φ′A : EB → EAB with kernel
generated by T ′1.

I Bob computes an isogeny φ′B : EA → E ′AB with kernel
〈φA(R2) + [b]φA(S2)〉.
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Jao and De Feo key exchange (SIDH)

I Note: Alice computes EAB and Bob computes E ′AB .

I The elliptic curve equations EAB and E ′AB computed by
Alice and Bob are different, but isomorphic.

I The shared key for Alice and Bob is j(EAB) = j(E ′AB).

I SIDH gives a convenient plug-and-play substitute for
ephemeral Diffie-Hellman key exchange.

I Can use for encryption by making Bob’s input static, but
need to avoid an active attack due to Galbraith, Petit,
Shani, Ti (Asiacrypt 2016).
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Performance of SIDH/SIKE

I Alice computes an isogeny φA : E → EA of degree 2u with
kernel generated by T1 and publishes
(EA, φA(R2), φA(S2)).

I She does this by computing a sequence of u isogenies of
degree 2.

I Nice work by De Feo, Jao, Plût on making it efficient.

I Philosophical question: Is there a
“square-and-multiply” algorithm for isogenies?

Steven Galbraith Isogeny cryptography



SIKE submission to NIST

I SIKE = Supersingular Isogeny Key Exchange.

I Submission to the NIST standardization process on
post-quantum cryptography.

I Authors: Jao, Azarderakhsh, Campagna, Costello, De Feo,
Hess, Jalali, Koziel, LaMacchia, Longa, Naehrig, Renes,
Soukharev and Urbanik.

I Submission contains specification of an IND-CCA KEM.

I http://sike.org/

I Strengths: very short ciphertexts. CSIDH is even better.

I Weaknesses: Not as fast as one might hope.
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Security of SIDH/SIKE

I Given (E ,EA) an attacker wants to find the isogeny
φA : E → EA of degree 2u that maps the points R2 and S2

to the given points.

I An attacker needs to have exactly the right isogeny φA,
otherwise they won’t compute the correct shared key
EAB = E/〈GA,GB〉.
(Though, morally, if one can compute any isogeny one
ought to be able to compute this special one.)

I There is a baby-step-giant-step algorithm that requires
O(2u/2) time and space. (Ditto O(3v/2).)
This is O(p1/4) isogeny computations in the usual setting.

I Quantum speedup of BSGS using Tani “claw-finding”
algorithm, giving O(2u/3) = O(p1/6) isogeny
computations.
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Security of SIDH/SIKE with random walks

I SIDH is analogous to the discrete log in an interval,
because EA is “much closer” to E than a random elliptic
curve in the isogeny class would be.

I Can we attack using kangaroos?
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Graph of 2-isogenies

Not one-dimensional. No sense of direction.
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Security of SIDH/SIKE with random walks

I There is no known low-storage algorithm to break SIDH in
O(2u/2) isogeny computations.

I Adj, Cervantes-Vázquez, Chi-Doḿınguez, Menezes and
Rodŕıguez-Henŕıquez, On the cost of computing isogenies
between supersingular elliptic curves, eprint 2018/313 (to
appear in proceedings SAC 2018).

I Uses a different idea of van Oorschot and Wiener.

I Gives an algorithm with O(23u/4) complexity.

I See Craig Costello’s talk next week.
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Generalised Discrete Logarithm Problem 2: Homogenous
Spaces

(Couveignes 1997)
Let G be a subgroup of F∗q or E (Fq) of prime order r .
For a ∈ Zr and g ∈ G define a ∗ g := g a.
Given g ∈ G and h = a ∗ g , hard to compute a.
Alternative formulation: an action of Z∗r on G − {1}.

Generalised Diffie-Hellman key exchange:

I Alice chooses a ∈ Zp and sends tA = a ∗ g to Bob.

I Bob chooses b ∈ Zp and sends tB = b ∗ g to Alice.

I Alice computes a ∗ tB .

I Bob computes b ∗ tA.
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Generalised Diffie-Hellman 2: Group action

E

a ∗ E

b ∗ E

ab ∗ E
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Class Group Actions from Isogenies

I J.-M. Couveignes “Hard Homogeneous Spaces”, preprint
(1997/2006)

I A. Stolbunov, Master thesis (2004)

I A. Rostovtsev, A. Stolbunov, preprint (2006)

I A. Stolbunov “Constructing public-key cryptographic
schemes based on class group action on a set of isogenous
elliptic curves”, Adv. Math. Comm., (2010)

I Couveignes describes a Diffie-Hellman-type key exchange
based on group actions.
Does not mention post-quantum security.

I Rostovtsev and Stolbunov give key exchange and
encryption.
Suggest isogenies could be post-quantum secure.

I Stolbunov’s thesis describes also mentions signatures.
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Computational problems

I Vectorisation: Given E and a ∗ E to compute a.

I Parallelisation: Given E , a ∗ E , b ∗ E to compute (ab) ∗ E .

I See Ben Smith paper ”Pre- and post-quantum
DiffieHellman from groups, actions, and isogenies”

I New result (Galbraith, Panny, Vercauteren):
parallelisation + Shor → vectorisation.
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Pollard rho for vectorisation

I Let a ∈ G act on a set of things called E .

I Problem instance: E0 and EA = a ∗ E .

I Define pseudo-random walk E 7→ b ∗ E for known b ∈ G .

I Define walk on pairs (E , c) 7→ (b ∗ E , bc).

I Start half the walks on (c ∗ E0, c) and the other half on
(c ∗ EA, c).

I Run walks until hit a distinguished point.

I With probability 1/2 a collision gives a solution to
ci ∗ E0 = cj ∗ EA and so the solution is cic

−1
j .
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Class Group Action on Elliptic Curves

I Let E be an ordinary elliptic curve over Fq with
End(E ) ∼= O an order in an imaginary quadratic field.

I Let a be an invertible O-ideal.

I Can define the subgroup

E [a] = {P ∈ E (Fq) : φ(P) = 0 ∀φ ∈ a}.

(Waterhouse 1969)

I There is an isogeny E → E ′ with kernel E [a].
Define a ∗ E to be E ′ = E/E [a].

I a ∗ E depends only on the ideal class of a.

I This gives an action of the ideal class group Cl(O) on the
set of E with End(E ) ∼= O.
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Ordinary Isogeny Graph (` = 3)

Credit: Dustin Moody
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How to compute a ∗ E?
I Recall we can only compute an isogeny efficiently if its

kernel G is small and preferably defined over the ground
field.

I For a random ideal class a the kernel will not satisfy this
requirement.

I Let l1, . . . , ln be split prime ideals (“Elkies primes”) of
small norm. Write

a ≡
n∏

i=1

leii .

(Let’s assume {li} generates the class group.)
I Couveignes: time required “a few hours”.
I Stolbunov: compute a ∗ E in 4 minutes or so.
I De Feo, Kieffer and Smith discuss choosing a special

curve to make the isogeny computations faster.
I CSIDH improve this (see later )
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Efficiency of computation

I In key exchange we turn things around: Choose uniform
ei ∈ [−B ,B] and define a =

∏
i l

ei
i .

I Computing a walk
∏k

i=1 `
ei
i (mod p) in a graph requires∑k

i=1 |ei | ≈ kB operations.

I To minimise this cost subject to (2B + 1)k ≈ p one takes
k ≈ log(p) and B = O(1).

I Actually:
∑

i |ei |li operations where li is the norm of `i .
Stolbunov uses different intervals ei ∈ [−Bi ,Bi ] to
optimise cost.
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CSIDH (Castryck, Lange, Martindale, Panny, Renes 2018)

I Let p = 4`1 · · · `k − 1.
I Let X be the set of isomorphism classes of supersingular

elliptic curves E with j-invariant in Fp.
Note that #X = O(

√
p log(p)).

I All E ∈ X have EndFp(E ) an order in Q(
√
−p).

Here EndFp(E ) = {φ : E → E defined over Fp}.
I C. Delfs and S. D. Galbraith (2016) showed that one can

define class group actions on X .
I CSIDH is an instantiation of group action crypto using

supersingular curves, which gives massive performance
improvements.

I Features:
I No public key validation needed, so can do non-interactive key

exchange.
I Better bandwidth.
I Only sub-exponentially quantum secure.
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Open problems

I How close to uniform is the distribution

a ≡
∏
i

leii

over uniform ei ∈ [−B ,B], for fixed small prime ideals li?
(Let’s assume {li} generates the class group.)

I Can small prime factors of #Cl(O) be determined?
Can subgroups of ideal class group be exploited?

I (Boneh): Find other homogeneous spaces/torsors for
group actions that are efficient and secure for crypto.
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Computational problems and algorithms

I Given E and E ′ = a ∗ E to determine the ideal (class) a.

I Pollard-rho-type algorithm due to Galbraith-Hess-Smart in
time Õ(

√
#G ) (bug fixed by Stolbunov).

Running time Õ(p1/4) in the CSIDH case.

I Hidden shift problem: G an abelian group and
f , g : G → S such that, for some s ∈ G , g(x) = f (xs) for
all x ∈ G . Problem: find s.

I Idea: Given (E ,E ′ = a ∗ E ) define f (b) = b ∗ E and
g(b) = b ∗ E ′ = f (ba).

I Kuperberg’s algorithm is a subexponential time and space
quantum algorithm for the hidden shift problem.

I A. Childs, D. Jao and V. Soukharev were the first to
analyse Kuperberg’s algorithm in the isogeny setting.

I See talk by J.-F. Biasse.
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Candidate post-quantum pairing
Recent paper by Boneh, Glass, Krashen, Lauter, Sharif,
Silverberg, Tibouchi and Zhandry (eprint 2018/665).

I Fix ordinary E/Fq

I Fact: (a1 ∗ E )× (a2 ∗ E ) ∼= (a1a2 ∗ E )× E as unpolarized
abelian varieties.
(Result holds more generally for n terms; see Kani 2011.)

I This is essentially a bilinear pairing (resp. multilinear
map).

I Not used for key exchange, but other more complex
protocols.

I Open problem: To find a computable invariant of the
isomorphism class.

I Application: Algorithm to solve the decisional
Diffie-Hellman problem for class group actions in the
ordinary case (but not the supersingular case).
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Public Key Signatures
I L. De Feo and S. Galbraith “SeaSign: Compact isogeny

signatures from class group actions”, eprint 2018/824.
I Public key: E and EA = a ∗ E where

a ≡
∏
i

leii

and li ideals of small prime norm, |ei | ≤ B .

I Signer generates random ideals bk =
∏n

i=1 l
fk,i
i for

1 ≤ k ≤ t and computes Ek = bk ∗ E .
I Compute H(j(E1), . . . , j(Et),message) where H is a

cryptographic hash function with t-bit output b1, . . . , bt .
I If bk = 0 signature includes fk = (fk,1, . . . , fk,n) and if
bk = 1 it includes

fk − e = (fk,1 − e1, . . . , fk,n − en).

I Use Lyubashevsky’s “Fiat-Shamir with aborts”.
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Thank You
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