
Towards a Theory of Special-purpose Program Obfuscation

Muhammad Rizwan Asghar, Steven Galbraith, Andrea Lanzi,
Giovanni Russello, Lukas Zobernig

University of Auckland, New Zealand
Universita degli studi di Milano, Italy

Steven Galbraith Special purpose obfuscation



Thanks

I Thanks to the conference organisers in this difficult year.

I Thanks to the Trustcom reviewers for their positive comments.

I We thank Christian Collberg for several suggestions on the
early version of this work, and especially for pointing out the
connection with obfuscation competitions.

I This research is funded in part by the Royal Society of New
Zealand Marsden fund project 16-UOA-144.

Steven Galbraith Special purpose obfuscation



Plan

I The motivation for special-purpose obfuscation.

I Our formalism.

I Obfuscation competitions.

I Example of applying the formalism.

I Composition of obfuscations.

I Limitations

Full version of paper: https://arxiv.org/abs/2011.02607

I’m happy to answer questions or discuss the paper by email:
s.galbraith (at) auckland.ac.nz

Steven Galbraith Special purpose obfuscation



Obfuscation

I Program obfuscation is often informally stated as “to hide
semantic properties of program code from a Man-At-The-End
(MATE) attacker who has access to an executable file of the
program”.

I What does this mean?

I More than twenty years of research in software security has
not given a rigorous and practical formalism for what it means
to “hide semantic properties of program code”.

I How can we formally prove that an obfuscation scheme “hides
semantic properties”?

Steven Galbraith Special purpose obfuscation



Cryptographic approaches to obfuscation

I In 1996, Goldreich and Ostrovsky suggested that obfuscation
should prevent “the release of any information about the
original program which is not implied by its input/output
relation and time/space complexity”.

I The landmark paper by Barak, Goldreich, Sahai, Impagliazzo,
Vadhan and Yang in 2001 introduced the notion of Virtual
Black Box (VBB) obfuscation, which means attacker can
learn nothing more, when given the code, than what could be
learned from running it (i.e., oracle access).

I Unfortunately, Barak et al show that this notion is impossible
to achieve in general.

Steven Galbraith Special purpose obfuscation



Two worlds of obfuscation

I Software security: Gives general purpose and practical
obfuscation tools, but no formal definitions or security proofs.

I Cryptography: Gives formal definitions that are very strong,
but no practical general-purpose obfuscation tools.
(Recent paper claims complete solution: Aayush Jain, Huijia Lin
and Amit Sahai, “Indistinguishability Obfuscation from
Well-Founded Assumptions”)

I How to bridge this gap? Can we have practical obfuscation tools
and also security proofs?

I Other researchers have noticed this problem, eg Kuzurin, Shokurov,
Varnovsky and Zakharov (2007), Xu, Zhou, Kang and Lyu (2017).

Steven Galbraith Special purpose obfuscation



Two worlds of obfuscation

I It is not known how to combine practical solutions and
theoretical analysis.

I We feel general-purpose obfuscation is too ambitious and too
hard to achieve.

I Further, general-purpose obfuscation is probably unnecessary
for most practical applications.

I In practice, software developers usually have a particular
secret or intellectual property that they wish to protect, rather
than desiring to secure “all semantic properties” of a program.

I Hence we argue for special-purpose obfuscation.

Steven Galbraith Special purpose obfuscation



Special-purpose obfuscation

I There is a good track record of special-purpose obfuscation
giving provably secure yet practical obfuscators.

I The aim of this paper is to give a formalism for
special-purpose obfuscation.

I We hope it is a useful starting point to address some of these
open problems, and that it will be further extended by the
research community.

I Importantly, the formalism is rigorous ands falsifiable.

I Our formalism uses the notion of asset, which has been
considered by many authors.

I See the paper for more discussion.
https://arxiv.org/abs/2011.02607

Steven Galbraith Special purpose obfuscation



Our model

There are three entities in our formalism:

I Programmer/developer: A human who has developed a
program (written in some high-level source code) that
contains some asset or intellectual property.

I Obfuscator/defender: A randomised algorithm that takes as
input a program in some format and outputs a program in
some format.

I Attacker/de-obfuscator: An algorithm that takes program
code in some format and tries to learn the asset in the
program.

Key features of our formalism:

I Program class

I Asset verifier

Steven Galbraith Special purpose obfuscation



Program class

I A program class C is a set of programs (or program
segments), all written in the same language. For each n ∈ N,
there is a (possibly empty) subset Cn ⊆ C.

I Can think of Cn as programs with n-bit input, or n-bit output,
or where some internal state has n bits.

I P ∈ Cn runs in time bounded by p(n).

I Cn is asymptotically super-polynomial in size,

I There is an efficient program generator GenC for the class C.

I Formally, GenC(n) outputs C ∈ Cn and auxiliary data aux.

Steven Galbraith Special purpose obfuscation



Assets

I An asset space A for C is a family of sets (An)n∈N.

I An asset for C is a sequence of functions an : Cn → P(An),
where P(An) is the power set of A.

I There is an efficient asset verifier V such that for all n ∈ N
and all (P, aux)← GenC(n) (so P ∈ Cn), and all a ∈ An,
V(P, aux, a) outputs 1 if a ∈ an(P) and 0 otherwise.

I Note: Asset does not have to be unique for a given program
P.

Steven Galbraith Special purpose obfuscation



Our model

I A secure obfuscator for (C,A, a) is a randomised algorithm
Obf(P, aux) that outputs P ′.

I Correctness: P ′(x) = P(x) for all x .

I Efficiency: P ′ runs in time polynomial in the running time of
P.

I Security: An attacker is a polynomial-time algorithm A that
knows GenC ,Obf,V. The attacker wins if

V(P, aux,A(P ′)) = 1.

The obfuscator is secure if the probability an adversary wins,
over (P, aux)← GenC(1n) and P ′ = Obf(P, aux), is negligble.

Steven Galbraith Special purpose obfuscation



Our model

I Program classes are defined by software developers.

I The requirement that C is defined by a random program
generator is analogous to Kerckhoff’s principle.

I It is the software developer’s job to define “useful” or
“meaningful” assets.

I We require that assets are not learnable from just running the
program and observing input-output.

Steven Galbraith Special purpose obfuscation



Obfuscation Competitions

I The problem of defining obfuscation security is exactly the
same as providing automated obfuscation challenges.

I Example: the Tigress project reverse engineering challenges.

I For a challenge, one needs to have a well-defined class of
programs (that is known to the competitors) and an algorithm
Gen to generate a random program from this class.

I One needs a well-defined security goal (the asset).

I One needs an efficient and automated method to judge if a
contestant has found the asset (the asset verifier).

I See the paper for more discussion.

Steven Galbraith Special purpose obfuscation



A simple example of the formalism in action

I Point functions are functions that output 1 on input a fixed
string and 0 otherwise.

I Examples include licence checks and password checks.

I Obfuscating point functions using hash functions is
well-understood.

I Class Cn is the set of programs that take an n-bit input x , and
are zero on all except one input c ∈ {0, 1}n (the password or
the licence code).

I Gen chooses a random c ∈ {0, 1}n and outputs P(x) that is
(x == c).

I We set aux = c .

Steven Galbraith Special purpose obfuscation



A simple example of the formalism in action

I The asset is the secret value c ∈ {0, 1}n.

I The asset verifier checks that a is equal to c .

I An obfuscator for point functions chooses a random
r ∈ {0, 1}n, sets c ′ = H(r‖c) and outputs the program P ′

given by (r , c ′) and H(r‖x) == c ′.

I One can prove this is a secure obfuscator if the hash function
H is hard to invert.
(See the paper.)

Steven Galbraith Special purpose obfuscation



Real-World Examples

The following problems can be studied using our formalism (we
don’t claim solutions to all these problems):

I Evasive functions (e.g. Hamming distance, pattern matching
with wild cards, fuzzy biometric matching).

I White-Box Cryptography.

I Evasive Finite Automata.

I Machine Learning

See paper for explanation of what is the program class and asset.

Steven Galbraith Special purpose obfuscation



Results

I Steven D. Galbraith and Lukas Zobernig, Obfuscated Fuzzy
Hamming Distance and Conjunctions from Subset Product
Problems, in D. Hofheinz and A. Rosen (eds.), Theory of
Cryptography TCC, Springer LNCS 11891 (2019) 81–110.

I Steven D. Galbraith and Lukas Zobernig, Obfuscating Finite
Automata, to appear in proceedings of SAC 2020.

I Steven D. Galbraith and Trey Li, Big Subset and Small
Superset Obfuscation, eprint 2020/1018.

Steven Galbraith Special purpose obfuscation



Composition of Obfuscations

I Section 2.1 of Schrittwieser, Katzenbeisser, Kinder,
Merzdovnik and Weippl (2016) note that “many commercial
obfuscators employ (and indeed recommend to use) multiple
obfuscations at the same time”.

I We give the first formal analysis of this.

I Suppose obfuscators Obf1 and Obf2 are each designed to
protect a different asset in a different way.

I We show (under certain conditions) that the composition
Obf2(Obf1(P)) protects both assets.

I Note that “composition of obfuscation” has a different meaning in

the cryptography literature.

Steven Galbraith Special purpose obfuscation



Limitations of Our Formalism

I Choosing the Right Asset: A developer might think they have
defined their asset adequately, but have failed to anticipate an
attack that computes some related information or partial
information.

I Control Flow Obfuscation:

1. It is necessary to specify a class C of programs that have
“rich” control flow.

2. If a(P) is the Control Flow Graph (CFG) of the code produced
by the software developer, and obfuscated program P ′ has
“more complex” CFG, then V needs to decide if the original
CFG has been computed.

Steven Galbraith Special purpose obfuscation



Conclusion

I We argue that general-purpose obfuscation is too hard and
ambitious, and may not be needed in practice.

I We encourage study of special-purpose obfuscation.

I We have presented a new formalism.

I Future work will be to find new applications and obfuscation
solutions.

Steven Galbraith Special purpose obfuscation



Thank You

Steven Galbraith Special purpose obfuscation


