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Discrete Logarithm Problem and Diffie-Hellman

Let G be a subgroup of F∗q or E (Fq) of prime order.
Given g ∈ G and h = g a, it is hard to compute a.

Diffie-Hellman key exchange:

I Alice chooses a and sends tA = g a to Bob.

I Bob chooses b and sends tB = gb to Alice.

I Alice computes taB = g ab.

I Bob computes tbA = g ab.
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Enter Elliptic Curves

I R. Schoof. Polynomial-time algorithm to count points on
elliptic curves over Fp.
(Technical report 1983; Math. Comp. 1985)

I H. W. Lenstra Jr. Elliptic curve factoring.
(Announced 1984/1985 ; Annals 1987)

I V. Miller “Use of elliptic curves in cryptography”
(CRYPTO 1985).

I N. Koblitz “Elliptic Curve Cryptosystems” (Math. Comp.
1987).
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Supersingular Elliptic Curves

I Since E (Fq) is a finite Abelian group one can do the
Diffie-Hellman protocol using elliptic curves.

I An elliptic curve E over Fp is supersingular if #E (Fp) ≡ 1
(mod p).

I Koblitz suggests to use y 2 + y = x3 over F2n because if
P = (x , y) then

[2]P = P + P = (x4, y 4 + 1).

“The formulas for doubling a point are particularly simple”

I “In addition, there is an easy formula”

#E (F2n) = 2n + 1− 2(−2)n/2.
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Pairings

I Let E be an elliptic curve over Fq and N coprime to q
and E [N] = {P ∈ E (Fq) : [N]P = 0}.

I The Weil pairing is a function eN : E [N]× E [N]→ F∗q.

I V. Miller (1986) explained how to efficiently compute the
Weil pairing.

I A. Menezes, T. Okamoto and S. Vanstone (1993) showed
that one can reduce the DLP on a supersingular elliptic
curve over Fq to a finite field DLP in F∗qk for k ≤ 6, where
one has more efficient algorithms for DLP.

I G. Frey and H,-G. Rück (1994) also described and
generalised this approach.
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Early 1990s
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Supersingular curves are weak for crypto

I When I started working on ECC in 1997 the mantra was:
Avoid supersingular curves, they are weak for crypto.

I N. Koblitz, “An Elliptic Curve Implementation of the
Finite Field Digital Signature Algorithm”, CRYPTO 1998.
Let E be the elliptic curve y 2 = x3 − x − (−1)a over F3,
then for odd n

#E (F3n) = 3n + 1− (−1)a( 3
n

)3(n+1)/2.

I A. K. Lenstra and E. R. Verheul, “The XTR public key
system”, CRYPTO 2000.

I E. R. Verheul, “Evidence that XTR is more secure than
supersingular elliptic curve cryptosystems”, EUROCRYPT
2001.
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Pairing-based crypto

I R. Sakai, K. Ohgishi, M. Kasahara “Cryptosystems based
on pairing” (2000)

I A. Joux, “A one round protocol for tripartite
DiffieHellman” (2000)

I D. Boneh and M. Franklin, “Identity-based encryption
from the Weil pairing” (2001)

I These papers suggested supersingular curves would be
perfect for pairing-based crypto.

Steven Galbraith Supersingular Elliptic Curves



Embedding degrees

I Embedding degree of E (Fq) and N | #E (Fq) is minimal k
such that eN : E [N]× E [N]→ F∗qk .

I There became an industry to determine curves such that
the field extension Fqk for the pairing was appropriately
sized.

I S. Galbraith, “Supersingular Curves in Cryptography”,
ASIACRYPT 2001.

I Supersingular curves in characteristic 2 or 3 good for pairings.
I Largest embedding degree for supersingular elliptic curves

E/F2n is k = 4, and for E/F3n is k = 6.

I K. Rubin and A. Silverberg, “Supersingular abelian
varieties in cryptology”, CRYPTO 2002.

I K Rubin, A. Silverberg, “Torus-based cryptography”,
CRYPTO 2003.
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Early 2000s
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Finite field discrete logs

I In early 2013 two teams announced major breakthroughs:
I Antoine Joux, A new index calculus algorithm with complexity

L(1/4 + o(1)) in very small characteristic.
I Faruk Göloglu, Robert Granger, Gary McGuire and Jens

Zumbrägel, On the Function Field Sieve and the Impact of
Higher Splitting Probabilities: Application to Discrete
Logarithms in F21971 .

I New computational records:
I F21778 (1778 = 14 ∗ 127) (Joux, Feb 2013)
I F21971 (1971 = 33 ∗ 73) (Granger et al, Feb 2013)
I F23164 (3164 = 22 ∗ 7 ∗ 113) (Granger et al, March 2013)
I F24080 (4080 = 24 ∗ 3 ∗ 17) (Joux, March 2013))
I F26120 (6120 = 23 ∗ 3 ∗ 255) (Granger et al, April 2013)
I F26168 (257 ∗ 24 = 6168) (Joux, May 2013)
I F29234 (9234 = 2 ∗ 35 ∗ 19) (Granger, Kleinjung, Zumbrägel,

January 2014)
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Incomplete list of references

I R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, A heuristic

quasi-polynomial algorithm for discrete logarithm in finite fields of

small characteristic (2014)

I F. Göloglu, R. Granger, G. McGuire, J. Zumbrägel, On the Function

Field Sieve and the Impact of Higher Splitting Probabilities:

Application to Discrete Logarithms in F21971 and F23164 , (2013)

I G. Adj, A. Menezes, T. Oliveira, F. Rodŕıguez-Henŕıquez, Weakness

of GF (36·509) for Discrete Logarithm Cryptography (2013)

I G. Adj, A. Menezes, T. Oliveira, F. Rodŕıguez-Henŕıquez,

Computing Discrete Logarithms in GF (36·137) and GF (36·163) Using

Magma (2014)

I G. Adj, A. Menezes, T. Oliveira, F. Rodŕıguez-Henŕıquez, Weakness

of GF (36·1429) and GF (24·3041) for discrete logarithm cryptography

(2015)
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2013-2015
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New Cryptographic applications of supersingular curves

I D. X. Charles, K. E. Lauter and E. Z. Goren,
Cryptographic hash functions from expander graphs
(2005)

I D. Jao and L. De Feo, Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies
(2011)

I L. De Feo, D. Jao and J. Plût, Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies
(2014)
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Generalised Discrete Logarithm Problem: Homogenous
Spaces

(Couveignes 1997)

Let G be a subgroup of F∗q or E (Fq) of prime order p.
For a ∈ Z/(p − 1)Z (or, better, a ∈ (Z/(p − 1)Z)∗) and
g ∈ G define a ∗ g := g a.
Given g ∈ G and h = a ∗ g , hard to compute a.

Generalised Diffie-Hellman key exchange:

I Alice chooses a ∈ Zp and sends tA = a ∗ g to Bob.

I Bob chooses b ∈ Zp and sends tB = b ∗ g to Alice.

I Alice computes a ∗ tB .

I Bob computes b ∗ tA.
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Isogenies

I An isogeny φ : E1 → E2 of elliptic curves is a
(non-constant) morphism and a group homomorphism.

I An isogeny has finite kernel.

I Given a finite subgroup G ⊆ E1(Fq) there is a (unique
separable) isogeny φG : E1 → E2 with kernel G .

I Can compute φG using Vélu.

I We will write E2 = E1/G .

I We focus on separable isogenies, in which case
deg(φ) = # ker(φ).

I End(E ) = {isogenies φ : E → E over Fq} ∪ {0}.
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Class Group Action on Elliptic Curves

I Let E be an ordinary elliptic curve over Fq with
End(E ) ∼= O an order in an imaginary quadratic field.

I Let a be an invertible O-ideal.

I Can define the subgroup

E [a] = {P ∈ E (Fq) : φ(P) = 0 ∀φ ∈ a}.

(Waterhouse 1969)

I There is an isogeny E → E ′ with kernel E [a].
Define a ∗ E to be E ′ = E/E [a].

I a ∗ E depends only on the ideal class of a.

I This gives an action of the ideal class group Cl(O) on the
set of E with End(E ) ∼= O.
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Ordinary Isogeny Graph

Credit: Dustin Moody
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Class Group Actions from Isogenies

I J.-M. Couveignes “Hard Homogeneous Spaces”, preprint
(1997/2006)

I A. Rostovtsev, A. Stolbunov, preprint (2006)

I A. Stolbunov “Constructing public-key cryptographic
schemes based on class group action on a set of isogenous
elliptic curves” (2010)

I Couveignes describes a Diffie-Hellman-type key exchange
based on group actions.
Does not mention post-quantum security.

I Rostovtsev and Stolbunov give key exchange and
encryption.
Suggest isogenies could be post-quantum secure.

I Stolbunov’s thesis describes also mentions signatures.
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Generalised Diffie-Hellman using Group Action

E

a ∗ E

b ∗ E

ab ∗ E
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Computational problems and algorithms

I Given E and E ′ = a ∗ E to determine the ideal (class) a.

I Equivalently: Find any efficiently computable isogeny
φ : E → E ′.

I Classical algorithms due to Galbraith and
Galbraith-Hess-Smart in time Õ(

√
#G ) (bug fixed by

Stolbunov).

I Hidden shift problem: G an abelian group and
f , g : G → S such that, for some s ∈ G , g(x) = f (xs) for
all x ∈ G . Problem: find s.

I Idea: Given (E ,E ′ = a ∗ E ) define f (b) = b ∗ E and
g(b) = b ∗ E ′ = f (ba).
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Quantum algorithms for hidden shift

I Kuperberg (2004, 2011) gave subexponential-time
quantum algorithms for hidden shift. Complexity1

2O(
√

log(#G)).

I For certain groups Kuperberg states the time complexity

is Õ(21.8
√

log(#G)).

I Require massive quantum storage, which may be
unrealistic.

I Regev (2004) gave low quantum storage variant.

1This is taking cost O(1) for the functions f and g .
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Kuperberg for isogenies

I A. Childs, D. Jao and V. Soukharev were the first to
analyse Kuperberg’s algorithm in the isogeny setting.

I Subexponential complexity arises twice in their work:
I Computing a ∗ E requires smoothing the ideal class over a

factor base.2

I Kuperberg itself.

I X. Bonnetain and A. Schrottenloher, “Quantum security analysis of

CSIDH and ordinary isogeny-based schemes”, eprint 2018/537.

Claim there is a quantum algorithm in the isogeny case

with running time Õ(21.8
√

log(#G)), but details are sketchy.
I Also see:

I J.-F. Biasse, A. Iezzi and M. Jacobson, “A note on the security
of CSIDH”, arXiv:1806.03656.

I D. Jao, J. LeGrow, C. Leonardi and L. Ruiz-Lopez, “A
polynomial quantum space attack on CRS and CSIDH”
(MathCrypt 2018)

2This step improved by Biasse, Fieker and Jacobson in ANTS 2016.
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Open problems

I The Kuperberg and Regev algorithms mostly classical and
combinatorial.
Very like the Blum-Kalai-Wasserman (BKW) and Wagner
algorithms.

I Regev (“Quantum computation and lattice problems”,
SIAM J. Comput. 2004) reduces shortest vector problem
in lattice to dihedral hidden subgroup.
Conversely, should be able to improve Kuperberg by using
lattice methods.

I Algorithmic number theorists should study these
algorithms.

I Kuperberg/Regev has only been used as a black box. Are
there further optimisations/approaches/algorithms that
exploit the specific features of isogenies?
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Efficient group action DH protocol

E

a ∗ E

b ∗ E

ab ∗ E
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Efficient group action DH protocol

I Need to sample ideal class as product of powers of small
prime ideals:

a ≡
∏
i

leii

where li are non-principal O-ideals of small prime norm.

I Then compute corresponding isogenies.

I Couveignes and Stolbunov do this by choosing random
small split primes (“Elkies primes”), using modular
polynomials and action of Frobenius on kernels.

I Couveignes: time required “a few hours”.

I Stolbunov: compute a ∗ E in 4 minutes or so.

I De Feo, Kieffer and Smith (eprint 2018/485) discuss
choosing a special curve to make the isogeny
computations faster.
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CSIDH (Castryck, Lange, Martindale, Panny, Renes 2018)

I Let X be the set of isomorphism classes of supersingular
elliptic curves E with j-invariant in Fp.

I All E ∈ X have EndFp(E ) an order in Q(
√
−p).

Here EndFp(E ) = {φ : E → E defined over Fp}.
I C. Delfs and S. D. Galbraith (2016) showed that one can

define class group actions on X .

I CSIDH is an instantiation of group action crypto using
supersingular curves, which gives massive performance
improvements.

I Advantages over Jao-De Feo (SIDH) include:
I No public key validation needed, so can do non-interactive key

exchange.
I Better bandwidth.

I Con: only sub-exponentially quantum secure.
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Open problems

I How close to uniform is the distribution

a ≡
∏
i

leii

over uniform ei ∈ [−B ,B], for fixed small prime ideals li?
(Let’s assume {li} generates the class group.)

I Can small prime factors of #Cl(O) be determined?
Can subgroups of ideal class group be exploited?

I (Boneh): Find other homogeneous spaces/torsors for
group actions that are efficient and secure for crypto.
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Candidate post-quantum pairing
Recent paper by Boneh, Glass, Krashen, Lauter, Sharif,
Silverberg, Tibouchi and Zhandry (eprint 2018/665).

I Fix ordinary E/Fq

I Fact: (a1 ∗ E )× (a2 ∗ E ) ∼= (a1a2 ∗ E )× E as unpolarized
abelian varieties.
(Result holds more generally for n terms; see Kani 2011.)

I This is essentially a bilinear pairing (resp. multilinear
map).

I Not used for key exchange, but other more complex
protocols.

I Open problem: To find a computable invariant of the
isomorphism class.

I Application: Algorithm to solve the decisional
Diffie-Hellman problem for class group actions in the
ordinary case (but not the supersingular case).
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Jao and De Feo key exchange (SIDH)

I D. Jao and L. De Feo, Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies
(2011)

I Different use of supersigular curves.

I Best algorithm to solve the isogeny problem is
exponential-time.

I I won’t explain in this talk.
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SIKE submission to NIST PQ Standardisation

I SIKE = Supersingular Isogeny Key Exchange.

I Submission to the NIST standardization process on
post-quantum cryptography.

I Authors: Jao, Azarderakhsh, Campagna, Costello, De Feo,
Hess, Jalali, Koziel, LaMacchia, Longa, Naehrig, Renes,
Soukharev and Urbanik.

I Submission contains specification of an IND-CCA KEM.

I http://sike.org/

I Advantage over lattice crypto: very short ciphertexts.
CSIDH is even better.
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Public Key Signatures
I L. De Feo and S. Galbraith “SeaSign: Compact isogeny

signatures from class group actions”, eprint 2018/824.
I Public key: E and EA = a ∗ E where

a ≡
∏
i

leii

and li ideals of small prime norm, |ei | ≤ B .

I Signer generates random ideals bk =
∏n

i=1 l
fk,i
i for

1 ≤ k ≤ t and computes Ek = bk ∗ E .
I Compute H(j(E1), . . . , j(Et),message) where H is a

cryptographic hash function with t-bit output b1, . . . , bt .
I If bk = 0 signature includes fk = (fk,1, . . . , fk,n) and if
bk = 1 it includes

fk − e = (fk,1 − e1, . . . , fk,n − en).

I Use Lyubashevsky’s “Fiat-Shamir with aborts”.
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Today
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The future of supersingular elliptic curves
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Conclusion

I Elliptic curve crypto is still very active after more than 30
years, and supersingular elliptic curves have been a major
character in the drama.

I There are (still) plenty of good problems for arithmetic
geometers and algorithmic number theorists to study.

I I’m happy to discuss these problems with you during the
workshop.
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Thank You
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