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ABSTRACT
In this article, we will talk about the Discrete Logarithm Prob-

lems. Especially solving a certain range of Discrete Logarithm Prob-
lems by using the Gaudry-Schost algrithm on equivalence classes and
the improvment. We mainly do theoritical analysis, it is developed
from the Birthday Paradox type analysis. Even the Birthday Para-
dox Problem is actually a probability theory problem. As the first
thing we need to do is to introduce what the Birthday Paradox is
and how its theoritical analysis works. Then we give the details of
Shank’s Baby-Step Giant-Step (BSGS) method, since it is the most
famous and basic DLP solving methods in the whole Cryptography.
The Gaudry-Schost algorithm is developed from these methods. To
introduce the 2-Dimensional case of the Gaudry-Schost Algorithm
on Equivalence Classes. We explain the linear case – which is the
Gaudry-Schost algorithm for the short interval 0 ≤ n ≤ N pre-
cisely in section 4.1.1. Hence, we apply the Gaudry-Schost Algo-
rithm on two types of Equivalence Classes – (1) Rotation from 180o

and (2) GLV Method. From our rough calculation, the expected

running time on rotation from 180o is 1.4503
√
N and the expected

running time on GLV Method is 1.0255
√
N . Eventually, we sum-

mary the general optimal formula for the expectation of selection in
2-Dimensional Gaudry-Schost Algorithm on the Equivalence Classes
of rotations as our final conclusion.
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1 Introduction

In 1976, Whitfield Diffie and Martin Hellman published their now famous paper
[19] entitled ‘New Directions in Cryptography’. In this paper they formulated
the concept of a public key encryption system and made several groundbreak-
ing contributions to this new field. A short time earlier, Ralph Merkle had
independently isolated one of the fundamental problems and invented a pub-
lic key construction for an undergraduate project in a computer science class at
Berkeley, but this was little understood at the time. Merkle’s work “Secure com-
munication over insecure channels” appeared in 1978 [20]. The Diffie-Hellman
publication was an extremely important event–it set forth the basic definitions
and goals of a new field of mathematics/computer science, a field whose exis-
tence was dependent on the then emerging age of the digital computer. Indeed,
their paper begins with a call to arms: We stand today on the brink of a revo-
lution in cryptography.

1.1 Diffie-Hellman

The Diffie-Hellman key exchange algorithm solves the following dilemma. Alice
and Bob want to share a secret key for use in a symmetric cipher, but their
only means of communication is insecure. Every piece of information that they
exchange is observed by their adversary Eve. Diffie and Hellman suggest that
the difficulty of the discrete logarithm problem (We will introduce in the next
subsection) for F∗p gives an idea to Alice and Bob . Three steps are needed.
First, Alice and Bob agree on a large prime p and a nonzero integer g modulo
p. And then post the values of p and g somewhere in publication, for instance,
on the web sites. Their adversary Eve also knows about the values of p and
g; Second, Alice and Bob pick up integers a and b, respectively, and keep the
numbers as a secret to themselves. Then, Bob and Alice use their secret integers
to compute

A ≡ ga( mod p) (Alice’s job) and B ≡ gb( mod p) (Bob’s job)

Now, Alice and Bob exchange their computed values A and B to each other.
Note that Eve still can see these numbers, since they are sent over the insecure
communication channel. Finally, Bob and Alice again use their secret integers
a and b to compute

A′ ≡ Ba( mod p) (Alice’s work) and B′ ≡ Ab( mod p) (Bob’s work)

But actually,

A′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B′( mod p)

Bob now knows the value of a and Alice knows the value of b.
The Diffie-Hellman key exchange is based on the assumption that the dis-

crete logarithm problem (DLP) is very difficult to solve. After the publication of
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Diffie-Hellman’s paper [19], two major papers describing public key cryptosys-
tems were introduced: the RSA scheme of Rivest, Shamir and Adleman [21]
and the knapsack scheme of Merkle and Hellman [22].

1.2 DLP and Basic Definitions

Before we explain the whole idea of solving Discrete Logarithm Problems in a
short interval, some basic definitions are needed to be introduced to the readers.
In Cryptography, a cipher is a pair of algorithms that create the encryption and
the reversing decryption, so the first key word is Algorithm. Algorithm is a
procedure or formula for solving a problem in finite sequence of steps, starting
from an initial point, following the ‘rules’ ,eventually terminating at a final
point. And we don’t require each step in the algorithm is deterministic. Our
main oberservation the Gaudry-Schost algorithm is a randomized algorithm,
incorporate randomness. We give an instance to describe the definition.

Example 1. Finding the smallest integer in a list of integers. To find the solu-
tion of this problem, we should look at every single integer in the list, assuming
the first integer we picked up is the smallest, run a programme to check each of
the remaining integers if it is smaller than the smallest integer so far, make a
record of this new smallest integer, the last recorded smallest integer is the one
we are looking for. Therefore the problem gets solved.

In modern mathematics and computer science, an algorithm means a small
procedure of solving a problem. And often we call a computer program an
elaborate algorithm. The word algorithm is named after an Persian mathe-
matican, Mohammed ibn-Musa al-Khwarizmi (780-850) [24]. It first published
in Arabic language in the 9th century and later was translated into Latin in
the 12th century. It was called Algorithmi de numero Indorum at that time.
French introduced the word algorithm, but not its meaning, to Europe in the
17th century, following the model of the word logarithm. English adopted the
French very soon afterwards, but the word ‘Algorithm’ took on the its current
meaning only in the late 19th century. And now is well studied in search al-
gorithms, sorting algorithms, merge algorithms, numerical algorithms, graph
algorithms, string algorithms, computational geometric algorithms, combinato-
rial algorithms, medical algorithms, machine learning, cryptography, data com-
pression algorithms and parsing techniques. To analyse the efficiency of an
algorithm, one typically forcuses on the ‘speed’ of the algorithm, as a function
of the size of the input on which it is run. We want the running time of the
algorithm as short as possible.

The worst case and the average case of the algorithm are normally observed.
The worst case is, just as its name implies, the slowest case of the algorithm.
For example, suppose we are searching a list of N integers. Then we guaranteed
to complete the task by using N operations, but we wish to solve the task less
than N operations, hence it is the worst case of this algorithm. The average case
is the number of running time that we expecte on average or we could say the
expectation. The average case is usually hard to determine but is our main task
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when solving the problem in theoretical analysis. Now we give the definition of
the Discrete Logarithm Problem.

Definition 1. Given a group G with group element g ∈ G. g has order r. The
Discrete Logarithm problem (DLP) is: Given h be another group element of G
to find n, if it exists such that h = gn.

In practice, the process of computing gn could not be counted as a single ba-
sic operation. We introduced the ‘Big-O’ notation to help counting the number
of running times.

Definition 2. Let f(x) and g(x) be the functions of x, where x is a positive
integer. f(x) = O(g(x)) if f(x) ≤ kg(x) for all x ≥ K when k and K are
positive constants. Then we say ’f is big-O of g’. In particular, we write
f(x) = O(1) if f(x) is bounded for all x ≥ K.

Proposition 1. If the limit

lim
x→∞

f(x)
g(x)

exists and is finite, then f(x) = O(g(x)).

Example 2. Let f(x) = 4x3 − 12x+ 14 and g(x) = x3, then

lim
x→∞

4x3 − 12x+ 14
x3

= 4

Hence 4x3 − 12x+ 14 = O(x3).

In Cryptography, there is another word that we use frequently, called ‘Col-
lision’ or ‘repeat’, ‘match’. We usually solve the DLPs by some ‘Collision Al-
gorithm’. For instance, Shank’s Baby-Step Giant-Step algorithm, we split the
steps of walks into two list:Baby list and Giant list. And when the collision
happens between the two lists, then the DLP is solved. We’ll give more details
in Section 3. Note that the Birthday Paradox problem is also a typical collision
type problem.
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2 Birthday Paradox

Our main task is to present the theoretical analysis of the Gaudry-Schost algo-
rithm, which is based on the Birthday Paradox type analysis. Hence, first of
all, we need to know what the Birthday Paradox is and its analysis.

2.1 What is Birthday Paradox

In probability theory, Birthday paradox is well presented by Warren Weaver in
his famous book “Lady Luck”. [1]

“Suppose there are f people in a room. What is the probability that at
least two of them share the same birthday – the same day of the same month?
When there areM = 10 persons in a room together, this formula shows that
the probability is p = 0.117(11.7%) that at least two of them have the same
birthday. For M = 22 the formula gives p = 0.476(47.6%); whereas for M = 23
it gives p = 0.507(50.7%) Most people find this is surprising. But even more
surprising is the fact that with M = 50 persons, the probability is p = 0.970.
And with M = 100 persons, the odds are better than three million to one that
at least two have the same birthday.”
The proof of above fact is easy. For the trivial cases, when N = 365 and when
N=1, we can easily get the probability that pair of people share a same birthday
is 1(ignore the 29th of February and twins)(by the pigeon hole priciple) and 0,
repectively. And for the general cases when 1 ≤ M ≤ 365, the main idea is to
compute the probability Pr(f) that f people all have different birthdays first,
then using 1− Pr(f) to get the probability of “at least two people sharing the
same birthday”. It is easy to get the probability Pr(f). There are 365 possible
birthdays, note that the previous M − 1 people have taken up M − 1 of them.
Hence the probability that the M th person has his or her birthday among the
remaining 365− (M − 1) days is 365−(M−1)

365 , then compute the probability that
every person’s birthday is distinct from each other by using the multiplication
principle.

M∏
f=1

365− (f − 1)
365

Therefore, the formula of getting the probabily p is

p(f) = 1− Pr(f) = 1− 1 · (365− 1
365

) · (365− 2
365

) · · · (365− (M − 1)
365

)

by assuming each day of the year equally probable for a birthday. Then we get
the above results by subsitituting the values of M in this formla. Observe that
when M = 23, the probability is approximately 50% and surprisinngly when
M = 57 the probability goes up to 99%.

2.2 Birthday Paradox in Cryptography

In cryptography, our main observation is the expected running time of getting a
collision and we expect to get the collision as fast as possible by using algorithms
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Figure 1: Birthday paradox

or say we are trying to make the expectation as small as possible. The Birthday
Paradox Method is borrowed to analyse the expected running times.

Theorem 1. Let S be a set of N elements. If elements in set S are selected uni-
formly at random, then the expected number of elements to be taken before some

of them are selected twice is less than
√

πN
2 + 2. The variance is appoximately

0.429N .

Here the expected value of a set is defined the same as the mean or average
of the set.

Proof. Let X be the uniformly random variable that giving the number of ele-
ments selected from set S before some element is selected twice. Assuming the
first l elements that we select from the set S are all different to each other, but
the next element we select matches one of the previous item. Hence, to compute
the expectation of this selection, we have to find out the probability P (X > l)
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by the definition of the expectation.

E(X) =
∞∑
i=1

i · P (X = i) (1)

=
∞∑
i=1

P (X = i) · (i− 1 + 1) =
∞∑
i=1

Pr(X = i) ·
i∑
l=1

1 (2)

=
∞∑
i=1

i∑
l=1

Pr(X = i) =
∞∑
l=1

Pr(X ≥ l) =
∞∑
l=0

Pr(X > l) (3)

The probability P (X > l) is given by the probability P (N, l). Recall the formula
of finding Pr(f) is

∏M
f=1

365−(f−1)
365 in the above subsection 2.1, the way of

finding the probability P (N, l) is similar to how we find the Pr(f).We now
replace 365 possibles by N possibilities and M by l. Hence,

P (N, l) =
l∏

k=1

N − (k − 1)
N

=
l∏

k=1

1− k − 1
N

, Now we apply the standard fact 1− x ≤ e−x for x ≥ 0. Therefore,

E(X) =
∞∑
l=0

Pr(X > l) (4)

=
∞∑
l=0

P (N, l) (5)

=
∞∑
l=0

l∏
k=1

1− k − 1
N

(6)

≤
∞∑
l=0

l∏
k=1

e−
k−1

N (7)

=
∞∑
l=0

e0 · e− 1
N · e− 2

N · ... · e−
l−1
N (8)

= 1 +
∞∑
l=1

e−
l(l−1)

2N (9)

Since l > l − 1 ⇒ (l − 1)l > (l − 1)2 ⇒ −(l − 1)l < −(l − 1)2, and function
f(x) = e−x is a monotone decreasing function, then

E(X) ≤ 1 +
∞∑
l=1

e−
l(l−1)

2N ≤ 1 +
∞∑
l=1

e−
(l−1)2

2N

Since function f(x) = e−x is decreasing and take values [0, 1] for x > 0, then as
the figure 2 illustrates, we know the difference between sum and integral is at
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Figure 2: Integral and Summation

most 1. That is
∞∑
l=1

e
−(l−1)2

2N ≤ 1 +
∫ ∞

0

e−
x2
2N dx

Let u = x√
2N

, then x =
√

2N · u

E(x) = 2 +
∫ ∞

0

e−x
2/2Ndx = 2 +

∫ ∞
0

e−u
2
d
√

2N · u = 2 +
√

2N
∫ ∞

0

e−u
2
du

by using
∫∞
0
e−u

2
du =

√
π

2 , we get

2 +
√

2N
∫ ∞

0

e−u
2
du = 2 +

√
πN

2

Therefore the solution in the theorem applies.
Now, for the proof of the variance V ar(X), we will use the formula V ar(X) =

E(X2)− E2(X).
We’ve aleady seen E(X) = 2 +

√
πN/2, thus E2(X) = (2 +

√
πN/2)2 =

4 +πN/2 + 2
√

2πN ≈ πN/2 +O(
√
N). Now, we concentrate on E(X2). By the
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definition of discrete random variable’s expectation, we get

E(X2) =
∞∑
l=1

l2 · Pr(X = l) =
∞∑
l=1

l2 · (Pr(X > l − 1)− Pr(X > l)) (10)

=
∞∑
l=0

(l + 1)2 · Pr(X > l)−
∞∑
l=0

l2 · Pr(X > l) (11)

=
∞∑
l=0

(2l + 1) · Pr(X > l) = 2
∞∑
l=0

l · Pr(X > l) + E(X) (12)

Now, the problem becomes what the value of term
∑∞
l=0 l · Pr(X > l) is. And

from the above argument in this section about E(X). We’ve proven

Pr(X > l) = Pr(N, l) =
l−1∏
i=0

(1− i

N
) ≤

l−1∏
i=0

e−
i
N ≤ e−

(l−1)2

2N

Hence

∞∑
l=0

l · Pr(X > l) ≤
∞∑
l=0

l · e−
(l−1)2

2N =
∞∑
l=0

(l+ 1) · e− l2
2N =

∞∑
l=0

l · e− l2
2N +

∞∑
l=0

e−
l2
2N

To get the E(X2), we have to estimate these two terms
∑∞
l=0 l · e−

l2
2N and∑∞

l=0 e
− l2

2N , espectively. The second one is easy, we’ve seen the function y =

e−x is monotonical decreasing function, thus
∑∞
l=0 e

− l2
2N ≈ 1 +

∫∞
0
e−

l2
2N dl.

Make the change of variable u = l/
√

2N gives
√

2N
∫∞
0
e−u

2
du, and we know

√
2N
∫∞
0
e−u

2
du ≈

√
πN
2 . Hence, the term

∞∑
l=0

e−
l2
2N ≈ 1 +

√
πN

2

Now,let’s deal with the more complicated term
∑∞
l=0 l · e−

l2
2N . It is difficult

because of the factor “l”. It makes difficulty to determine the monotonicity of
function z =

√
2Nt · e−t2 , where t = l/s

√
2N . To do that, we need to analyse

the monotonicity of the function w = 2t2 + t− 1. From the figure, we can see

0 ≤ t < 1
2
⇒ −1 ≤ w < 0⇒ 0 < −w

t
≤ 2⇒ 0 < 1 +

1
t
− 2t− 2 ≤ 2

t ≥ 1
2
⇒ w ≥ 0⇒ −w

t
≤ 0⇒ 1

t
+ 1− 2t− 2 ≤ 0

By the Taylor expansion series, e2t+1 ≈ 1 + 2t + 1 = 2 + 2t. Thus e2t+1 =
e−t

2+(t+1)2 ≈ 2 + 2t. Hence,from 2.2, we have 1 + 1
t − e

t2 ·(t+1)2 > 0 ⇒ (t +

14



1)e−(t+1)2 > te−t
2

for 0 ≤< 1
2 . And from 2.2, we have (t + 1)e−(t+1)2 ≤ te−t

2
.

That means, the function z = t · e−t2 is monotonically increasing for 0 ≤ t < 1
2 ,

then reaches its peak value 1
2 · e

− 1
4 , then becomes monotonically decreasing at

t > 1
2 . Note that, when t = 0, z = 0 and t = 1/2, l =

√
2N/2. Thus

∞∑
l=0

l · e− l2
2N = 2 ·

√
2N
2
· e− 1

4 +
∫ ∞

0

l · e−l
2/2Ndl (13)

=
√

2N · e− 1
4 +

1
2

∫ ∞
0

e−l
2/2Ndl2 (14)

=
√

2N · e− 1
4 − 2N

2

∫ ∞
0

e−l
2/2Ndl2/2N (15)

=
√

2N · e− 1
4 −N(e−l

2/2N |∞0 ) (16)

=
√

2N · e− 1
4 −N(0− 1) (17)

=
√

2N · e− 1
4 +N (18)

Therefore, the variance of samples to be taken before some element is taken
twice is

V ar(X) = E(X2)− E(X)2 (19)

= 2
∞∑
l=0

l · Pr(X > l) + E(X)− E(X)2 (20)

= 2(
∞∑
l=0

l · e−l
2/2N +

∞∑
l=0

e−l
2/2N ) + 2 +

√
πN

2
− 4− πN

2
− 2
√

2πN

(21)

= 2N − πN

2
+O(

√
N) (22)

(23)

Ignore the small terms O(
√
N), the variance of the birthday problem is around

0.429N .
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3 Baby-Step Giant-Step Algorithm

Baby-Step Giant-Step algorithm (BSGS) due to Shanks [18] is well known on
solving the discrete logarithm problems in the intervals. It is an example of
collision ,or meet-in-the-middle, algorithm and also a naive way of solving the
Discrete Logarithm Problem. And it is useful because the Baby-Step Giant-
Step Algorithm can be applied to any group, not just F∗q , and the proof that it
works is no more difficult for arbitrary groups.

In order to keep the consistency, we still continue using the notation of
Discrete Logarithm Problems (DLP) definition, which we’ve given in the Section
1.

Definition 3. Let G be a cyclic group, generated by the element g of order
r, that is G = {gi : i ∈ [0, r − 1]}. Let n be a non-negative integer which
satisfies gn = h, where h ∈ G. We split integer n into two terms λm+µ, where
m =

⌈
r

1
2

⌉
, 0 ≤ λ, µ ≤ m,λ, µ,m are integers. Then

h = gn = gλm+µ

Hence,
h · g−λm = gµ

Here, h,g,m are known. We just need to find the values λ and µ. One creates
two sorted lists:

BabyList : g0, g1, g2, · · · , gr−1

GiantList : h · g0, h · g−m, h · g−2m, h · −3m, · · · , h · g−(r−1)m

As running this two sorted lists, we get at least one value from Baby list matches
one value from the Giant List. Hence, we get the value of n and the DLP is
solved. We call this method Baby-Step Giant-Step Algorithm.

For example, we get ga1 from the Baby List, get h · g−b1mfrom the Giant
List (remember 0 ≤ a1, b1 ≤ r − 1).

ga1 = h · g−b1m ⇒ ga1+b1m = h⇒ n = a1 + b1m

Therefore, the problem has been solved. To explain the Baby-Step Giant-Step
algorithm more precisely, we will give an example.

Example 3. Using Shank’s Baby-Step Giant-Step algorithm to solve the dis-
crete logarithm problem

gn = hinmathbbF ∗pwithg = 9782, h = 5739, andp = 17389.

The number 9782 has order 8694 in mathbbF ∗17389. Set m =
⌈√

8694
⌉

= 94
and make u = g−m = 9782−94 = 396. One did a computer work and find
that g88 = 12539, h · g−94×10 = 5739 × 39610 = 12539. Thus, g88 = h · g−940.
Therefore, g1028 = 5739, n = 1028, the discrete logarithm problem is solved.
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Algorithm 1 The Baby-Step Giant-Step algorithm
Input: A cyclic group G of order r, having a generator g and an element h.
Output: A value n satisfying gn = h.
1: m↼ Ceiling(

√
r)

2: for all j where 0 ≤ j < m do
3: Compute gj and store (j, gj) in a ordered table.
4: end for
5: Compute g−m.
6: Let V ↼ h. (Set V = h)
7: for i = 0 to (m− 1) do
8: Check to see if V is the second component (gj) of any pair in the ordered

table.
9: if then return mi+ j.

10: else
11: return V ↼ V · g−m
12: end if
13: end for

The Baby-Step Giant-Step Algorithm requires about O(
√
r) running times

and the space complexity, which is much faster than O(r). But it is the dis-
advantange of using BSGS, too. Mathematicans discovered other algorithm to
reduce the running times and the sample space.
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4 Gaudry-Schost algorithm

In this section, we will introduce the Gaudry-Schost algorithm. It is helpful
for solving the Discrete Logarithm Problems (DLP) in a short interval. The
basic idea of the Gaudry-Schost method is the same as the Pollard’s kangaroo
method with the van Oorschot and Wiener formulation. The key idea of their
formulation is: One uses a herd of N/2 tame kangraroos and a herd of N/2
wild kangaroos. Then wish to get a collision between the two differnt teams of
kangaroos, but not the self collisions. Hence the Discrete Logarithm is solved.
Unlike Shank’s Baby-step Giant-step method, it doesn’t require to store every
single point in the pseudorandom walks but the distinguished points. We use the
distinguished points idea to the Gaudry-Schost method in order to accelerate the
algorithm. It helped us reducing the sample space. One also finds it can further
reduce the storage and make the Gaudry-Schost algorthm faster by using the
equivalence classes. However, to define the representitives of the equivalence
classes and at the meantime also keep the walks being uniformly at random
becomes a problem. We try to analysis this problem by using the Galbraith-
Rupai algorithm in this section. The main difference between the Gaudry-Schost
algorithm and the Pollard’s kangaroos is the Gaudry-Schost will restart a new
walk while the kangaroos would keep running. And also the theoritical analysis
is different. The Gaudry and Scost is built on birthday paradox type analysis
and it is heuristic, kagaroos are based on another approach.

The definition of Discrete Logarithm Problem (DLP) in an interval is: Given
a cyclic group G and a positive integer N , a group element g ∈ G with order
r, and another group element h such that h = gn where 0 ≤ n ≤ N ( N is less
than r). To compute n.

4.1 1-Dimensional Gaudry-Schost Algorithm

4.1.1 Definition in 1-Dimensional

First, we shift the interval from [0, N ] to [−N2 ,
N
2 ], since the points on interval

[−N2 ,
N
2 ] are symmetric by the origin 0. To do that without loss of generality,

we replace the group element h by h′ · g−N
2 . Therefore,

Definition 4. Let G be a group with elements g, h ∈ G such that h = gn for
some −N2 ≤ n ≤

N
2 where N is a positive even number. Run a large number of

pseudorandom walks. record each element of the walk, alternatively, ‘tame walk’
(T ) with form ga

T = {a| − N

2
≤ a ≤ N

2
}

with a is known and ‘wild walk’ (W ) with form hga

W = n+ T = {n+ a|a ∈ T}

where n is defined above.
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Figure 3: Examples of ‘overlap’ T ∩W in linear case

Now, walks will keep on running until a distinguished point is hit, then we
record the distinguished point, the type of this walk and also, of course, the
value of a, restart a new pseudorandom walk, repeat this process until the same
distinguished point is visited by two different types of the walks, that means we
have ga1 = hga2 ,that implies h = ga1−a2 , hence the DLP is solved.

4.1.2 Theoretical Analysis in 1D

Now, we present a theoretical analysis of the Gaudry-Schost algorithm. Our
main result is the expectation of the Discrete Logarithm Problems in a short
interval and it has been analysed by Nishmura and Sibuya [6] and Selivanov [8].
It is a birthday paradox type of approach (Pollard’s Kangaroos used another
different theoretical analysis). And we call it ‘Tame Wild Birthday Paradox’
(TWBP).

Theorem 2. Let S be a set of N elements. If elements are samoled uniformly
at random with replacement. Record the elements, alternatively, into two lists.
Then the expected number of elements that need to be made in total before a
coincidence happenned between the lists is

√
πN +O(1)

Proof: See Nishimura and Sibuya[6]
The collision wouldn’t appear if the Tame set and the Wild set do not in-

tersect. Hence, we are only interested in T ∩W , and often we call it ‘overlap’.
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First we observe the average case and the worst case. We’ll use some charts in
4.1.2 to illustrated those cases. From the definition of Gaudry-Schost algorithm,
our n is an integer in the set −N2 ≤ n ≤ N

2 . And the positive or the negative
sign of n just points out the moving directions of the wild set. For instance, as
illustrate in the chart 4.1.2, the elements on the Wild Set move to the ‘left’ when
n = −N4 and move to the ‘right’ when n = N

4 , but the intersection T ∩W of
both cases are 3N

4 . The worst case is n = N
2 and n = N

4 is the average case. In
other words, |T ∩W | = N

2 in the worst case and |T ∩W | = 3N
4 in the average

case.
Define that a collision between the Tame set T and the Wild set W is a

T −W collision. Since in the discrete logarithm problems in a short interval,
we don’t consider the self-collision cases. We expect the number of sellections
as small as possible. We apply the theorem 2 in T ∩W to get the expected
running time of n.

Theorem 3. Sampling elements uniformly at random,with replacement and
alternately recorded in the Tame set T and the Wild set W . Then the expected
number of selections, over all instances, is 2.08

√
N

Proof. By symmetry, we consider n ∈ [0, N2 ] instead of n ∈ [−N2 ,
N
2 ]. First, we

need to find how many number of elements we expect to choose for tame set
and wild set. To do that, we need find the number of elements in |T ∩W |, since
by theorem 2, the expeced number of selections is roughly

√
πR, and the orders

of the Tame set and the Wild set are R
2 by the definition of Gaudry-Schost

algorithm. Then the problem seems to be solved.
As the picture illustrated, let n = xN , since n ∈ [0, N2 ], then x ∈ [0, 1

2 ].Note
that the absolute value here means the length of interval, not for counting points
on the interval.

|T ∩W | = N − n = N − xN = N(1− x)

we expect to select
√
πR =

√
πN(1− x) Hence, half of them came from T .

Then the number of samples we expected to pick up from T is
|T |
|T∩W | ·

1
2

√
πN(1− x)

|T ∩W | = N(1− x)
a ∈ [−N2 ,

N
2 ]⇒ |T | = N

 N

N(1− x)
· 1

2

√
πN(1− x) =

1
2

√
πN

1− x

The same argument applies to W set. Hence |W | = N as W = {n + a|a ∈
[−N2 ,

N
2 ]} .

|W |
|T ∩W |

· 1
2

√
πN(1− x) =

N

N(1− x)
·
√
πN(1− x) =

1
2

√
πN

1− x

Together, we expected to pick up
√

πN
1−x group elements. Therefore, we average

this over all applications is

2
∫ 1/2

0

√
πN · 1√

1− x
dx = 2

√
πN ·

∫ 1/2

0

(1−x)−
1
2 dx = 2

√
πN ·(2−

√
2) ≈ 2.08

√
N
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Figure 4: General case of overlap T ∩W in linear case

We multiply by 2 in front because we’ve restrict the value of x to the interval
[0, 1/2] instead of [−1/2, 1/2].

4.1.3 Pseudorandom walks and Practical Considerations

The Practical experiments are also considered by Gaudry and Schost. Their
goal is to reduce the amount of storage. The algorithm requires O(

√
N) steps,

but we don’t want to record them all. In order to do that, the distinguished
points due to van Oorschot and Wiener point of view are used. We only store
the distinguished points instead of every points of pseudorandom walks, that is
about (θ

√
N) group elements, where θ is the probability of a randomly selected

an element from a group is a distinguished point. Recall every step is multipli-
cation by gai where ai ∈ Z.Define m is the mean step size of jumps |ai|. We
use absolute value here since our main focus is Gaudry-Schost algorithm. It is
a ’side-to-side’ walk.

Birthday Paradox requires selecting samples uniformly at random, so does
Tame-Wild Birthday Paradox. Practical experience shows that we partition the
group into ns parts when ns is large, then the pseudorandom walks is closed
enough to the truely random walks, hence the Tame-Wild Birthday Paradox
(TWBP ). For the analysis we recall the Cofman, Flajolet, Flatto and Hofri’s[9]
result.
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Lemma 1. Let y0, y1, · · · , yk be a symmetric random walk that starts at the ori-
gin (y0 = 0) and takes steps uniformly distributed in [−1,+1] then the expected
maximum excursion is

E(max|yi| : 0 ≤ i ≤ k) =

√
2k
3π

+O(1)

Here m = 1
2 by the definition of symmetric random walk. Since θ is the

probability that an element in the group is a distinguished point, then the walk
is about 1

θ long. Applying the above lemma 1, let k = 1
θ , then it takes about

l · 1√
θ

steps, where l =
√

2
3π . And we know the average size of each step is m.

Therefore, the average distance of the random walk in total is approximately
m√
θ
. It natually needs to make the value of m√

θ
large so that it behaves like

a truly random walk. Otherwise, the walk would stay around and close to
the starting point. But there is also a bad point for making the value of m√

θ
large, that is when the pseudorandom walks oversteps the boundaries. It is not
included in our probabilistic analysis and they are ’waste’ steps. Hence, to make
the pseudorandom walks act exactly like a random walk, we use a small factor
(1 + ε) in the heuristic result. And in practice, after the distinguished point is
detected and stored in the server, we still need to wait another 1/θ steps until
the same distinguished point is hit again. Therefore,

Heuristic 1. The average expected running time of solving a DLP in an inter-
val of size N by using Gaudry-Schost algorithm is 2.08(1 + ε)

√
N + 1/θ group

operations where ε is small.

We find that the Gaudry-Schost algorithm is not as fast as the van Oorschot
and Wiener view of Pollard Kangaroo algorithm, Hence we introduce the Equiv-
alence classes of a group to improve the Gaudry-Schost algorithm over the DLP
in an short interval.

4.2 Equivalence Classes

Gallant, Lambert and Vanstone and Wiener and Zuccherato presented that the
Pollard’s ρ method for some cases can be sped up by defining pseudorandom
walks on a set of equivalence classes instead of over the group. For our case –
the DLP in a short interval, we define equivalence classes is a set of elements
whose discrete logarithm still lie in the interval. Then it requires to think about
its unique representitive of the equivalence classes,and the unique representitive
of the equivalence classes can be computed efficiently When any group element
is given. To explain this idea, we will give an example.

Example 4. Let G be a cyclic group over a finite field mathbbF q (q is an odd
prime) and g ∈ G with order r. Define an equivalence relation x ≡ x−1, where
group element x−1 is the inverse element of x in G. That means if x = gahb

then x−1 = g−ah−b. Most often we consider elliptic curves over a finite field
as an instance since if we know one point P = (xP , yP ) ∈ mathbbE, then we
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can immediately get its inverse point −P = (xP ,−yP ) as elements are pairly
symmetrical by the x-axis. Therefore the computation is shorten to its half.
Hence define x̂ = max{x, x−1} as the representative of our equivalence class.

There are two things need to be metioned. First, the Side-to-Side walks.
Consider the group elements pairly by equivalence classes, such as g, g−1. If
g is [0, N2 ], then clearly, g−1 is in [−N2 , 0]. Even for the identity element of
the elements who is equal to its inverse. Hence it is a side-to-side walk, we
naturally apply the Gaudry-Schost method on it instead of the Standard Pollard
Kangaroos. And it is also the reason why we defined the values of a in the
interval [−N2 ,

N
2 ] instead of the interval [0, N ]. Second, the equivalence classes

may cause some small cycles.

Example 5. In the above instance, we defined x ≡ x−1 as the equivalence
relation to the pseudorandom walks start with x0(note that x0 can be any element
in the group). Let xi = x̂i and xi+1 = x̂ig, suppose x̂i+1 = x−1

i+1 and S(x̂i+1) =
S(x̂i), then xi+2 = x̂i+1g ≡ xi+1

−1g = (x̂ig)−1g = g−1x̂i
−1g = x̂i

−1 ≡ xi.
That is a cycle of size 2.

These sort of cycles would interfere the pseudorandom walk and make walks
never reach a distinguished point. But these cycles can be detected by comput-
ing and storing a small amount of extra steps. Gallant, Lambert and Vanstone,
and Wiener and Zuccherato[4] noticed and introduced a dealing method which
is called Collapsing the cycle. And Bos Kleinjung and Lenstra showed a theo-
retical analysis in their paper.[3]

4.3 The Gaudry-Schost Algorithm on Equivalence Classes

Now, we apply the Gaudry-Schost algorithm on equivalence classes to solve the
Discrete Logarithm Problems in an interval of size N. Recall that the Discrete
Logarithm Problems (DLP) in an interval [−N2 ,

N
2 ] is, G = 〈g〉, group element

g has order r. Another group element h ∈ G. We wish to get n such that
h = gn. But the Tame set and Wild set are defined slightly different from the
Gaudry-Schost algorithm. We make the walks defined on pairs (P,−P ).

Definition 5. Let the notations as above. But

T = {{a,−a}|a ∈ [−N
2
,
N

2
]}

W = {{−n− a, n+ a}|a ∈ [−N
2
,
N

2
]}

where a is known from the pseudorandom walk.

As we described before, the collision should be in the intersection |T ∩W |.
Otherwise, we can’t find any matches. The whole Gaudry-Schost algorithm
analysis idea is based on the Birthday Paradox, which requests sampling uni-
formly at random. Hence,the trick is to determine whether it still works on the
equivalence classes.
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Example 6. Let a = N
6 , n = N

6 . Let P be the point in the wild set regarding
a and n, as the figure illustrate. But the problem is point P is of form n + a
or of form −n − a′. In fact, both of the forms can express a same point by
choosing the different value of as. In our case, when a′ = −(2n + a) = −N2 ,
then n+ a = 2N

6 = N
3 = −n− a′ = −N6 − (−N) = 2N

6 = N
3 .

From the above example, we see there exists two different values of a for
a same point P in some part of the interval. In other words, some points are
selected ununiformly. We need to identify those parts out from |T ∩W |, hence
we need a new algorithm.

4.3.1 Galbraith-Ruprai Algorithm

Recal that G is a cyclic group with group elements g and h under relation
h = gn in the interval [−N2 ,

N
2 ], in order to find out n, we alternatively record

the pseudorandom walks in Tame set and Wild set. But this time, we make the
wild set smaller.

Definition 6. Let 4|N ,

T =
{
{a,−a}|a ∈ [−N

2
,
N

2
]
}

,

W = {{−n− a, n+ a}|a ∈ [−N
4
,
N

4
]}

In the Galbraith-Ruprai algorithm, one successfully defined the pseudoran-
dom walk on a set of equivalence classes. This time, when a distinguished
point is hit by a walk, we store the representative of the equivalence class,
the discrete logarithm and a flag indicating the ‘type’ of walk. Then as pre-
viously, when the same representative is visited by another set, then the DLP
is solved. The theoretical analysis of the Gaudry-Schost algorithm is based
on the Birthday Paradox (recall ‘TWBP’). We expect to sample uniformly at
random. But the equivalence class often causes some confusing. In order to
dealing with that we redefine a ’fundamental domain’ for the Tame sets and
the Wild sets. The advantage of doing that is to make the points ‘one to one
correspondence’ and easy to determine the area of intersection |T ∩W | where
our ‘T-W’ collision happens. For the Tame set, let the fundamental domain of
Tame is T̃ = {{a,−a}|a ∈ [0, N2 ]}. Apparently, elements are selected one-to-one
correspondence since we only consider values of a here. Now for the Wild set,

Our Wild set is defined as W̃ = {{−n − a, n + a}|a ∈ [−N4 ,
N
4 ]}. But

now we only consider the positive values ,then we fold the negative part to
positive (Some part of the interval are overlapping at this time, we call it ‘dou-
ble density’). Hence the fundamental domain of the Wild set W̃ is a multiset
W̃ = |n|+ a,−(|n|+ a)|a ∈ [0, |n|+ N

4 ] + [0, N4 − |n|]. As the figure 6 illus-
trates, when |n| > N

4 , we are sampling uniformly from the Wild set. But when
|n| ≤ N

4 , samples are selected with probability 4
N for the ‘double density’ part
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Figure 5: Fundamental domain in the 1D case

Figure 6: Double density in the 1D case
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a ∈ [0, N4 − |n|], and with probability 2
N for the part a ∈ [N4 − |n|,

N
4 + |n|]. To

analyse the expectation of our new algorithm, we need consider its generalisation
first.

Theorem 4. Let R ∈ N and 0 ≤ A ≤ R
2 . There are unlimited number of balls

(they are exact the same but the colour) and R urns. We pick up the balls and
recolour them to red and blue, alternatively, then drop these coloured balls into
the urns uniformly at random but with different probabilities. For the red balls,
the probability is 1/R for all the urns. For the blue balls, (1),the probabilities
from urn 1 to urn A is 2/R. (2), the probabilities from urn A+ 1 to urn R−A
is 1/R. (3), the probabilities from urn R−A+1 to urn R is 0.Then the expected
number of selection is

√
πR + O(R

1
4 ) balls to get at least one red ball and one

blue ball in the same urn.

To explain the idea of this theorem, we use the following claim which is given
by Galbraith and Holmes[2].

Lemma 2. There are unlimited number of balls (only colour different) and R
urns. We pick up the balls and recolour them to colour 1 and colour 2, with
probabilities qc, (c = 1, 2), then drop these coloured balls into the urns. And the
probability of dropping in the ath urn is qc,a and qc′,a for the red balls and the
blue balls, respectively. To get at least one red ball and one blue ball in the same
urn, we expect to select √

π

2 ·AN
+O(N

1
4 )

balls , where

AN =
2∑
c=1

qc(
2∑

c′=1,c 6=c′
(
R∑
a=1

qc,a · qc′,a))

.

Applied the result in theorem 4,

AR =
1
2

(
1
2

(A · 2
R
· 1
R

+ (R−A−A) · 1
R
· 1
R

+ (R−R+A) · 0 · 1
R

)) (24)

+
1
2

(
1
2

(A · 2
R
· 1
R

+ (R−A−A) · 1
R
· 1
R

+ (R−R+A) · 0 · 1
R

)) (25)

= 2× 1
2
× 1

2
× 1
R

(26)

=
1

2R
(27)

Hence, the expected number of experiments we should make in total before two
different colour balls are dropped in a same urn is

E =
√

π

2 · 1
2R

+O(R
1
4 )

The expected number of steps that we make before a T −W collision happen is√
πR+O(R

1
4 ). Also note that the probability could help increasing the chance

of getting collisions.
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Theorem 5. Sampling uniformly at random with replacement alternately from
the Tame set and the Wild set. The expected number of selections that we need
to make, over all instance, before a Tame-Wild collision happen is

(
5
√

2
4
− 1)
√
πN ≈ 1.36

√
N

Proof. Apply theorem 4 in this proof. Ignore the small terms O(R
1
4 ). The

only problem is |T ∩W |(Note that the absolute value here means the length of
intersection T ∩W ). Let h = gxN , x ∈ [0, 1

2 ], Consider the positive half of x,
as using the equivalence class one can determine element −x immediately. For
the Tame set, all the values of a are sampled uniformly and the size of tame set
is N

2 . From the discussion of fundermental domain, we consider the wild set in
two cases: (i) 0 ≤ x < 1

4 (ii) 1
4 ≤ x ≤ 1

2 .Case(i), some of the elements in the
wild set are not uniformly selected because of the double density part. Now the
number of steps we expected to select depends on the tame set, since the tame
set is sampled uniformly and the size of the tame set is N

2 ,.Hence, the above
theorem 5 can be applied and the expected number of group operations to get

a collision is
√
π · N2 . Case(ii), first, we need find |T ∩W |. From the figure,

|T ∩W | = N − N

4
− xN =

3N
4
− xN

R = |T ∩W | = 3N
4
− xN

We know half of the walks are tame walks and half are wild walks, thus for each
set we require selecting

|T |
|T ∩W |

·
√
π|T ∩W | =

1
2N

N( 3
4 − x)

·
√
πN(

3
4
− x) =

1
2

√
πN

3
4 −N

=

√
πN

3− 4x

Since|T | = |W | = N
2 . Hence,the expected running time of the algorithm is

2 ·
√

πN
3−4x . Average this over all problem instance as

1
2

√
πN

2
+ 2

∫ 1
2

1
4

2 · (3− 4x)−
1
2
√
πNdx =

√
2

4
·
√
πN −

√
πN · (1−

√
2) (28)

=
√
πN(

5
4

√
2− 1) (29)

We still use the Greek letter ε to express the undesirable properties of the
pseudorandom walk.

Heuristic 2. The average expected running time of solving a DLP in an interval
of size N by using the impoved Gaudry-Schost algorithm is 1.36(1+ ε)

√
N +1/θ

group operations where ε is small.

27



4.4 Solving 2-Dimensional DLP

There are still a lot of applications relating the Discrete Logarithm Problem in
2-dimensional or even higher dimensional, such as, computing the number of
points on genus 2 curves over finite fields [10]; Computing the Gaudry-Schost
low-memory algorithm by Gaudry and Schost [11] and by Weng [12]; It also
arises ecplicitly in the work of Brands [13] and Cramer, Gennaro and Schoen-
makers [14]. It helped understanding the security of the Gallant, Lambert and
Vanstone (GLV) method in speeding up elliptic curve arithmetic [5] or helped
Koblitz in using Koblitz curves to efficient elliptic curves cryptography [17].
See Galbraith and Scott [15] and Galbraith, Lin and Scott [16] for examples.
Hence, the Multi-Dimensional Discrete Logarithm Problem is really worth to
be studied. Our main observation in this section is the 2-Dimensional case.

4.4.1 Definitions of 2-Dimensional DLP

First, we update the definition of the Gaudry-Schost type Discrete Logarithm
Problem in the 2-Dimensional.

Definition 7. Let G be a group with elements g1, g2, h′ and bounds N1, N2 ∈ Z,
and the relation among them is h′ = gn1

1 gn2
2 where 0 ≤ n1 ≤ 2N1, and 0 ≤ n2 ≤

2N2, compute n1, n2.

Convenient for using the equivalence classes to accelrate the algorithm, we
shift the domain of x1, x2 to −N1 ≤ x1 ≤ N1, and−N2 ≤ x2 ≤ N2. We can do
this since we can redefine the element h = h′ · g−N1/2

1 g
−N2/2
2 , and the benifit of

doing that is the new domain is a rectangle centred at origin 0. Like the linear
case, in the Gaudry-Schost algorithm, we need to define Tame set and Wild set
for the 2-Dimensional case. To do that, we first let the pseudorandom walks be
the same as the linear problem, but in a plane.

Definition 8. Randomly choose a point whose coordinate is (a0, b0). Define a
function f , such that

(a1, b1) = f(a0, b0), (a2, b2) = f(a1, b1), · · · , (ak+1, bk+1) = f(ak, bk)

We say these walks are pseudorandom walks in the 2-Dimensinal discrete loga-
rithm problems.

We still alternatively record the walks into two sets calling “Tame” set and
“wild” set.

T = {(a, b)| −N1 ≤ a ≤ N1,−N2 ≤ b ≤ N2}

W = {(n1 + a, n2 + b)| −N1 ≤ a ≤ N1,−N2 ≤ b ≤ N2}

4.4.2 Theoretical Analysis

In Gaudry-Schost paper, they didn’t give details about the running time of
the Gaudry-Schost algorithm in 2D case, but we will do it precisely by using
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Figure 7: Gaudry-Schost heuristic in the 2D case

the usual assumption. Recall that the T −W type collisions only occur in the
intersection |T ∩W |, Hence we naturally observe the intersection |T ∩W | in the
2-dimensional problem, and we call |T ∩W | the overlap.

Heuristic 3. The average expected running time of solving a DLP in 2D case
by using the Gaudry-Schost algorithm is 2.43(1 + ε)

√
N + 1/θ group operations

where ε is small.

It is still based on the Birthday Paradox type analysis. And the theorem
which Galbraith and Holmes presented in their paper [2] 2 is a very useful tool
for our proof. Here, we pick up walks instead of balls and record the walks into
two sets tame and wild instead of two colours, thus qt = qw = 1

2 , lemma 2 can
be used in proving our 2D DLP. Since N is a large integer, then we normally
don’t count the small term O(N1/4). The probabilities of walks in the tame set
and the wild set are pt = pw = 1/N , as the areas of tame and wild are |T | =
|W | = 2N1 ·2N2 = N . Let n1 = x1N1, n2 = x2N2, where 0 ≤ |x1|, |x2| ≤ 1, thus
|T∩W | = (2N1−x1N1)(2N2−x2N2) = N1N2(2−x1)(2−x2) = N

4 (2−x1)(2−x2).
Our

A = 2 · 1
2
· 1

2
· 1
N
· 1
N
· N

4
(2− x1)(2− x2) =

(2− x1)(2− x2)
8N

Therefore,the expected number of running time over all instances (ignore the
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small terms) is

E =
√

π

2A
=

√
8πN

2

∫ 1

0

∫ 1

0

(2− x1)−
1
2 (2− x2)−

1
2 dx1dx2 (30)

= 2
√
πN · (−2) · (−2) · (2− x1)

1
2 |10 · (2− x2)

1
2 |10 (31)

= 8
√
πN · (1−

√
2)2 (32)

= 8
√
πN(1 + 2− 2

√
2) (33)

= 2.43
√
N (34)

The small factor (1 + ε) is used to make the pseudorandom walk act like a truly
random walk. And in practice, it takes extra 1/θ steps to get the distinguished
point hitted again. Together, we get our heuristic result 2.43(1 + ε)

√
N + 1/θ

for ε is small.

4.4.3 Accelerating the algorithm

We’ve seen the improved Gaudry-Schost algorithm gets accelerated by using the
equivalence classes in the 1-Dimensional Discrete Logarithm Problem and the
expectation of sampling elements is approximately 1.36

√
N rather than 2.08

√
N .

Now, we apply the updated 2-D Gaudry-Schost algorithm on equivalence classes
to solve the 2-Dimensional DLP. For example, group element h corresponding
to (x, y) in the plane, then h−1 corresponds to (−x,−y). One can make pseudo-
random walks in the half size of the tame set to save the running times, like we
did in the linear case. Now to the 2D problem, we need consider the definition
of the Tame set and the Wild set. Precisly, let

T = {{(a, b), (−a,−b)} : −N1 ≤ a ≤ N1,−N2 ≤ b ≤ N2}

be the set of equivalence classes of points in a box of area N = 2N1 ·2N2 centred
at 0. For the discrete log (n1, n2) where −N1 ≤ n1 ≤ N1,−N2 ≤ n2 ≤ N2, the
Wild set is considered as

W = {{(n1 + a, n2 + b), (−n1− a,−n2− b)} : −N1

2
≤ a ≤ N1

2
,−N2

2
≤ b ≤ N2

2
}

.To analyse the algorithm again we requires visualising the sets via a ‘fun-
damental domain’. The map (a, b) 7→ (−a,−b) is rotated by 1800 a natural
fundemental domain is the halfplane b ≥ −N2

N1
a in the plane. Therefore the

fundamental domain T̃ for the Tame set would be

T̃ = {(a, b) : −N1 ≤ a ≤ N1,−
N2

N1
a ≤ b ≤ N2}

To define the fundamental domain of the Wild set W̃ , which is contained in
the Tame set, is easy. Note that one just needs to pay attention to when
0 ≤ n1 ≤ N1, and 0 ≤ n2 ≤ N2, like the multi-set case in the linear case, there
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Figure 8: Case 1 of 2D in Rotation 180o:when 0 ≤ |x1|, |x2| < 1
2

is some ‘double density’ area in this situation. But by applying the theorem 2
[2], nomatter what the shape of the overlap is in this case, we can always put
it back to its original place, consider the whole region as ‘single density’ (each
point in this region is counted once), then the area of the W̃ equals to the area
of the whole wild set W , which is N1 ·N2 = N

4 . When n1 ≥ N1/2 or n2 ≥ N2/2,
then the distribution on w̃ is not inside of the Tame set any more. In these
cases, the overlap |T̃ ∩ W̃ | is varies between N

4 and N
8 .

Theorem 6. Sampling uniformly at random with replacement alternately from
Tame set and Wild set. The expected number of selections that we need to make,
over all instance, before a Tame-Wild collision happen in the 2-dimensional
discrete logarithm problem is (1.4776 + o(1))

√
N .

Here the small term o(1)
√
N goes to 0 as N goes to∞. But in the proof, we

only mention how we get the result 1.4776
√
N . And for the following results,

we’ll do the same in proofs,too.

Proof. Let n1 = x1N1, n2 = x2N2

i) When 0 ≤ |x1|, |x2| < 1
2

Samples are selected uniformly at random in the fundamental domain of the
Tame set T̃ (even not in the fundamental domain of the wild set W̃ sometimes),
hence we can apply the theorem 2 to find the expectation of this case. We need
find the A1 in oreder to get the E1. As the figure 8 illustrated, the overlap |T̃∩W̃ |
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is partitioned into two parts: Y ′ region and Z region (Z region is the region
|T̃ ∩W̃ |−Y ′). In particular, the probability of the points in the Y ′+Y region is
4/N (Since the area of the Wild Set is 4/N). Now we rotate the points in region
Y 1800 to the region Y ′, then the number of points in the region Y ′ is twice the
original Y ′, which we called the ’double density’ part of the fundamental domain
of the wild set W̃ in 2-Dimensional case. Hence, the probability of finding a
point in W̃ is 4/N . Recall the probability of points in the T̃ region is 2/N , and
the probabilities of the points being recorded in the list T̃ and list W̃ are both
1/2. Hence, q1 = q2 = 1

2 , q1,|T̃∩W̃ | = 2/N, q2,Y ′ = 8/N, q2,Z = 4/N . Suppose
the area of region Y ′ is γ and the area of region Z is η, thus the ovelap in this
case is |T̃ ∩ W̃ | = η + 2γ = N

4 . Hence

A1 = 2 · 1
2
· 1

2
· ( 8
N

2
N
· γ +

4
N

2
N
· η) (35)

= 2 · 1
2
· 1

2
· ( 8
N

2
N
· γ +

4
N

2
N
· (N

4
− 2γ)) (36)

=
4
N2
· N

4
(37)

=
1
N

(38)

Then the expectation for this case is

E1 =
√

π

2 ·A1
+O(N

1
4 ) =

√
πN

2
+O(N

1
4 )

ii) when 1
2 ≤ |x1| ≤ 1, 0 ≤ |x2| < 1

2 , in this case the fundamental domain of
the wild set W̃ moves to the ’right’ along the x-axis. And the expectation at this
time relates to the values of |x1|. Since the group elements in the fundamental
domains of Tame and Wild are both sampled uniformly at random, the theorem
2 applies. Thus q1 = q2 = 1

2 , q1,|T̃∩W̃ | = 2/N, q
2,|T̃∩W̃ | = 4/N and note that the

little right-angle triangle region of the wild set is not the double density area
in the wild’s fundamental domain since this little triangle is rotated 180 degree
by the diagonal y = −N2

N1
x, hence the region of |T̃ ∩ W̃ | is still a rectangle,

|T̃ ∩ W̃ | = N
4 ( 3

2 − |x1|) in this case. Then,

A2 = 2 · 1
2
· 1

2
· ( 4
N

2
N
· |T̃ ∩ W̃ |) (39)

= 2 · 1
2
· 1

2
· ( 4
N

2
N
· |T̃ ∩ W̃ |) (40)

=
4
N2
· |T̃ ∩ W̃ | (41)

=
4
N2
· (N

4
(
3
2
− |x1|)) (42)

=
1
N

(
3
2
− |x1|) (43)
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Figure 9: Case 2 of 2D in Rotation 180o:when 1
2 ≤ |x1| ≤ 1, 0 ≤ |x2| < 1

2

Then the expectation for this case is

E2 =
√

π

2 ·A2
+O(N

1
4 ) =

√
2πN
2

· (3
2
− |x1|)−

1
2 +O(N

1
4 ) (44)

iii) when 0 ≤ |x1| < 1
2 ,

1
2 ≤ |x2| ≤ 1, this case is similar to the case ii,the

only difference is the fundamental domain of the wild set W̃ moves ’up’ along
the y-axis. Hence|T̃ ∩ W̃ | = N

4 ( 3
2 − |x2|), AN = 1

N ( 3
2 − |x2|). Therefore

E3 =
√

2πN
2

(
3
2
− |x2|)−

1
2 +O(N

1
4 )

iv) when 1
2 ≤ |x1| ≤ 1, 1

2 ≤ |x2| ≤ 1. Now the fundamental domain of the
wild set in this case moves not only along the x-axis to the right but also the
y-axis to up. The overlap |T̃ ∩W̃ | = N

4 ( 3
2−|x1|)( 3

2−|x2|), A4 = 1
N ( 3

2−|x1|)( 3
2−

|x2|), hence the expectation of this case is

E4 =
√

2πN
2

(
3
2
− |x1|)−

1
2 (

3
2
− |x2|)−

1
2 +O(N

1
4 )

Ignore all the small terms. The expected number of elements that we need to

33



Figure 10: Case 3 of 2D in Rotation 180o:when 0 ≤ |x1| < 1
2 ,

1
2 ≤ |x2| ≤ 1

Figure 11: Case 4 of 2D in Rotation 180o: when 1
2 ≤ |x1| ≤ 1, 1

2 ≤ |x2| ≤ 1
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Figure 12: Improved Gaudry-Schost algorithm for 2-Dimensional DLP in Rota-
tion 180o

select over all instances is

E =
1
4
·
√
πN

2
+

1
2

∫ 1

1
2

√
2πN
2

· (3
2
− |x1|)−

1
2 d|x1| (45)

+
1
2

∫ 1

1
2

√
2πN
2

· (3
2
− |x2|)−

1
2 d|x2| (46)

+
∫ 1

1
2

∫ 1

1
2

√
2πN
2

(
3
2
− |x1|)−

1
2 (

3
2
− |x2|)−

1
2 d|x1|d|x2| (47)

=
√

2πN
8

+ (4
√

2− 5)
√
πN (48)

≈ 1.4776
√
N (49)

4.5 New Algorithm of 2-Dimensional in Rotation 1800

Our rough calculation requirs the running time of theoretical result is at least
1.4776

√
N , which we’ve given in the section 4.4.3. One can give even better

algorithm to reduce the expected running time to around 1.4503
√
N . The key

observation is that the running time of the Gaudry-Schost algorithm depends on
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the size of the overlap |T̃ ∩ W̃ |. We achieve this better result by choosing walks
which only cover certain subsets of the fundamental domain of the tame set T̃
and the wild set W̃ . To avoid the symbol confusion, we’ll use T̂ represents the
new fundamental domain of Tame set, and Ŵ represents the new fundamental
domain of the Wild set. Let

T̂ =
{

(a, b) : −17
20
N1 ≤ a ≤

17
20
N1,−

N2

N1
a ≤ b ≤ 17

20
N2

}
and

Ŵ =
{
{(n1 + u1, n2 + u2), (−n1 − u1,−n2 − u2)} : −N1

2
≤ n1 ≤

N1

2
,−N2

2
≤ n2 ≤

N2

2

}
The way of calculation is exactly the same as the calculation in the previous
section. Divide the whole problem into four cases and observe the expectation
over all the cases then get the final solution.

Theorem 7. Given the 2-Dimensional Discrete Logarithm Problem as described
in Definition 7. Let T̂ and Ŵ be the fundamental domain of the Tame set and
the Wild set. Then the expected running time of the group operations for the
improved Gaudry-Schost algorithm is (1.4503 + o(1))

√
N .

One can prove it still by using the theorem 2 by S.D.Galbraith and M.Holmes
[2]. The rough calculation result is at least 1.4503

√
N , we’ll prove it without

counting the small term o(1)
√
N .

Proof. Let n1 = x1N1, n2 = x2N2, and N = 4N1N2, κ = 17
20 . The ratio of walks

being recorded as tame or wild type walk is 1 : 1, then the probability of a point
being recorded into the tame set or the wild set is qt = qw = 1

2 . The area of the
fundermental domain of the Tame Set T̂ = 1

2 · 4 ·
17
20

2 ·N1N2 = 1
2κ

2N , that also
means the probabilities of a point being selected from the Tame set is 2/κ2N .
Clearly, the area of original Wild Set |W | = N

4 . For the fundamental domain of
the Wild Set Ŵ , we apply the theorem 4. The prove is similar to the prove of
theorem 6. case(1) when 0 ≤ x1 < κ− 1

2 and 0 ≤ x2 < κ− 1
2 , As we described

in the prove of theorem 6, ‘double density’ only happens in this case. Play the
same trick as above proof–since the ‘double density’ part is caused by rotation,
then we can rotate the overlapped points back to its original place. Then the
overlap |T̃ ∩ W̃ | = |W | = N/4, thus

A1 = 2 · 1
2
· 1

2
· 2
κ2N

· 4
N
· N

4
=

1
Nκ2

⇒

E1 = κ

√
πN

2
+O(N

1
4 )

case(2) when κ − 1
2 ≤ x1 ≤ 1 and 0 ≤ x2 < κ − 1

2 , then the overlap
|T̃ ∩ W̃ | = (κN1 + 1

2N1 − x1N1)N2 = N
4 (κ+ 1

2 − x1), thus

A1 = 2 · 1
2
· 1

2
· 2
κ2N

· 4
N
· N

4
(κ+

1
2
− x1) =

1
Nκ2

(κ+
1
2
− x1)
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⇒

E2 = κ

√
πN

2
(κ+

1
2
− x1)

−1
2 +O(N

1
4 )

case(3) when 0 ≤ x1 < κ− 1
2 and κ− 1

2 ≤ x2 ≤ 1, this case is similar to case
(2).

E3 = κ

√
πN

2
(κ+

1
2
− x2)

−1
2 +O(N

1
4 )

case(4) when κ − 1
2 ≤ x1 ≤ 1 and κ − 1

2 ≤ x2 ≤ 1, then the overlap
|T̃ ∩W̃ | = (κN1 + 1

2N1−x1N1)(κN2 + 1
2N1−x2N2) = N

4 (κ+ 1
2−x1)(κ+ 1

2−x2),
thus

A1 = 2· 1
2
· 1
2
· 2
κ2N

· 4
N
·N

4
(κ+

1
2
−x1)(κ+

1
2
−x2) =

1
Nκ2

(κ+
1
2
−x1)(κ+

1
2
−x2)

⇒

E4 = κ

√
πN

2
(κ+

1
2
− x1)

−1
2 (κ+

1
2
− x2)

−1
2 +O(N

1
4 )

Therefore, over all instances and ignore all the small terms, we get the Expec-
tation in this improved Gaudry-Schost algorithm is

E = (κ− 1
2

)2κ

√
πN

2
+ 2(κ− 1

2
)κ

√
πN

2

∫ 1

κ− 1
2

(κ+
1
2
− x1)−

1
2 dx1 (50)

+ κ

√
πN

2

∫ 1

κ− 1
2

∫ 1

κ− 1
2

(κ+
1
2
− x1)−

1
2 (κ+

1
2
− x1)−

1
2 dx1dx2 (51)

= κ

√
πN

2
[κ− 1

2
+
∫ 1

κ− 1
2

(κ+
1
2
− x1)−

1
2 dx1]2 (52)

= κ

√
πN

2
[κ− 1

2
− 2(κ+

1
2
− x1)

1
2 |1κ− 1

2
]2 (53)

= κ

√
πN

2
[κ− 1

2
− 2[(κ− 1

2
)

1
2 − 1]]2 (54)

= κ

√
πN

2
[κ+

3
2
− 2(κ− 1

2
)

1
2 ]2 (55)

Finally, one can reaches the solution 1.4503
√
N by subsitute κ = 17

20 into this
formula E. Therefore, the proof completes. Together with the small term, our
final solution of the New Algorithm is (1.4503 + o(1))

√
N .

In general, we get this new solution of the New Algorithm (with Rotation
1800) by making the Tame Set smaller and the Wild Set bigger, since we expect
the overlap |T ∩W | as big as possible (That is the way how we approach to the
optimal result). Let

T = {{(a, b), (−a,−b)} : −(1−λ)N1 ≤ a1 ≤ (1−λ)N1,−(1−λ)N2 ≤ b ≤ (1−λ)N2}
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Figure 13: Optimal overlap |T̂ ∩ Ŵ | of 2D in Rotation 180o

be the set of equivalence classes of points in a box of area N = 2(1 − λ)N1 ·
2(1 − λ)N2 centred at 0. For the discrete log (n1, n2) where −(1 − λ)N1 ≤
n1 ≤ (1 − λ)N1,−(1 − λ)N2 ≤ n2 ≤ (1 − λ)N2, the Wild set is considered
as W = {{(n1 + u1, n2 + u2), (−n1 − u1,−n2 − u2)} : − (1+2τ)N1

2 ≤ n1 ≤
(1+2τ)N1

2 ,− (1+2τ)N2
2 ≤ n2 ≤ (1+2τ)N2

2 }Apply the algorithm on the equivalence
classes and do the similar calculation with four cases. Finally we get a general
formula of the expectation of selection is

E = (1− λ)

√
πN

2
(
5
2
− λ+ 3τ − 2

√
1 + 2τ ·

√
1
2
− λ+ τ)2

Run the following computer programme, we get the optimal value of λ and τ
are 0.1467 and 0, respectively. Take λ = 0.1467 ≈ 0.1500 = 17/20, that is how
our New Algorithm comes from –why we take T̂ be the set of equivalence classes
of points in a box of area (4( 17

20 )2N1N2).

Optimal parameters e and t

clear all

N1=10;
N2=5;
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N=4*N1*N2;

n=(N-1)/2;
e=[0:1/N:n/N];
maxt=length([0:1/N:0.5-e(1)]);
for i=1:n

t=[0:1/N:0.5-e(i)];
for j=1:length(t)

Y(i,j)=(1-e(i))*sqrt(pi/2)*(2.5-e(i)+3*t(j)-
2*sqrt(1+2*t(j))*sqrt(0.5-e(i)+t(j)))^2;

end
if i>1

for j=length(t)+1:maxt
Y(i,j)=NaN;

end
end

end

[row col]=find(Y==min(min(Y)));
emin=1/N*(row-1);
tmin=1/N*(col-1);

Note that κ = 1− λ must be greater than 1
2 . In other words, our the value

of λ should be in [0, 1
2 ). As figure 14 illustrates, the expectation value goes to

infinity when λ = 1/2. But the strange fact is when we subisitute λ = 1/2 and
τ = 0 into our optimal formula, we get

E = (1− λ) ·
√
π/2 · (2.5− λ+ 3× τ − 2 ·

√
1 + 2 · τ ·

√
0.5− λ+ τ)2 =

√
2πN

That is because the effect of the small term O(N
1
4 ).

5 Gaudry-Schost On The GLV Method

In the Gallant-Lambert-Vanstone (GLV) Method [23], one has an efficiently
computable group homomorphism ϕ and one computes nP for P ∈ E(Fq) and
n ∈ N as Q = n1P + n2ϕ(P ) where |n1|, |n2| ≤ N1 = c

√
n for some constant.

The homomorphism ϕ satisfies ϕ2 = ϕ·ϕ = −1. Now, we assume that N1 = N2.
Write N = (2N1 + 1)(2N2 + 1), since one knows the logarithm of ϕ(P ) to the
base P it is sufficient to compute n1 and n2. Consider the equivalence classes

{Q,−Q,ϕ(Q),−ϕ(Q)}

of size 4. If Q = n1P + n2ϕ(P ) then −Q = −n1P − n2ϕ(P ),ϕ(Q) = ϕ(n1P +
n2ϕ(P )) = n1ϕ(P )+n2ϕ

2(P ) = −n2P+n1ϕ(P ),−ϕ(Q) = −ϕ(n1P+n2ϕ(P )) =
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Figure 14: Values of λ: 0 ≤ λ < 1
2

−n1ϕ(P )− n2ϕ
2(P ) = n2P − n1ϕ(P ) these 4 points correspond to the pairs of

exponents
{(n1, n2), (−n1,−n2), (−n2, n1), (n2,−n1)}

and so action by ϕ corresponds to rotation by 90 degrees. Hence, we natu-
rally apply the Gaudry-Schost algorithm on these equivalence calsses. Take the
Fundamental Domain of the Tame Set

T̃ = {(a, b) : 0 ≤ a ≤ N1, 0 ≤ b ≤ N2}

and the Fundamental Domain of the Wild Set W̃ is a multi-set, see pictures 15,
16,17.

Theorem 8. Sampling uniformly at random with replacement alternately from
Tame set and Wild set. The expected number of selections that we need to make,
over all instance, before a Tame-Wild collision happen in the 2-dimensional
discrete logarithm problem with GLV Method is (1.044 + o(1))

√
N .

We prove this theorem similar to the proof of theorem 6. We still ignore
the small term o(1)

√
N first. The ratio of a point being recorded as a Tame

type element or a Wild type element is 1 : 1, hence the probability of a point
being recorded as the Tame type or the Wild type is qt = qw = 1

2 . Apply this
problem on the GLV method. The area of the Fundamental Domain of the
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Figure 15: Case 1 of 2D on the GLV Method: 0 ≤ ||x1, |x2| < 1
2

Tame Set is |T̃ | = N1×N2 = N
4 , thus the probability of collecting a point from

the Fundamental Domain of the |T̃ | is 4/N . After observe the movement of the
centre of W̃ , we still analyse four different cases as the same as the proof in
theorem 6 depending on the value of n1, n2, and the theorem 4 and Galbraith
and Holmes’s theorem 2 are still important tool for us. But the trick, this time,
is not only ‘double density’, but also ‘triple density’ and ‘quadruple density’ for
the Fundamental Domain of the Wild Set |W̃ |. We have to be careful in the
proof.

Proof. Let n1 = x1N1, n2 = x2N2

case 1),When 0 ≤ |x1|, |x2| < 1
2 Observe that beside ‘single density’, ‘dou-

ble density’, some parts ,what we call ‘triple density’ and ‘quadruple density’
(defined the same as ‘single density’ and ‘double density’), exsits. Divided the
whole overlap |T̃ ∩ W̃ | in to four type regions: ‘single density’ region A (A
is made up by A1 and A2), ‘double density’ region B (B is made up by B1

andB2), ‘triple density’ region C (C is made up by C1 and C2), ‘quadruple
density’ region D. Then the probabilities of selecting a point from A,B,C,D
are 4/N ,8/N ,12/N ,16/N . We get this figure 15 by the GLV Method, hence we
know the areas A = A′,B = B′,C = C ′,D = D′, respectively. Looking at the
box with solid border in Figure 15, one can see that N

4 = A + 2B + 3C + 4D.
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Figure 16: Case 2 of 2D on GLV Method :when 1
2 ≤ |x1| ≤ 1, 0 ≤ |x2| < 1

2 &
Case 3 of 2D on GLV Method :when 0 ≤ |x1| < 1

2 ,
1
2 ≤ |x2| ≤ 1

Apply the theorem 2,

A1 = 2× 1
2
× 1

2
× 4
N

[
16
N
×D +

12
N
× C +

8
N
×B +

4
N
×A] (56)

= 2× 1
2
× 1

2
× 4
N
× 4
N

[4D + 3C + 2B +A] (57)

=
8
N2

[4D + 3C + 2B +
N

4
− 4D − 3C − 2B] (58)

=
8
N2
× N

4
(59)

=
2
N
. (60)

Hence,

E1 =

√
πN

4
+O(N

1
4 ) =

√
πN

2
+O(N

1
4 ).

case 2) When 1
2 ≤ |x1| ≤ 1, 0 ≤ |x2| < 1

2
This case is easier than the case 1). There are only ‘Single Density’ region

E (E is made up by E1 and E2) and ‘Double Density’ region F in the overlap
|T̃ ∩ W̃ |. And the probabilities of collecting points from the ‘Single Density’
region and the ‘Double Density’ region are 4/N and 8/N , respectively. The
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Figure 17: Case 4 of 2D on GLV Method: when 1
2 ≤ |x1| ≤ 1, 1

2 ≤ |x2| ≤ 1

same as case 1), the areas of region E2 = E′2, F = F ′ by rotation 90o.

A2 = 2× 1
2
× 1

2
× 4
N
× [

8
N
· F +

4
N
· E] (61)

= 2× 1
2
× 1

2
× 4
N
× [

8
N
· F +

4
N
× (

N

4
(
3
2
− x1))] (62)

=
2
N

(
3
2
− x1) (63)

Hence, the expectation

E2 =
√

π

2 · ( 2
N ( 3

2 − x1))
+O(N

1
4 ) =

√
πN

2
(
3
2
− x1)−

1
2 +O(N

1
4 ).

case 3) When 0 ≤ |x1| < 1
2 ,

1
2 ≤ |x2| ≤ 1 Similarly proof as case 2), we get the

expectation

E3 =
√
πN

2
(
3
2
− x2)−

1
2 +O(N

1
4 ).

case 4) When 1
2 ≤ |x1| ≤ 1, 1

2 < |x2| ≤ 1
There is only ‘Single Density’ in the overlap |T̃ ∩ W̃ |, and the area of the
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overlap |T̃ ∩ W̃ | is N
4 ( 3

2 − x1)( 3
2 − x2). Thus

A4 = 2× 1
2
× 1

2
× 4
N
× 4
N
× N

4
(
3
2
− x1)(

3
2
− x2) (64)

=
2
N

(
3
2
− x1)(

3
2
− x2) (65)

Then, the expectation

E4 =
√
πN

2
(
3
2
− x1)−

1
2 (

3
2
− x2)−

1
2 +O(N

1
4 )

Therefore, ignore the small terms, over all instances, we get

E =
√
πN

8
+ 2× 1

2
×
√
πN

2

∫ 1

1
2

(
3
2
− x1)−

1
2 dx1 +

√
πN

2
(
∫ 1

1
2

(
3
2
− x1)−

1
2 dx1)2

(66)

=
√
πN

2
(
1
2

+
∫ 1

1
2

(
3
2
− x1)−

1
2 dx1)2 (67)

=
√
πN

2
(
1
2
− 2(

3
2
− x1)

1
2 |11

2
)2 (68)

=
√
πN

2
[
1
2
− 2(

√
2

2
− 1)]2 (69)

=
√
πN

2
[
5
2
−
√

2]2 (70)

≈ 1.044
√
N (71)

Together with the small constant term o(1)
√
N . The expected of sellection is

(1.044 + o(1))
√
N .

5.1 New Algorithm for the GLV Method

We still play a similar game as the subsection 4.5. Let the Fundamental Domain
of the Tame Set

T̃ = {(a, b) : 0 ≤ a ≤ (1− λ)N1, 0 ≤ b ≤ (1− λ)N2}

and although the Fundamental Domain of the Wild Set W̃ is differ from each
case, we can always do some rotation therefore consider the Wild Set itself. The
optimal formula for the GLV Method is

E =
(1− λ)

√
πN

2
[
5
2
− λ+ 3τ − 2

√
1 + 2τ(

1
2
− λ+ τ)

1
2 ]2

Run a similar computer programme in subsection 4.5, thus λ = 0.1467 and
τ = 0. Now. we give the optimal solution for the GLV Method.
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Theorem 9. Sampling uniformly at random with replacement alternately from
Tame set and Wild set. The expected number of selections that we need to make,
over all instance, before a Tame-Wild collision happen in the 2-dimensional
discrete logarithm problem on the GLV Method is (1.0255 + o(1))

√
N .

The proof of this theorem is similar to the proof of theorem 4.5.

6 Conclusion

We give the Optimal Solution for solving the 2-Dimensional Gaudry-Schost
Algorithm on the Equivalence Classes – Rotation 360o

2d (where d is a positive

integer). Define the Tame Set in a region with area (17/20)2N
2d , and the Wild Set

is a box of area N
4 centered at origion.

Theorem 10. Sampling uniformly at random with replacement alternately from
Tame set and Wild set. The expected number of selections that we need to make,
over all instance, before a Tame-Wild collision happen in the 2-Dimensional
Discrete Logarithm Problem on the Equivalence Classes with Rotation 360o

2d is
(2.0510 · 2− d

2 + o(1))
√
N , where d is a positive integer.

The proof of this theorem is exactly the similar as the theorem 4.5. There
are still four cases to be observed. By using the theorem 2 for over all instances
(ignore the small terms), we get the expectation is

E =
17
20

√
πN(2)−

d
2 [

17
20

+
3
2
− 2(

17
20
− 1

2
)

1
2 ]2 (72)

= 0.85×
√
πN(2)−

d
2 [0.85 + 1.5− 2×

√
0.35]2 (73)

= 0.85×
√
πN(2)−

d
2 × 1.157209 (74)

= 2.0510× 2−
d
2
√
N (75)
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