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Abstract

Recent developments in elliptic curve cryptography have heightened the need
for fast scalar point multiplication, specially when working on environments
with limited computational power. It is well known that point multiplication
on elliptic curves over Fqm (with m > 1) can be accelerated using Frobenius
expansions. In practice, the computation is much faster than the standard
double-and-add scalar multiplication.

An efficient implementation of elliptic curve cryptosystems can use a
Koblitz curve and convert integers into Frobenius expansions to perform
fast scalar multiplications. However, this conversion of integers to Frobenius
expansions would lead to extra code on the device (i.e., silicon area) and
extra computational cost.

According to N. Koblitz, H. Lenstra suggested that rather than choosing
a random integer n and then converting to a Frobenius expansion n(τ),
in certain cryptosystems it might be more efficient to generate a random
Frobenius expansion directly. The temptation then is to choose a relatively
short and/or sparse value for n(τ). If this is done then we must re-evaluate
the difficulty of the discrete logarithm problem (and other computational
problems). A further issue is that the existing security proofs may not
directly apply. For some systems it may be necessary to develop bespoke
security proofs for the Frobenius expansion case.

In this thesis, we analyse the Frobenius expansion DLP and present algo-
rithms to solve it. Furthermore, we propose a variant of a well known iden-
tification scheme designed for public key cryptography on very restricted
devices. More precisely, we construct the Girault-Poupard-Stern (GPS)
identification scheme for Koblitz elliptic curves using Frobenius expansions.
The idea is to use Frobenius expansions throughout the protocol, so there
is no need to convert between integers and Frobenius expansions. We also
give a security analysis of the proposed scheme.
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“For thousands of years, kings, queens and generals have
relied on efficient communication in order to govern their
countries and command their armies. At the same time,

they have all been aware of the consequences of their
messages falling into the wrong hands, revealing precious
secrets to rival nations and betraying vital information to

opposing forces. It was the threat of enemy interception
that motivated the development of codes and ciphers:
techniques for disguising a message so that only the

intended recipient can read it.”
Simon Singh
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Chapter 1

Introduction

In recent years, there has been an increasing interest in environments with

limited computational power. It is well known that point multiplication on

elliptic curves over Fqm (with m > 1) can be accelerated using Frobenius ex-

pansions (a.k.a. τ -adic expansion). H. Lenstra suggested that rather than

choosing a random integer n and then converting to a Frobenius expan-

sion n(τ), in certain cryptosystems it might be more efficient to generate a

random Frobenius expansion directly. The temptation then is to choose a

relatively short and/or sparse value for n(τ).

The GPS identification protocol was the starting point of our entire

project. At the beginning, we were tempted to use Frobenius expansions

with short exponents in the GPS protocol, which would lead to smaller

parameters, compared with the usual integer case, because we believed,

at that point, that low-memory counterparts for the Frobenius expansions

discrete log problem (which we called τ -DLP) did not exist, or at least, did

not have a square-root behaviour.

By studying the τ -DLP and with some suggestions by Tanja Lange, we

16



1. Introduction

discovered that low memory algorithms with square root complexity for the

τ -DLP do exist, although with non-optimal constants hidden in the O( ).

1.1 Road map

We begin this thesis with a background chapter, in that we review some

topics that we judged important for a better understanding of our work. The

notations (standard notations, whenever possible) introduced in Chapter 2

are used throughout the thesis.

The next stop of our thesis is also a background chapter, but we de-

cided to present it separately, with more details, due to its relevance in

relation to our work. In Chapter 3 we study the elliptic curve discrete log

problem (ECDLP) and present the standard algorithms to solve them. We

briefly review the exhaustive search algorithm and the Shanks’ baby-step

giant-step (BSGS) algorithm. Then we focus on the low memory algorithms

to solve the ECDLP, when we analyse the Pollard-rho and the Pollard-

kangaroo methods, as well as their parallel counterparts. The understand-

ing of Pollard-kangaroo method will be paramount for the study of a low

memory algorithm for the τ -DLP.

In Chapter 4 there is also some review, as well as new material. We revise

the concept of Koblitz curves and Frobenius expansions, the latter being the

actor in a leading role of this thesis. We show how to efficiently compute

a scalar point multiplication using Frobenius expansions, some subtleties of

the arithmetic with τ -adic expansions and also that every Frobenius expan-

sion can be mapped down to x + yτ , for integers x, y of certain size. As

far as we know, we are the first to prove the bounds for x and y and also

17



1. Introduction

conjecture that such bounds can be shortened, based on the distribution of

τ -adics. The use of this property will be the main tool to solve the τ -DLP. In

this chapter, we also present an algorithm for adding two τ -adic expansions,

and show that we needed to include a randomisation step in order to avoid

a statistical attack in the τ -GPS protocol.

Chapter 5 is dedicated to the Frobenius expansion DLP. We observed

that a deep study of the τ -DLP was necessary, in order to guide the use of

Frobenius expansions in cryptosystems. We introduce three computational

problems, namely, the general τ -DLP, the τ -NAF DLP and the weight-w

τ -DLP. Similarly with what we have done in Chapter 3, we briefly present

the exhaustive search and BSGS algorithms for the three computational

problems and then we concentrate on a low-memory algorithm. The solution

was to use the Gaudry-Schost 2-dimensional algorithm and use the property

that a τ -adic can be written as x+ yτ , for integers x, y. We give a complete

description of Gaudry-Schost algorithm and analyse it, trying to fill some

gaps in the work of Gaudry and Schost.

After a better understanding of the τ -DLP, the next stop of our thesis

is to present an application of a real protocol using Frobenius expansions

in the place of integers. In Chapter 6 we study the GPS identification

scheme and propose a counterpart using Frobenius expansions, which we

called τ -GPS. Since the study of τ -DLP showed that we cannot use shorter

parameters, the main advantage of using Frobenius expansions is that it does

not require conversion between integers and Frobenius expansions, being

useful to applications with limited offline computation time and limited

code area. We give a security analysis of τ -GPS and also some hints of

how to choose the right protocol for constrained devices, according to the
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application.

In Chapter 7 we define parameters sizes needed for efficient and secure

applications of Frobenius expansions, based on the results of Chapters 5

and 6.

Finally, Chapter 8 concludes our work and present some open problems

and suggestions of future work.

1.2 Contributions

Now we highlight the main contributions of this thesis, in sequential order.

- [Section 4.2.2] Let L be a parameter which represents the length of a τ -

adic expansion
L−1∑

i=0

αiτ
i with coefficients αi ∈ {−1, 0, 1}. The number

of possible τ -adic expansions is clearly 3L. However, we have many

P -equivalent τ -adics in this set, i.e., Frobenius expansions a and b

such that [a]P = [b]P for some point P ∈ E(F2m), which results in

a much smaller number of equivalence classes. We compute a bound

for the number of P -equivalence classes of Frobenius expansions. We

experimentally show that this number is bounded by Õ(2L);

- [Sections 4.2.4, 4.2.6 and 4.2.6.2] Any τ -adic expansion of the form
L−1∑

i=0

αiτ
i can be mapped down to x+yτ , for integers x and y of certain

size. We prove bounds on x and y and also we give some pictures of

the distribution of random τ -adics and random τ -NAFs. From these

pictures, we conjecture optimal bounds on x and y;

- [Section 4.3] We propose the use of a randomisation step in the al-
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gorithm to add and multiply τ -adics, in order to avoid a statistical

attack in the τ -GPS protocol;

- [Section 5.2] We introduce three new computational problems, namely,

the general τ -DLP, the τ -NAF DLP and the weight-w τ -DLP;

- [Section 5.5.2] We fill some gaps in the analysis of the Gaudry Schost

algorithm, giving an estimate of how many steps are likely to be out-

side of the search box and analysing the success probability of the

algorithm;

- [Section 6.5] We propose a GPS protocol which uses Frobenius expan-

sions throughout (and we call it τ -GPS). This will lead to fast and

simple offline operations while still keeping the online operation fast,

being useful to applications with limited offline computation time and

limited code area;

- [Section 6.6] We give a security analysis for the proposed τ -GPS;

- [Section 6.6.3.1] We describe a statistical attack on the τ -GPS protocol

if the randomisation step proposed in Section 4.3 is not used;

- [Section 7.5] Let C be the length of the τ -adic which represents the

challenge in the GPS protocol and let S be the length of the τ -adic

which represents the private key. We compute the number of possible

τ -adic expansions of degree less than C, Hamming weight w and at

least S − 1 zero coefficients between each pair of nonzero coefficients,

which will be useful if one wants to use the Girault-Lefranc trick with

τ -GPS.
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In this chapter we present a review of topics which are important for

the comprehension of the thesis. Any reader with some basic knowledge of

the topics presented here can skip this chapter without any risk of loss of

understanding, since nothing original will be presented. We also give some

references for those who want to obtain further knowledge about the topics

presented in this chapter.
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2. Background

2.1 Complexity

The first step of our review is to present some notation and definitions well

known in the literature, which will be used throughout this thesis. The

term or expression to be defined will be written in bold. The definitions

are based on those given in [17, 37, 54].

Definition 1. An algorithm is a finite sequence of steps to solve a problem.

Let n be the input size of an algorithm A and let f(n) be a function

which represents the running time of A in its worst case (in other words,

the running time of A is upper bounded by f(n)).

Definition 2. We say that f(n) ∈ O
(
g(n)

)
(a.k.a. big-O notation) if

there exists some constant c > 0 and some integer n0 such that 0 6 f(n) 6

cg(n) for all n > n0.

Definition 3. We say that f(n) ∈ Õ
(
g(n)

)
(read soft-O notation) if f(n) =

O(g(n) logk(g(n)) for some k. In other words, it means that logarithmic

factors are ignored in the big-O notation.

Definition 4. We say that f(n) ∈ Ω
(
g(n)

)
if there exists some constant

c > 0 and some integer n0 such that 0 6 cg(n) < f(n) for all n > n0.

Definition 5. Informally speaking, we say that algorithm A runs in:

• polynomial time if there exists some constant k such that f(n) ∈
O(nk);

• sub-exponential time if for all k, we have f(n) ∈ Ω(nk) and for all

constants a > 1 we have f(n) ∈ O(an);
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• exponential time if there exists some constants a, b > 1 such that

f(n) ∈ Ω(an) and f(n) ∈ O(bn).

For constants c and v, we have:

Lp(v, c) = exp
(
c(lg p)v(lg lg p)1−v

)
,

where if: 



v = 1, Lp is exponential in lg p;

v = 0, Lp is polynomial in lg p;

0 < v < 1, Lp is sub-exponential in lg p.

Definition 6. A parameter (for example, a probability) ε : N→ R is neg-

ligible if for any nonzero polynomial P, there exists m such that

∀n > m, |ε(n)| < 1
P(n)

.

On the other hand, a probability Pr is overwhelming if 1−Pr is negligible.

Definition 7. For inputs of size n, if no polynomial time adversary can,

with non-negligible probability, successfully solve some problem, we call this

problem hard.

2.2 Cryptography

The term cryptography – derived from Greek cryptos (hidden) and the verb

graphein (to write) – means “secret writing”. According to [54], “the fun-

damental objective of cryptography is to enable two people to communicate

over an insecure channel in such a way that an adversary cannot understand
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what is being said”.

In order to establish a secure communication, we need to provide the

following services [37, 52]:

Confidentiality (a.k.a. privacy) means to ensure that all information

(stored or transmitted) has been revealed only to authorised users;

Authenticity means to ensure that all parts involved in a communication

have been correctly identified;

Integrity means to ensure that all information (stored or transmitted) has

not been altered by any unauthorised user.

Non-Repudiation means to ensure that neither the sender nor the receiver

of some information can deny, later, that he or she has transmitted or

received such information.

Access Control means to ensure that any resource cannot be accessed by

unauthorised users.

Availability means to ensure that any resource be available to authorised

users whenever they need it.

2.3 Public Key Cryptography

For centuries, cryptography has been used to provide privacy of commu-

nication. Besides privacy, it is also important to authenticate one part to

another. Before 1976, privacy and mutual authentication were achieved with

Symmetric Cryptography , where each pair of users share a secret key. The

24



2. Background

main problems of symmetric cryptography are the great number of keys

needed in a communication among n users and the need of a secure channel

to transmit the secret keys. Furthermore, symmetric cryptography does not

provide the non-repudiation service.

The concept of Public Key Cryptography (PKC) first appeared in 1976,

in Diffie and Hellman’s paper “New Directions in Cryptography”[20]. In

that paper, the authors proposed an asymmetric cryptography model in

that, unlike symmetric cryptography, each user has a key pair, say (Sk, Pk),

where Sk, called the private key, is a secret known only by his owner and the

other key Pk, known as the public key, is kept in a public domain. Usually,

each user generates his own key pair, one of them random (Sk) and the

other (Pk) computed as a function of Sk. It is well known, nowadays, that

a public key must be associated to a digital certificate issued by a trusted

authority, which links the key to its owner.

As usual, we ask for the help of two well-known characters in cryp-

tography, named as Alice and Bob to exemplify the concept of public key

cryptography. Let (SA, PA) and (SB, PB) be, respectively, the key pairs of

Alice and Bob. We assume that both PA and PB have a valid digital cer-

tificate, signed by a trusted authority. If Alice wants to send a message m

(a.k.a. plaintext) to Bob using public key cryptography, she first finds Bob’s

public key in a public domain, then she encrypts m using PB and finally,

she sends the resultant ciphertext c to Bob. After receiving c, Bob uses his

private key and recovers m. It is easy to notice that any person could play

the role of Alice (this is known as impersonation). If Bob needs to ensure

that the person who sent him a message is, in fact, Alice, a digital signature

is needed. We will see digital signature in detail in Section 2.8.

25



2. Background

Let Mk be the space of all possible messages; PKk be the space of all

possible public keys; SKk be the space of all possible private keys; and Ck be

the space of all possible ciphertexts. Public key encryption can be formally

defined under a security parameter k with the following algorithms:

KeyGen a randomised algorithm which takes k as input and outputs pk ∈
PKk and sk ∈ SKk;

Encrypt a randomised algorithm which takes pk and m ∈ Mk as input and

outputs c ∈ Ck in polynomial time in 2k;

Decrypt an algorithm (usually deterministic) which takes sk and c ∈ Ck

as input and outputs either m ∈ Mk or ⊥ (invalid ciphertext symbol)

in polynomial time in 2k.

The key pair (pk, sk) is a valid key pair if:

Decrypt(Encrypt(m, pk), sk) = m.

We now present the security properties for an encryption scheme:

One way encryption (OWE): An adversary is not able to compute m if

he has access only to the corresponding ciphertext c;

Semantic security: An adversary learns no information at all about m

(except possibly its length) from the corresponding ciphertext c;

Indistinguishability (IND): An adversary is not able to distinguish the

encryption of two messages m0 and m1 of the same length.
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Precisely, an indistinguishability adversary is an algorithm A which in

the first stage takes pk as input and outputs messages m0 and m1 of the

same length. In the second stage, A receives the challenge ciphertext c

(where c = Encrypt(mb), with b ∈ {0, 1} randomly chosen) as input and

outputs b′.

Let Pr[b=b′] be the probability that an adversary outputs b = b′ and

let |Pr[b=b′] − 1
2 | be the advantage of an adversary. If no adversary has

non-negligible advantage an encryption scheme is said to have the indistin-

guishability property.

The following attack models are known in public key encryption:

Passive attack An adversary has access to the public key only.

Lunchtime attack (CCA1) An adversary has access to the public key

and can also ask for decryptions of his chosen ciphertexts (before re-

ceiving the challenge ciphertext).

Adaptive chosen-ciphertext attack (CCA2) An adversary has access

to the public key and to a decryption oracle which outputs decryptions

of any chosen ciphertext, except the challenge ciphertext.

We define standard model as the model of computation in which the

adversary is only limited by the amount of time and computational power

available. The strongest notion of security for encryption schemes is known

to be indistinguishability under a CCA2 attack in the standard model.

We refer to [20, 37, 54] for further knowledge about public key cryptog-

raphy.
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2.4 Hash Functions and Random Oracles

A hash function is a mathematical function which maps an entry x of any

size to an output y of fixed size. In order to be used in cryptography, a hash

function ideally must satisfy the following properties:

1. Compression - h maps an input x of any size to an output y of fixed

size;

2. Ease of computation - given x, one can compute y = h(x) in poly-

nomial time;

3. Preimage resistance - given y, it should be hard to compute x such

that h(x) = y;

4. Second preimage resistance - given x, it should be hard to compute

z 6= x such that h(x) = h(z);

5. Collision resistance - it should be hard to find any values x and z

such that h(x) = h(z).

See Definition 6 in Section 2.1 for a precise explanation of “hard”.

Many cryptographic schemes make use of hash functions. However,

sometimes it is difficult to write a formal proof of security for protocols

using a real hash function. Thus, many authors suggest the use of an ideal

(theoretical) computational model, in which they can ignore the internal

structure of hash functions and can concentrate in the protocol itself. In

such an ideal model, the hash functions are replaced by random oracles,

defined by [7] as follows:
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“A Random Oracle R is a map from {0, 1}∗ to {0, 1}∞ chosen

by selecting each bit of R(x) uniformly and independently, for

every x. Of course, no actual protocol uses an infinitely long

output, this just save us from having to say how long ‘sufficiently

long’ is.”

In other words, the random oracle models a hash function as a random

function. In a proof of security, we simulate the output of a random oracle

using binary sequences which are indistinguishable from a random sequence.

Cryptographic schemes which can be proven secure using only complex-

ity assumptions are said to be secure in the standard model, whereas schemes

which use random oracles are said to be secure in the random oracle model

(ROM).

We refer to [37, 54] for further details about hash functions.

2.5 Elliptic Curves

We review here only some of the most important facts about elliptic curve

cryptography. More details can be found in [2, 9, 23, 37, 38, 48, 49, 54].

Let p > 2 be a prime number and let q = pm, for some m ∈ N. Let Fq

(also written as GF (q)) be a finite field of q elements. If q is prime, we can

think of Fq as the set of integers modulo q (Zq). Let a1, a2, a3, a4, a6 ∈ Fq.

We say that the elliptic curve over Fq is the set of solutions (x, y) ∈ Fq ×Fq

for the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (2.1)

29



2. Background

together with a special point O, called the point at infinity.

After a change of variables, Equation (2.1) can be simplified to the fol-

lowing forms (known as simplified Weierstrass form for curves of char-

acteristic p):

E :





y2 + xy = x3 + ax2 + b if p = 2

y2 = x3 + ax2 + bx + c if p = 3

y2 = x3 + ax + b if p > 3

When p = 2 we need b 6= 0, when p = 3 we need a2(b2 − 4ac) − b3 6= 0

and when p > 3 we need 4a3 + 27b2 6= 0 to ensure that E has no multiple

roots, so it is possible to draw a tangent line in any point of the curve.

It is well known that the points of an elliptic curve define a group law,

with O as the identity element.

We now define some useful concepts in elliptic curves:

• point multiplication (a.k.a. scalar point multiplication): let s be an

integer and P an elliptic curve point. We define [s]P as the sum of

P with itself s times. There are well defined formulae for adding two

points P and Q of an elliptic curve (R = P + Q) or for computing

the scalar point doubling. We refrain to give such formulae here, but

they can be easily found in the references we gave in the beginning of

this section. We remark that [s]P can be efficiently computed (i.e.,

computed in polynomial time) using double-and-(add or subtract) al-

gorithm (see Section 4.2.3 and also [54, pg 266]).

• curve order (#E): is the number of points of a given curve E;
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• order of a point P : is the smallest integer d such that [d]P ≡ O.

The Elliptic Curve Discrete Log Problem (ECDLP) will be treated sep-

arately in Chapter 3.

2.6 Zero Knowledge

The concept of Zero knowledge (ZK) was introduced by Goldwasser et

al [30]. According to Goldreich [29]: “zero knowledge proofs are proofs

that are both convincing and yet yield nothing beyond the validity of the

assertion being proved”. In other words, anything that can be extracted

(computed) from a zero knowledge proof, can also be computed from the

assertion itself.

We begin this section giving a mathematical example which illustrates a

zero-knowledge proof. Let G(V, E) be a graph simple and connected. Let n

be the number of vertices of G. We say that a G is 3-colourable if there is a

map φ : V → {A,B, C} — where {A,B, C} represent three different colours

(e.g., A = Red, B = Blue, C = Green) — such that every two adjacent

vertices are assigned different colours. In other words, for each (u, v) ∈ E,

we have φ(u) 6= φ(v). Finding φ is equivalent to partitioning the set of

vertices of G into three independent subsets, V1, V2 and V3, such that each

subset contains no adjacent vertices. See Figure 2.1 for an example of a

3-coloured graph.

We suppose that a prover, say Peggy, claims to a verifier, say Victor,

that she knows how to 3-colour G. Peggy wants to convince Victor that she

really knows it, without revealing to Victor how to 3-colour G. We assume
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Figure 2.1: The graph above is 3-coloured. Notice that the map φ divides the set of
vertices into 3 independent subsets: V1 = {v1, v4}, V2 = {v2, v5} and V3 = {v3, v6} .

that Peggy has n boxes, labelled with the integers 1, 2, 3, . . . , n and each box

has a lock with a corresponding and unique key.

Peggy and Victor run the following protocol:

• Peggy chooses at random a permutation of {A,B, C} (i.e., if Peggy,

without loss of generality, chooses {B,C, A}, vertices in subset V1 are

coloured with blue, vertices in V2 are coloured with green and vertices

in V3 are coloured with red), fills each of the n boxes with the assigned

colour (i.e., if vertex vi is coloured blue, Peggy will put a “blue card”

inside box i), locks all the boxes and sends them (without keys) to

Victor;

• Victor chooses at random a pair of adjacent vertices (vj , vk) in G (the

challenge) and sends it to Peggy;

• Peggy verifies if (vj , vk) are adjacent vertices in G and sends the keys

corresponding to boxes j and k to Victor. If (vj , vk) are non adjacent

vertices, Peggy does nothing;

• Victor opens the boxes j and k and verifies if they contain two dif-

ferent colours, among {A,B, C}. In case Victor finds a colour not

in {A,B, C} (e.g., Victor finds a yellow card in box vj), or the same
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colour in the two boxes or even if the keys sent by Peggy do not open

the corresponding box, Victor rejects the proof and stops the protocol.

Of course, if Peggy correctly guesses Victor’s challenge (i.e, (vj , vk)), she

succeeds even if she does not know how to 3-colour G. However, if they

repeat this protocol many times, her chance of successfully anticipating all of

Victor’s requests becomes vanishingly small, and Victor should be convinced

that she knows the secret.

Now, after giving an idea of a zero-knowledge protocol, we continue with

some definitions:

A proof of knowledge is defined as an interactive proof in which the

prover successfully convinces a verifier that he knows some secret. A proof

of knowledge, among many other applications, can be used to construct

identification protocols or signature schemes.

A zero-knowledge proof (a.k.a. zero-knowledge protocol) is a proof of

knowledge in that no information at all about the secret is revealed to the

verifier (except the fact that the prover really knows such secret). For in-

stance, the verifier (after being convinced that the prover does know the

secret) cannot convince a third party the he or she knows the secret as well.

Back to the 3-colouring example, Victor is convinced that Peggy knows the

secret, but he learns nothing else except that Peggy is telling the truth.

Furthermore, despite being convinced that Peggy knows φ, Victor has no

means to convince a third party that he knows how to 3-colour G.

We define a prover as honest if he or she knows the secret and dishonest

otherwise; we say that a verifier is honest if he or she runs the protocol
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properly and dishonest if otherwise (in this case, the dishonest verifier cheats

during the protocol, trying to obtain some information about the secret). A

zero-knowledge proof must satisfy three properties:

• Completeness: an honest prover always1 succeeds to convince an

honest verifier that he or she (the prover) knows the secret.

• Soundness: A dishonest prover can only convince an honest verifier

that he or she (the prover) knows the secret with negligible probability.

• Zero-knowledge: a prover, when interacting with any verifier (honest

or not) does not leak any information about the secret, except the fact

that he or she does know the secret. This is formalized by showing

that there exists some simulator (a polynomial time algorithm) that,

given only the statement to be proven (and no interaction with the

prover), outputs an answer which is indistinguishable from the answer

given by an interaction between the verifier and the real prover.

The first two of these are properties of more general interactive proof sys-

tems. The third is what makes the proof zero-knowledge.

Depending on what “indistinguishable from the answer given by an inter-

action between the verifier and the real prover” really means, some variants

of zero-knowledge can be defined:

Perfect zero-knowledge if the distributions produced by the simulator

and the real protocol are exactly the same.

1To be precise, we can say that the prover convinces the verifier with overwhelming
probability
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Statistical zero-knowledge if the distributions are not necessarily ex-

actly the same, but they are statistically close, meaning that their

statistical difference is a negligible function. Formally, it means that

no algorithm which given a polynomial number of outputs of both dis-

tributions (simulator and real interaction with the prover) can distin-

guish, with non-negligible advantage, which of the two distributions

an output belongs to, even when unlimited computational power is

available.

Computational zero-knowledge if no efficient algorithm can distinguish

the two distributions, i.e., an adversary (with computationally bounded

power) cannot distinguish between the simulation and runs of the real

protocol.

Further knowledge can be found in [22, 37].

2.7 Identification Protocols

We recall from Section 2.2 that the authentication service requires that all

parties involved in a communication have been correctly identified. Some au-

thors (for example, [37, 54]) interchangeably use the terms identification or

entity authentication when talking about the authentication service. How-

ever, it can be found in the literature that these terms may have a different

meaning, in that authentication is a process which involves identification

plus verification, where identification is the answer to the question “Who

are you ?” and verification is the answer to the question “Can you prove

it ?”. In this thesis, we use the former definition, i.e., we use identification

and entity authentication as synonyms.
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We will see in Section 2.8, for example, that Alice can prove her identity

using her private key to sign a message. Digital signatures provide message

authentication. However, Alice’s identification can be done with an opera-

tion known as identification (or entity authentication) protocol. According

to Menezes et al [37]:

“A major difference between entity authentication and message authen-

tication (as provided by digital signatures) is that message authentication

itself provides no timeliness guarantees with respect to when a message was

created, whereas entity authentication involves corroboration of a claimant’s

identity through actual communications with an associated verifier during

execution of the protocol itself (i.e., in real-time, while the verifying entity

awaits). Conversely, entity authentication typically involves no meaningful

message other than the claim of being a particular entity, whereas message

authentication does.”

Roughly speaking, we can say that identification protocols are performed

in “real time” (i.e., the presence of the prover is required during the proto-

col), whereas message authentication, such as digital signatures, can be done

any time after the message has been signed (i.e., the signature verification

is usually performed without the presence of the signer).

We refer Menezes et al [37] again to define the main objectives of iden-

tification protocols:

1. If A and B are honest parties, the protocol between A and B is always

successful, i.e., B will accept the authentication of A;

2. (transferability) B, after successful authenticating A, cannot reuse any

knowledge to impersonate A to a third party C;

36



2. Background

3. (impersonation) A third party C 6= A carrying out the protocol with

B and playing the role of A is only accepted by B with negligible

probability (we recall that a formal definition of “negligible” was given

in Section 2.1);

According to [37], “The previous points remain true even if: a (poly-

nomially) large number of previous authentications between A and B have

been observed; the adversary C has participated in previous protocol exe-

cutions with either or both A and B; multiple instances of the protocol,

possibly initiated by C, may be run simultaneously”.

See also D. Sitnson [54] for more details.

2.8 Digital Signatures

We remember from Section 2.3 that, when Bob receives a message m en-

crypted with his public key, he cannot be sure that m was sent by Alice,

unless she uses her private key to sign m before encrypting and sending it

to Bob. In this case, Bob will reverse the process, using his private key to

decrypt the ciphertext and then using Alice’s public key to verify her signa-

ture. We recall that Bob can verify Alice’s signature without her presence.

Alice can also choose to encrypt m first and then she signs the correspondent

ciphertext and send it to Bob. In this case, Bob first uses Alice’s public key

to verify her signature and then he uses his own private key to decrypt the

ciphertext and obtains m.

A signature scheme consists of two main steps:
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Sign A randomised algorithm which takes as input a private key (Sk) and

a message (m) and outputs a signature (s).

Verify A (usually deterministic) algorithm which takes as input the pub-

lic key (Pk) associated with signer’s private key, a message (m), a

signature (s) and outputs either “accept” or “reject”.

Now we describe the main adversarial goals for digital signatures:

Total Break An adversary can obtain the private key, so he is able to forge

a signature on any message.

Selective Forgery An adversary, with non-negligible probability, can cre-

ate a valid signature on a chosen message.

Existential Forgery An adversary can create a valid pair (m, s), where s

is the signature of m.

The following attack models are known in digital signatures:

Passive attack An adversary has access to the public key only.

Known message attack An adversary has access to a (finite) number of

valid message-signature pairs.

Adaptive chosen-message attack An adversary has access to a signing

oracle, which generates valid signatures for messages of his choosing

(except the one which he is trying to forge a signature).

So, security against existential forgery under adaptive chosen message

attack can be defined as the strongest notion of security for signatures.
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We point out that the security of a signature scheme depends on the

hardness of some mathematical problem. For example, the RSA-signature

depends on the hardness of integer factorization.

2.9 Schnorr Identification and Signature

Now that we have revised the concepts of zero knowledge, identification pro-

tocols and signature schemes, we use the Schnorr scheme [46] as an example

of the evolution of such concepts:

Previously, a trusted third party T chooses an element g ∈ Z∗q of prime

order r dividing q−1. Alice holds a valid key pair (s, I), where s : 1 6 s < r

is her private key and I = g−s (mod q) her public key.

Suppose that Alice wants to convince Bob that she knows s. Obviously,

she could show s to Bob, but Alice does not want to reveal her secret. Then,

she starts the following protocol with Bob:

In the three step protocol, Alice generates a secret random r : 1 6 r < r,

computes the commitment X = gr (mod q) and sends X to Bob. Note

that many “X” can be pre-computed by Alice. Then, Bob generates a

random challenge c : 1 6 c 6 2t and sends it to Alice. The parameter

t is called the security parameter. After receiving c, and checking its size,

she computes the response y = r + sc (mod r) and sends y to Bob. The

computation of y is the only online step. Finally, Bob checks whether or

not X ≡ gyIc (mod q). If X 6≡ gyIc (mod q), Bob rejects the proof. This

round can be repeated l times to convince Bob that Alice is not only a lucky

girl, she really knows s.
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2. Background

More precisely, the verification step is:

X = gyIc (mod q)

= gr+scg−sc

= gr+sc−sc

= gr

Since the only value generated by Alice in the verification step is y =

r + sc (mod r) (g and I are public), only if Alice knows s she can respond

correctly to Bob with non-negligible probability (the probability that Alice

correctly ‘guesses’ s in each round is 1/r, where one expects r to be of

similar size to q), otherwise, if s′ 6= s, in the verification step Bob will get

gr+c(s′−s) 6= gr 6= X and will reject the proof. After l runs of the protocol,

Bob is convinced that Alice knows s but no other information about Alice

leaks to Bob.

Therefore, the Schnorr identification is an example of a zero knowledge

proof of the Discrete Log Problem (DLP). Note that Alice convinces Bob

that she knows the discrete log of her public key I in respect to q without

revealing any information to Bob about the discrete log s.

We saw in Section 2.8 that the security of a digital signature relies on the

hardness of some mathematical problem. We can use the zero knowledge

proof of discrete log, described above, to produce signatures assuming only

that the DLP is hard. The trick is to replace interaction from the identifica-

tion protocol with the output of a hash function h, which can be represented

by a random oracle for a formal proof.
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2. Background

In the Schnorr signature, if Alice wants to sign a message m, she chooses

a random r, computes u = gr (mod q), c = h(m||u) and y = r+sc (mod r).

Then, Alice’s signature of m is (y, c). Notice that the interactive challenge

was replaced with a hash value. This is known as “applying the Fiat-Shamir

transform”.

To verify Alice’s signature, Bob (after checking if the public information

is authentic) computes z = gyIc (mod q) and c′ = h(m||z). He accepts

Alice’s signature if and only if c = c′.
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This chapter continues presenting background topics. We present meth-

ods to solve the Discrete Log Problem on Elliptic Curves, with emphasis

on low-memory methods, since such methods are adapted to solve related

problems later in this thesis.
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3. Computing Discrete Logs on Elliptic Curves

We begin the chapter defining the elliptic curve discrete log problem

(ECDLP), then we briefly present a time/memory tradeoff algorithm to

solve it, namely, the baby-step-giant-step algorithm. In the main part of

this chapter, we present and discuss low-memory algorithms to solve the

ECDLP.

3.1 Elliptic Curve Discrete Log Problem (ECDLP)

Definition 8. Let q be a prime power and E/Fq an elliptic curve defined

over the finite field Fq. We define E(Fq)[r] to be {P ∈ E(Fq) : [r]P = O}.
In other words, it is “the group of points of order r in an elliptic curve E

over Fq”.

Definition 9. Let r | #E(Fq) be a prime such that E(Fq)[r] is cyclic.

The elliptic curve discrete logarithm problem (ECDLP) is: given P,Q ∈
E(Fq)[r], find n ∈ Z/rZ such that Q = [n]P .

This is a fundamental computational problem with applications in ellip-

tic curve public key cryptography (ECC).

The naive way to solve the ECDLP is by using exhaustive search over

all possible values n 6 r. In other words, this naive approach takes O(r)

steps (if r has k bits, the running time is O(2k) and therefore, exponential

in k). However, it is well-known that one can compute n in O(
√

r) =

O(2k/2) group operations using Shanks’ baby-step-giant-step algorithm [16],

or Pollard’s [41, 42] low-memory randomised algorithms. As remarked by

Galbraith [23]: “due to the Pohlig-Hellman algorithm (which reduces the

problem to subgroups of prime order) we always restrict to the case where
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3. Computing Discrete Logs on Elliptic Curves

the point P has large prime order. Then the only algorithms which are

applicable for all elliptic curves are the methods of Shanks and Pollard, and

these methods have exponential complexity.”.

Definition 10. Let N be the number of group operations one needs to per-

form to solve a computational problem using exhaustive search. According

to E. Teske [55] we call an algorithm a square-root algorithm if it finds

the solution in (expected)
√

N group operations. See also [2, Chapter 19].

Now we review the main details of BSGS and Pollard methods. See also

[16, 37, 49, 52, 53, 54, 55] for further details.

3.2 Shanks’ Baby-Step Giant-Step Method

Let P have prime order r. Let m = d√r e. There exists integers i and j,

where 0 6 i, j < m, such that n = i + jm. So, Q = [i + jm]P .

Basically, Shanks’ algorithm precomputes a table T (“baby steps”) which

consists of pairs (i, Q − [i]P ) for 0 6 i < m. Notice that T has size ∼ √
r.

After sorting all values in T by the second component (i.e. Q − [i]P ), we

compute the “giant steps”, which consist of pairs (j, [jm]P ) for 0 6 j < m,

and check if [jm]P is equal to any of the second components of T . When

a match is found, we have Q − [i]P = [jm]P , so we get the corresponding

value i and the discrete log is solved, since n = i + jm.

Now we analyse the running time of Shanks’ algorithm. We may assume

that logarithmic factors are negligible; the construction of T (baby steps)

takes O(
√

r) group operations; sorting elements in T by its second coordinate

can be done efficiently in O(
√

r(lg r)) bit operations (see, for example, [17]
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for sorting algorithms); the giant steps compute O(
√

r) group operations

and finally, searching [jm]P in T can be done in logarithmic time, since T

is sorted by its second component (see also [17] for searching algorithms).

Therefore, the running time is Õ(
√

r). Note that we still have an ex-

ponential running time, but now the exponent is about one half of the ex-

haustive search case, i.e. O(
√

r) = O(2k/2). However, in this method the

memory required to store T is O(
√

r(lg r)) bits, which becomes prohibitive

due to memory restrictions. This method is known as a time/memory trade-

off algorithm.

3.3 Pollard-rho Method

We have seen that the BSGS method has running time bounded by Õ(
√

r)

and it needs to store Õ(
√

r) elements, which quickly restricts its use. How-

ever, a natural question arises: “Is it possible to keep the square root run-

ning time but with a much smaller storage requirement ?”. The answer

to this question is “yes, it is!”. We accomplish this using Pollard’s algo-

rithms [41, 42], but at the cost of an expected square root running time

instead of an absolute bound.

3.3.1 The Birthday Paradox

Before discussing the Pollard-rho method, we revise a concept which will be

useful in the analysis of Pollard-rho and Pollard-kangaroo algorithms. The

reason for the name “Birthday Paradox” comes from the surprisingly large

probability of two people sharing the same birthday in a room with only 23
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people. At the end of this section we calculate this probability.

Consider the following example: let us say we have m balls in a box,

each one with a different colour. We pick up one ball at a time, write down

its colour and replace the ball in the box. Then we continue picking up balls

until we get a match, i.e., a colour that was already written down.

We now prove the probability of obtaining at least one repeated colour

and the expected number of balls that have to be taken out of the box before

a repetition, following [58]:

Lemma 3.3.1. In a box of m balls, each of them of a different colour, the

probability, after k balls have been taken out of the box with replacement,

that we have obtained at least one matching colour (or coincidence) is

Pr ≈ 1− e−k2/2m.

Proof. We first determine the probability of choosing k balls which all have

different colours. We have m possible colours for the first ball, m−1 possible

colours for the second ball and so on. For the kth ball we have (m− k + 1)

possible colours. We define:

m(k) = m · (m− 1) · (m− 2) · · · (m− k + 1).

Therefore, the probability, after k balls have been taken out of the box, that

a repeated colour will not occur is

Pr =
m(k)

mk
= (m

m)(m−1
m )(m−2

m ) . . . (m−(k−1)
m ) = (1− 1

m)(1− 2
m) . . . (1− k−1

m ).
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which we can rewrite as

Pr =
k−1∏

i=1

(1− i

m
) (3.1)

By definition, the Taylor series expansion of the exponential function e−x is

e−x = 1− x +
x2

2!
− x3

3!
+ . . .

which can be approximated to

e−x ≈ 1− x

when x is small.

Assuming m large, 1/m in Equation (3.1) is small, so, Equation (3.1)

becomes:

Pr ≈
k−1∏

i=1

e−i/m = e−
∑k−1

i=1
i
m = e−

k(k−1)
2m .

And finally, we approximate to:

Pr ≈ e−k2/2m

Therefore, the probability that a collision will occur in the first k steps

is the complement of Pr:

Pr ≈ 1− e−k2/2m

And now we state a Theorem:

Theorem 3.3.2. As m becomes larger the expected number of balls we have
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to take out of the box before we obtain the first collision is asymptotic to

√
πm

2
.

Proof. Let X be the random variable for the number of elements of a set of

size m that must be selected at random with replacement before any element

is selected twice. Then, the expectation of X is

E(X) =
∞∑

k=1

k.Pr(X = k) =
∞∑

k=1

k.
(
Pr(X > k − 1)−Pr(X > k)

)

︸ ︷︷ ︸
(∗)

.

Expanding (∗), we have:

1 · (Pr(X > 0)−Pr(X > 1)) + 2 · (Pr(X > 1)−Pr(X > 2)) + . . .

which is equal to

Pr(X > 0) + Pr(X > 1) + Pr(X > 2) + . . .

and therefore:

E(X) =
∞∑

k=0

Pr(X > k).

From Lemma 3.3.1:

Pr(X 6 k) = (1−1/m)(1−2/m)(1−3/m) . . . (1−(k−1)/m) ≈ 1−e−k2/2m.

Hence

E(X) ≈
∞∑

k=0

e−k2/2m ≈
∫ ∞

0
e−k2/2mdk =

√
πm/2.
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According to [58], since e−k2/2m is a monotonically decreasing function

and its maximum value is 1, the error in approximating the sum with the

integral is at most 1, which completes the proof.

Now, back to the room with 23 people, the probability of at least two

people having the same birthday is 1 − 365(23)

36523 ≈ 1 − e−(23)2/2(365), which

exceeds 1/2.

3.3.2 The Idea of Pollard-rho

Now we outline the Pollard-rho method to find discrete logs. We recall that

our problem is: given P,Q ∈ E(Fq), find n ∈ Z/rZ such that Q = [n]P .

Roughly speaking, the basic idea of Pollard is to define a pseudorandom

walk on the cyclic group. The sequence will look like a “rho” (i.e., it will

have a tail followed by a cycle). The next step is to find a collision and when

the collision is found we have the DLP solved.

Now we give the details of each phase.

3.3.2.1 A Pseudorandom Walk

For Pollard methods, it is essential to define a walk (R0, R1, . . .) according to

a deterministic pseudorandom rule. The trick to simulate a pseudorandom

walk is to choose each step of the walk as a function of the current posi-

tion. We partition the group into s sets and define the walk in a piecewise

way. As a result, we construct a deterministic walk which behaves like a

pseudorandom walk.
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There are a number of ways to compute an index i from an elliptic curve

point R. For example, i can be the x-coordinate of R reduced modulo s.

Definition 11. Let R be a point in the walk. Let E(Fq) be a cyclic group

and let s be the number of disjoint subsets in which E(Fq) is divided. Let xR

be the x-coordinate of R. We define a function φ : E(Fq) → N as follows:

φ(R) = xR mod s .

Let s = 3, Si = {R ∈ E(Fq) : φ(R) = i} for i = 0, 1, 2. We assume that

S0, S1 and S2 have approximately the same size.

Definition 12. Given a point R0 and a0, b0 ∈ Z, such that R0 = [a0]P +

[b0]Q, we define a pseudorandom walk (R0, R1, . . .) as follows:

(Ri+1, ai+1, bi+1) = f(Ri, ai, bi) =





(Ri + P, ai + 1, bi) if φ(Ri) = 0

(Ri + Ri, 2ai, 2bi) if φ(Ri) = 1

(Ri + Q, ai, bi + 1) if φ(Ri) = 2

We stress that all ai+1 and bi+1 are computed modulo r. For each triple

(Ri, ai, bi), we have Ri = [ai]P + [bi]Q. In the serial case, we start our pseu-

dorandom walk with R0 = P , a0 = 1 and b0 = 0.

3.3.2.2 The Rho-shape of the Pseudorandom Walk

Since E(Fq) is finite, eventually we will get a collision, i.e., a pair of indices

1 6 i < j such that Ri = Rj . We assume j is the smallest integer with this

property. So,

Ri+1 = f(Ri) = f(Rj) = Rj+1

50



3. Computing Discrete Logs on Elliptic Curves

and the sequence becomes cyclic. If we “draw” the pseudorandom sequence,

it is easy to see a tail followed by a cycle. In other words, it will look like

the Greek letter rho, i.e.

ρ .

Now, our goal is to find a collision. According to [49], in such sequences, the

tail and the cycle have expected length
√

πr/8. However, it might happen

that the length of the cycle is much longer, so it will take more time for the

first collision.

If we store every Ri and try to find the first index j such that Rj = Ri for

some i (which means that the “tail” finished and the “cycle” is beginning)

we will need a large storage space (i.e., ≈ √
r, since the expected tail length

is
√

πr/8). In other words, this would give no advantage over the BSGS

method.

3.3.2.3 Finding Cycles

Since after the first collision the sequence becomes cyclic, we can use any

cycle finding method, for example, Floyd’s method or Brent’s method [11].

We remark that R. Brent [11] claims that, on average, his cycle finding

algorithm runs around 36% more quickly than Floyd’s and that it speeds up

the Pollard-rho algorithm by around 24%. We also remark that Sedgewick,

Szymanski, and Yao [47] showed that a collision can be found approximately

three times earlier if we store a small number of values from the Ri sequence.

That approach requires that we have memory space greater than O(1), but,

certainly, much smaller than O(
√

r).
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Despite being less efficient, Floyd’s method is simpler to understand,

and since in real life we use parallelised versions where finding cycles is

not necessary, we give the details of Floyd’s method only: given the pair

(xi, x2i) we compute (xi+1, x2i+2) =
(
f(xi), f(f(x2i))

)
and stop when we

find xm = x2m.

It is easy to check that xm = x2m will occur for some m < j. Let xi−1 be

the last point in the tail, before the cycle begins. Hence xi is the first point

in the cycle. If xj−1 is the point in the cycle that immediately precedes xi,

then xj = xi (i.e., the first collision occurred), which means that the cycle

has length l = j − i (see Figure 3.1). Let k = di/le. Any point xm in the

cycle coincides with x(m+kl). Since the cycle is endless, when m = kl we

have xkl = x(2kl). Note that m < (i/l + 1)l = i + l = j.

Figure 3.1: Here we can see a tail and a cycle in a rho-shape walk.

Using Floyd’s method, the required memory is O(1) group elements,

therefore, this is a low memory method.

3.3.2.4 Solving the ECDLP

In every step of the walk we compute triples (Ri, ai, bi) and (R2i, a2i, b2i)

and check if Ri = R2i. Notice that at each “step” we compute three group
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operations (see lines 23, 24, 25 in Algorithm 1). When a collision is found,

we have [ai]P + [bi]Q = [a2i]P + [b2i]Q and we can compute the discrete log

(as long as (b2i − bi) 6≡ 0 mod r) as follows:

n = (ai − a2i)(b2i − bi)−1 mod r (3.2)

Since r is large, we can assume that the probability that b2i ≡ bi mod r is

small enough to be ignored.

Note that in the Pollard-rho method, the probability of success is well

defined (i.e., a collision will occur if the sequence is sufficiently large), but

the running time is expected, rather than absolutely bounded.

3.3.3 Analysis

In this section we summarise the Pollard-rho method more formally, pre-

senting the algorithm and the running time analysis.

3.3.3.1 Pollard-rho Algorithm

Algorithm 1 presents the Pollard-rho method described above. Note that we

needed to assume that f behaves like a truly random function for the com-

puting implementation. In the analysis, however, we define f as a random

function from 〈P 〉 ×Z/rZ×Z/rZ to itself.

53



3. Computing Discrete Logs on Elliptic Curves

Algorithm 1 Pollard-rho discrete log
Input: group E(Fq); points P, Q ∈ E(Fq); integers a0, b0; point R0 =

[a0]P + [b0]Q
Output: integer n, such that Q = [n]P
1: function φ(R)
2: φ = xR mod 3
3: Return φ
4: end function
5:

6: function f(R, a, b)
7: if φ(R) = 0 then
8: f ← (R + P, a + 1, b)
9: else

10: if φ(R) = 1 then
11: f ← ([2]R, 2a, 2b)
12: else
13: f ← (R + Q, a, b + 1)
14: end if
15: end if
16: Return f
17: end function
18:

19: main
20: (R, a, b) ← f(P, 1, 0)
21: (R′, a′, b′) ← f(R, a, b)
22: while R 6= R′ do
23: (R, a, b) ← f(R, a, b)
24: (R′, a′, b′) ← f(R′, a′, b′)
25: (R′, a′, b′) ← f(R′, a′, b′)
26: end while
27: if (b′ − b) ≡ 0 (mod r) then
28: Output “failure”
29: else
30: Output n = (a− a′)(b′ − b)−1 (mod r)
31: end if
32: end main

3.3.3.2 Running time

Notice that Algorithm 1 will either output “failure” or “n” (the solution for

the DLP) after a while-loop. We use the Birthday Paradox to conclude that
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the expected running time of the Pollard-rho algorithm is Õ(
√

r).

Theorem 3.3.3. Suppose the pseudorandom walk in Algorithm 1 is replaced

by a truly random function. The expected number of group operations in

Algorithm 1 using Floyd’s cycle finding method is at most 3
√

πr/2.

Proof. From the Birthday Paradox (Theorem 3.3.2), the expected length of

the rho is
√

πr/2. Using Floyd’s cycle finding method, in each “step” we

compute 3 group operations. The number of steps is at most the length of

the rho. Therefore, the expected number of group operations in Pollard-rho

algorithm using Floyd’s cycle finding method is at most 3
√

πr/2.

3.4 Pollard-kangaroo Method

This method is a variant of the previous one when we know in advance that

n lies in a short interval1. In other words, we have n ∈ [a, b] for known a, b

and w = b − a (i.e., w is the length of the interval). Our problem remains

the same: let E(Fq) be a cyclic group of order r, given P,Q ∈ E(Fq), find

n ∈ [a, b] such that Q = [n]P .

3.4.1 The Idea of Pollard-kangaroo

Here follows the basic idea, according to Pollard [41]: “we want to catch

a [wild] kangaroo W which is travelling along a known path in a series

of what appear to be unpredictable bounds; in reality, their lengths are a

function of the state of the ground at the point of take-off. We suppose
1See Section 3.5 for an analysis of Pollard-kangaroo when w = r.
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that this function takes values at random from an integer set S, of mean α

and largest member L. We require the services of a second tame kangaroo

T of identical jumping behaviour. We cause T to start at some point T0

and take N bounds, arriving at TN . A hole dug at this point, and suitably

camouflaged, will catch the wild kangaroo W if he lands on any points

T0, T1, . . . , TN”.

Now, unlike Pollard-rho, it is possible that the wild kangaroo never

touches any of the points followed by the tame kangaroo. In this case,

W will not fall in the trap and will not be caught. Hence, in the Pollard-

kangaroo method, the running time is well defined, but the probability of

collision is expected, rather than absolutely bounded.

The Pollard-kangaroo method is also known as the “Pollard-lambda

method” (actually, its author prefers the former [42], because the parallel

version of Pollard-rho has a lambda-shape, rather than a rho-shape). Now

unlike Pollard-rho, we use two pseudorandom walks instead of one. If there

is a collision, the pseudorandom sequences will look like the Greek letter

lambda, i.e.

λ .

Now we outline the kangaroo method following [49]. Basically, we define

a pseudorandom walk, then we discuss how to compute the DLP if the wild

kangaroo lands in any of the footprints of the tame kangaroo.
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3.4.1.1 The Pseudorandom Walks

Let E(Fq) be a cyclic group of order r. Let s be the number of partitions of

the group and let S = {s0, s1, . . . , ss−1} be a set of non-decreasing integers.

Let α be the mean of the elements of the set S, let β be a parameter to be

defined later and let integers N = αβ and M be respectively the number of

steps taken by the tame and the wild kangaroos. We can view each element

of the set S as the length of a “jump”. We define a pseudorandom walk

using a similar principle as in Section 3.3.2.1. We recall that φ(R) maps the

x-coordinate of a point R to an integer modulo s.

Tame kangaroo: T starts at some known point T0 = [c0]P , where c0 is to

be defined later. He jumps according to the following pseudorandom

walk:

Ti+1 = Ti + [sφ(Ti)]P for i = 0, . . . , N ,

which is efficiently calculated if the values [si]P are precomputed. We

also set ci+1 = ci +sφ(Ti), so that Ti = [ci]P . Notice that ci− c0 is the

distance travelled. We then store TN . Notice that at this point, we

know the discrete logarithm of TN with respect to P , i.e., TN = [cN ]P .

Wild kangaroo: W starts at Q and jumps according to the following pseu-

dorandom walk:

Wi+1 = Wi + [sφ(Wi)]P for i = 0, . . . , M .

We also set d0 = 0 and di+1 = di + sφ(Wi), where di is the distance

travelled from Q = [n]P to Wi. Notice that we have Wi = [n + di]P .
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3.4.1.2 Solving the ECDLP

If the wild kangaroo W at some point meets the path followed by the tame

kangaroo T , then W will continue in the path originally followed by T until

he reaches Wm = TN for some m 6 M . Hence:

[cN ]P = TN = Wm = [n + dm]P .

Thus, we have the solution to the DLP, since

n = cN − dm .

If the distance travelled by W (i.e., dm ≈ Mα) exceeds cN − a we can

stop W , because he passed the trap.

In case we do not find a collision we can start another wild kangaroo at

a new point, e.g., Q′ = Q + [z]P , for a known integer z.

3.4.2 Choice of Parameters

• Set S - It is usual to choose si as powers of two, such that the mean

step size is g
√

w, for some constant g (according to [42], this a good

choice, but he does not claim that it is the best choice).

• s - If si = 2i for 0 6 i < s, the mean α is 2s−1
s , so we can choose

s ≈ 1
2 log2 (w).

• Starting point of tame kangaroo (T0) - N. Smart [49] and many authors

choose [b]P as the starting point, but other choices are possible, for
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instance, [a]P or [(a + b)/2]P . Taking T0 = [b]P makes c0 = b;

• M and N - We will prove below that a collision is expected after

approximately
√

w steps (remember that w is the length of the interval

in which the discrete logarithm n is known to lie), so we set the number

of steps of the tame kangaroo to be N ≈ d√w e. If we set the starting

point of T as [b]P , clearly we need M > N , so we choose M = γN for

some positive constant γ to be defined later. The precise choice for γ

will be presented in Section 3.4.4.

The number of steps is at most N + M = (1 + γ)d√w e, so the running

time is Õ(
√

w). As we only store the final position of the tame kangaroo

(TN ), the memory required is O(1) group elements so this is also a low

memory method.

Figure 3.2 is a sketch of a successful collision, using parameters discussed

in this subsection.

Figure 3.2: Tame kangaroo T starts at [b]P and takes N jumps, stopping at TN . At
this point, the distance travelled by T is cN (from the origin O). Wild kangaroo starts
at Q and if he meets the path followed by T at some Y , he continues the same path and
finally lands at the trap TN = WM . The distance travelled by W is n + dM .
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3.4.3 Analysis

Now, like we have done with Pollard-rho, we present a formal analysis of

Pollard-kangaroo.

3.4.3.1 Algorithm

Algorithm 2 presents the Pollard-kangaroo method described above.

3.4.3.2 Probability of Success

Now we compute the probability that the wild kangaroo will be caught (i.e.,

the probability of successfully solving the DLP), according to [58].

Lemma 3.4.1. Let M and N be the number of steps taken respectively by the

wild and the tame kangaroos. Let α be the mean of the pseudorandom steps

in set S and let β be an integer such that N = αβ. Let Pr[λ] be the proba-

bility that the wild kangaroo, after passing [b]P and taking about αβ jumps

from [b]P , will meet the path followed by the tame kangaroo and therefore,

be caught in the trap. Under the assumption that the pseudorandom walk

behaves the same as a random walk, then

Pr[λ] ≈ 1− (1− 1/α)αβ ≈ 1− e−β

Proof. Since the mean of the steps in set S is α, once the wild kangaroo

has passed the starting point of the tame kangaroo, each jump of the wild

kangaroo has a heuristically independent probability of about 1/α of touch-

ing a point already followed by the tame kangaroo. Since the number of
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Algorithm 2 Pollard-kangaroo discrete log
Input: group E(Fq), points P,Q ∈ E(Fq), integers a, b
Output: integer n such that a 6 n 6 b and Q = [n]P .
1: Choose number of partitions s
2: Choose starting point of tame kangaroo T0 = [c0]P
3: Choose steps si /* Usually, si = 2i */
4: Choose walk lengths M,N ∈ N Sj , 0 ≤ j < s.
5: function φ(R)
6: φ = xR mod s
7: Return φ
8: end function
9:

10: Precompute Si = [si]P for 0 ≤ i < s
11: [Tame Kangaroo]
12: T ← T0

13: c ← c0

14: for i = 1 to N do
15: Compute j = φ(T )
16: T ← T + Sj

17: c = c + sj

18: end for
19: [Wild Kangaroo]
20: W ← Q
21: d ← 0
22: i ← 0
23: repeat
24: Compute j′ = φ(W )
25: W ← W + Sj′

26: d ← d + sj′

27: i ← i + 1
28: until (T = W ) or (i > M)
29: if T = W then
30: Output n = (c− d)
31: else
32: Output “failure”
33: end if

steps taken by T is N = αβ, then W has approximately (1−1/α)αβ chances

of avoiding the footprints of T . Therefore, the probability of success is

Pr[λ] ≈ 1− (1− 1/α)αβ ≈ 1− e−β
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Notice that for β = 1, 2, 3, 4 the probability of success is respectively

0.63, 0.86, 0.95, 0.98, which means that the size of N defines the probability

of success.

3.4.3.3 Running Time

We also follow [58] to prove the running time of Pollard-kangaroo.

Theorem 3.4.2. Consider β as defined in Lemma 3.4.1. The expected

number of group operations in Pollard-kangaroo algorithm in the average

case is 2
√

βw and in the worst case is 2
√

2βw .

Proof. It is easy to see that the number of group operations in Algorithm 2 is

Set+N +M , where Set represents the construction of set S (i.e., computing

Si = [si]P for 0 6 i < s). Assuming that Set can be precomputed, we can

simplify the running time to be N + M .

We recall that n ∈ [a, b] for known a, b and w = b − a (i.e., w is the

length of the interval). The tame kangaroo T starts at b and jumps N = αβ

steps. Since the mean of set S, which represents each step, is α, T stops at

average distance w + α2β from a.

The wild kangaroo W starts at n (unknown) and after it passes b, W

takes about αβ jumps to reach T . Since the average starting point of W is at

w/2, the expected number of steps of W in the average case is w/(2α)+αβ.

Therefore, the total running time is approximately

N + M = αβ + w/(2α) + αβ = 2αβ + w/(2α).
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If we choose S such that its mean α is gd√we for some positive constant g

and set N = αβ, we get a total of

(
2gβ

√
w + 1/2g

)√
w =

(
4g2β + 1

2g

)√
w (3.3)

group operations.

Now we want to minimise f(x) = 4x2β+1
2x . We get f ′(x) = (8xβ).2x−(4x2β+1).2

4x2 .

Taking f ′(x) = 0 ⇒ 8x2β − 2 = 0 ∴ x2 = 1
4β ⇒ g = 1

2
√

β
.

Replacing the value of g in Equation (3.3), it follows that the number of

group operations in the average case is 2
√

βw.

In the worst case, the wild kangaroo will start in the beginning of the

interval (i.e., [a]P ), so the expected number of steps is w/α + αβ and the

total running time is

N + M = αβ + w/α + αβ = 2αβ + w/α.

Taking α = gd√we, we get

2βg
√

w + w/g
√

w =
(

2g2β + 1
g

)√
w (3.4)

group operations.

Minimising f(x) = 2x2β+1
x , we get f ′(x) = (4xβ).x−(2x2β+1).1

x . Taking

f ′(x) = 0 ⇒ 2x2β − 1 = 0 ∴ x2 = 1
2β ⇒ g = 1√

2β
.

Replacing the value of g in Equation (3.4), it follows that the number of

group operations in the average case is 2
√

2βw.
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3.4.4 Bounding the Running Time

Notice that the result of Theorem 3.4.2 gives a running time, which succeeds

with probability ≈ 1− e−β, as defined above. We remark that van Oorschot

and Wiener [58] instead of giving a running time which outputs the solu-

tion with some probability, calculated the average running time in that the

algorithm runs as many times as needed until a collision is found. At each

new round of the algorithm, one uses another wild kangaroo, starting from

Q + [z]P , for a known integer z. We sketch their approach:

1. Tame kangaroo takes N = αβ steps;

2. From Lemma 3.4.1, the expected number of trials for a success to

occur is 1/(1 − e−β). So, the wild kangaroo is expected to succeed

once and to fail 1/(1 − e−β) − 1 times, which means that the total

number of steps of all wild kangaroos necessary for a collision occur is

(w/α + αβ)(1/(1− e−β)− 1) + w/(2α) + αβ.

So, the total running time is the number of steps of the tame kangaroo

plus the total number of steps of all wild kangaroos

αβ︸︷︷︸
N

+(αβ + w/α)/(1− e−β)− w/(2α),

which is minimized when α =
√

w(1 + e−β)/(2β(2− e−β)). According

to [58], using numerical techniques, we get β = 1.39 and α = 0.51
√

w,

and therefore, N = αβ ≈ 0.7089
√

w, M ≈ 2.57
√

w = γN , γ ≈ 3.62 and the

total running time is 3.28
√

w group operations.
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Notice that if we use the value of β above (β = 1.39) in the result of

Lemma 3.4.1, the probability of success is around 0.75.

3.5 Pollard-rho vs. Pollard-kangaroo

By studying the Pollard-rho and the Pollard-kangaroo methods, we see that

there is a conceptual difference in terms of running time and probability

of success. In the Pollard-rho method, the algorithm will always output a

solution (unless (b′−b) ≡ 0 mod r, which occurs with small probability if r is

large) and we have an expected number of steps, and therefore, an expected

running time. On the other hand, in the Pollard-kangaroo method, we have

a fixed running time (i.e., a fixed number of steps) and the algorithm can

either output the solution “n” or “failure” with some probability.

Usually, Pollard-kangaroo is more appropriate when we know in advance

that the discrete log lies in some interval, [a, b] (i.e., the solution n is such

that a 6 n 6 b). However it is also possible to use Pollard-kangaroo when

w = r. Pollard [42] states that if w = r, although the running time is

asymptotically the same as in Pollard-rho method, the constants will be

greater in the kangaroo method, thus the “rho” method is preferred. We

proved that if Floyd’s cycle finding method is used, the expected running

time of Pollard-rho in a serial computer is around 3
√

πr/2 ≈ 3.76d√w e.
Using the best known cycle finding algorithm for Pollard-rho (Brent’s), we

get an improvement of around 24% in the running time, thus ≈ 2.86d√w e,
which is better than the expected running time of Pollard-kangaroo on a

serial computer, 3.28d√w e (and even better if we have enough memory

space to use the idea of Sedgewick, Szymanski, and Yao [47]).
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In practice, many processors are used in parallel to find a discrete log

(see next section). In this case, van Oorschot and Wiener [58] showed that

when w = r and parallel collision search is used, Pollard-rho is around 1.60

times faster than Pollard-kangaroo.

3.6 Parallelised Pollard Methods

In real life, we use many processors in parallel to try to solve a discrete

logarithm problem. The naive way to parallelise Pollard-kangaroo methods

is to divide the interval in which the discrete log lies (i.e., w) into P equal

parts and use each of the P processors to search one part. The running time

is O((w/P)1/2).

However, both Pollard-rho and kangaroo methods can be parallelised

achieving linear speedup. According to van Oorschot and Wiener [58] the

running times are respectively O(r1/2/P) and O(w1/2/P) with P processors.

The idea is to use each processor starting a deterministic random walk

from a different starting point, but using the same function to compute

the next point in the walk. When a collision is found by two processors

(or even by the same processor) we have the discrete log solved. As usual,

the challenge is to detect collisions. The solution is to store only points

which satisfy some condition (otherwise, if all points were stored, the storage

requirements would be of the order of O(
√

w) or O(
√

r)). Such points are

called distinguished points. We now sketch this approach, called “Parallel

Collision Search”. The proofs can be found in [58].

We now define a distinguished point, according to [58]:
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Definition 13. “A distinguished point is one that has some easily checked

property such as having a fixed number of leading zero bits. During the

pseudorandom walk, points that satisfy the distinguishing property are stored.

Repetition can be detected when a distinguished point is encountered a second

time. The distinguishing property is selected so that enough distinguished

points are encountered to limit the number of steps past the beginning of the

repetition, but not so many that they cannot be stored”.

We stress that the distinguished points found by the processors are stored

by a server who coordinates the solution of the problem.

It is possible that a random walk falls into a loop such that no dis-

tinguished point is reached. This problem can be overcome by setting a

maximum walk length and abandoning any walk which has length greater

than the maximum walk length. Let θ be the proportion of points which sat-

isfy the distinguishing property. Let Top = c/θ for some positive constant c

be the maximum walk length. We stress that, in the running time analysis,

we can consider the average number of steps needed to reach a distinguished

point as 1/θ and not c/θ, since most of the time, the distinguished point

will be reached in 1/θ steps, so the very few cases when it takes at most c/θ

steps to reach (or not) a distinguished point do not have much effect in the

total running time.

Now we analyse the average running time, according to [58]. Let P be the

number of processors used in the parallel search. Let Top be the maximum

walk length to find a distinguished point and let Tρ and Tλ be respectively

the Pollard-rho and Pollard-kangaroo running time of each individual pro-

cessor using parallel collision search. When processors hit a distinguished
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point, they send information to the server. In the rho method, after hit-

ting a distinguished point, the processor starts a new walk from a random

point. In the kangaroo method, the processor continues in the same walk.

Note that in the kangaroo method a processor can reach many distinguished

points during its walk. At some time there is a collision, in the sense that

two processors visit the same point. The server does not detect this un-

til it receives the same distinguished point twice. Hence, each processor is

expected to take 1/θ further steps after the collision has occurred.

First we analyse the Pollard-rho case. From the Birthday Paradox, a

collision is expected after
√

πr/2 steps have been made in total. Hence

Tρ =
√

πr/2/P + 1/θ.

We remark that in the parallel version of Pollard-rho there is no need to

use cycle finding methods.

In the Pollard-kangaroo case, van Oorschot and Wiener [58] use the mean

step size in their analysis. Let α be the mean step size. We launch P/2

tame kangaroos around the middle of the interval and P/2 wild kangaroos

around Q at the same time and store the distinguished points that each

kangaroo reaches. Initially, the groups of tame and the wild kangaroos are

separated by some distance between 0 and w/2. The average separation

is w/4 and each trailing kangaroo takes approximately T1 = w/(4α) steps

to cover this distance. After that, each trailing kangaroo covers a region

where about (P/2)/α points have been visited by leading kangaroos. The

probability that one of the P/2 trailing kangaroos hits one of the footprints

of a leading kangaroo at each step is about (P/2)2/α. Hence the expected
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number of steps for each kangaroo before a collision occurs is T2 = 4α/P2.

The minimum of T1 + T2 is 2
√

w/P when α = (P/4)
√

w. Now we add

the further 1/θ steps required to reach the next distinguished point after a

collision, and the total running time for each processor is:

Tλ = 2
√

w/P + 1/θ

group operations.

When a processor reaches a distinguished point already stored by the

server, say, point D1, the server checks if D1 was reached by kangaroos of

the same type (i.e., Tame-Tame or Wild-Wild). If “yes”, the processor is told

to move the trailing kangaroo some random distance forward, so as not to

follow the very same path of the leading kangaroo. If “not”, a good collision

was found and the server solves the discrete log. J. Pollard [42] presented a

different version for the parallel algorithm of [58], in that collisions between

kangaroos of the same type are not possible. We remark that [56] shows that

the expected number of Tame-Tame or Wild-Wild collisions in this setting

is at most 2, so they are not a serious problem.

We remark that van Oorschot and Wiener [58] compared their parallel

version of Pollard-rho and Pollard-kangaroo and concluded that when w = r

the kangaroo method is approximately 1.60 times slower.

Note that [58] does not give an analysis for the success probability of

the Parallel Pollard-kangaroo algorithm. This is because the processors

always keep running even if they reach a distinguished point. They are only

supposed to stop when the server tells them to stop. Hence, whenever the

algorithm terminates the result is correct.
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3.7 Summary

In this chapter, we revised the elliptic curve discrete log problem and some

methods to solve it.

We first presented a time/memory tradeoff algorithm, baby-step giant-

step, which solves the discrete log in Õ(
√

r) group operations, but needs

the same amount in memory space. For large r, the memory consumption

shortly becomes prohibitive.

Then, we presented and analysed low-memory algorithms with a heuris-

tic rather than an absolute running time of Õ(
√

r). In other words, Pollard-

rho and Pollard-kangaroo methods are expected to solve the DLP with cer-

tain probabilities of success.
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In this chapter, we briefly review some properties of Koblitz elliptic

curves and Frobenius Expansions and how we can perform point multi-

plication efficiently using Frobenius expansions. We will see also that the
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arithmetic of Frobenius expansions has a non-standard behaviour when we

require that all coefficients be only in {−1, 0, 1}. In addition, we experimen-

tally estimate the number of equivalence classes of Frobenius expansions.

We explore the property that a τ -adic can be mapped to x + yτ for

integers x, y of certain size and we give a proof for the bounds of x and y.

We plot the the distribution of τ -adics and τ -NAFs. From these pictures,

we conjecture that we can shorten the bounds for x and y.

We finish the chapter by studying an algebraic computation required for

our τ -adic version of GPS (Girault-Poupard-Stern) identification protocol.

In order to avoid a statistical attack in the τ -GPS protocol, we propose a

randomisation step in the algorithm used to add and multiply τ -adics. We

also state two heuristics that will be used in the proof of security of τ -GPS.

4.1 Koblitz Curves

We open this chapter defining Koblitz curves as follows. For further details

see [33, 34, 50, 51]:

Definition 14. A Koblitz curve is an elliptic curve E defined over a small

finite field Fq such that the group E(Fqm) is suitable for cryptography for

some m > 1.

Definition 15. Let f(x) ∈ Zq[x] be an irreducible polynomial of degree m,

and consider the finite field Fqm = Zq[x]/(f(x)). We say that f(x) is a

normal polynomial if the set {x, xq, xq2
, . . . , xqm−1} forms a basis for Fqm

over Zq. Such a basis is called normal basis.

The most popular choice for Koblitz curves is curves over F2 and so we
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give the details in this case only.

Definition 16. Let a ∈ {0, 1}. Let E : y2 + xy = x3 + ax2 + 1, with

a ∈ {0, 1} be an elliptic curve defined over F2. Denote by O the point at

infinity. Let E(F2m) be the group of F2m-rational points on E. We assume

that m is a prime and that #E(F2m) has a large prime factor. In such

curves, if P = (x, y) ∈ Ea(F2m), then Q = (x2, y2) also belongs to the same

curve. The 2-power Frobenius map is defined as

τ : E(F2m) → E(F2m)

(x, y) 7→ (x2, y2)

O 7→ O.

Let F̄2 be the algebraic closure of F2, i.e., F̄2 is a field which contains

the fields F2n for any n. Let t = (−1)1−a. Then τ satisfies the quadratic

characteristic polynomial τ2(P )− tτ(P )+[2]P = O for all points P ∈ E(F̄2)

(see [33]). In other words,

[2]P = tτ(P )− τ(τ(P )). (4.1)

Let xP and yP be the m-bit long coordinates of P . Notice that the τ

operation maps each coordinate of P to its square. If F2m is represented by

a normal basis, squaring (i.e., the operation τ(P )) can be implemented by

shifting each bit of xP and yP one bit to the left. This shifting is circular,

which means that the most significant bit shifted one-bit to the left becomes

the least significant bit and so on. For example, if 1001 and 1101 respectively

represents xP and yP in binary, when multiplying P by powers of τ we

get: τ(P ) = (0011, 1011); τ2(P ) = (0110, 0111); τ3(P ) = (1100, 1110);

τ4(P ) = (1001, 1101).
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Notice that when we multiply by τm, each m-bit of xP and yP rotates

m bits to the left, returning to their original state, which means that:

τm(P ) = P for all P ∈ E(F2m). (4.2)

4.2 Frobenius Expansions

Definition 17. Let C be the coefficient set for the τ -adic expansions (we

always assume 0 ∈ C). For L ∈ N we define the set of Frobenius expansions

of length L to be

TL =
{

x0 + x1τ + x2τ
2 + · · ·+ xL−1τ

L−1 | xj ∈ C
}

. (4.3)

For x ∈ TL let i 6 L− 1 be the largest index such that xi 6= 0. We say that

x has degree i, denoted deg(x) = i. The number of nonzero coefficients xj

is called the weight.

We emphasize that we treat elements of TL as polynomials and not as en-

domorphisms. We interchangeably use the terminology Frobenius expansion

and τ -adic expansion for such polynomials.

We stress that in this chapter we assume C to be {−1, 0, 1}. This is the

most popular choice, since one can benefit from the fact that the cost of

addition and subtraction of points on elliptic curve are roughly the same.

As a result, one can efficiently perform scalar multiplication using a “τ -and-

(add or subtract)” algorithm (see Section 4.2.3).
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4.2.1 τ-adic NAF Expansions

The concept of τ -NAF was introduced by J. Solinas in [50].

Definition 18. An element
L−1∑

i=0

xiτ
i is called a τ -adic NAF (where NAF

stands for Non-Adjacent Form) if

xixi+1 = 0 for all i.

We will call a τ -adic NAF as τ -NAF for short.

In other words, there are no consecutive terms which are both nonzero.

An important fact about τ -NAF expansions is that, unlike standard τ -

adics, we have a unique τ -NAF representation (of degree less than m) for

an integer [51]. See Section 4.2.2 for a better understanding of uniqueness.

4.2.1.1 Number of τ-NAF of Degree less than L

It will be useful later in this thesis to know the number of τ -NAF of length

less than L. So we use the following theorem (first stated by [50, 51]):

Theorem 4.2.1. Let L ∈ Z be the length of a τ -NAF expansions. Let NL

be the number of possible τ -NAF with degree less than L. The number of

possible τ -adic NAF expansions of degree less than L is

NL =
4
3
2L − 1

3
(−1)L =

4
3
2L + O(1) (4.4)

Proof. For any τ -NAF expansion with degree less than L, either the coeffi-

cient of τL−1 is equal to zero (in which case it is a τ -NAF of length L− 1)
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or the coefficient of τL−1 is nonzero (in which case the coefficient of τL−2 is

zero and the remaining polynomial is a τ -NAF of length L− 2). Hence

NL = NL−1 + 2NL−2.

Solving the recurrence relation (see for example [13]) gives NL = c1α
L
1 +c2α

L
2

for some constants c1, c2 ∈ Q where αi are the roots of x2 − x− 2 = 0, i.e.,

α1 = 2 and α2 = −1. Taking N0 = 1 and N1 = 3 leads to c1 = 4/3 and

c2 = −1/3 and the proof is complete.

4.2.2 Equivalence Classes of τ-adic Expansions

Definition 19. We call two Frobenius expansions a, b equivalent if [a]P =

[b]P for all P ∈ E(F̄2) and write a ≡ b.

It is easy to note that Frobenius expansions are not unique. Let T1

be a random Frobenius expansion. Let Z be the characteristic polynomial

2− tτ + τ2 = 0 (see Section 4.1). If we compute T1 + Z we get a Frobenius

expansion T2 ≡ T1. For example, 1 ≡ −1 + tτ − τ2.

We now give a different definition of equivalence.

Definition 20. Two Frobenius expansions a′ and b′, such that a′ ≡ b′

(mod τm − 1), are equivalent with respect to a point P , which we call

P -equivalent for short, if [a′]P = [b′]P for any point P defined over F2m.

Note that this definition depends on the point P . From Equation (4.2),

it follows that O = (τm − 1)P . Then, for some k we can write:

[a′]P = [b′]P + k(τm − 1)P = [b′]P + [k]O = [b′]P.
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It is easy to check that all equivalent τ -adics are also P -equivalent, since

the equivalence notion holds for all P ∈ E(F̄2). On the other hand, it is not

true that all P -equivalent τ -adics are also equivalent. For instance, let P be

any point defined over F2m . Clearly, τm is P -equivalent to 1 but τm 6≡ 1.

The drawback of using a random τ -adic lies in the fact that τ -adic ex-

pansions are not unique, so when one chooses a random τ -adic, there are

several equivalent τ -adic expansions.

There are typically many different τ -adic expansions of degree less than

some bound in any given equivalence class. An heuristic formula given

in [21] for the average number of τ -adic representations of length at most

L + 2 of a τ -NAF of length L is the integer closest to 0.9786
(

3
2

)L
. If all

equivalence classes had this many elements then there would be at least

3L/(0.9786(3/2)L−2) ≈ (2.3) · 2L different equivalence classes.

Experimentally, we used MAGMA [10] to compute all τ -adics of length

6 L over E(F2m). For each τ -adic, it was easy to check if it is a τ -NAF.

Furthermore, we computed Q = [n(τ)]P for some point P and stored the

points Q. Hence, after generating all τ -adics (i.e., 3L) we have not only the

total number of τ -NAFs of length 6 L (i.e., ≈ 4
32L, see Section 4.2.1) but

also the number of P -equivalence classes that can be represented as a τ -adic

of maximum length L. Another way to count the number of P -equivalence

classes would be to convert each τ -adic expansion to an integer, using the

eigenvalue of Frobenius (see Section 4.2.7) and store the integer. Our ex-

periments (see Table 4.1) suggest that the number of P -equivalence classes

of τ -adic expansions of length L is bounded by c(2L), for some positive

constant c, or simply Õ(2L).
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The graphic on fig. 4.1 is based on Table 4.1 and shows the logarithm in

base 2 of number of τ -adics, number of τ -NAF and number of P -equivalence

classes. One can check that the number of τ -NAF and the number of P -

equivalence classes are represented by parallel lines.

Table 4.1: Number of τ -adics, τ -NAFs and P -equivalence classes

L # of τ -adics
(3L)

# of τ -NAF
(≈ 4

3
2L)

# of distinct
P -equivalence
classes

3 27 11 23
4 81 21 53
5 243 43 119
6 729 85 257
7 2187 171 534
8 6561 341 1133
9 19683 683 2335

10 59049 1365 4777
11 177147 2731 9711
12 531441 5461 19653
13 1594323 10923 39655
14 4782969 21845 79809
15 14348907 43691 160359

We now give a short motivation which justifies our interest for Frobenius

expansions.

4.2.3 Efficient Point Multiplication Using Frobenius Expan-

sions

In many applications of elliptic curve cryptography we need to compute

point multiplication. Let P be a point of order r of an elliptic curve defined

over a cyclic group G. The natural way to compute the point multiplication

[n]P is to use the “double-and-add” algorithm (see Algorithm 3 and also

[54, pg 265–266] for details).
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Figure 4.1: This graphic is based on the second, third and fourth columns of Table 4.1
and shows the logarithm in base 2 of each value.

If we work over a Koblitz curve, we have G = F2m and the order r of

P (and therefore, n as well) has size approximately 2m. Basically, we start

with a point Q being the point at infinity, write n in binary and move along

each bit, from the left to the right (i.e., the first bit to be considered is the

most significant bit of n). For each bit of n, we double Q, and if the bit

is “1”, we add P . We remark that a variant called “double-and-(add or

subtract)” algorithm can also be used when n is written in a binary signed

representation (i.e., n = bm, bm−1, . . . , b1, b0, for bi ∈ {−1, 0, 1}). In that

case, if the bit is “−1” we subtract P instead of adding it.

The total cost of [n]P is m doublings plus w additions (or additions

and subtractions if double-and-(add or subtract) is used), where w is the

number of nonzero bits of n. We can simplify that, assuming that the cost

of doublings and additions is roughly the same. So the total cost of [n]P is
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Algorithm 3 Double-and-Add Algorithm
Input: point P, Q ∈ G; integer n
Output: point Q = [n]P
1: Compute the binary representation of n (n = bm, bm−1, . . . , b1, b0)
2: Q ← O
3: for i = m downto 0 do
4: Q ← 2Q
5: if bi = 1 then
6: Q ← Q + P
7: end if
8: end for
9: Output Q

m + w group operations.

However, when working over Koblitz curves, we can speed-up even more

point multiplication using a trick proposed by N. Koblitz [33], in that we

replace the integer n by its corresponding Frobenius expansion n(τ) (see

also [36, 38, 50]):

n(τ) =
L−1∑

j=0

njτ
j

where the integers nj lie in {−1, 0, 1}.

Since E(F2m)[r] is cyclic it follows that τ(P ) = [λ]P for some λ ∈ Z/rZ.

If n =
∑L−1

j=0 njλ
j (mod r) then Q = [n]P can be efficiently computed as

Q = [n(τ)]P =
L−1∑

j=0

[nj ]τ j(P ).

From Equation (4.1) we see that doubling a point (or any scalar mul-

tiplication by powers of 2) can be performed using the 2-power Frobenius

map on E, denoted by τ . Basically, to compute [n]P , instead of represent-

ing n in binary and computing [n]P using a “double-and-(add or subtract)”
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algorithm, we represent n as a τ -adic expansion, and compute the scalar

point multiplication using a “τ -and-(add or subtract)” algorithm, thereafter

called only “τ -and-add” for simplicity. In other words, the “τ -and-add” al-

gorithm, is based on the well known “double-and-add” algorithm, but the τ

map (which has almost negligible cost if the field is represented in normal

basis) replaces doublings. Hence, the total cost of [n]P using the τ -and-

add algorithm is w′ group operations, where w′ is the number of nonzero

coefficients in the τ -adic representation of n.

Since the cost of [n(τ)]P roughly represents the cost of additions, the

smaller the number of nonzero coefficients in n(τ) is, the more efficient

[n(τ)]P will be performed. R. Avanzi, C. Heuberger and H. Prodinger [4]

showed that the number of nonzero coefficients in τ -NAF expansions is min-

imal among all the representations with coefficients in {−1, 0, 1}.

J. Solinas [50, 51] gave an algorithm in the case of anomalous binary

curves to transform an integer n into a τ -NAF (this algorithm was gener-

alised in [31, 48]). The output of the algorithm proposed by Solinas is about

twice as long as the ordinary NAF of n, but we can use the idea of Meier

and Staffelbach [36] to reduce the τ -NAF expansion modulo (τm − 1) or

modulo (τm−1)/(τ−1), which is called reduced τ -NAF by Solinas (see also

Section 4.2.7). In the reduced τ -NAF, the number of nonzero coefficients

(i.e., w′) is L/3, where L is the length of the (reduced) τ -NAF of n (see [4]).

If we use the NAF binary representation of n in the double-and-add

algorithm, the number of nonzero bits (i.e., w) is approximately m/3 (see,

for example, [54, pg 267]).

As a result, the total cost of [n]P using the (binary) NAF representation
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of n in the double-and-add algorithm is m+m/3 = 4m/3 and when L ≈ m,

the total cost of [n]P using the reduced τ -NAF representation of n in the

τ -and-add algorithm is m/3 group operations (under the assumption that

τ operation is cost-free), which means that in practice, the computation

of [n(τ)]P can be 4 times faster than the standard double-and-add scalar

multiplication.

W. Meier and O. Staffelbach [36] propose an algorithm for anomalous

curves E defined over F2 and regarded as curves over the extension field F2m

which computes multiples of arbitrary points on E and takes m/2 group

operations. If we use the reduced τ -NAF representation of n in the τ -and-

add algorithm we get the result of [n]P 50% faster.

It is also possible to use point halving to perform fast scalar multiplica-

tions on generic elliptic curves over binary fields. However, although point

halving is faster than doubling, it is more expensive than applying τ map.

R. Avanzi, M. Ciet, and F. Sica [1] combined Frobenius operations with one

point halving to compute scalar multiplications on Koblitz curves using on

average 14% less group additions than with the usual τ -and-add method

without increasing memory usage. Later, Avanzi et al. [4] improved that

result, obtaining a scalar multiplication which requires on average 25% less

group operations than the Frobenius method (i.e., using only τ -and-add).

See also [3, 5, 6] for recent developments in the arithmetic of Koblitz

curves, specially regarding sublinear complexity scalar multiplication meth-

ods with essentially no precomputation.

82



4. Koblitz Curves and Frobenius Expansions

4.2.4 Writing a general τ-adic as x + yτ for x, y ∈ Z

Since τ satisfies a quadratic characteristic polynomial it follows that every

Frobenius expansion of length L is equivalent to one of the form x + yτ for

some uniquely determined x, y ∈ Z. For our applications it is necessary to

bound the sizes of x and y. In the following sections, we compute bounds

for x and y using different techniques. The reader will notice that we start

with a crude estimation and then we go towards sharper bounds.

4.2.4.1 a = 3.7 and b = 2.6

First we need the following Lemma, originally stated by Solinas [51]:

Lemma 4.2.2 Given the recurrence:

Ui+1 = tUi − 2Ui−1 where U0 = 0, U1 = 1 , (4.5)

we have:

τ i ≡ Uiτ − 2Ui−1 for all i > 0 (4.6)

Proof. We prove by induction in i.

1. Base:

i = 1. We have τ1 = U1τ − 2U0.

2. Inductive step:

We suppose that Equation (4.6) is true for i = n− 1 (that is: τn−1 =

Un−1τ − 2Un−2) and prove that the result holds for i = n (that is:
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τn = Unτ − 2Un−1).

τn−1 = Un−1τ − 2Un−2 induction hypothesis

τn = Un−1τ
2 − 2Un−2τ multiplying induction hypothesis by τ

= (tτ − 2)Un−1 − 2Un−2τ since τ2 ≡ tτ − 2

= (tUn−1 − 2Un−2)τ − 2Un−1 grouping terms

= Unτ − 2Un−1 from Equation (4.5)

Let n ∈ N. Then there exist bounds a, b ∈ N such that for all α(τ) =
∑n

i=0 αiτ
i, αi ∈ {−1, 0, 1} it is always possible to write:

α(τ) ≡ x + yτ ,

for some x, y ∈ Z such that |x| < a and |y| < b. We now give values for a

and b as functions of n.

Solving the recurrence relation (see [13]) in Equation (4.5), we get:

Uk = 1√−7

(
t+
√−7
2

)k
− 1√−7

(
t−√−7

2

)k
,

for an integer k > 0.

Using the statement that the modulus of a complex number x + yi is
√

x2 + y2, we have:

|Uk| 6 1√
02+

√
7
2

√
( t
2)2 + (

√
7

2 )2
k

+ 1√
02+

√
7
2

√
( t
2)2 + (

√
7

2 )2
k

6 1√
7

√
2

k
+ 1√

7

√
2

k
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Hence:

|Uk| 6 2
√

2k

√
7

(4.7)

We want to prove that: |x| < 3.7(
√

2)n and |y| < 2.6(
√

2)n. We prove it

by induction in n.

1. Base:

n = 0. We have
∑0

i=0 αiτ
i = α0τ

0 = α0.

So, α0 = |x| < a = 3.7(
√

2)0, since αi ∈ {−1, 0, 1}.

n = 1. We have
∑1

i=0 αiτ
i = α0τ

0 + α1τ
1 = α0 + α1τ .

So α0 = x < 3.7(
√

2)0 and α1 = y < 2.6(
√

2)1, since αi ∈ {−1, 0, 1}.

2. Inductive step:

We take
∑n−1

i=0 αiτ
i = x′ + y′τ . By hypothesis, it is true that:

|x′| < 3.7
√

2n−1 (4.8)

And:

|y′| < 2.6
√

2n−1 (4.9)

So, we need to prove that the result holds for n. First, we add another

term to
∑n−1

i=0 αiτ
i, as follows:

∑n
i=0 αiτ

i = x′ + y′τ + αnτn

= x′ + y′τ + αn

(
Unτ − 2Un−1

)

= (x′ − 2αnUn−1) + (y′ + αnUn)τ = x + yτ
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First, for x (using (4.7) and (4.9)):

|x| = |x′ − 2αnUn−1|
6 |x′|+ 2|αn||Un−1|
6 3.7

√
2n−1 + 22

√
2n−1√
7

=
(

3.7√
2

+ 2( 2√
2
√

7
)
)√

2n

< 3.7
√

2n

Now, for y (using (4.7) and (4.8)):

|y| = |y′ + αnUn|
6 |y′|+ |αnUn|
6 2.6

√
2n−1 + 2

√
2n√
7

=
(

2.6√
2

+ 2√
7

)√
2n

< 2.6
√

2n

The values of a, b can be slightly improved when we treat z =
n∑

i=0

αiτ
i

as a complex number, following the idea proposed by James McKee.

4.2.4.2 a = 3.65 and b = 2.59

We know that τ satisfies the characteristic polynomial τ2 − tτ + 2 = 0, for

t = ±1. One can interpret τ as the complex number:

τ =
t±√−7

2
.

Hence, the norm of τ is:

|τ | =
∣∣∣∣∣
t±√7i

2

∣∣∣∣∣ =

√
t2 +

√
7
2

4
=

√
1 + 7

4
=
√

2. (4.10)

86



4. Koblitz Curves and Frobenius Expansions

Let z =
n∑

i=0

αiτ
i be a complex number. The norm of z is:

|z| =
∣∣∣∣∣

n∑

i=0

αiτ
i

∣∣∣∣∣ 6
n∑

i=0

|αi||τ | 6
n∑

i=0

√
2

i

Using the formula for the sum of n+1 first terms of a geometric progression,

we have:

|z| 6
n∑

i=0

√
2

i
=
√

2
n+1 − 1√
2− 1

and

|z|2 <

( √
2

n+1
(
√

2 + 1)
(
√

2− 1)(
√

2 + 1)

)2

= 2n+1(
√

2 + 1)2. (4.11)

Now, we use the fact that z can be written as x + yτ :

z = x + y

(
t±√−7

2

)
=

(
x± y

2

)
±
√−7

2
y.

And hence:

|z| =
√

x2 ± xy + 2y2.

Which leads to:

|z|2 = x2 ± xy + 2y2. (4.12)

From Equations (4.11) and (4.12) we have:

x2 ± xy + 2y2 < 2n+1(
√

2 + 1)2.

Completing the squares, we have:

x2 ± xy + 2y2 = 2
(
y ± x

4

)2
+

7x2

8
< 2n+1(

√
2 + 1)2.
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Since the first term on the left hand side of the inequality (i.e., 2
(
y ± x

4

)2)

is a square and hence > 0, we can write:

7x2

8
< 2n+1(

√
2 + 1)2.

Therefore:
|x| <

√
8
72n+1(

√
2 + 1)2

< 3.65
√

2n.

Now, completing the squares in a different way, we have:

x2 ± xy + 2y2 =
(
x± y

2

)2
+

7y2

4
< 2n+1(

√
2 + 1)2.

Again, since the first term on the left hand side of the inequality (i.e.,
(
x± y

2

)2) is a square and hence > 0, we can write:

7y2

4
< 2n+1(

√
2 + 1)2.

Therefore:
|y| <

√
4
72n+1(

√
2 + 1)2

< 2.59
√

2n.

Note that the values for a and b are slightly smaller than the ones we

had found before.

However, it is possible to get even smaller values for a and b by pairing

consecutive terms in the τ -adic expansion together and using a worst-case

bound for the sum of two terms. Similarly, one can group the terms together

in threes, fours, fives etc. to get even smaller values for a, b. We also thank

James McKee for that idea.
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4.2.4.3 a = 3.03 and b = 2.14

We begin by writing z = α0 + α1τ + α2τ
2 + α3τ

3 + . . . + αnτn.

a) n ≡ 1 (mod 2)

Pairing consecutive terms, leads to

z = (α0 +α1τ)+(α2 +α3τ)τ2 +(α4 +α5τ)τ4 + . . .+(αn−1 +αnτ)τn−1.

There is a bound B ∈ N such that |αi + αi+1τ | 6 B for all i.

Hence, we can rewrite as:

|z| 6 B(1 + |τ2|+ |τ4|+ |τ6|+ . . . + |τn−1|).

From Equation(4.10), the norm of τ is
√

2, so:

|z| 6 B(1+2+22+. . .+2
n−1

2 ) = B

(
2

n−1
2

+1 − 1
2− 1

)
= B(2

n+1
2 −1) < B(2

n+1
2 ).

Therefore

|z|2 < B2(2n+1). (4.13)

Now we compute the worst-case bound for B, which occurs when αi =

αi+1 = 1 and τ = 1+
√−7
2 :

B = |(αi +αi+1τ)| 6
∣∣∣∣1 +

1 +
√−7
2

∣∣∣∣ =
∣∣∣∣
3 +

√−7
2

∣∣∣∣ =

√
32 +

√
7
2

4
= 2.

Using the bound B in Equation (4.13):

|z|2 < 4(2n+1). (4.14)
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From Equations (4.12) and (4.14):

x2 ± xy + 2y2 < 4(2n+1).

Now, completing the squares in the same way we did in the last section,

we end up with:

|x| <
√

4(8
72n+1)

< 3.03
√

2n.

and
|y| <

√
4(4

72n+1)

< 2.14
√

2n.

b) n ≡ 0 (mod 2)

We rewrite:

z = a0 + z′τ.

Where

z′ = (α1 + α2τ) + (α3 + α4τ)τ2 + ... + (αn−1 + αnτ)τn−2.

So

z′τ = z − α0.

We call

z′′ = (z − α0). (4.15)

It follows that

|z′||τ | = |z − α0| = |z′′|.
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And since |τ | = √
2, it follows that

|z′′| 6
√

2|z′| (4.16)

Since z′ has degree n− 1, by the previous case it follows that:

|z′| < 2
√

2n.

Then using the above result with Equation (4.16):

|z′′| <
√

2(2
√

2n) = 2(2
n+1

2 ).

Now, using the fact that z′′ = x′′ + y′′τ , it follows from the previous

result that:
|x′′| < 3.03

√
2n

|y′′| < 2.14
√

2n.

Finally, since z = x + yτ , from Equation (4.15) we have

x′′ + y′′τ = x + yτ − α0 = (x− α0) + yτ.

Since αi = {−1, 0, 1} for any i, it follows that |x| and |x′′| differ by at

most 1. Therefore:

|x| < 1 + 3.03
√

2n =
(

1√
2n + 3.03

)√
2n

|y| < 2.14
√

2n.

Now we group the terms in threes, to get even smaller bounds.
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4.2.4.4 a = 2.81 and b = 2

We begin by writing z = α0 + α1τ + α2τ
2 + α3τ

3 + . . . + αnτn.

a) n ≡ 2 (mod 3)

Pairing three consecutive terms, leads to

(α0+α1τ+α2τ
2)+(α3+α4τ+α5τ

2)τ3+. . .+(αn−2+αn−1τ+αnτ2)τn−2.

There is a bound C ∈ N such that |αi + αi+1τ + αi+2τ
2| 6 C for all i.

Hence, we can rewrite as:

|z| 6 C(1 + |τ3|+ |τ6|+ |τ9|+ . . . + |τn−2|).

From Equation(4.10), the norm of τ is
√

2, so:

|z| 6 C(1 +
√

2
3
+
√

2
6
+
√

2
9
+ . . . +

√
2

n−2
)

= C(1 + 23/2 + (23/2)2 + (23/2)3 + . . . + (23/2)
n−2

3 )

= C

(
(23/2)

n−2
3 +1−1

2
√

2−1

)
= C

(
2

n+1
2 −1

2
√

2−1

)

< C
2
√

2−1
2

n+1
2

Therefore

|z|2 <
C2

(2
√

2− 1)2
2n+1. (4.17)

Now we compute the worst-case bound for C, which occurs when αi =

−1, αi+1 = αi+2 = 1 and τ = 1+
√−7
2 :

C = |(αi + αi+1τ + αi+2τ
2)| 6

∣∣∣−1 + 1+
√−7
2 + (1+

√−7
2 )2

∣∣∣ = | − 2 +
√−7|
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Hence

C 6
√

(−2)2 +
√

7
2

=
√

11.

Using the bound C in Equation (4.17):

|z|2 <
11

(2
√

2− 1)2
(2n+1). (4.18)

From Equations (4.12) and (4.18):

x2 ± xy + 2y2 <
11

(2
√

2− 1)2
(2n+1).

Now, completing the squares in the same way we did in the last section,

we end up with:

|x| <
√

8
7

11
(2
√

2−1)2
(2n+1)

< 2.75
√

2n.

and
|y| <

√
4
7

11
(2
√

2−1)2
(2n+1)

< 1.94
√

2n.

b) n ≡ 1 (mod 3)

We can rewrite:

z = α0 + α1τ + z′τ2.

Where

z′ = (α2+α3τ+α4τ
2)+(α5+α6τ+α7τ

2)τ3+. . .+(αn−2+αn−1τ+αnτ2)τn−4.

So

z′τ2 = z − α0 − α1τ.
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Then, we call

z′′ = (z − α0 − α1τ). (4.19)

It follows that

|z′||τ |2 = |z − α0 − α1τ | = |z′′|.

And using the fact that |τ | = √
2:

|z′′| 6 2|z′| (4.20)

Since z′ has degree n− 2, by the previous case it follows that:

|z′| <
( √

11
2
√

2− 1

)
2

n−1
2 .

Then using the above result with Equation (4.20):

|z′′| < 2
( √

11
2
√

2−1

)
2

n−1
2 =

( √
11

2
√

2−1

)
2

n+1
2

Now, using the fact that z′′ = x′′ + y′′τ , it follows from the previous

result that:
|x′′| < 2.75

√
2n

|y′′| < 1.94
√

2n.

Finally, since z = x + yτ , from Equation (4.19) we have

x′′ + y′′τ = x + yτ − α0 − α1τ = (x− α0) + (y − α1)τ.

Since αi = {−1, 0, 1} for any i, it follows that |x| and |x′′| differ by at
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most 1. The same occurs between |y| and |y′′|. Therefore:

|x| < 1 + 2.75
√

2n =
(

1√
2n + 2.75

)√
2n

|y| < 1 + 1.94
√

2n =
(

1√
2n + 1.94

)√
2n.

c) n ≡ 0 (mod 3)

We can rewrite:

z = α0 + z′τ.

Where

z′ = (α1+α2τ+α3τ
2)+(α4+α5τ+α6τ

2)τ3+. . .+(αn−2+αn−1τ+αnτ2)τn−3.

So

z′τ = z − α0.

We call

z′′ = (z − α0). (4.21)

It follows that

|z′||τ | = |z − α0| = |z′′|.

Taking |τ | = √
2:

|z′′| 6
√

2|z′| (4.22)

Since z′ has degree n− 1, by the previous case it follows that:

|z′| <
√

11

(
(2
√

2)
n
3

2
√

2− 1

)
=

( √
11

2
√

2− 1

)
2

n
2 .

Now, using the fact that z′′ = x′′ + y′′τ , it follows from the previous
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result that:
|x′′| < 2.75

√
2n

|y′′| < 1.94
√

2n.

Finally, since z = x + yτ , from Equation (4.21) we have

x′′ + y′′τ = x + yτ − α0 = (x− α0) + yτ.

Since αi = {−1, 0, 1} for any i, it follows that |x| and |x′′| differ by at

most 1. Therefore:
|x| < 1 + 2.75

√
2n

|y| < 1.94
√

2n.

Finally, we can state the following theorem:

Theorem 4.2.2. Let n > 8 and let α(τ) =
∑n

i=0 αiτ
i, for αi ∈ {−1, 0, 1}.

It is always possible to write:

α(τ) ≡ x + yτ ,

for some x, y ∈ Z such that |x| < a = 2.81
√

2n and |y| < b = 2
√

2n.

Proof. From the results of items a), b) and c) above, the worst-case bounds

for x and y are:

|x| < 1 + 2.75
√

2n =
(

1√
2n + 2.75

)√
2n

|y| < 1 + 1.94
√

2n =
(

1√
2n + 1.94

)√
2n.

Since 1√
2n < 0.06 when n > 8, the proof is complete.
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We remark that one could try to prove even smaller values for a and b,

following the idea above and grouping the terms together in fours, fives, etc.

In Section 4.2.6 we conjecture smaller values for a and b (namely a =

2.28
√

2n and b = 1.8
√

2n). Our conjecture is motivated by experimental

results.

4.2.5 Writing a τ-NAF as x + yτ for x, y ∈ Z

We can use the same idea to give more precise values for the bounds a, b

when dealing with τ -NAFs.

We recall that z = α0 + α1τ + α2τ
2 + α3τ

3 + . . . + αnτn.

a) n ≡ 1 (mod 2)

Pairing consecutive terms, leads to

(α0 + α1τ) + τ2(α2 + α3τ) + τ4(α4 + α5τ) + . . . + τn−1(αn−1 + αnτ).

Note that, since z is a τ -NAF, either αi or αi+1 is zero. There is a

bound D ∈ N such that |αi + αi+1τ | 6 D for all i. As a result, the

bound D will be smaller than B, which will lead to smaller bounds.

We can rewrite as:

|z| 6 D(1 + |τ2|+ |τ4|+ |τ6|+ . . . + |τn−1|)

Now we compute the worst-case bound for D, which occurs when αi =
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0, αi+1 = 1 and τ = 1+
√−7
2 :

D = |(αi+αi+1τ)| 6
∣∣∣∣0 +

1 +
√−7
2

∣∣∣∣ =
∣∣∣∣
1 +

√−7
2

∣∣∣∣ =

√
12 +

√
7
2

4
=
√

2.

It follows that:

|z|2 < 2(2n+1). (4.23)

Using Equations (4.12) and (4.23):

x2 − xy + 2y2 < 2(2n+1).

Now, completing the squares in the same way we did in the last section,

we end up with:

|x| <
√

2(8
72n+1)

< 2.14
√

2n.

and
|y| <

√
2(4

72n+1)

< 1.52
√

2n.

b) n ≡ 0 (mod 2)

We rewrite:

z = a0 + z′τ.

Where

z′ = (α1 + α2τ) + (α3 + α4τ)τ2 + ... + (αn−1 + αnτ)τn−2.

So

z′τ = z − α0.
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Then, we call

z′′ = (z − α0). (4.24)

It follows that

|z′||τ | = |z − α0| = |z′′|.

Recall that |τ | = √
2. Hence:

|z′′| 6
√

2|z′| (4.25)

Since z′ has degree n− 1, by the previous case it follows that:

|z′| < (
√

2)2
n
2 .

Then using the above result with Equation (4.25):

|z′′| < (
√

2)(
√

2)2
n
2 =

√
2(2

n+1
2 )

Now, using the fact that z′′ = x′′ + y′′τ , it follows from the previous

result that:
|x′′| < 2.14

√
2n

|y′′| < 1.52
√

2n.

Finally, since z = x + yτ , from Equation (4.24) we have

x′′ + y′′τ = x + yτ − α0 = (x− α0) + yτ.

Since αi = {−1, 0, 1} for any i, it follows that |x| and |x′′| differ by at

99



4. Koblitz Curves and Frobenius Expansions

most 1. Therefore:

|x| < 1 + 2.14
√

2n =
(

1√
2n + 2.14

)√
2n

|y| < 1.52
√

2n.

Finally, we can state the following theorem:

Theorem 4.2.3. Let n > 8 and let α(τ) =
∑n

i=0 αiτ
i, for αi ∈ {−1, 0, 1}

be a τ -NAF expansion. It is always possible to write:

α(τ) ≡ x + yτ ,

for some x, y ∈ Z such that |x| < a = 2.20
√

2n and |y| < b = 1.52
√

2n.

Proof. From the results of items a), b) above, the worst-case bounds for x

and y are:

|x| < 1 + 2.14
√

2n =
(

1√
2n + 2.14

)√
2n

|y| < 1.52
√

2n.

Since 1√
2n < 0.06 when n > 8, the proof is complete.

Now we conjecture smaller values for a, b based on the distribution of

random τ -adics and random τ -NAFs.

4.2.6 Using the Distribution of Random τ-adics to obtain

Smaller Bounds

We recall that in Theorems 4.2.2 and 4.2.3 we proved bounds for x and y.

Now, based on experimental results, we conjecture that such bounds can

be improved to smaller values. We experimented in MAGMA [10] gener-
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ating 10,000 random τ -adics (and random τ -NAFs) of length L and then

we converted each one to x + yτ using the algorithm presented in [12]. By

analysing the pictures of each distribution, we could state a more restrictive

conjecture for the bounds of a and b.

4.2.6.1 Distribution of Random τ-adics as x + yτ expressions

Figures 4.2, 4.3, 4.4 and 4.5 show the distribution of 10,000 random τ -adics,

for L respectively equal to 30, 40, 50 and 160. In all figures, the values in

x go from −a to a, using a = 3
√

2L and the values in y go from −b to b,

using b = 2
√

2L. Note that such values for a and b are an approximation to

integers of the values proved in Theorem 4.2.2.

Figure 4.2: Distribution of 10,000 random τ -adics for L 6 30. The bounds for axis x
and y are respectively (−a, a) and (−b, b), for a = 3

√
2L and b = 2

√
2L.

Notice that the distribution is centered in a region of smaller area than

4ab and it seems to be close to uniform away from the edges. Furthermore,

the symmetry under (x, y) → (−x,−y) (i.e., 180 ◦ rotation) is obvious. For

L = 30, we can check that for both x and y positive or both negative,

there is no point after certain size of x and y (note the the picture looks

like a “sausage”). This can be explained when we convert points in this
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Figure 4.3: Distribution of 10,000 random τ -adics for L 6 40. The bounds for axis x
and y are respectively (−a, a) and (−b, b), for a = 3

√
2L and b = 2

√
2L.

Figure 4.4: Distribution of 10,000 random τ -adics for L 6 50. The bounds for axis x
and y are respectively (−a, a) and (−b, b), for a = 3

√
2L and b = 2

√
2L.

empty region back to a τ -adic with coefficients only in {−1, 0, 1} (using

Algorithm 4). For example, take x = 50000 and y = 30000. Check in

Figure 4.2 that point (x, y) is empty. When we convert 50000 + 30000τ

to a τ -adic with coefficients in {−1, 0, 1} using Algorithm 4, we get τ31 −
τ30 − τ29 − τ24 + τ22 + τ21 − τ15 − τ13 + τ12 + τ10 + τ7 − τ4 which explains

why the region is empty, since we are using L = 30. The same occurs with

x = −50000 and y = −30000. For L = 40 and L = 50 this behaviour does

not occur and the distribution is centered. Note that for L = 160 the same

“sausage-behaviour” occurs.
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Figure 4.5: Distribution of 10,000 random τ -adics for L 6 160. Each value is divided
by 260. The bounds for axis x and y are respectively (−A, A) and (−B, B), for A = 3

√
2L

and B = 2
√

2L. Note that the axes have been rescaled by a factor 260.

A possible explanation for the ‘sausage-shape’ comes when we plot the

distribution for L = 29. The picture looks more centered (similar to L = 40).

Going from the picture for L = 29 to the picture for L = 30 is equivalent

to shift the original picture to the positions τ30 and −τ30. It happens that

when we convert τ30 and −τ30 to coefficients in Z we get 17282 − 24475τ

and −17282+24475τ respectively. Note that the new points (τ30 and −τ30)

are in the right-bottom and left-top corners of the original picture. Hence,

when we shift the original picture to the new points, we got Figure 4.2, with

its ‘sausage-shape’. Doing the same for L = 39, when we plot τ40 and −τ40

we get 49138− 753027τ and −49138+753027τ . Since those points are close

to the y axis, we do not get a ‘sausage-shape’ for L = 40.

An alternative explanation for the ‘sausage’ forms, according to Roberto

Avanzi: On the Gauss plane, going from τ -adics of length L to τ -adics of

length L + 1 is a multiplication of the previous graph by τ and addition

some detail corresponding to the least significant digit. This can be viewed

as added detail to the pictures. So we essentially get a rotating figure, once

the size has been normalised. Now, going from the Gauss plane to (1, τ)-
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coordinates is just a linear transformation of the plane.

Now we state the following conjecture, based on the pictures:

Conjecture 1. Let n(τ) =
∑L

i=0 αiτ
i, for α ∈ {−1, 0, 1}. Let x, y be inte-

gers. For practical values of L it is always possible to write:

n(τ) ≡ x + yτ ,

with |x| < a = 2.28
√

2L and |y| < b = 1.8
√

2L.

Evidence for the conjecture - From the distributions of random x+yτ

(see Figures 4.2, 4.3 and 4.4) we observed that the maximum point is <

0.76∗a in the x-direction and < 0.9∗b in the y-direction. As a result, we can

define new bounds a and b, namely a = 0.76 ∗ (3
√

2L) and b = 0.9 ∗ (2
√

2L).

We observe that a better choice would not be a box but some curve that

fits better the region of distribution. The most obvious choice would be

an ellipse. Alternatively, one can change coordinates to give a box that is

aligned with the major axis of the ellipse. We leave this as an open problem.

4.2.6.2 Distribution of Random τ-NAFs as x + yτ expressions

We repeated the same experiment, but now generating random τ -NAFs.

We could observe that we can take even smaller bounds when working with

τ -NAFs. Figure 4.6 shows the distribution of 10,000 random τ -NAFs.

So we state the following conjecture:

Conjecture 2. Let n(τ) =
∑L

i=0 αiτ
i, for α ∈ {−1, 0, 1} be a τ -NAF ex-

pansion. Let x, y be integers. For practical values of L it is always possible
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Figure 4.6: Distribution of 10,000 random τ -NAFs for L 6 30. The bounds for axis x
and y are respectively (−a, a) and (−b, b), for a = 3

√
2L and b = 2

√
2L.

to write:

n(τ) ≡ x + yτ ,

with |x| < a = (0.51) × 3
√

2L = 1.53
√

2L and |y| < b = (0.62) × 2
√

2L =

1.24
√

2L.

Again, we observe that the best choice would be an ellipse instead of a

box or even a box aligned with the major axis of the ellipse.

4.2.6.3 About Distributions

We remark that one cannot use the picture of τ -adic distributions to estimate

the number of equivalence classes by just counting the number of points in

the box in which the distribution lies. The quantity 4ab only gives an upper

bound and it is clear from the pictures that the actual number of equivalence

classes can be a lot smaller than that. As we observed before, the best choice

would not be a box, but some curve which fits better in the distribution

region. Note that not every point (x, y) (even in the most dense central part

of the picture) necessarily arises from a τ -adic expansion. In other words,
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the picture is not solid, it has holes in it. This is clearly seen in the L = 30

and L = 160 distributions, which look like a “sausage”, but it also occurs in

the L = 40 and L = 50 distributions. Obviously, the holes can be explained

due to the simulation, because we generated 10, 000 random τ -adics and the

number of equivalence classes is much bigger (i.e., Õ(2L)). Note that we

can see some holes close to the centre of the region. This is because if we

take x + yτ for very small x and y, the resultant τ -adic with coefficients in

{−1, 0, 1} has small degree and therefore, it is unlikely to occur unless we

generate a sufficiently large number of random τ -adics.

However, there are also theoretical holes as we get closer to the edges of

the region. For example, take the point P1 = 48950 − 7193τ in Figure 4.2.

It can be seen that P1 lies inside the bounds of the region of points. If we

convert P1 to coefficients in {−1, 0, 1} using Algorithm 4, we obtain τ31, so

P1 does not arise when we take L = 30.

Furthermore, we remember from Table 4.1 in Section 4.2.2 that the num-

ber of P -equivalence classes for L = 15 is 160359. Using the bounds for τ -

adic distribution, we compute a = (0.76)3
√

215 ≈ 413 and b = (0.9)2
√

215 ≈
326 (we also repeated the experiment by choosing 10, 000 random τ -adics

of length L = 15 and drew a picture, and we could check that the bounds

hold). Hence, we have 4ab ≈ 538552, which is more than 3 times greater

than the correct number of P -equivalence classes. Note that the pictures

show the number of equivalence classes whereas Table 4.1 shows the num-

ber of P -equivalence classes, which naturally is smaller than the number of

equivalence classes (see Definitions 19 and 20), but we believe that the main

reason for the difference is the presence of holes, i.e., points that do not

arise from a τ -adic of certain length. We leave as a open problem a better
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understanding of the distribution of τ -adics.

4.2.7 Converting Integers to Frobenius Expansions and Vice-

Versa

Since point multiplication can be efficiently performed when one uses a

Frobenius expansion instead of an integer, a common practice to improve ef-

ficiency is to use a Koblitz curve and convert integers into τ -adic expansions.

We now briefly mention the algorithms to convert integers into Frobenius

expansions.

J. Solinas [50, Algorithm 4, pg. 364] proposed an algorithm that converts

n = x+yτ for some integers x, y into a Frobenius expansion in non-adjacent

form (τ -NAF) equivalent to n. It is easy to see that when y = 0, the

algorithm converts an integer (n = x) into a τ -NAF. That algorithm only

involves elementary integer operations. One problem is that the resulting

Frobenius expansion typically has degree much larger than m, so in the same

paper there is an algorithm ([50, Algorithm 5, pg. 365]) which reduces the

τ -NAF of n modulo τm− 1 or modulo (τm− 1)/(τ − 1), following an idea of

Meier and Staffelbach [36] (Solinas call that output “reduced τ -NAF”). This

latter algorithm requires many integer divisions and hence, can be costly.

According to N. Koblitz [33], H. Lenstra suggested that, instead of choos-

ing a random integer and afterwards, convert it to a τ -adic for efficient pur-

poses, one can start a protocol choosing a random τ -adic expansion. If a

random τ -NAF is chosen, since it is unique, one can use it without caring

which integer it represents.

For some applications, it may be necessary to convert a Frobenius expan-
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sion
∑

i niτ
i to an integer n (for example, Elliptic Curve Digital Signature

Algorithm (ECDSA) requires both the integer and the scalar multiple). For

such applications, it is necessary to revise the concept of eigenvalue of Frobe-

nius.

Definition 21. The Frobenius map in a cyclic group of order r has some

eigenvalue λ, so that τ(P ) = [λ]P . This eigenvalue is a solution to the

characteristic polynomial modulo r.

Once we compute the eigenvalue λ on 〈P 〉, it follows that n =
∑

i niλ
i

(mod r), where r is the order of P . In other words, this algorithm requires

arithmetic modulo a large prime.

B. Brumley and K. Järvinen[12] propose a more efficient algorithm which

takes a τ -adic of length L as input and computes the equivalent element

x + yτ , for some x, y ∈ Z. Once x + yτ is computed, the equivalent inte-

ger n modulo r is easily obtained using n = x + yλ (mod r). A hardware

implementation is provided in the paper and the authors claim that “the

results suggest significant computational efficiency gains over previously doc-

umented methods”.

4.2.8 Bit Representation of Frobenius Expansions

One can store a τ -adic expansion as a bitstring using Huffman encoding

(see [54, pg 56–58]): for example coefficient 0 is represented as 0, coefficient

1 as 10 and coefficient −1 as 11. Hence a τ -adic expansion of length L

and weight w requires L + w bits (hence, we typically require ≈ 5L/3 bits

for a random τ -adic). We remark that with bounds given by Solinas [50]

and an elementary counting argument, one can check that generally shorter
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representations are not possible, except by a fixed, small, additive constant.

However, if a τ -NAF is used then this can be shortened to L + 1 bits.

For example, we represent coefficient 0 as 0, pair 01 as 01 and pair 01̄ as 11,

where “1̄” means “−1”.

For instance, the length 9 τ -NAF expansion τ8 − τ6 − τ4 + 1 (i.e.,

[0101̄01̄0001]) could be represented as [0111110001].

4.3 Adding and Multiplying τ-adics

We will see in Chapter 6 an application of the use of Frobenius expansions

with the GPS identification scheme [26, 43]. In that protocol we will need

to add and multiply Frobenius expansions. The subtlety is that we require

the result to have coefficients only in {−1, 0, 1}. Any coefficients which are

outside this set must be reduced using the relation 2 = tτ − τ2, and this can

lead to an increase in the degree of the expansion. There are two options

for performing arithmetic:

1. Compute with coefficients in Z and reduce to coefficients in {−1, 0, 1}
at the end;

2. Perform the basic arithmetic operations so that all values have coeffi-

cients in {−1, 0, 1} at all times.

Algorithm 4 presents an efficient addition algorithm of the second type.

Note that this algorithm can also be used to convert any given τ -adic ex-

pansion with arbitrary integral coefficients into τ -adic expansions with co-

efficients in {−1, 0, 1} when we add zero to the input (and compare with
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the algorithm proposed by Solinas, in that any given τ -adic expansion with

arbitrary integral coefficients is converted into a τ -NAF expansion).

The important feature of this algorithm is that, although the carry values

c0, c1 are integers, the arrays a, b and d only ever contain entries in the set

{−1, 0, 1}. Hence this algorithm may be suitable for implementation on

smart cards.

We remark that multiplication of τ -adics expansions can be done by

treating the expansions as polynomials and performing a polynomial mul-

tiplication and then reducing the final result to coefficients in {−1, 0, 1}.
However, one must take into account the sizes of the integer coefficients,

which can be very large when we use τ -adic expansions of large degree.

Hence, it may be necessary large memory space to store coefficients of such

size.

An alternative to perform multiplication of τ -adics is to do repeated

calls to Algorithm 4. This option, although we did not evaluate the impact

of repeated shift-add to the performance protocols, seems to be the most

suitable for restricted devices, like smart cards.

4.3.1 The Optional Randomisation Step

The optional randomisation step in line 12 (Algorithm 4) will be needed

in the protocol (see Chapter 6 for details). It is the following: if i is less

than some parameter K′ then generate a uniform random b ∈ {−1, 0, 1} and

arrange that x = b by adding (b−x)(τ i− τm+i). This corresponds to taking

an equivalent representation for the sum. Note that this operation may

increase the degree of the result by m and requires storing a ‘carry’ to be
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Algorithm 4 Efficient τ -adic addition
System Parameters: Frobenius polynomial τ2 − tτ + 2 where t = ±1.
Input: τ -adic expansions a and b.
Output: d ≡ (a + b).
1: deg = max(deg(a), deg(b))
2: c0 = 0, c1 = 0, i = 0 and d = 0
3: while (i 6 deg) or (c0 6= 0) or (c1 6= 0) do
4: x = a[i] + b[i] + c0

5: c0 = c1 and c1 = 0
6: if (x < −1) or (x > 1) then
7: q = sign(x)× (|x| div 2)
8: x = x− 2q
9: c0 = c0 + tq

10: c1 = c1 − q
11: end if
12: [Optional randomisation step]
13: d[i] = x
14: i = i + 1
15: end while
16: Return d

included when computing the (m+i)-th term1. Note that the randomisation

method of Ebeid and Hasan [21] does not give uniform output of the low-

degree coefficients and so it is not sufficient for our protocol.

Even with the non-randomised version, one sees that the degree can

increase significantly if the carry values c0, c1 take nonzero values of large

enough absolute value. Indeed, from Algorithm 4 one can derive a non-

deterministic method to construct, given a τ -adic a, a τ -adic b such that

deg(a + b) > deg(b) > deg(a) (note that the difference deg(a + b) − deg(b)

is bounded for fixed a). For example, given a = 1 + τ3 − τ5 one can choose

b = −τ5 + τ7 so that the result of computing a + b using Algorithm 4 is

1 + τ3 − tτ6 + tτ8 − τ9. Indeed, it is clear that one can choose the first

deg(a) coefficients of b at random, so there are at least 3deg(a) such choices
1We are using the polynomial 1− τm, but could use any polynomial equivalent to zero

and with constant coefficient 1.
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for b (due to the choices available when constructing b there are many more

choices for b, see heuristic 1 below). Similarly, one can choose b such that

deg(a + b) < deg(a) (for example, for the above a take b = −τ3 + τ5 so that

a + b = 1); again there are about 3deg(a) possible choices.

4.4 Arithmetic Required for τ-GPS Protocol

Our variant of the GPS protocol will require computing y = r+sc where r, c

and s are all Frobenius expansions. The multiplication s×c can be performed

by repeated shifting and addition using Algorithm 1 (possibly combined with

a Karatsuba2 approach). Note that the arithmetic coming from Algorithm 4

is not associative (for example (1+1)+−1 6= 1+(1+−1)) though all results

are equivalent. There are several natural algorithms for computing sc and,

due to lack of associativity, they will generally give different results. For the

analysis of the protocol in Section 6.6 we assume that a fixed algorithm is

used for computing sc in the protocol and in the proof of Theorem 6.6.2.

Clearly, the product sc can have degree larger than deg(s)+deg(c) but in

practice it is not much bigger. We have performed a number of experiments

using MAGMA [10] in order to check the degree of sc for random s and c

of certain size. We define C, S and R respectively the maximum lengths

for the challenge, the secret key and the commitment source. We will see

in Section 6.6 that we need C > 32 such that the challenge cannot be easily

guessed by the prover and we need S > 150 such that the private key

be resistant to DLP algorithms. Therefore, taking (C,S) = (32, 150) and
2Divide-and-conquer algorithm discovered by A. Karatsuba in 1960, used for quickly

multiplying large n-digit numbers. The time complexity is O(nlog23), which is faster than
the classical O(n2).
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randomly chosen c ∈ TC and s ∈ TS , we could observe that after 240 random

pairs (s, c) we never found deg(s× c) > deg(s) + deg(c) + 5.

Definition 22. For S, C ∈ N, we define

Φ = (S − 1) + (C − 1) + 5 = S + C + 3

and

TΦ,R =
{

y ∈ TR : yn 6= 0 for some n such that Φ 6 n < R
}

.

Our protocol will compute r + sc where deg(r) is much bigger than

deg(s)+deg(c) and it is important to ensure that the degree is not likely to

increase. For a given choice of sc of degree Φ there seem to be 6 3Φ× 2K−1

values for r satisfying deg(r) < Φ +K and deg(r + sc) > Φ +K. Hence, the

probability that deg(r + sc) > Φ +K can be estimated as

3Φ2K−1

3Φ+K =
2K−1

3K
=

1
3
(
2
3
)K−1 =

1
3(3/2)K−1

=
1

31+(K−1) log3(3/2)
≈ 1

30.63+0.37K .

IfK is sufficiently large then the probability of this event for randomly chosen

r is negligible. Our experiments showed that for (C,S,K) = (32, 150, 20),

the probability of deg(r + sc) 6= deg(r) over random c ∈ TC , s ∈ TS and r ∈
TΦ+K is approximately 0.00004 6 1/30.37×20+0.63 ≈ 0.0001. For (C,S,K) =

(32, 150, 50) we never found an example with deg(r + sc) 6= deg(r).

The security proof will require a stronger statement about the probability

of deg(r + sc) being large for some choice of c ∈ TC . We have performed

experiments and the results seem to be comparable to the previous case.

Hence we propose the following heuristic. We assume that negligible is
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defined according to Definition 6.

Heuristic 1. Fix s ∈ TS . Suppose K ∈ N is sufficiently large and let

R = Φ +K. Then the probability over r ∈ TR that there exists some c ∈ TC
such that deg(r + sc) > R is negligible. More precisely,

#{r ∈ TR : ∃ c ∈ TC with deg(r + sc) > R} = O(3Φ2K) = Õ(3Φ+0.63K).

We also need to know how likely it is that deg(r + sc) 6 Φ. The above

arguments indicate there should be at most 3Φ such choices for r. Thus, we

can state the following heuristic:

Heuristic 2. Fix s ∈ TS . Suppose K ∈ N is sufficiently large and let

R = Φ + K Then the probability over r ∈ TR that there exists some c ∈ TC
such that deg(r + sc) < Φ is negligible. More precisely,

#{r ∈ TR : ∃ c ∈ TC with deg(r + sc) < Φ} = O(3Φ).

A further subtlety of our basic (i.e., without randomisation) addition

algorithm is that there is not necessarily a unique τ -adic solution x to the

equation a + x = b. For example, it is easy to check that −1 + x = 1 + τ

has no solution in T3. Similarly, one can check that −1 + x = −τ + τ2

has the two (necessarily equivalent) solutions x = 1 − τ + τ2 and x = −1

when τ2 − τ + 2 = 0. The extra randomisation in line 12 of Algorithm 4 is

included precisely to ‘smooth out’ this issue. In particular, it greatly reduces

the probability that an equation of the form a + x = b cannot be solved in

the important case when deg(a) < deg(b).
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4.5 Summary

In this chapter we revised the main properties of Koblitz curves and Frobe-

nius expansions (a.k.a. τ -adic expansions). We remarked that the most

popular choice for Koblitz curves are curves over F2m for some prime m > 1.

We saw that if an integer n is replaced by its equivalent Frobenius expansion,

the point multiplication [n]P can be performed, in practice, approximately

4 times faster than the standard double-and-add scalar multiplication, or

about 50% faster than any previous known point multiplication method.

We used the fact that Frobenius expansions are not unique, i.e., if we

look for expansions of degree less than some bound, we find many different

(although equivalent) expansions which represent the same integer modulo

r, where r is the order of P . We also stated that in case we need a unique

representation for a given equivalence class of integer, we can use a τ -NAF

expansion of degree less than m.

Furthermore, we explored the property that a τ -adic can be mapped to

x+yτ for integers x, y and we proved bounds for x and y. We also analysed

the distribution of random τ -adics and random τ -NAFs and conjectured

that we can shorten the bounds for x and y based on the distribution.

Finally, we presented the non canonical arithmetic of Frobenius expan-

sions, specially when we require that all coefficients be in {−1, 0, 1}. We

checked that the arithmetic is not associative, and when we add τ -adics

a and b, we can get many different results (e.g. different degrees for the

resultant expansion), but all of them are equivalent. We also proposed a

randomisation step in the algorithm used to add and multiply τ -adics in

order to avoid a statistical attack in the τ -GPS protocol.
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In this chapter we define three variants of the Frobenius expansion DLP

and present algorithms to solve each of them.
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5. The Frobenius Expansions DLP

We begin the chapter introducing three new computational problems,

namely, the general τ -DLP, the τ -NAF DLP and the weight-w τ -DLP.

Then we concentrate on low-memory algorithms, and propose the use of

the Gaudry-Schost algorithm for solving the τ -DLP. We analyse this algo-

rithm and also fill some gaps in its previous analysis.

5.1 Motivation

We recall that the elliptic curve discrete logarithm problem (ECDLP) is:

given P,Q ∈ E(Fqm)[r] to find n ∈ Z/rZ such that Q = [n]P . We discussed

in Chapter 4 that one can represent n as a Frobenius expansion n(τ) in

order to perform point multiplications more efficiently. We also recall from

Section 4.2.4 that a Frobenius expansion n(τ) = n0+n1τ +n2τ
2+ . . .+nLτL

can be mapped to x+yτ , for integers x, y of certain sizes. Evidently, to solve

the ECDLP of Q to the base P it is sufficient to compute either the integer

n ∈ Z/rZ or the coefficients nj of a Frobenius expansion of n or alternatively

the integers x and y. The main aim of the chapter is to present algorithms

to solve the ECDLP when n is a Frobenius expansion of length L. Under the

assumption that the standard DLP (i.e., computing the integer n) is hard,

we will show that for some cases it is better to compute the coefficients nj

and for other cases it is better to compute x and y. We are particularly

interested in expansions of relatively small length L, i.e. L < m.

The motivation behind this research is two-fold. The first motivation is

to analyse the security of elliptic curve cryptosystems. Solinas [51], following

an idea of H. Lenstra, suggested that rather than choosing a random integer

n and then converting to a Frobenius expansion n(τ), in certain cryptosys-
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tems it might be more efficient to generate a random Frobenius expansion

directly. The temptation then is to choose a relatively short and/or sparse

value for n(τ). If this is done then we must re-evaluate the difficulty of the

discrete logarithm problem (and other computational problems). A further

issue is that the existing security proofs may not directly apply (see Lange

and Shparlinski [35] for results on the uniformity of distribution of the re-

sulting points). For some systems it may be necessary to develop bespoke

security proofs for the Frobenius expansion case (see Chapter 6 and [8] for

an example of this).

The suggestion of Solinas leads to the following problem: determine

the most efficient way to generate ECDLP instances Q = [n]P of a given

difficulty. For example, one could choose random integers n of a certain

bitlength, or random Frobenius expansions of a certain degree, or random

sparse Frobenius expansions of a certain degree, etc. We do not attempt

to answer this question (the solution will depend delicately on the relative

costs of doubling, addition and q-powering; which in turn depend on the

finite field in question, the curve equation, and what sort of coordinate

system is being used). However, it is clear that a necessary prerequisite

to answering this question is a study of algorithms to solve the DLP in all

these situations. Note that one approach to this problem is using product

exponents, see [14, 19, 32]. Also see [18] for a solution if P is fixed and

sufficient memory is available.

The second motivation is more philosophical. Recall that there are nu-

merous computational problems which admit exhaustive search algorithms

in time Õ(N) (for some measure N of the size of the problem) and time/

memory tradeoff algorithms in time and space Õ(
√

N). Van Oorschot and
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Wiener [57] show that such problems can also be solved with low mem-

ory randomised methods (called parallel collision search) in expected time

Õ(N3/4). For distributed computing using P processors the above complex-

ities generically become Õ(N/P), Õ(
√

N/P) and Õ(N3/4/P) respectively.

For some of the above problems (e.g., the discrete logarithm problem)

there also exist low memory randomised algorithms (Pollard-rho and kan-

garoo [41]) which run in expected time Õ(
√

N) (respectively Õ(
√

N/P),

see [58]). It is natural to ask whether every time/memory tradeoff algo-

rithm has a randomised low-memory counterpart with the same asymptotic

complexity (possibly with worse constants). There are examples of compu-

tational problems with a good time/memory tradeoff algorithm (i.e., time

and space complexity Õ(
√

N) for problem space of N elements) but for

which there is no known low-memory algorithm with complexity Õ(
√

N)

(for example, the low Hamming weight DLP [53], small CRT RSA private

exponents [44] and the product DLP [14, 19]).

In this chapter, we divide the Frobenius expansion DLP into three com-

putational problems, namely the general τ -DLP, the τ -NAF DLP and the

weight-w τ -DLP (see Section 5.2). For the first two, it is natural to use an

efficient time/memory tradeoff algorithm to solve them, and we use Gaudry-

Schost [25] 2-dimensional approach to transform it into a low-memory ran-

domised algorithm. For the the weight w τ -DLP, it can also be efficiently

solved by a time/memory tradeoff algorithm, but we do not know any low-

memory algorithm with complexity better than van Oorschot and Wiener’s

Õ(N3/4).
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5.2 The Frobenius Expansion DLP

Given P, Q ∈ E(Fqm) the standard discrete logarithm problem is to find

n ∈ Z (if it exists) such that Q = [n]P . In the most common case, using

Koblitz curves, it is enough to use m = 163 for the standard DLP to be

intractable. The distributed Pollard-rho method using equivalence classes

in E(F2163) needs ≈
√

π2163

4(163) ≈ 277.6 group operations.

We now introduce the problems of interest in this chapter. In order to

construct more efficient schemes for restricted environments, we need to use

Frobenius expansions of length not chosen in the range [0,m], but in [0, L],

where usually L < m.

Definition 23. General τ-DLP. Given inputs P, Q ∈ E(Fqm)[r], L ∈ N,

find n(τ) ∈ TL (if it exists) such that Q = [n(τ)]P .

Definition 24. τ-NAF DLP. Given inputs P, Q ∈ E(Fqm)[r], L ∈ N, find

a τ -NAF n(τ) of length L (if it exists) such that Q = [n(τ)]P .

Definition 25. Weight w τ-DLP . Given inputs P, Q ∈ E(Fqm)[r], L,w ∈
N, find n(τ) ∈ TL of weight w (if it exists) such that Q = [n(τ)]P . We are

particularly interested in small w.

Remark 1: We stress that n(τ) having low degree does not imply that

n ≡ n(λ) (mod r) is a small integer (remember, λ is the eigenvalue of

Frobenius, see Definition 21). Hence the above problems are not special

cases of the problem of solving the discrete logarithm problem in a short

interval.

Remark 2: Although the τ -NAF and the weight-w τ -DLP are related

(we expect that both have a small number of nonzeros, but note that the
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weight bound on the τ -NAF is proportional to the length of the expansion

and on the weight-w DLP the bound is fixed), here we state the latter as

a separate problem (note that n can have a low Hamming weight, e.g.,

n = 10000000000110000000001, but not necessarily, n is a NAF) because

there are some attacks which can be applied when n has low Hamming

weight, regardless whether n is a τ -NAF or not.

Remark 3: The goal is to have a special algorithm for the low Hamming

weight DLP which performs better than general discrete log algorithms.

However, from some value of w there is a crossover when it is better to use

a general algorithm.

5.3 Solving the τ-DLP

We now consider the standard methods for solving the DLP (exhaustive

search, baby-step-giant-step) in our new setting. Let C be the coefficient

set for the τ -adic expansions (we always assume 0 ∈ C) and let c be the

number of elements of C (i.e., c = #C). We analyse each method for a

general coefficient set C and then we give some examples when c = 3 (i.e.

C = {−1, 0, 1}), since this is the most popular choice.

5.3.1 Exhaustive Search

An obvious method to solve the τ -DLP is by exhaustive search.
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5.3.1.1 General τ-DLP.

When solving the general τ -DLP, we need O
(
cL

)
group operations to find n.

Note that, when C = {−1, 0, 1}, we need to exhaustive search over 3L

possibilities, although we have showed in Section 4.2.2 that the number of

equivalence classes is only Õ(2L).

However, it is possible to solve the general τ -DLP in Õ(2L) by using

the fact that every τ -adic expansion can be mapped down to x + yτ , for

x, y ∈ Z and |x| < a = 2.81
√

2L, |y| < b = 2
√

2L (see Theorem 4.2.2). Using

exhaustive search over x and y, we need < 22.48(2L) group operations.

Furthermore, if we use the results of the τ -adics distribution (see Con-

jecture 1, Section 4.2.6) then we have a = 2.28
√

2L and b = 1.8
√

2L and

therefore, the exhaustive search needs < 16.42(2L) group operations.

5.3.1.2 weight w τ-DLP.

We must list all Frobenius expansions of length L and weight w. To do this

one first generates all binary strings of weight w and length L. This can

be efficiently done by using Algorithm 5 below. Once all binary strings are

generated, to get a τ -adic expansion one replaces the w ones in the binary

number by every combination of the nonzero elements of C. The number of

such expansions is clearly (c− 1)w
(
L
w

)
.

Therefore, the exhaustive search algorithm for the weight w τ -DLP re-

quires Õ((c− 1)w
(
L
w

)
) group operations.

Table 5.1 shows the number of group operations for L = 160 and some
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Algorithm 5 Generating all binary strings of weight w and length L

Input: length L, weight w
Output: all binary strings of weight w and length L
1: Initialise a length L array with all bits 1 in the rightmost w positions;
2: output array;
3: repeat
4: i ← position of leftmost bit 1;
5: if i is not leftmost position then
6: Move leftmost bit one position to left;
7: else
8: j ← position of leftmost bit 1 which can be moved to left;
9: Move bit at position j one position to left and bring all 1 bits to

the left of j to the positions immediately before j;
10: end if
11: output array;
12: until all bits 1 in the first w positions of the array

values of w. We can see that for w 6 38 we can solve the DLP with fewer

group operations than the exhaustive search for the general case.

Table 5.1: Number of group operations for L = 160 and weight w.

w Group Operations

5 234.61

10 261.01

20 2103.57

30 2137.76

37 2158.09

38 2160.78

39 2163.43

5.3.1.3 τ-NAF DLP.

If one wants to exhaustive search over τ -NAFs, she needs to know how

to generate all τ -NAFs of length < L. This can be efficiently done using

Algorithm 5 to obtain all binary expressions of weight w and length L′ =

L − w, for w = 1 to dL/2e. We then replace each bit ‘1’ in the binary
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expression with a pair ‘0x’ of elements in C where x is a nonzero element

of C. Finally, we discard the leftmost bit of each resultant expression (which

is always zero when expressions are generated that way).

We remember from Section 4.2.1.1 that the number of τ -NAF expansions

with degree less than L is NL = 4
32L − 1

3(−1)L = 4
32L + O(1). Notice that

this formula only holds for a coefficient set C = {−1, 0, 1}. Theorem 5.3.1

presents a similar formulae for a general coefficient set C. The proof is

analogous to the proof of Theorem 4.2.1.

Theorem 5.3.1. Let L ∈ Z. Let c ∈ N be the number of elements of

the coefficient set C and c′ = c − 1. The number of possible τ -adic NAF

expansions of degree less than L is

NL = c1

(
1 +

√
1 + 4c′

2

)L

+c2

(
1−√1 + 4c′

2

)L

= Õ

((
1 +

√
1 + 4c′

2

)L
)

(5.1)

for some c1, c2 ∈ Q.

Note that, when C = {−1, 0, 1}, it follows that

NL =
4
3
2L − 1

3
(−1)L =

4
3
2L + O(1).

From (5.1), the total number of τ -NAF is NL = O((1+
√

1+4c′
2 )L) where

c′ = c−1, so, one needs to compute NL group operations to find the discrete

log n. When C = {−1, 0, 1}, we have a Õ(2L) algorithm to solve the τ -NAF

DLP.

Note that if we use the fact that we can map a τ -adic to x+yτ , for integers

x, y and use the τ -NAF distribution (see Conjecture 2, Section 4.2.6.2), we
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can use exhaustive search over x < a = 1.53
√

2L and y < b = 1.24
√

2L and

we end up with an algorithm which requires 6 7.59(2L) group operations.

We still have a Õ(2L) algorithm, but in this case, the constant implicit in

the Õ( ) is bigger.

5.3.2 Baby-Step Giant-Step

One could also try to find n by using Shanks’ baby-step giant-step (BSGS)

algorithm [16]. Without loss of generality we assume that L is even.

5.3.2.1 General τ-DLP.

A naive way to solve the general τ -DLP using Shanks’ baby-step giant-step

would lead to an algorithm with running time and memory requirements

O
(√

cL
)
. Notice that when c = 3, we have complexity O

(√
3L

)
, which is

not optimal, since we have O(2L) equivalence classes. However, we can do

better than this and find an algorithm with complexity O(2L/2) as expected.

The idea is to try to find the discrete log as x+yτ , for integers x, y of cer-

tain size. When C = {−1, 0, 1} we recall (see Theorem 4.2.2, Section 4.2.4)

that there exist integers i, j where |i| < a = 2.81
√

2L and |j| < b = 2
√

2L

such that n(τ) = i + jτ .

Therefore, one computes a sorted list L (the baby steps) which consists

of pairs {([j]τ(P ), j) | j ∈ [−2
√

2L . . . 2
√

2L] and then computes the giant

steps, which consist of pairs x, {(Q − [i]P, i) | i ∈ [−2.81
√

2L . . . 2.81
√

2L]

checking if Q− [i]P appears in L. When a match is found, the discrete log

is solved, since n = i + jτ . The running time and memory requirements are
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O
(√

2L
)
. The constant hidden in the O( ) is 9.62 for the running time, since

we require 4
√

2L group operations to compute the baby steps and 5.62
√

2L to

compute the giant steps. For the memory requirements, the hidden constant

is 4 since we require 4
√

2L group elements to store the baby steps.

If we use the τ -adic distribution (see Conjecture 1), then a = 2.28
√

2L

and b = 1.8
√

2L and the hidden constant becomes 8.16 for the running time

and 3.6 for the memory requirements.

In the case of another coefficient set C, once one has determined the

bounds a and b, the same algorithm can be used. As always with baby-

step-giant-step methods, if the memory is constrained then one can split

the problem unevenly to give lower memory cost but larger time cost.

5.3.2.2 τ-NAF DLP.

We know there exist τ -NAFs i, j of length L/2 such that n = i + τL/2j.

Hence the natural algorithm follows. The complexity is twice as the exhaus-

tive search algorithm for τ -NAFs of length L/2, since we need to compute

4
32L/2 baby steps and approximately the same number of giant steps. So the

required number of group operations is 8
32L/2 ≈ 2L/2+1.42. In addition, we

need 4
32L/2 group elements to store the baby steps.

We remark that over all choices for τ -NAF i, j some values i+ τL/2j are

not in non-adjacent form, but this does not seriously affect our analysis.

If we use the τ -NAF distribution and use BSGS over integers x, y, then

we need to compute 3.06
√

2L baby steps and 2.48
√

2L giant steps, resulting

in 5.54
√

2L ≈ 2L/2+2.47 group operations and store 2.48
√

2L group elements.
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Therefore, the hidden constants in the O( ) are smaller if we use the algo-

rithm over τ -NAFs.

5.3.2.3 Weight-w τ-DLP.

It is straightforward to extend Coppersmith’s baby-step-giant-step algo-

rithm (see [38, 53]) for the low Hamming weight DLP to solve the weight-

w τ -DLP . We recall that c′ = #C − 1 = c − 1. Coppersmith’s deter-

ministic algorithm needs Õ(L
(L/2
w/2

)
) group operations (according to [37],

this is achieved by dividing the exponent into two equal pieces, each one

with Hamming weight w/2). The randomised version of Coppersmith’s

algorithm needs Õ(
√

w
(L/2
w/2

)
) group operations. Stinson’s generalisation

(see [53]) of Coppersmith’s deterministic method leads to an algorithm re-

quiring O(w3/2(log L)
(L/2
w/2

)
) group operations.

For the weight-w τ -DLP , we replace the w ones in the binary number by

every combination of the nonzero elements of C. Therefore, the complexities

for Coppersmith’s deterministic algorithm, its randomised version and Stin-

son’s generalisation are respectively Õ((c′)w/2L
(L/2
w/2

)
), Õ((c′)w/2√w

(L/2
w/2

)
)

and O((c′)w/2w3/2(log L)
(L/2
w/2

)
) group operations.

Table 5.2 shows the number of group operations for the Stinson’s gen-

eralisation of Coppersmith’s deterministic method, when we use L = 160,

c′ = 2 and some values of w.

We can see that for w 6 31 we can solve the DLP with fewer group

operations than the BSGS for the general case.
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Table 5.2: Number of group operations for L = 160 and weight w using BSGS.

w Group Operation

5 220.48

10 237.37

20 259.94

30 277.79

31 278.36

32 280.95

5.4 Low-Memory Algorithms for Weight-w τ -DLP

Let N = (c − 1)w
(
L
w

)
be the number of τ -adic expansions of length L for

E(Fqm) with coefficient set C. We recall that the BSGS algorithm requires

time and memory O(
√

N). However, if the adversary has a limited amount

of memory available, the number of steps required to find the DLP must

be increased. For example, if only w words of memory are available for the

adversary, the number of steps required for BSGS becomes O(N/w), with

O(N/w) memory accesses (if one can only store w group elements, then

he does w baby steps and N/w giant steps. This gives an algorithm with

storage w group elements and running time N/w group operations). Hence,

only w times faster than the exhaustive search case. Ideally we would like

a low-memory algorithm to solve the weight-w DLP in time Õ(
√

N), but

finding such an algorithm in general remains an open problem.

Using the methods of van Oorschot and Wiener [57] one can use a meet-

in-the-middle attack to obtain a low memory algorithm with complexity

Õ(N3/4) for the weight-w DLP, with O(
√

N) memory accesses. We briefly

give the details of this method. We assume without loss of generality that

L is even.

The starting point is the same as the time/memory tradeoff: Let Q =
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[n(τ)]P where n(τ) is a τ -adic of length L. We write n = i + τL/2j where

i and j are τ -adics of length L/2. We want to find a match [i]P = Q −
[j]τL/2(P ).

The first step of the method in [57] is to construct an easily computed

function

g1 : E(Fqm) −→ S

where S is the set of all τ -adics of length L/2. We also need a function

g2 : E(Fqm) → {0, 1}. Define f0(n(τ)) = [n(τ)]P and f1(n(τ)) = Q −
[n(τ)]τL/2(P ). Finally, we obtain

f : E(Fqm) −→ E(Fqm)

as f(R) = fg2(R)(g1(R)).

The method of [57] is to iterate f from randomly chosen starting points

R until a distinguished point is hit, in which case the start and end points are

stored. This process is repeated many times. Once collisions are detected

one can traverse the walks to find the exact collision points. There will be

many ‘useless’ collisions; these are inevitable since the map g1 is from a big

set to a much smaller set and so we can have a collision from

g1(R1) = g1(R2) and g2(R1) = g2(R2)

for points R1, R2 ∈ E(Fqm). Eventually one expects to find a useful collision

arising from the desired relation Q − [j]τL/2(P ) = [i]P (in other words,

f0(i(τ)) = f1(j(τ))) and we are done.

According to [57], the number of steps is 7n3/2/
√

w and the number of
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memory access are 9n, where n = 2w/2
(L/2
w/2

) ≈ √
N . Therefore, for the

weight-w DLP, the number of steps is approximately (c−1)w/2
7(L/2

w/2)
3/2

√
w

and

we need to access the memory approximately 9((c− 1)w/2
(L/2
w/2

)
) times.

When C = {−1, 0, 1}, since the number of τ -adics of length L/2 and

weight w/2 is O(2w/2
(L/2
w/2

)
) the main result of [57] implies that the number

of steps of this algorithm is 2w/2
7(L/2

w/2)
3/2

√
w

. Taking N = 2w
(
L
w

)
we end up

with Õ(N3/4). The number of accesses to the memory is therefore Õ(
√

N).

Table 5.3 shows the number of group operations of van Oorschot and

Wiener’s generalisation of Coppersmith deterministic method, when we use

L = 160, c′ = 2 and some values of w.

Table 5.3: Number of group operations for L = 160 and weight w using van Oorschot
and Wiener.

w Group Operations

5 221.58

10 242.92

20 271.52

23 276.92

24 281.18

We can see that for w 6 23 the method is better than the distributed

Pollard-rho in the whole group E(F2163).

5.5 The 2-Dimensional Discrete Log Problem

In this section, we use the Gaudry-Schost Algorithm [25] to find a discrete

log using a 2-dimensional pseudorandom walk.

Definition 26. Let E(Fqm) be an elliptic curve, let Q,P1, P2 be points of E
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and let a, b be integers of known size. The 2-dimensional discrete log problem

(2-dim DLP for short) is to find integers x, y such that Q = [x]P1 + [y]P2,

for |x| 6 a and |y| 6 b.

5.5.1 The Sample Space

We need to define the sample space in which the discrete log is supposed to

lie. By assumption the discrete log lies within a rectangular box of sizes 2a

and 2b, centered in the cartesian origin (0, 0). Therefore, we can define our

sample space:

Definition 27. Let P1 and P2 be points of an elliptic curve E(Fqm). Let

a, b be integers of some known value. We define:

X =
{
[x]P1 + [y]P2, such that |x| 6 a, |y| 6 b

}
.

We assume that there do not exist distinct (x1, y1) and (x2, y2) in X such

that [x1]P1 + [y1]P2 = [x2]P1 + [y2]P2.

The number of elements of X is the area of the box in which the discrete

log is supposed to lie. In other words:

#X = (2a).(2b) = 4ab.

5.5.2 Gaudry-Schost Low-Memory Algorithm

Gaudry and Schost [25] propose an algorithm for the 2-dim DLP. They define

a pseudorandom walk in the set X of the form Ri+1 = Ri + [sφ(Ri)]P1 + P2
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(for more details, see Section 5.5.3).

They estimate the running time using simplifying assumptions. For in-

stance:

• they assume that the pseudorandom walk stays inside X ;

• they do not consider that Tame-Tame and Wild-Wild collisions may

occur;

• they also do not consider that some walks may not reach a distin-

guished point (an estimate of the probability that a walk does not

reach a distinguished point is given in [58]);

• they do not give an analysis for the success probability.

We try to fill the gaps here, giving an estimate of how many steps are

likely to be outside of the search box and analysing the success probability

of the algorithm. We also conclude that “useless” collisions, i.e., Tame-

Tame and Wild-Wild collisions do not seriously affect our analysis. As an

application, we use Gaudry-Schost Algorithm to solve the general τ -DLP

and the τ -NAF DLP.

We analyse the parallel case only, since that is the one used in practice.

Basically, in our setting, we have P processors running in parallel. One half

of them are tame kangaroos, each one starting from a random point and

walking according to a 2-dimensional pseudorandom walk, to be defined

later. The other half of the processors are wild kangaroos, each one starting

from Q+[W1]P1+[W2]P2, for known integers W1,W2 and walking according

to the same pseudorandom walk. We expect that after Õ(
√

#X ) group

operations (this is the total machine time, i.e., when we consider the total
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amount of work done by all processors), some tame kangaroo lands on one of

the footprints of one of the wild kangaroos and then they continue following

the same path until both land on a distinguished point and the DLP is

solved. Now we give the details.

5.5.3 The Pseudorandom Walk

We recall from Section 3.3.2.1 that φ(R) maps the x-coordinate of a point R

to an integer j, where j is computed modulo s (and s is the number of

partitions of our group). Let sj be a function to be defined later.

Each kangaroo starts at some random point R0 = [x0]P1 + [y0]P2 and

jumps according to the following pseudorandom walk:

x-direction: xi+1 = xi + sφ(Ri).

y-direction: yi+1 = yi + 1.

So that Ri+1 = Ri + [sφ(Ri)]P1 + P2. Notice that at each new point visited,

we have Ri = [xi]P1 + [yi]P2. The walk stops when a distinguished point

R′ = [x′]P1 + [y′]P2 is reached (see Definition 13 for distinguished point).

Then each R′ is stored by a server, who coordinates the solution of the

problem.

We remark that one advantage of choosing +1 in the y-direction is to

avoid collisions within the same walk (self-collisions).

One should question that the walk is not close to random because in the

y-direction the kangaroo always move one step to the North. We present

the following heuristic:
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Heuristic 3. Let X be a rectangular box of sides 2a and 2b. Run the above

pseudorandom walk, starting from a point chosen uniformly at random, until

a distinguished point is reached. Let P be the induced distribution on X . We

claim that the distribution of P over X is close to uniform.

Note if all points are distinguished then this heuristic is trivially true.

So, if the number of processors P is large then this heuristic is plausible.

We also give a picture where we plotted the walks of approximately

4, 000 kangaroos starting from random points in (−a, a)×(−b, b) and walking

according to the pseudorandom walk defined above. Let X be our search

area. We used a = 98304 and b = 65536 (these numbers arise in Section 5.6

with τ -adic expansions of length L = 30). Note that the area shown in the

picture is larger than X , so that we can see that some steps go outside the

search area. In Section 5.5.6 we give an estimate for the number of steps

outside X . By observing Figure 5.1 we can note that the random walks give

a good coverage of X , which supports Heuristic 3.

Figure 5.1: Distribution of 4, 000 random walks. The bounds for axis x and y are
respectively (−120000, 120000) and (−70000, 70000). The black vertical lines represent
x = −a and x = a for a = 98304 and the black horizontal lines represent y = −b and
y = b, for b = 65536.
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5.5.4 The Number of Steps in Each Walk

We recall that each kangaroo will jump according to a 2-dimensional pseu-

dorandom walk until a distinguished point is reached. By defining the dis-

tinguishing property, we can bound the number of steps in each walk. For

example, according to [58], we can classify a point as “distinguished” if its

binary representation has some fixed number of leading zeros. In our imple-

mentation, we classify a point as distinguished if its x-coordinate modulo

some value θ is equal to zero. Let 1/θ be the proportion of distinguished

points. Therefore, we expect to reach a distinguished point after θ steps.

As a practical example, van Oorschot and Wiener [58] use 1
θ = (0.93)2−32.

They remark that such value is close to (234/256)2−32, which can be achieved

by defining a point as distinguished if it has 32 leading zero bits and the

next 8 bits have a binary value less than 234.

It might happen that some walk never reaches a distinguished point. To

avoid this, we must define an upper bound for the number of steps. If the

kangaroo reaches that upper bound, we abandon the walk. This idea appears

in [58]. Note that the work done on such walks is wasted for the algorithm

since a collision on such points will never be detected. Therefore, we cannot

count the steps of those walks in the analysis, but we must count them

to compute the total number of steps of the algorithm. In Section 5.5.6 we

give a theorem for the proportion of points that do not reach a distinguished

point.

Notice that, depending on the position of the starting point and also on

the size of each walk, some points can be outside the box, and therefore,

outside our sample space. Of course such walks could be useful in practice,
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but for our analysis we need to use an argument about sampling n points

from a set of size N , so we have to work within a fixed size region. Again,

the steps of such walks must be counted to compute the total number of

steps of the algorithm. In Section 5.5.6 we give an estimate for the number

of steps outside X .

5.5.5 Analysis

We recall from Chapter 3 that the success probability of Pollard-kangaroo

is estimated using the mean step size. In the analysis of their 2-dimensional

algorithm, Gaudry and Schost use the Birthday Paradox (see Section 3.3.1).

In this section, we analyse Gaudry-Schost algorithm using probability ar-

guments similar to the method used by Pollard to analyse the kangaroo

method and give an estimate for the probability of success.

5.5.5.1 Choice of Parameters

In this Section, we present the parameters used in our implementation. We

do not claim that they are the best choices, but the results obtained from

MAGMA [10] experiments showed they are satisfactory (see Section 5.6.1).

• P (number of processors), Q (number of distinguished points) and

θ (expected number of steps) - Note that Algorithm 6 is a serial

implementation of Gaudry-Schost Algorithm, so our analysis is based

on a scenario where one processor computes Q distinguished points,

and it takes, on average, θ steps to reach a distinguished point. Hence,

in Section 5.5.5.3 we consider the running time of Algorithm 6 to
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be Qθ.

In real life, the computation is performed in parallel and we usually

do not have much control in the number of processors, but it really

does not matter in practice. If we have few processors available, each

of them runs lots of walks in the lifetime of the computation and

computes a great number of distinguished points. In that case, if

we need to compute Q distinguished points, each processor computes

Q/P of them and the running time will be Qθ/P. Note that using

more processors reduces the amount of work of each processor. Since

the choice of Q and θ determines the running time, we leave that

choice to be treated separately in Section 5.5.7.

Given the size of the problem and the amount of memory available,

one determines the value of θ and therefore, t (see below). It is clear

to see that the amount of storage depends on θ. If θ is relatively small,

the walk is short, so there will be many distinguished points sent to

the server. On the other hand, if θ is large, the walks are long and

there will be less distinguished points sent to the server and therefore,

less storage.

• t (parameter used to compute the length of steps in the x-direction)

- We will see in Lemma 5.5.2 and Conjecture 3 that the expected

maximum distance travelled from the origin is a function of θ and m.

Since m depends on t, when t is very small, the mean absolute step

size m will be small and therefore the maximum distance travelled will

be small as well. As a result, we have very few steps outside the region

but the walks will not be close to uniformly distributed over X . On

the other hand, if t is too large, we will have many steps outside the
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region. We conjecture that t should be c+ log θ for some constant c+;

• si (steps in the x-direction) - We move the kangaroos in the x-direction

using powers of 2. Here, unlike standard Pollard-kangaroo, we allow

the kangaroos to move either to the East or to the West. In other

words:

si ∈ {−1, 1,−2, 2,−4, 4, . . .− 2
t
2
−1, 2

t
2
−1};

Note that for this case, the mean absolute step size is

m =
2

t
2 − 1
t/2

.

• Top (upper bound for number of steps) - It might happen that some

walk never reaches a distinguished point. To avoid this, we must define

an upper bound for the number of steps. If the kangaroo reaches that

upper bound, we abandon the walk. This idea appears in [58]. We

have chosen Top = 20θ. See Section 5.5.6 for more details;

• T1, T2 (starting points for the tame kangaroos) - Each kangaroo starts

from a random point inside X . Trivially, if we start the tame kangaroos

in (−a, a)× (−b, b), then every point in X can be potentially reached.

However, we have many steps outside X . We must define a bound

such that we ensure that the kangaroos can potentially reach every

point of X and also that we do not have too many steps outside X .

So, we start the tame kangaroos in (−da, da)×(−cb, cb), where c, d are

positive real numbers less than 1. We define the values for c and d in

Lemmas 5.5.1 and 5.5.3. In Section 5.5.6 we analyse the probability

that steps go outside X .

• W1,W2 (starting points for the wild kangaroos) - The wild kangaroos’
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starting points are in an region of sides (−da, da)× (−cb, cb), centered

at Q. In other words, the wild kangaroos walk in the set Q + X =

{Q + P : P ∈ X}. We will see in Section 5.5.5.4 that the area of

interest for us will be the area where the wild kangaroos intersect the

tame kangaroos. In Section 5.5.6 we give an estimate of the probability

that wild steps go outside Q + X .

Now we reduce the problem to a 1-dimensional random walk in [0, b] in order

to define the size of c.

Lemma 5.5.1. Consider a pseudorandom walk which starts between points 0

and b (without loss of generality, we assume here that b is a positive integer).

Let c × b for a positive real c < 1 be the most distant starting point from

0. Let θ be the number of steps and let the size of each step be 1. When

c = 1− θ/b, every point in (0, b) can be reached.

Proof. Since each walk has length approximately θ, we need c× b + θ to be

at least equal to b to ensure that every point between (0, b) can be reached.

This leads to c = 1− θ/b.

Now we reduce the problem to a 1-dimensional random walk in [0, a].

Before defining the size of d, we define the average distance from the origin.

Lemma 5.5.2. Let θ be the number of steps. Let O be the starting point of

some random walk. Let m be the mean step size, to the East or to the West.

The expected distance from O after θ steps is m
√

2θ/π.

Proof. According to [39] (see also [59]), the average distance in absolute

value from the origin in a 1-dimensional random walk when one takes θ steps
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of size 1 to the left or to the right is Davr =
√

2θ/π. When we abandon the

restriction that the steps have size 1, it follows that the average distance

reached from 0 to the left or to the right is mDavr = m
√

2θ/π, where m is

the mean absolute step size.

The expected maximum distance from some point is computed in [15].

They consider a random walk that starts at the origin and takes n steps uni-

formly distributed on the real interval [−1, 1]. Such value is Dmax ≈
√

2n
3π .

Now we use that result to state the following conjecture:

Conjecture 3. Let θ be the number of steps. Let O be the starting point of

some random walk. Let m be the mean step size, to the East or to the West.

The expected maximum distance from O after θ steps is Dist = 2m√
3

√
2θ
π .

Evidence for the conjecture: Let Dmax ≈
√

2n
3π as above. Note that

Dmax = Davr√
3

for Davr as in Lemma 5.5.2. Since to compute Dmax we take

steps distributed randomly on the real interval [−1, 1], the mean absolute

step size is 1/2. To get the mean absolute step size equals to m, we just

multiply by 2m. So it follows that Dist = 2m√
3

√
2θ
π .

Finally we define the value of d:

Lemma 5.5.3. Consider a pseudorandom walk which starts between points

0 and a (again, without loss of generality, we assume that a is a posi-

tive integer). Let d × a for positive real d < 1 be the the most distant

starting point from 0. let θ be the number of steps. Let t be parame-

ter used to compute the length of the steps, let the size of each step be in

{−1, 1,−2, 2,−4, 4, . . . , 2
t
2
−1, 2

t
2
−1}. Let m be the mean absolute step size

and let Dist be the expected maximum distance reached from 0, according to
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Lemma 5.5.5.1. When d = 1−Dist/a, every point in (0, a) can be reached

with non-negligible probability.

Proof. Note that even if the starting point was in the centre of X some

walks could have length greater than a. However, those walks are very rare,

because we need some special combination of positive and very large steps

to reach some point beyond a. For example, if a = 217, θ = 25 and the

largest step size is 213, a walk which starts in the centre of X would have

length > a if all steps were equal to 213, since (25)(213) = 218 > a = 217. If

we choose d too far from a (in other words, too close from the centre of X ),

although it is possible that points in a or very close to a can be reached,

we will not have a distribution close to uniform as we assumed. By taking

d = 1−Dist/a we ensure that most of the points which start in or close to d

will reach a. Obviously, with such choice, some steps may go beyond a. See

Section 5.5.6 for an estimate of the probability that steps go outside X .

5.5.5.2 Algorithm

Since we could not simulate a parallel implementation, Algorithm 6 presents

a serial implementation of Gaudry-Schost Algorithm. Note that, in the

parallel version, it does not make sense to compute first the tame steps, sort

the list of distinguished points and then compute the wild steps and look for

a match using binary search. In practice, we have all processors computing

the tame and wild steps simultaneously and sending the information about

distinguished points to the server. The server stores the distinguished points

in a data structure which can be searched efficiently and when a Tame-Wild

collision is found, we are done.
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Remark 4: Notice that in Algorithm 6, we use the x-coordinates of the

tame and the wild kangaroos to get an integer, because we need an integer

to sort the list of distinguished points so that we can use Binary Search. As

a result, it may happen that we have a collision Tame = Wild but in fact,

xTame = xWild and yTame = −yWild. In this case, when we compute n =

(SD[index][2]−W1)+(SD[index][3]−W2)τ , we find the wrong value for the

DLP. The solution for that is simple: Let r be the order of point P . Let [c]P

be the point where the tame kangaroo lands after its walk and let [n + d]P

be the point where the wild kangaroo lands after its walk (by definition, [c]P

and [n + d]P are the same distinguished point). If Algorithm 6 outputs a

solution which does not match with the DLP, we compute c′ = r − c. The

solution for the DLP will be n = c′ − d, since [c′]P = [n + d]P ;

5.5.5.3 Running Time

Recall that the DLP is solved when we find a Tame-Wild collision. We

call this a useful collision. Note that Tame-Tame and Wild-Wild collisions

do not solve the DLP. When computing the running time for a parallel

counterpart of Algorithm 6, we need to count the number of steps needed to

find a useful collision, considering the amount of work done by all processors

in parallel. We call that the total machine time. Note that the running

time for each processor individually it is just the total machine time divided

by the number of processors, P.

Lemma 5.5.4. Let P be the number of processors, let Q be the (expected)

total number of distinguished points that need to be computed such that a

useful collision is found by the server and let 1
θ be the proportion of distin-

guished points. The expected running time to solve the discrete logarithm
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Algorithm 6 Gaudry-Schost Algorithm - Serial version
Input: group E(Fq); points P1, P2, Q ∈ E(Fq); number of distinguished

points Q; proportion of distinguished points 1/θ; Top; a; b; c ← 1−θ/b;
d ← 1−Dist/a.

Output: integers x and y such that Q = [x]P1 + [y]P2.
1: Choose t ∈ N
2: PPi ← {−1, 1,−2, 2,−4, 4, . . . , 2

t
2
−1, 2

t
2
−1}

3: PPj ← [1 : i ∈ [0 . . . t− 1]]
4: PP ← [PPi[i] ∗ P1 + PPj[i] ∗ P2 : i ∈ [0 . . . t− 1]]
5: function PollardWalk (P, Pi, Pj)
6: for length = 1 to Top do
7: u ← xP mod t
8: P ← P + PP [u + 1]
9: Pi ← Pi + PPi[u + 1]

10: Pj ← Pj + PPj[u + 1]
11: if xP ≡ 0 mod θ then
12: Return P, P i, P j /* Distinguished point found */
13: end if
14: end for
15: end function
16: [Tame Kangaroo]
17: for NrTame = 1 to dQ/2e do
18: T1 ← Random(d−d ∗ ae, dd ∗ ae); T2 ← Random(d−c ∗ be, dc ∗ be)
19: Tame ← [T1]P1 + [T2]P2

20: Tame, T1, T2 ← PollardWalk(Tame, T1, T2)
21: [Constructing a list of distinguished points]
22: if Tame is Distinguished then
23: Store [xTame, T1, T2] in a list D
24: end if
25: end for
26: SD ← Sort(D) /* Sorting List D by its first component */
27: [Wild Kangaroo]
28: W1 ← 0; W2 ← 0
29: for NrWild = 1 to dQ/2e do
30: Wild ← Q + [W1]P1 + [W2]P2

31: Wild, W1,W2 ← PollardWalk(Wild,W1,W2)
32: if Wild is Distinguished then Binary Search xWild in SD
33: if xWild = SD[index][1] then
34: Output x = (SD[index][2]−W1), y = ±(SD[index][3]−W2)
35: end if
36: W1 ← Random(d−d ∗ ae, dd ∗ ae); W2 ← Random(d−c ∗ be, dc ∗ be)
37: end for
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problem using a parallel version of Algorithm 6 is Qθ/P group operations.

Proof. We have P/2 processors representing tame kangaroos and P/2 pro-

cessors representing wild kangaroos. Each processor computes approxi-

mately Q/P distinguished points. The expected length of a walk is θ, so

the expected running time (for each processor) is Qθ/P.

Note that Qθ/P is the running time for the parallelised Gaudry-Schost

Algorithm, not the running time of Algorithm 6. Clearly, the running time

of Algorithm 6 is Qθ group operations. Experimentally, we counted the total

number of steps and we found all of them less or equal than Qθ. Obviously,

when there is a collision, the running time is usually smaller than that.

5.5.5.4 Finding a collision

Now we need to know the number of steps needed for the server to find a

useful collision. Hence, we need to compute the total machine time, con-

sidering the work done by all processors in parallel. In this section, we will

define values k, k′ and K. We assume that such values are number of steps

considering all the work done, not only number of steps taken by one proces-

sor individually. So, to make things easier, we assume in this analysis that

we have just one processor. Therefore, the final result (i.e., the value of K

needed for the server to find a useful collision, see Theorem 5.5.7) represents

the number of steps in the total machine time. When we use P processors

running in parallel, each one will compute, on average, K/P steps.

Using Heuristic 3, we assumed that the points are randomly sampled

from the sample space X . We have approximately (Q/2)θ points visited by
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tame kangaroos and approximately (Q/2)θ points visited by wild kangaroos.

The starting points for the tame kangaroos are randomly chosen from

(−da, da) × (−cb, cb) which means that the tame kangaroos nearly cover

the whole area X . Let us call T the region in which the tame kangaroos

walk (i.e., T = X ). Obviously, it can happen that some tame kangaroos go

outside T and also that some walks do not reach a distinguished point.

The first wild kangaroo starts at Q an then its starting points are shifted

in an area of sides (−da, da) × (−cb, cb), centered in Q. Let us call W

the region in which the wild kangaroos walk. Using the previous notation,

W = Q +X . Again, it can happen that some wild kangaroos go outside W

and also that some walks do not reach a distinguished point.

We call a step good if it lies in T or in W and the end of its walk reaches

a distinguished point. We call a step bad otherwise. In the rest of this

chapter we use K to denote the total number of steps taken by kangaroos,

so that K ≈ Qθ. We let k be the number of good steps. Later we will use

k′ to denote the number of good steps which lie also in the region of overlap

between the space of tame kangaroo walks and the space of wild kangaroo

walks.

Notice that it can happen that some steps of a walk go outside the

regions of interest (T or W ) but afterwards the walk returns to the region

and reaches a distinguished point inside T or W . In that case, only the steps

that go outside T or W will be counted as bad steps. All steps of such a

walk which are inside the region of interest will be counted as good steps.

We follow the approach of [25] and define A = T ∩ W , i.e., the region

where the tame kangaroos footprints can overlap the wild kangaroos. Let

145



5. The Frobenius Expansions DLP

k′ be the total number of good steps in A (Tame or Wild). Assuming

that the distribution of tame and wild kangaroos is close to uniform, we

have approximately k′/2 tame kangaroo steps and approximately k′/2 wild

kangaroo steps in A.

5.5.5.5 The Probability of Success

In this section we give an estimate for the probability of success of the Algo-

rithm in terms of the number of steps. This enables us to determine the total

machine time for any desired success probability. Note that until the server

detects a Tame-Wild collision, some Tame-Tame and Wild-Wild collisions

may occur. For the analysis of the success probability of the algorithm, we

do not mind whether such “useless” collisions occur. We just want to be

sure that there is a Tame-Wild collision.

Let S1 be the set of points visited by tame kangaroos which are in the

region where tame and wild kangaroos overlap (i.e., A). Perhaps there are

some Tame-Tame collisions, but not very many. For the parameters we

are considering we expect only one or two Tame-Tame collisions. Hence

#S1 ≈ k′/2. Now let S2 be the set of points visited by wild kangaroos in

the region of overlap. Again, #S2 ≈ k′/2.

Finally, what is the probability that S1 and S2 are disjoint (i.e., there

are no collisions between them)? If we think of choosing S1 first and then

choosing S2 then each element in S2 has to avoid all the elements in S1. So

the probability that S2 is disjoint from S1 is
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P1 ≈
(

1− k′/2
#A

)k′/2

≈ e−(k′/2)2/(#A) ≈ e−(k′)2/(4#A)

Hence, the probability that there is a Tame-Wild collision is

1− e−(k′)2/(4#A). (5.2)

To get success probability 0.5 in the worst case (i.e., #A = 1
4(#X )) we

solve 1− e−(k′)2/(4#A) = 0.5 and so

k′ =
√

(#X ) ln 2.

5.5.6 Counting bad steps

In this section we deal with points that go outside the bounds of T and

W and walks that do not reach a distinguished point. Both cases are not

counted in the probability argument, but we need to add them to compute

the total number of steps.

Definition 28. We call N1 the total number of steps abandoned, due to the

walks that do not reach a distinguished point.

Definition 29. Let T be the region where the tame kangaroos walk and

let W be the regions where the wild kangaroos walk. We call N2 the total

number of steps that go outside T or W .
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5.5.6.1 Walks That Do Not Reach a Distinguished Point

We quote a Theorem from [58] that shows the proportion of steps that do

not reach a distinguished point. The proof of this theorem can also be found

in [58].

Lemma 5.5.5. Let K be the total number of steps. Let Top be a parameter

which determines the maximum walk length. For Top = 20θ, we have N1 <

(5× 10−8)K.

Proof. The maximum walk length is 20θ and we abandon any walk which

exceeds the maximum length. Since the probability of a distinguished point

to be reached is 1/θ, the probability that a distinguished point will not be

reached is 1− 1/θ.

After walking up to the maximum walk length the probability that some

walk length exceeds 20θ is (1 − 1/θ)20θ ≈ e−20. Each abandoned walk has

length about 20 times longer than the average θ, therefore, the proportion

of points that do not reach a distinguished point is ≈ 20e−20 < 5× 10−8.

If K is the total number of steps, it follows that

N1 < (5× 10−8)K.

5.5.6.2 Footsteps Outside T and W

We recall that the wild kangaroo footsteps are in a region called W and the

tame kangaroo footsteps are in an region called T , and they intersect in an
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region called A. Now we analyse the number of tame kangaroo footsteps

that are outside the bounds of T and the number of wild kangaroo footsteps

that are outside W . Note that T and W have the same area (i.e., the same

area as X ), because both of them have sides (−da, da), (−cb, cb). The only

difference is that T is centered in the centre of X while W is centered in Q.

Therefore, the average number of wild kangaroo footprints outside W is the

same as the average number of tame kangaroo footprints outside T .

Our analysis reduces to a 1-dimensional random walk. In the y-direction,

the average length is θ. Since the steps are always increased by 1 and the

most distant starting point from the centre of T (or W ) is cb, for c = 1−θ/b

(see Lemma 5.5.1), we can assume that the steps do not go outside T (or

W ) in the y-direction. Now we analyse the x-direction.

Conjecture 4. Let T (or W ) be the region where the tame (respectively

wild) random walks are supposed to lie and let K be the total number of steps.

We conjecture that the number of steps outside the bounds of T (respectively

W ) is N2 6 0.025K.

Evidence for the conjecture. Experimentally, we used MAGMA

[10] to perform an experiment to support our conjecture. We fixed the

starting point to be a − β(Dist) for some positive integer β and computed

the number of steps outside the bounds of T (respectively W ). We recall

from Lemma 5.5.5.1 that Dist is the expected maximum distance from the

starting point after θ steps. We repeated the experiment 1000 times for

each β in [1, a/Dist]. The results are shown in Table 5.4. We call Pβ

the probability of steps being outside X for each β (we measured that by

counting the number of points [x]P1 + [y]P2 in which |x| > a and dividing

the result by the total number of steps).
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Table 5.4: Number of steps outside T (or W )/ Total number of steps.

t = 26, θ = 25 t = 24, θ = 27 t = 22, θ = 28 t = 26, θ = 215

β Pβ Pβ Pβ Pβ

1 0.29 0.26 0.26 0.29
2 0.19 0.16 0.15 0.14
3 0.10 0.11 0.08 0.08
4 0.05 0.05 0.03 0.06
5 0.04 0.03 0.035 0.02
6 0.03 0.008 0.002 0.01
7 0.02 0.0004 0.002 0.003
8 0.01 0.01 0.001 0.001
9 0.005 0.01 0.0009 0.003

10 0.004 0.02 0 0.009
11 0.004 0.006 0 0.008
12 0.0002 0.005 0 0.001
13 0.0002 0 0 0
14 0 0 0 0
15 0 0 0 0

Pout 0.0215 0.021 0.013 0.018

From Table 5.4, we computed the overall probability of steps outside T

(respectively W ). For β > 14 we always found Pβ = 0. The values used arise

from Section 5.6. For the second, third and forth columns we took L = 30

and a = 98304. For the fifth column we took L = 40 and a = 3145728. The

value of Dist depends on θ and t, since Dist ≈ m
√

2θ/π.

The probability that steps are outside T (or W ) is

Pout =
Dist

a

ba/Distc∑

β=1

Pβ.

The results of the last row support our conjecture. Since the total num-

ber of steps is K, it follows that

N2 = KPout 6 0.025K.

150



5. The Frobenius Expansions DLP

We performed a second experiment in that we started the walks from a

random starting point in (−da, da) × (−cb, cb) and computed the number

of steps outside the bounds. We used θ = 25 and a = 98304 and the

maximum value found in 1000 repetitions was 0.02K, which confirms the

first experiment.

From these experiments, we concluded that only walks starting very near

the bounds can cause some problems to our analysis.

5.5.7 Choice of Q and θ

We recall from Section 5.5.4 that some walks may not reach a distinguished

point and also some steps can be outside the bounds of T and W . Then

in Section 5.5.6 we estimated the values N1 and N2, which respectively

represents the number of steps abandoned when a walk does not reach a

distinguished point and the number of steps of the tame or wild kangaroos

that are outside the bounds of T or W .

Let α ∈ R be a constant such that #A = α(#X ). Gaudry and Schost [25]

give an estimate of A in relation to X . Clearly, A 6= ∅. In the worst case, Q

is in one of the corners of X , and #A = 1
4(#X ). In the best case, Q is close

to the centre of X , and #A ≈ #X . So, we take #A = α(#X ) for some α

in [1/4, 1].

Note that if we have k′ steps in A, assuming the distribution uniform, we

have approximately k′/2 tame footsteps and k′/2 wild footsteps in A. Also

note that the total number of good steps (i.e., k) is the sum of the good

steps in T and the good steps in W . Since T and W have the same area as

X , and #A = α(#X ), we have k′/(2α) good steps in T and k′/(2α) good
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steps in W . Therefore k = k′/α.

We computed in Section 5.5.5.4 the probability of at least one success-

ful Tame-Wild collision in an area A, which is the area in that the tame

kangaroos steps intersect the wild kangaroos steps.

Lemma 5.5.6. Let notation be as above, so α = #A
#X . The required number

of good steps is k = 1
α

√
(#X ) ln 2.

Proof. We cover X close to uniformly, with k kangaroo footprints. Then

the number of steps which lie in A is approximately αk. To have αk =
√

(#X ) ln 2, we need k = 1
α

√
(#X ) ln 2.

Finally, we can state the following theorem:

Theorem 5.5.7. Let X be the sample space and let #X be the number of

elements in X . Assume Conjecture 4 above. The total number of steps of

Algorithm 6 to have success probability > 0.5 in the worst case is at most

3.51
√

#X group operations.

Proof. We know from Section 5.5.5.3 that the total number of steps of Al-

gorithm 6 is Qθ. From Lemma 5.5.6, we recall that

k =
1
α

√
(#X ) ln 2

is the total number of good steps.

To compute the total number of steps in Algorithm 6, we need to add

N1, and 2(N2) to k (remember, the number of tame steps outside T is

approximately the number of wild steps outside W ). From Lemma 5.5.5,
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we have:

N1 < (5× 10−8)K.

From Conjecture 4, we have:

N2 6 0.025K.

So:

Qθ = K 6 k + (5× 10−8)K + 2(0.025)K

K(1− 5× 10−8 − 2(0.025)) 6 k

K 6 1.05k

We consider the worst case (i.e., α = 1/4). Then:

K 6 3.51
√

#X .

Now that we know the number of steps needed to find a useful col-

lision (K), given the amount of memory available, one can compute the

number of distinguished points necessary, i.e., Q. In the parallel case, we

let each processor compute Q/P distinguished points.

Note that since we don’t know where the discrete log is, we have to

assume the worst case, that is, Q is in the corner of X and therefore, A =

1
4X . On average, the discrete log is more concentrated in the centre of X
(remember the pictures of τ -adic distribution), so usually we take more steps

than necessary. For example, in the best case, the discrete log is close to

the centre of X (i.e., α ≈ 1 and W = T = X ) and if we take K = 3.51
√

#X
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steps we have k = 3.51/1.05
√

#X and hence k′ = αk = 3.34
√

#X . Using

this value for k′ in Equation (5.2) results in a success probability ≈ 0.94.

The experimental results (see Section 5.6.1) confirm this value.

If we have any hint that α > 1/4, we can take less steps and get a smaller

constant hidden in the O( ).

5.6 Using the Gaudry-Schost Algorithm to Solve

the τ-DLP

Now that we have described and analysed the Gaudry-Schost Algorithm, it

is straightforward to use it to solve the τ -DLP. We take P1 = P for some

point P ∈ E(F2m) and P2 = τ(P ). We know from Section 4.2.4 that a τ -adic

expansion of length L can be mapped down to x + yτ , for integers x, y of

certain size. We recall from Section 5.5.7 that the total number of steps of

Algorithm 6 depends on the number of elements in X .

Using the bounds for x and y (recall Theorem 4.2.2: |x| < a = 2.81
√

2L

and |y| < b = 2
√

2L) leads to #X = 4ab = 22.48(2L). Therefore, from

Theorem 5.5.7, Section 5.5.7, the required number of group operations when

α = 1/4 is 2L/2+4.06.

Using the τ -adic distribution (see Conjecture 1, Section 4.2.6), for the

general τ -DLP we take a = 2.28
√

2L and b = 1.8
√

2L, which leads to #X =

4ab = 16.42(2L). From Theorem 5.5.7, Section 5.5.7, the required number

of group operations when α = 1/4 is 2L/2+3.83.

We can use the same algorithm for the general τ -DLP to solve the τ -NAF
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DLP. Obviously, the output will not be a τ -NAF, but will be an expression

x + yτ equivalent to the τ -NAF which represents the discrete log. Using

the bounds proved for τ -NAFs (recall Theorem 4.2.3: |x| < a = 2.20
√

2L

and |y| < b = 1.52
√

2L) results in #X = 4(2.20)(1.52)2L = 13.38(2L)). In

that case, the number of group operations according to Theorem 5.5.7 when

α = 1/4 is 2L/2+3.68.

We can get an even smaller constant implicit in the O( ) when we make

use of the τ -NAF distribution (remember, according to Conjecture 2, for

τ -NAFs we have |x| < a = 1.53
√

2L and |y| < b = 1.24
√

2L, which leads

to #X = 4(1.53)(1.24)2L = 7.59(2L)). As a consequence, we can choose a

smaller number of processors and the number of group operations becomes

2L/2+3.27 when α = 1/4.

5.6.1 Experimental Results

We implemented Algorithm 6 (which we call Aτ for short) in MAGMA [10]

and obtained the following results (see Tables 5.5 and 5.6):

Experiment 1 Run Aτ N times, each time picking a random τ -adic n of

length 6 L such that Q = [n]P .

Obs. (1) We used the values of a and b based on the distribution of

τ -adics (see Figures 4.2 and 4.3);

Obs. (2) We used the values of a and b based on the distribution of

τ -NAFs (see Figure 4.6).

Note that the success probability gets smaller when we use the τ -adic

distribution. This can be explained because when we choose a = 3
√

2L

and b = 2
√

2L (such values are an approximation to integers of the
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Table 5.5: Experimental results - type 1.

L N a b Qθ Average run time # of success Obs

30 100 3
√

2L 2
√

2L 219.10 218.56 96
30 100 3

√
2L 2

√
2L 219.10 218.65 88

30 100 3
√

2L 2
√

2L 219.10 218.57 94
30 100 2.28

√
2L 1.8

√
2L 218.82 218.43 84 (1)

30 100 2.28
√

2L 1.8
√

2L 218.82 218.44 86 (1)
30 100 2.28

√
2L 1.8

√
2L 218.82 218.50 77 (1)

40 100 2.28
√

2L 1.8
√

2L 223.82 223.42 80 (1)
30 100 1.53

√
2L 1.24

√
2L 218.27 218.06 62 (2)

results of Theorem 4.2.2) we do not expect to have the DLP very close

to the edges and therefore, the overlap region A will be large with high

probability. However, when we reduce the region based on the τ -adic

distribution, it can happen that the DLP is in the edges, so the worst

case (i.e., the discrete log close to one of the corners of X and hence a

smaller A) is more likely to occur.

Experiment 2 Pick a random τ -adic n of length 6 L such that Q = [n]P

and afterwards run Aτ N times, for the same Q.

Table 5.6: Experimental results - type 2.

L N a b Qθ Average run time # of success Obs

30 100 3
√

2L 2
√

2L 219.10 218.58 94
30 100 3

√
2L 2

√
2L 219.10 218.57 96

30 100 2.28
√

2L 1.8
√

2L 218.82 218.51 72 (1)
30 100 2.28

√
2L 1.8

√
2L 218.82 218.42 86 (1)

30 100 1.53
√

2L 1.24
√

2L 218.27 218.11 61 (2)

The same Obs. of Table 5.5 hold for Table 5.6.

Experiment 3 We fixed Q in one of the corners of X (i.e., we took Q =

a + bτ) and ran Aτ 100 times. We got 59 successes, which is close to

the expected theoretical probability of success. We recall that we had
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assumed that Q is in one of the corners to compute the theoretical

probability of success. In practice, however, the discrete log is more

likely to be close to the centre of X (see distribution of τ -adics, Sec-

tion 4.2.6), which explains why we got high probabilities with random

choices, because we took more steps than necessary.

5.6.2 Further Remarks

Remark 5: If memory is available, then for some problems (e.g., τ -NAF

DLP) it is better to do BSGS using τ -adics than to use the x+ yτ represen-

tation, because the hidden constants are smaller.

Remark 6: Comparing the running time of Gaudry-Schost algorithm (Sec-

tion 5.6) for the general τ -DLP with the running time of van Oorschot

and Wiener algorithm for the weight-w τ -DLP (Table 5.3, Section 5.4) we

conclude that depending on the value of w, it will be better to use the

Gaudry-Schost 2-dimensional algorithm for the general τ -DLP to solve also

the weight-w τ -DLP. For example, for L = 140 and w = 24, the required

number of steps for solving the τ -DLP using van Oorschot and Wiener al-

gorithm is approximately 277.4 group operations and the required number

of steps using 2-dim Gaudry-Schost algorithm with the same parameters

is approximately 274.06 group operations, when using the proved values

a = 2.81
√

2L and b = 2
√

2L and even smaller when using sizes of a and

b based on the τ -adic distribution. Remember, using Pollard-rho in the

whole group E(F2163) takes 277.6 group operations, hence in this case, the

Gaudry-Schost for the general τ -DLP is the best choice.

Remark 7: We do not believe that the Gaudry-Schost algorithm can take
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into account extra knowledge about the discrete logarithm (i.e., that it has

Hamming weight w). This is analogous to the fact that there is no low mem-

ory algorithm better than [57] for the standard low Hamming weight DLP.

Remark 8: The improvement to Pollard methods using equivalence classes

under Frobenius (see [24, 60]) does not seem to apply in this case since

our small interval typically contains only one solution within a Frobenius

orbit of Q.

5.7 Summary

In this chapter we defined three variants of the Frobenius expansion DLP,

namely, the general τ -DLP, the τ -NAF DLP and the weight-w τ -DLP and

presented algorithms to solve them. We are particularly interested in cases

when the length L of the Frobenius expansion is much smaller than the field

size, which means that solving the standard DLP and then, if necessary,

computing the Frobenius expansion, is not considered, since the standard

DLP is believed to be hard.

In particular, we used the Gaudry-Schost algorithm to solve the general

τ -DLP and the τ -NAF DLP in 2L/2+ε group operations with a theoretical

success probability around 0.54. The value of ε varies according to the posi-

tion of the discrete log and can be improved if we consider the distributions

of τ -adics and τ -NAFs. We experimented in practice using small parameters

and achieved a success probability bigger than 0.8.

Such difference between theory and practice can be explained because in

the computation of the theoretical probability of success, we have to assume
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the worst case, that is, Q is in the corner of X and therefore, the overlap

region is minimal. On average, the discrete log is more concentrated in the

centre of X , so for random choices we usually take more steps than necessary

and hence the success probability in practice is bigger than the probability

expected in theory. If we have any hint that α > 1/4, we can take less steps

and get a smaller constant hidden in the O( ). We experimented fixing Q

in one of the corners of X and got a success probability around 0.59, as

expected.
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In this chapter we present an application of Frobenius expansions with

the GPS identification scheme. We begin recalling the original scheme,

proposed by M. Girault and proved secure by G. Poupard and J. Stern.

We also remark that a natural implementation is to use the scheme over
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a Koblitz curve and convert integers into Frobenius expansions to perform

faster scalar multiplication. Then, we present τ -GPS, using an idea pro-

posed by H. Lenstra, in that scalars are replaced by Frobenius expansions in

protocols. We also present a security analysis of τ -GPS and describe a sta-

tistical attack over the τ -GPS protocol if the randomisation step proposed

in Section 4.3 is not used.

6.1 Motivation

The GPS1 identification protocol was the starting point of our entire project.

At the beginning, we were tempted to use Frobenius expansions with short

exponents in the GPS protocol, which would lead to smaller parameters,

compared with the usual integer case, because we believed, at that point,

that low-memory counterparts for the τ -DLP did not exist, or at least, did

not have a square-root behaviour.

We were proven wrong, as we showed in Chapter 5, but the τ -GPS

protocol may still have some advantages. One can speed up the offline

operations on Koblitz curves significantly by using Frobenius expansions

to compute the required point multiplications. However, to implement the

GPS protocol would require conversion between Frobenius expansions and

integers and this would lead to extra code on the device (i.e., silicon area)

and extra computational cost.

Hence, the motivation of the present chapter is to develop a GPS system

which uses Frobenius expansions throughout. This will lead to fast and
1The abbreviation “GPS” stands for its authors names, Girault, Poupard and Stern,

so there is no connections at all with GPS, the Global Positioning System.
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simple offline operations while still keeping the online operation fast (though

the arithmetic of the online operation is more complicated than standard

integer arithmetic and so is not as fast as standard GPS).

Since the study of τ -DLP showed that we cannot use shorter parame-

ters, the main advantage of using Frobenius expansions is that it does not

require conversion between integers and Frobenius expansions, being useful

to applications with limited offline computation time and limited code area.

6.2 The GPS Identification Scheme

The GPS public key identification scheme is a three move challenge-response

protocol based on the Schnorr signature scheme (see Section 2.9 and [46]).

It was first described by Girault [26] and later developed by Poupard and

Stern [43] (also see [28]).

Recall that a public key identification scheme allows a prover to convince

a verifier that she possess the private key. In a three move protocol, the

prover sends a commitment (which can be computed in advance, i.e. offline),

then receives a challenge and answers with a response (this is the “online

step”, which must be performed in realtime). The verifier then performs a

computation involving the commitment, challenge, response and public key

and outputs either accept or reject.

The idea of the GPS scheme is to make the online phase as fast and

simple as possible, so that it can be easily performed by very low power

devices. Further improvements to speed up the online phase were proposed

by Girault and Lefranc [27]. Okamoto, Katsuno and Okamoto [40] give an
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approach to reduce the bandwidth of the online step at the expense of the

size of the public key.

A typical application of GPS (see [28]) is “on-the-fly” authentication at a

road toll. Each car has a low cost smart card in which a GPS protocol runs.

The time required to transmit data and to perform online calculations is very

small, hence the car does not need to stop at the toll to be authenticated.

The offline operations may be calculated while the car is driving along. Note

that we assume that the verifier (i.e., toll gate) has significant computational

resources, so that the verification step can be done quickly.

The original proposals for the GPS scheme suggested working in the

group (Z/NZ)∗ where N is an RSA modulus, or F∗p where p is a large prime.

However, since the computational device has extremely limited power it is

more natural to work with elliptic curves, especially Koblitz curves over

finite fields of small characteristic. The GPS protocol as described in [28]

can be implemented with such elliptic curves, and the security results apply

to this case. Using elliptic curves can give a significant speed-up to the

offline generation of the commitment and the verification step, as well as

having lower memory and power consumption requirements. Due to the

nature of the GPS protocol, using elliptic curves does not have any effect

on the running time of the online step.

6.3 The Original GPS Scheme

We recall from Section 2.9 that a modular reduction is needed in the Schnorr

scheme. The main idea of the GPS protocol is to eliminate the modular

reduction performed during the response step. In other words, the response
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is just y = r + sc. This makes the computation more efficient, and it

reduces the code footprint on the device (since there is no need to implement

arithmetic modulo r).

The modular reduction in the computation of y is used to prove the zero

knowledge property of Schnorr signatures, hence a new proof of security is re-

quired for GPS and the parameters have to be carefully chosen (see [28, 43]).

In [28] the interactive protocol is proven to have statistical zero knowledge.

The original proposal by Girault [26] used the group (Z/NZ)∗ where N is

an RSA modulus. Later work [28] proposed any cyclic group for which the

discrete logarithm problem is hard.

An improvement to the original scheme, for which the online step is just

a single addition, was presented by Girault and Lefranc [27]. It requires that

the challenge (or alternatively, the private key) have a specific sparse form.

Table 6.1 gives the reader an idea of the bitlengths of the integers (s, c, r)

for an 80-bit security level of the private key and probability of successful

forgery at most 1/235. For more details see [27, 28].

Table 6.1: Numerical example of GPS scheme.

Scheme bitlength of s bitlength of c bitlength of y

Standard GPS 160 35 275
Girault-Lefranc 160 940 1180

6.4 GPS on Koblitz Curves With Fast Scalar Mul-

tiplication

The GPS scheme can be implemented using elliptic curves over a finite field.

In particular, one can use a Koblitz curve and convert integers into Frobe-
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nius expansions to perform fast scalar multiplications. We briefly give the

details:

Take a public point P and generate the key pair {s, I = [−s]P}. For sim-

plicity of notation, let us denote a τ -adic representation of an integer x by

x̃. The prover picks a random integer r, converts it into τ -adic r̃, computes

the commitment X = [r̃]P and sends X to verifier. Then, the verifier picks

a random integer c and returns it to prover. The answer step is the same

as the standard GPS (i.e., compute y = r + sc ∈ Z) and the verification

becomes to check if X = [y]P + [c]I. Again, to increase performance, the

verification step can be computed as [ỹ]P + [c̃]I.

This method is very efficient, however there is the additional cost of

converting an integer to a Frobenius expansion (plus the extra code footprint

this requires). As noted by Solinas [50, 51], in any cryptographic protocol,

instead of choosing a random integer and converting to a τ -adic expansion

one can directly choose a τ -adic. This idea could be used for r in the

standard GPS protocol, but one would still need to convert back to an

integer for the computation y = r+sc ∈ Z in the online step. As mentioned

earlier, the conversion algorithm requires modular arithmetic which is not

otherwise needed as part of the GPS protocol. This results in additional

overhead in running time and code on the device. We will see in the next

section that these additional costs can be avoided if we use random τ -adics

instead of random integers.
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6.5 τ-GPS

When using τ -adic expansions instead of integers, we will get much faster

computations for I = [−s]P , X = [r]P and, in the verification step, for

X = [y]P + [c]I. Figure 6.1 shows the τ -GPS scheme. We recall from

Definition 17 (Section 4.2) that Tn =
{ n−1∑

i=0

xiτ
i | xj ∈ {−1, 0, 1}

}
. We can

repeat the protocol l times (though usually l = 1). We represent an element

x picked at random from a set X by: x
r←− X .

System Parameters: S, R, C ∈ N, P ∈ E(F2m)
Private key: s

r←− TS
Public key: I = [−s]P

PROVER VERIFIER
Commitment

r
r←− TR

X = [r]P X //

Challenge
coo c

r←− TC
Response
if c 6∈ TC then abort
compute y = r + sc

if y 6∈ TΦ,R then abort
y //

if y 6∈ TΦ,R then reject
if X = [y]P + [c]I then accept
else reject.

Figure 6.1: τ -GPS

As with the original GPS protocol it is essential for the prover to perform

a size check on the challenge c (otherwise, a dishonest verifier can send, for

example, c = τR and recover the prover’s secret). The size check on y does

not seem to be essential for security, but we include it to ease the security

analysis. Heuristics 1 and 2 (see Section 4.4) imply that the probability of
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aborting in the protocol is negligible.

Note that the computation of s × c can be performed using the non-

randomised version of Algorithm 4 (see Section 4.3). We recall from Sec-

tion 4.3.1 that K′ is a security parameter. We will show in Section 6.6.3.1

that the extra randomisation of the K′ lowest order coefficients is only re-

quired when performing the addition with r. For further implementation

details see Chapter 7.

6.6 Security Analysis

We closely follow [28] for our security analysis. In particular, we use the

same security model as in [28]. We first consider attacks which recover

the private key (i.e., solve the discrete log). Then, our analysis follows the

approach of [22] and proves completeness, soundness and zero knowledge.

6.6.1 Discrete Logarithms

Given (P, I) it must be infeasible for an attacker to compute the private

key s (similarly, given (P, X) to compute r). One could solve the DLP to get

λ ∈ N such that −I = [λ]P and then convert λ to a Frobenius expansion.

Hence, we require the DLP in 〈P 〉 to be hard. As we are working with

Koblitz curves (see Chapter 4), we can take, in practice, m = 163. It is easy

to check that our curve over F2163 has a nearly prime order, as needed.

Alternatively, one could try to solve the τ -DLP (see Section 5.2), i.e.,

compute s ∈ TS directly from (P, I). More precisely:
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We assume that PP(ωPP , k) is a randomised algorithm that generates

public parameters P and I = [−s]P for s ∈ TS under a random tape ωPP

and with the security parameter k as an input. We recall the τ -adic Discrete

Logarithm Problem as: given inputs P , Q and S, to find x ∈ TS (if it exists)

such that Q = [x]P .

Definition 30. The τ -DLP Assumption is that for every polynomial Q1

and every probabilistic polynomial time (PPT) Turing Machine A running

on random tape ωA, for sufficiently large k,

Pr
[A(P,S, Q) = x

]
<

1
Q1(k)

where (P,S, Q) ← PP(ωPP , k), Q = [x]P and x ∈ TS .

6.6.2 Completeness

We want to show that GPS with τ -adic expansions is complete. We recall

from Section 4.4 that Φ = S + C + 3.

Theorem 6.6.1 (Completeness). Suppose R > Φ+K, for sufficiently large

K ∈ N. Then, a prover who possess a valid key pair (s, I = [−s]P ) is

accepted with overwhelming probability by a verifier.

Proof. Clearly, the prover can compute y = r + sc. The verification step is:

[y]P + [c]I = [r + sc]P + [c][−s]P = [r]P + [sc]P + [−sc]P = [r]P = X,

which is successful. Finally, since R > Φ+K, from Heuristic 1 (Section 4.4)

we expect that y ∈ TR with overwhelming probability.
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6.6.3 The Zero Knowledge Proof

As with any public key identification or signature scheme it is important to

show that runs of the protocol do not leak information about the private

key. For the original GPS scheme it is proved in [28] that the protocol has

statistical zero knowledge.

The security of the τ -GPS scheme is more subtle than the integer case.

First we present an attack on the basic scheme. The attack does not have an

analogue in the standard GPS setting. This motivates the extra randomi-

sation in the computation of y = r + sc.

We have not been able to prove statistical zero knowledge of our scheme;

instead, we prove computational zero knowledge with respect to a compu-

tational assumption.

6.6.3.1 Obtaining Information About the Private Key

Before proving zero knowledge, we remark that the τ -GPS protocol does

leak information about s if one omits the extra randomisation step in the

computation y = r + sc (see Section 4.3.1).

We give a brief sketch of the idea. Suppose a dishonest verifier inspects

the constant coefficients of all polynomials, and always chooses c such that

c0 = 1. Then y0 = r0 + s0, where + is addition using Algorithm 4, so

y0 is reduced to the set {−1, 0, 1}. If r0 is uniformly distributed then the

distribution of y0 depends on the value of s0. Table 6.2 shows the possi-

ble outcomes for y0 if the optional randomisation step is not used and the

adversary always chooses c0 = 1 (similar tables can be constructed if the
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adversary always chooses c0 = −1).

Table 6.2: Statistical attack to recover s0.

s0 r0 y0 = s0 + r0

−1 −1 0
0 −1
1 0

0 −1 −1
0 0
1 1

1 −1 0
0 1
1 0

More precisely, if s0 = −1 then the output distribution of y0 in this

case (c0 = 1) is 0 with probability 2/3 and −1 with probability 1/3; if

s0 = 0 then y0 has uniform distribution in {−1, 0, 1}; if s0 = 1 then y0 = 0

with probability 2/3 and 1 with probability 1/3. After a sufficient number

of repetitions, an adversary finds the coefficient s0 of the private key by

observing the distribution of y0.

We now explain how the attack can be continued to obtain more infor-

mation about the private key. Assume s0 is known. Again, the adversary

chooses c0 = c1 = 1. From y = sc+ r, we have y1 = s0 + s1 + r1 + ε, where ε

is the carry produced from computing s0 + r0. We recall that y0 is reduced

to the set {−1, 0, 1}, so if r0 = s0 = 1, then y0 = 2 and we have to add

−τ2 + tτ − 2 (remember, τ2 − tτ + 2 ≡ 0), which produces a carry ε = t; if

r0 = s0 = −1, then y0 = −2 and ε = −t.

We stress that the addition is computed using Algorithm 4 and therefore,

it is not associative (e.g., (1 + 1) + (−1) = 0 + (−1) = −1 and 1 + (1 +

(−1)) = 1 + 0 = 1). Hence, we assume that one first computes (s0 + s1)
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and then computes r1 + (s0 + s1) and finally, if there is a carry ε, computes

(r1 + (s0 + s1)) + ε.

The attack proceeds in the same way the adversary did to recover s0,

i.e., he runs the algorithm many times, always choosing a challenge c such

that c0 = c1 = 1 and then he constructs a table with all values of y1. After

a sufficient number of repetitions, the adversary analyses the distribution

of y1. If necessary, he chooses other values for c0 and c1 and repeats the

attack, until he is be able to recover s1.

Note that in the attack to recover s0, the adversary does not recover

the value of r0. If from the first attack, the adversary knows that s0 = 0,

then clearly there is no carry to the next coefficient. We now analyse that

case: the adversary knows s0 = 0, then he chooses c0 = c1 = 1 and after a

number of repetitions, he analyses the distribution of y1. Table 6.3 shows

the distribution of y1 when s0 = 0, c0 = c1 = 1.

Table 6.3: Statistical attack to recover s1 - in this case, the adversary knows that s0 = 0
and chooses c0 = c1 = 1.

s0 s1 r1 y1 = (s0 + s1) + r1

0 −1 −1 0
0 −1
1 0

0 −1 −1
0 0
1 1

1 −1 0
0 1
1 0

From Table 6.3, if the output distribution of y1 is 0 with probability 2/3

and −1 with probability 1/3 then s1 = −1; if y1 has distribution close to

uniform then s1 = 0; if y1 is 0 with probability 2/3 and 1 with probability
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1/3 then s1 = 1.

Now we consider the cases when it is possible that a carry ε 6= 0 occurs in

the computation of y1, i.e., the cases when s0 = −1 or s0 = 1. We begin with

s0 = −1. The adversary knows that when s0 = −1, if r0 = 1 or r0 = −1, the

output y0 (remember y0 = s0 + r0) will be 0. So, he learns nothing about

r0. However, he knows that when y0 = −1 (which happens with probability

1/3 from Table 6.2) then r0 = 0 and there will be no carry to y1. Hence, the

adversary throws away all cases with y0 = 0 and only analyses the outputs

y1 when y0 = −1. The distribution of such y1 is in Table 6.4.

Table 6.4: Statistical attack to recover s1 - in this case, the adversary knows that
s0 = −1 and analyses only the cases when y0 = −1. Again, he chooses c0 = c1 = 1.

s0 s1 r1 y1 = (s0 + s1) + r1

−1 −1 −1 −1
0 0
1 1

0 −1 0
0 −1
1 0

1 −1 −1
0 0
1 1

From Table 6.4, if the output distribution of y1 is 0 with probability

2/3 and −1 with probability 1/3 then s1 = 0; if y1 has distribution close to

uniform then s1 can be either 1 or −1 and the adversary needs to construct

another table using different values for c0 and/or c1, as we now show.

Table 6.5 shows the new distribution of y1 if the adversary, after ob-

serving that the distribution of y1 is close to uniform in Table 6.4, chooses

c0 = 1 and c1 = 0. The output distribution of y1 will be 0 with probability

2/3 and −1 with probability 1/3 if s1 = −1 and will be 0 with probability
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2/3 and 1 with probability 1/3 if s1 = 1. Hence, after a sufficient number

of repetitions, the adversary will be able to determine the coefficient s1.

Table 6.5: Statistical attack to recover s1 – part 2.

s1 r1 y1 = s1 + r1

−1 −1 0
0 −1

−1 0
1 −1 0

0 1
1 0

Now we analyse for s0 = 1. Again, the adversary knows that when

s0 = 1, if r0 = 1 or r0 = −1, the output y0 (remember y0 = s0 + r0) will

be 0. So, he learns nothing about r0. However, he knows that when y0 = 1

(which will occur with probability 1/3 from Table 6.2) then r0 = 0 and there

will be no carry to y1. Hence, the adversary analyses only the outputs y1 for

which y0 = 1. The distribution of such y1 is very similar to the distribution

of y1 in Table 6.4, so we do not give a table.

If the output distribution of y1 is 0 with probability 2/3 and 1 with

probability 1/3 then s1 = 0; if y1 has distribution close to uniform then s1

can be either 1 or −1 and the adversary needs to construct another table

(very similar to Table 6.5) using different values for c0 and/or c1.

The above method can be extended to recover the first few coefficients

of s. However, the randomisation of the first K′ coefficients destroys the

attack if K′ is sufficiently large. Similarly, it seems hard to mount the attack

on the K′-th coefficient, since that is influenced by carry values propagating

from addition of lower-degree terms (for example, y2 = r2 + s2c0 + s0c2 +

s1c1 + ε1 + ε2, where ε1 is the possible carry that comes from s0 + r0 and ε2

is the possible carry that comes from ((s1 + s0) + r1) + ε1).
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6.6.3.2 Trying to Prove Statistical Zero Knowledge

Our first attempt was to prove the statistical zero knowledge property of

our scheme, depending on the heuristics listed earlier, but due to the non

canonical arithmetic of Frobenius expansions, we were unable to obtain such

a proof. In this subsection we explain what went wrong.

Let K and K′ be security parameters and defineR = max{Φ+K,m+K′}.
Assume Heuristics 1 and 2 from Section 4.4. We tried to prove that the GPS

protocol is statistically zero-knowledge if l and 3C are polynomial and if K
and K′ are sufficiently large.

We closely followed the proof of Theorem 2 of [28], but we could not use

exactly the same proof due to the strange properties of addition of Frobenius

expansions. Let A1 be a dishonest verifier, who instead of picking challenges

at random, chooses them based on previous iterations with a legitimate

prover, in order to try to obtain some knowledge about the private key.

Following [28] we denote by c(X, hist, ωA) the challenge chosen, depending

on the commitment X, the history hist of the protocol so far, and the

random tape ωA.

We now define an algorithm which simulates a round, using a random

tape ωA. We recall from Section 4.4 that Φ = S + C + 3 and the definition

of TΦ,R. Note that #TΦ,R = 3R − 3Φ. The simulation is:

Step 1. Use ωA to choose random values c̄ ∈ TC and ȳ ∈ TΦ,R.

Step 2. Compute X̄ = [ȳ]P + [c̄]I

Step 3. If c(X̄, hist, ωA) 6= c̄ then return to Step 1, else return (X̄, c̄, ȳ).
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We should prove that for any fixed random tape ωA, the triples (X̄, c̄, ȳ)

output by the simulation are statistically indistinguishable from the real

triples (X, c, y), even when c is controlled by a dishonest verifier.

When we say that triple (X̄, c̄, ȳ) is statistically indistinguishable from

the real triple (X, c, y), it means that no algorithm which given a polynomial

number of triples of both distributions can distinguish, with non-negligible

advantage, which of the two distributions a triple belongs to, even when

unlimited computational power is available.

Let M = E(F2m)× TC × TR. Fix a private key s ∈ TS and a public key

I = [−s]P . Formally, we want to prove that

Σ1 =
∑

(α,β,γ)∈M

∣∣∣PrωP [(X, c, y) = (α, β, γ)−PrωM(X̄, c̄, ȳ) = (α, β, γ)]
∣∣∣

is negligible.

First, we consider the simulation. Define M2 = {(α = ȳP + c̄I, β =

c̄, γ = ȳ) : c̄ ∈ TC , ȳ ∈ TΦ,R and c̄ = c(ȳP + c̄I, hist, ωA)} ⊂ M. Note that

the same triple (α, β, γ) cannot arise from more that one pair (c̄, ȳ) (since

the β and γ components fix (c̄, ȳ) and hence the α components are equal.

Clearly, the distribution on M arising from the simulation is the uniform

distribution supported on M2 ⊂M.

Now, we consider triples (α, β, γ) ∈ M coming from genuine runs of

the τ -GPS protocol. Define M1 = {(α = [r]P, β = c([r]P, hist, ωA), γ =

r + βs) : r ∈ TR and r + βs ∈ TR} ⊂ M. Note that the same value α

above can arise from more than one value of r ∈ TR. To continue with

the proof, we expected that the exact same triple (α, β, γ) could not arise
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from two different values of r but this is not true in general as there can be

equivalent but not equal r1 and r2 such that r1 + sc = r2 + sc under the

addition in Algorithm 4. Even without the randomisation this can happen,

e.g., r1 = −1, r2 = 1− τ + τ2 and sc = 1 but the randomisation also gives

further opportunities for it to happen.

Because of this, we need to know, for example, how often this can happen.

The question is then for how many pairs (r1, r2) in the equivalence class of

r can we have r1 + sc = r2 + sc using Algorithm 4 with randomisation.

Do solutions (r1, r2) exist for every equivalence class or only some of them?

When it does happen, how many pairs of solutions can one get?

We performed an experiment using MAGMA[10] to count for each r1,

and fixed sc, how many ri 6= r1 are there such that r1 + sc = ri + sc.

The results showed that the distribution of frequencies is quite irregular,

varying, for example, from zero up to 14 distinct ri for r1 of length 10.

Hence, it would be easy to distinguish uniformly chosen triples as used in

the simulation from the real ones, with a simple frequency analysis, which

spoiled our attempt to prove statistical zero knowledge.

We stress that these statistical irregularities do not seem to lead to an

attack on the τ -GPS scheme.

We leave as an open problem to modify the τ -GPS scheme in order to

make it statistical or even perfect zero knowledge.
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6.6.3.3 Proving Computational Zero Knowledge

We now state the computational assumption on which our security result

relies.

Definition 31. Let C,S,K and K′ be parameters. Define Φ = S+C+3 and

R = max{Φ +K, m +K′}. Let s ∈ TS and I = [−s]P . Let M = E(F2m)×
TC ×TR. Let f : E(F2m) → TC be a function. Define the distribution on M

Ms,f,1 = {(α = [r]P, β = f(α), γ = r + sβ) : r ∈ TR}

where r is selected from TR uniformly at random and where the computation

r + sβ is performed using Algorithm 4 with randomisation of the first K′

coefficients. Define the distribution on M

MI,f,2 = {(α, β, γ) : γ ∈ TΦ,R, α = [γ]P + [β]I, β = f(α)}

where γ is selected uniformly at random.

We stress that these distributions are not the same. For example, in

MI,f,2 there can be points α ∈ E(F2m) which are not of the form [r]P

for some r ∈ TR (though they will typically be of the form [r′]P for some

r′ ∈ TR′ where R′ − R is small). More importantly, the distributions on

γ are not the same in both cases: in the latter case γ is uniform in TΦ,R

whereas due to the properties of addition using Algorithm 4 it is not clear

whether the distribution of γ in the former case is close to uniform.

We now make a computational assumption regarding these distributions.

Assumption 1. Let A be an algorithm running in polynomial time which is
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given I (but not s) and which samples elements from the distributions Ms,f,1

and MI,f,2. Then we claim that A cannot distinguish the two distributions,

namely that it does not have non-negligible advantage in being able to identify

whether a given triple (α, β, γ) was drawn from Ms,f,1 or MI,f,2.

Theorem 6.6.2 (Zero Knowledge). Let C,S,K and K′ be security param-

eters and define Φ = C + S + 3 and R = max{Φ + K, m + K′}. Assume

Heuristics 1, 2 from Section 4.4 and Assumption 1 above. Then the τ -GPS

protocol has computational zero-knowledge if l and 3C are polynomial and if

K and K′ are sufficiently large.

Proof. We use exactly the same arguments used in Section 6.6.3.2, i.e., A1

is a dishonest verifier, who instead of picking challenges at random, chooses

them based on previous iterations of the protocol, in order to try to ob-

tain some knowledge about the private key. Following [28] we denote by

c(X, hist, ωA) the challenge chosen, depending on the commitment X, the

history hist of the protocol so far, and the random tape ωA.

The algorithm which simulates a round, using a random tape ωA, with-

out any knowledge of the secret s is also the same stated in Section 6.6.3.2

(see steps 1, 2 and 3). The protocol is said to be computational zero knowl-

edge if the (computationally bounded) adversary A cannot distinguish be-

tween the simulation and runs of the real protocol.

We must show that, for any fixed random tape ωA, it is computationally

infeasible to distinguish the simulation from genuine runs of the protocol.

This is exactly the computational assumption stated above, where f(X) is

the function c(X, hist, ωA).

In other words, if the adversary A can distinguish between the simu-
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lation and the real protocol then it immediately solves the computational

assumption. This completes the proof.

In practice we conjecture that K = 136 and K′ = 51 are sufficient to

obtain 80 bits of security. The motivation for this choice is as follows. First,

3K′ ≈ 280, so the probability of guessing the randomness used in line 12 of

Algorithm 4 is negligible. Second, 3Φ+0.63K/3Φ+K = 3−0.37K ≈ 2−80, where

3Φ+0.63K comes from Heuristic 1 and 3Φ+K = 3R is the total number of

possibilities for r in TR, so the probability of learning anything about sc

from r + sc seems to be negligible.

6.6.4 Soundness

The last task is to prove soundness of the scheme. We want to show that

an adversary (which does not know the prover’s private key s) is only able

to impersonate the prover (i.e., she runs the protocol and is accepted by

the verifier) with very small probability. To do this we will show that if an

adversary is accepted by a verifier with non-small probability and if she is

able to rewind the verifier, then she must know (or she can easily compute)

the private key.

An adversary who does not know the private key can predict c with

probability 1
3Cl . If she picks a random y, then compute X = [y]P + [c]I and

send X to the verifier, after receiving c′, if c′ = c, she answers with y and

the verifier will accept. We call probability of cheating the probability of a

dishonest prover being successfully accepted by the verifier.

Now, let us suppose that the adversary can do better than this, i.e., she
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can predict c with probability exceeding 1
3Cl . We will use the adversary to

solve the discrete log for the public key. The idea is to use the adversary

to produce y1 for a challenge c1 on commitment X. We then repeat the

experiment using the same randomness but a different challenge c2, to obtain

a response y2 of the challenge c2 on the same commitment X. We will show

that if we can correctly answer to challenges c1 6= c2 with y1 6= y2, then we

can recover the private key s.

Theorem 6.6.3 (Soundness). An adversary who does not know the private

key is only accepted by a verifier with very small probability.

Proof. Let us suppose that an adversary A is accepted with probability

ε > 1
3Cl . Following the standard rewinding argument presented in [28,

Appendix B] (inspired by [45]), we write Succ(ωA, c1, c2, . . . , cl) = true if an

adversary A, using random tape ωA is successfully identified by the verifier

when successive challenges c1, c2, . . . , cl are used.

We run the following algorithm:

step 1 Pick tuples c of l τ -adic expansions (c1, c2, . . . , cl) ∈ TC and run A
with these challenges under a random tape ωA until Succ(ωA, c) =

true. Call u the number of probes;

step 2 Try up to u l-tuples c′ (different from c) and run A under the same

random tape ωA until Succ(ωA, c′) = true. Output “fail” if a success-

ful l-tuple c′ is not found after u probes;

step 3 Output ȳ = |yj − y′j | and c̄ = |c′j − cj | where j is the first index such

that cj 6= c′j and yj and y′j are the corresponding correct responses

of A.
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If the algorithm does not fail and such an adversary A, given the same

commitment Xj , is able to answer to two different challenges, cj and c′j with

yj and y′j , it follows that [yj ]P + [cj ]I = Xj = [y′j ]P + [c′j ]I, and hence,

[(yj − y′j)]P = [(c′j − cj)]I. Using the output of the above algorithm, the

adversary can solve the DLP of I to the base P .

Note that as we are working with elliptic curves the curve order is known,

so there is no difficulty with solving this equation. Roughly speaking, we

can say that if an adversary is able to impersonate a prover than this is

equivalent to say that she knows the prover’s private key.

6.7 τ-GPS vs. Standard GPS

We now briefly compare τ -GPS with the elliptic curve GPS variant of sec-

tion 6.4. The standard GPS has lower bandwidth than τ -GPS and the online

computations are simpler and we expect them to be faster for standard GPS

(we did not evaluate the impact of τ -adic multiplication). The offline com-

putations are quite efficient in both cases (especially when compared with

GPS over an RSA modulus). A further advantage of standard GPS is that

the security assurance is statistical zero knowledge rather than computa-

tional zero knowledge. The advantage of τ -GPS is that it does not require

conversion between integers and Frobenius expansions.

6.8 Choosing the Right Protocol

We now give our recommendations on efficient identification protocols for

constrained devices. Our suggestions are based on known results, commonly
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found in the Literature. For a more precise comparison, a implementation

of the protocols is needed.

First, since the resources on the device are limited we recommend using

Koblitz elliptic curves (rather than RSA moduli as proposed in [26, 27]).

If there are no constraints on the offline computation time then we suggest

using the standard GPS protocol or Girault-Lefranc. If the offline compu-

tation time is also limited then it is natural to improve the performance of

the offline steps using Frobenius expansions. The precise choice of protocol

then depends on the application:

• If bandwidth is the most precious resource then we recommend the

Schnorr identification protocol.

• If computation time of the online stage is the most precious resource

then we recommend the Girault-Lefranc method [27].

• If both bandwidth and computation time are precious then we recom-

mend the standard GPS scheme [28].

• If code area and/or power consumption are the most precious resources

then we recommend τ -GPS.

Table 6.6 summarises the above options.

Table 6.6: Choosing the right protocol.

Most precious resource Our recommendation
Bandwidth Schnorr identification protocol

Computation time of the online step Girault-Lefranc method
Bandwidth and computation time standard GPS scheme

Code area and/or power consumption τ -GPS
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6.9 Summary

In this chapter we presented the GPS identification scheme using τ -adic ex-

pansions. This speeds up the running time of the offline steps compared with

standard GPS. We showed that cryptographic protocols can be made to op-

erate with Frobenius expansions instead of integers, and this idea may have

wider applications. The main advantage is that one does not need to convert

between τ -adics and integers, saving code area and power consumption.
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Chapter 7

Suggested Parameters
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We analysed in Chapter 5 the complexity of attacks on variants of the

Frobenius expansion DLP and in Chapter 6 the use of Frobenius expansions

with GPS identification scheme. In this chapter we use this knowledge to

determine parameters for efficient elliptic curve cryptography.
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7.1 τ-DLP

We studied the τ -DLP in Chapter 5 and concluded that it can be solved

with a low-memory algorithm in Õ(2L/2) group operations. In the same

chapter we determined the constant ε hidden in the O( ), so now we can

calculate the minimum lengths required for the τ -adics to resist to τ -DLP

algorithms.

We assume that the DLP is intractable if it needs more than 278 group

operations to solve it. When we have a general τ -adic or a τ -NAF, we have

showed that we can use Gaudry-Schost algorithm to find a solution for an

equivalent τ -adic x + yτ , |x| < a and |y| < b, to solve the τ -DLP in 2L/2+ε

group operations. Then we suggest the following lengths for a τ -adic to be

resistant against τ -DLP algorithms:

• General τ -adic - When the proved values a = 2.81
√

2L and b = 2
√

2L

are used, the expected value for ε is 4.06 so one can take a τ -adic of

length L > 148. If we use the values for a and b considering the τ -adic

distribution (i.e., a = 2.28
√

2L and b = 1.8
√

2L), the expected value

for ε is 3.82 so a τ -adic of length L > 149 is required;

• τ -NAF - The distribution of τ -NAFs show that the expected value for

ε is 3.27, so one should take a τ -NAF of length L > 150;

When we have a Low Hamming weight τ -adic, we showed in Section 5.4

that the weight-w τ -DLP can be solved using van Oorschot and Wiener par-

allel collision search in 2w/2
7(L/2

w/2)
3/2

√
w

group operations. Taking N = 2w
(
L
w

)

we end up with Õ(N3/4). Obviously, since the number of group operations

also depends on the weight w, we cannot suggest a minimum bound for L.
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7.2 Parameters Sizes for the τ-GPS

We presented the τ -GPS scheme in Chapter 6 and proved that it is com-

putational zero-knowledge secure. Now, we analyse the sizes of the random

τ -adic expansions used for representing the τ -GPS parameters such that the

τ -GPS scheme be a zero knowledge proof of the private key.

7.2.1 Private Key s

We showed in Chapter 5 that one can use a square-root low-memory algo-

rithm to solve the τ -DLP in O(2
S
2 ) group operations. It is usual to choose s

to be a τ -NAF, so we have fewer nonzeros and therefore, faster point multi-

plication. The Gaudry-Schost algorithm for τ -NAFs needs 2L/2+3.27 group

operations to solve the DLP (see Section 5.6), hence we require S > 150.

If enough memory is available, one can use BSGS over τ -NAF and solve

the DLP in 8
3

√
2L group operations. Hence, we require S > 158. Note that

using Pollard-rho using equivalence classes in E(F2163) needs ≈ 277.6 group

operations to solve the DLP. Therefore, using τ -adic expansions of degree

> 150 (or > 158 if enough memory is available) is no less secure than using

integers.

7.2.2 Challenge c

From Section 6.6.4, we need C to be large enough such that the probability

of cheating is very small. In practice, more than 235 possibilities is enough

to prevent an online attacker from guessing the right value for c.
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Since c can be written as x + yτ for integers x and y and from Conjec-

ture ??, we have |x| < 3
√

2C and |y| < 2
√

2C , we need 24(2C) > 235 and

therefore, C > 30.4. Here, it does not make difference if we use the τ -adic

distribution, since when the bounds for x and y are respectively 2.28
√

2L

and 1.8
√

2L, we need 16.416(2C) > 235 and therefore, C > 30.9, so we can

take C > 31 for both cases. If c is a τ -NAF, one should take C > 32.

7.2.3 Commitment Source r

One can take m = 163 (see Section 6.6.1), C = 32 (see Section 7.2.2),

S = 150 (see Section 7.2.1), K = 136 and K′ = 51 (see Section 6.6.3).

This gives R = max{Φ + K,m + K′} = max{321, 214} = 321 (recall that

Φ = S + C + 3).

7.3 Structure of the Random τ-adics Used in τ-

GPS

We recall that point multiplication is very efficient when we use τ -adic ex-

pansions and since τ -NAF expansions have the minimum number of nonzero

coefficients (see [4]), it is natural to choose random τ -NAFs to represent a

parameter.

There are no restrictions with respect to the structure of the private

key and the challenge, i.e., s and c can be a general τ -adic, a τ -NAF or a

low-hamming weight τ -adic. We recommend to take s in non-adjacent form

to improve performance in point multiplication with no loss of security.
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We assumed in the zero knowledge part of the proof of security (Sec-

tion 6.6.3), that the simulator picks γ uniformly and random in TΦ,R. There-

fore, we cannot assume that r is a τ -NAF or r has low Hamming-weight,

otherwise, the proof of security does not hold. Hence, we must use a general

τ -adic to represent r.

We remark that for many cryptographic systems one would have to re-

prove the security if using random short τ -NAF expansions instead of ran-

dom integers. For instance, it can be a bad idea to choose “random” values

with some structure. In other words, the work of an attacker can become

easier if he or she knows in advance that the τ -adic expansion is a τ -NAF

for example.

7.4 τ-GPS Parameters

We summarise τ -GPS Parameters in Table 7.1 (compare with Table 6.1).

The first number in each column is the value of the parameter and the second

number (between parenthesis) is the number of bits needed to represent an

element of the set (using 5L
3 bits to represent a τ -adic of length L and L+1

bits if it can be chosen in non-adjacent form). We remark that, in principle,

it should be possible to find better binary encodings for τ -adic expansions

which require fewer than 5L
3 bits.

Table 7.1: Numerical example of GPS scheme with τ -adic expansions.

S C R
150 (151) 32 (33) 321 (535)
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7.5 τ-GPS Using the Girault-Lefranc Idea

To speed up the computation of s× c we can use the Girault-Lefranc trick

(see [27] for details). In other words, we insist that challenges c have at

least S − 1 zero coefficients between each pair of nonzero coefficients. It

follows that computing s× c does not require Algorithm 4. This transforms

the online step y = r + sc into a single addition using Algorithm 4 with

randomisation of the first K′ coefficients.

In order to define C in this case we need to know how many τ -adic

expansions with degree less than C, Hamming weight w and at least S − 1

zero coefficients between each pair of nonzero coefficients exist.

Theorem 7.5.1. The number of possible τ -adic expansions of degree less

than C, Hamming weight w and at least S − 1 zero coefficients between each

pair of nonzero coefficients is:

ZC,w,S = 2w
[(C − w(S − 1)

w

)
+
S−1∑

i=1

(C − i− (w − 1)(S − 1)
w − 1

)]
(7.1)

Proof. We prove the theorem using combinatorics. For simplicity of nota-

tion, we call the nonzero coefficients “b”, i.e. b ∈ {−1, +1}. We are required

to have at least S − 1 zero coefficients between each pair of nonzero coeffi-

cients; we use the word “block” for a configuration [00 · · · 0b] with exactly

S − 1 zeros before a nonzero b. Our problem is to count the number of ways

to place w blocks of size S in C places. By viewing each block as a single

bit our problem resumes to count the number of ways to place w blocks of

size 1 in C − w(S − 1) places.

We need to give a special attention to the leftmost block, which can be
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complete (i.e. with exactly S − 1 zeros before b) or not (i.e. with i zeros

before b, where 0 ≤ i ≤ S − 2). So, we divide our problem into two parts:

1. Leftmost block complete.

We want to locate w blocks (remember, each block with S − 1 zeros

before b) in C −w(S − 1) places. So, we have
(C−w(S−1)

w

)
. As b can be

either −1 or +1, we have:

2w

(C − w(S − 1)
w

)
(7.2)

2. Leftmost nonzero coefficient in position i from the left, where i ∈
{1,S − 1}.

Now, our problem is to locate w − 1 blocks in the remaining C − i

places. As each block was reduced from size S to size 1, our free space

now has C − i− (w − 1)(S − 1) places. So, we have:

2w
S−1∑

i=1

(C − i− (w − 1)(S − 1)
w − 1

)
. (7.3)

Now, just add (7.2) and (7.3) and the proof is complete.

Hence, the total number of possible τ -adic expansions of degree less

than C and with at least S − 1 zero coefficients between each pair of non

zero coefficients is

ZC,S =
bC+S−1

S c∑

w=1

2w
[(C − w(S − 1)

w

)
+
S−1∑

i=1

(C − i− (w − 1)(S − 1)
w − 1

)]
(7.4)

It follows (see Table 7.2 and compare with Table 6.1) that if S = 150 then we

need C = 759 to get ZC,S > 235. This results in R = max{Φ +K,m +K′} =
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max{1048, 214} = 1048. Note that one can transmit/store c using much

fewer than 760 bits. However, r and y are not sparse, so would need around

1747 bits to represent.

Table 7.2: Parameters for the Girault-Lefranc variant of τ−GPS.

S C R
150 (151) 759 (760) 1048 (1747)

Now we have a fast online computation of c × s, at the cost of a very

large y to be transmitted, which can be a serious drawback due to memory

restrictions. Although c is also very large, it has very few nonzero coeffi-

cients, and therefore, the bit representation of c can be much more efficient

than simply C + 1 bits, if the verifier transmit c by using only the nonzero

positions. However as y is expected to be dense, the same cannot be done

when sending y.

7.5.1 Performance analysis

We give more detail about how to efficiently compute each of the three steps

of the GPS protocol.

Step 1: We are supposed to choose a random element r ∈ TR (where R
may be 321 or 1048) and compute X = [r]P . Note that R is larger

than m. In practice it would be more efficient to reduce r modulo

τm − 1 before performing the computation of X (this may lead to

coefficients outside the set {−1, 0, 1}).

A more efficient alternative is as follows. Choose a random r′ ∈ Tm

and compute X = [r′]P . It is only necessary to store r′, requiring

≈ 5m/3 bits. Indeed, one could choose r′ in non-adjacent form, in
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which case at most m + 1 bits are required.

When the long value r is needed in the online step we can simply

choose the coefficients rj randomly subject to the constraint that for

0 6 i < m we have
b(R−i)/mc∑

j=0

rjm+i = r′i

which can be done efficiently. Note that this variant is not covered by

our security analysis since not all possible values of r ∈ TR can arise.

A security analysis of this case is a topic for future research.

Step 2: The computation of r + sc is done using repeated calls to Algo-

rithm 4. One could also use the Karatsuba idea to speed-up the poly-

nomial multiplication. For more details of improvements see [27].

Step 3: To compute [y]P + [c]I one can reduce y (and c if necessary) mod-

ulo τm − 1. One can also use the standard multiexponentiation and

precomputation techniques to speed this up (see [2]).

7.6 Summary

In this chapter we gave some suggestions of parameters sizes based on the re-

sults of Chapters 5 and 6. We also presented some efficient ways to compute

each of the three steps of the GPS protocol.
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Chapter 8

Conclusion and Future Paths

This is the end of our journey, and it is time to look back of what we have

done. The job here is simplified because we have already summarised each

chapter at its end. But now we emphasize the main ideas.

As we had said before, we started this project proposing a problem (“Can

we use shorter parameters if we run the GPS identification protocol with

Frobenius expansions in the place of integers ?”). To answer this question,

we needed first to study Koblitz curves and Frobenius expansions, to know

how they behave. So we did that in Chapter 4. Then, a natural question

arose: “Are there low-memory algorithms for the τ -DLP ?”. The response

came with Chapter 5, which also solved our first question, i.e., since there are

low-memory algorithms for the τ -DLP, we cannot use small parameters with

the τ -GPS. However, the τ -GPS protocol yet has some attractiveness, being

useful to applications with limited offline computation time and limited code

area. So we studied the τ -GPS in Chapter 6 and gave a security analysis

for the protocol using τ -adics.
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8.1 Future Paths

Inspired by a famous song: “And now, the end is near and so I face the final

curtain” we can look further and pose some future paths for our journey.

• We proved bounds for integers x and y when a τ -adic with coefficients

in {−1, 0, 1} is mapped to x + yτ and conjecture that we can shorten

those bounds using the τ -adic distribution.

This leads to three open problems:

– prove the exact bounds for x and y, which would open the doors

for more efficient low-memory algorithms;

– understand better the pictures that show the τ -adic distribution.

– generalise this approach and determine the sizes of bounds a′ and

b′ for integers x 6 a′ and y 6 b′, when working with a general

coefficient set;

• We showed that the weight-w τ -DLP can be solved using van Oorschot

and Wiener parallel collision search in expected time O(N3/4) for some

measure N of the size of the problem. We leave as a challenge to al-

gorithm designers to ‘close the gap’ with time/memory tradeoff algo-

rithms and propose a low-memory algorithm which solves the weight-w

τ -DLP in expected time O(N1/2);

• We proved that our τ -GPS protocol is computational zero knowledge.

We left as an open problem to modify the τ -GPS scheme in order to

make it statistical or even perfect zero knowledge.
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Naturally, the suggestions for future paths are not limited by this list,

since Frobenius expansions have a large potential to be explored. We hope

that this thesis can draw attention to the use of τ -adic expansions in Cryp-

tography, and many other applications can derive from that.
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