
Algorithms for the Elliptic Curve Discrete Logarithm and the
Approximate Common Divisor Problem

Shishay Welay Gebregiyorgis

A Thesis Submitted in Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in

Mathematics

The University of Auckland

January 2016

Abstract

Public key cryptosystems such as Diffie-Hellman key exchange and homomorphic encryption over the
integers are based on the assumption that the Discrete Logarithm Problem (DLP) and the Approximate
Common Divisor (ACD) problem are hard respectively. These computational assumptions can be tested by
developing improved algorithms to solve them.

The DLP for elliptic curves defined over certain finite fields is believed to be hard. The best current
algorithm for this problem is Pollard rho. The most promising new idea for attacking the DLP over these
curves is the index calculus algorithm, since it solves the DLP for finite fields in subexponential time. It is
important to understand this class of algorithms. We study the index calculus algorithm based on summation
polynomials. This reduces the DLP to solving systems of multivariate polynomial equations. We explain
recent research on exploiting symmetries arising from points of small order. The use of such symmetries
can be used to speed up solving the system of polynomial equations, and hence speed up the algorithm.

We give an improved index calculus algorithm for solving the DLP for binary elliptic curves. Despite our
improved ideas, our experiments suggest that Pollard rho is still the best algorithm for the DLP in practice.
We discuss and analyse a new idea called the “splitting technique”, which does not make use of symmetries.
We finally suggest a new definition of the factor base to bring the probability of finding a relation close to 1.

To extend the notion of symmetries we investigate the use of an automorphism of elliptic curves defined
over a field of characteristic 3 to speed up the index calculus algorithm. Our finding is that an automorphism
speeds up the algorithm, but not to the extent that we would wish.

Finally we review, compare and precisely analyse some existing algorithms to solve the ACD problem.
Our experiments show that the Cohn-Heninger algorithm is slower than the orthogonal lattice based ap-
proach. We propose a preprocessing of the ACD instances to speed up these algorithms. We explain that the
preprocessing does not seem to threaten the ACD problem in practice.

Acknowledgements

I like to thank to my PhD supervisor Steven Galbraith for supporting me during my three years stay in
the University of Auckland. He did not only supervise me but also he taught me how to be an independent
self confident researcher. Above all, special appreciation goes to him for our collaborative work in my first
published paper on the results in Chapter 3.

I also like to thank Arkadii Slinko, Ben Martin, Igor Klep for their comments and suggestions.

My work has been supported by the University of Auckland. The University of Auckland did not only
provide me materials needed for my PhD program but also for awarding me a University of Auckland
Doctoral Scholarship. So I really like to thank to all staff in this great University.

Finally huge thanks goes to my family for supporting me in all ways. All the work is dedicated to my
amazing family.

Contents

1 Cryptography and Computational Assumptions 3
1.1 Cryptography . 4
1.2 The integer factorization problem and RSA cryptosystem 5
1.3 Integer factorization algorithms . 6

1.3.1 Pollard p− 1 algorithm . 6
1.3.2 The elliptic curve factorization method . 7
1.3.3 The quadratic sieve factorization method . 7

1.4 The discrete logarithm problem and Elgamal cryptosystem 8
1.5 Algorithms for solving the discrete logarithm problem . 10

1.5.1 The baby-step-giant-step algorithm . 10
1.5.2 The Pohlig-Hellman algorithm . 10
1.5.3 The Pollard rho algorithm . 11
1.5.4 The index calculus method . 11

2 Elliptic Curves and Summation Polynomials 13
2.1 Computational algebraic geometry . 14

2.1.1 Ideals and affine varieties . 14
2.1.2 Gröbner basis . 16
2.1.3 Invariant theory . 18
2.1.4 Solving polynomial systems with symmetries using Gröbner basis 20

2.2 Elliptic curves . 22
2.2.1 Elliptic curve definition . 22
2.2.2 Elliptic curve representation . 25
2.2.3 The elliptic curve discrete logarithm problem (ECDLP) 27

2.3 Summation polynomials . 30
2.3.1 Summation polynomials definition . 31
2.3.2 Weil descent of an elliptic curve . 31
2.3.3 The index calculus algorithm . 32
2.3.4 Resolution of polynomial systems using symmetries 38

3 Index Calculus Algorithm to Solve the DLP for Binary Edwards Curve 40
3.1 Summation polynomials of binary Edwards curve . 41

3.1.1 Factor base definition . 43
3.1.2 Weil descent of binary Edwards curve . 44

3.2 Symmetries to speed up resolution of polynomial systems 45

1

3.2.1 The action of symmetric group . 45
3.2.2 The action of a point of order 2 . 45
3.2.3 The action of points of order 4 . 46

3.3 Index calculus algorithm . 47
3.4 Breaking symmetry in the factor base . 50
3.5 Gröbner basis versus SAT solvers comparison . 51
3.6 Experimental results . 52
3.7 Splitting method to solve DLP for binary curves . 57

4 The DLP for Supersingular Ternary Curves 60
4.1 Elliptic curve over a field of characteristic three . 60
4.2 Automorphisms and resolution of point decomposition problem 61
4.3 Invariant rings under the automorphism and symmetric groups 62

5 The Approximate Common Divisor Problem and Lattices 65
5.1 Lattices and computational assumptions . 66

5.1.1 Algorithms to solve CVP and SVP . 68
5.1.2 Solving Knapsack problem . 70

5.2 Algorithms to solve the approximate common divisor problem 71
5.2.1 Exhaustive search . 73
5.2.2 Simultaneous Diophantine approximation . 74
5.2.3 Orthogonal vectors to common divisors (NS-Approach) 76
5.2.4 Orthogonal vectors to error terms (NS*-Approach) 80
5.2.5 Multivariate polynomial equations method (CH-Approach) 82

5.3 Comparison of algorithms for the ACD problem . 85
5.3.1 Experimental observation . 87

5.4 Pre-processing of the ACD samples . 88

2

Chapter 1

Cryptography and Computational
Assumptions

Contents
1.1 Cryptography . 4
1.2 The integer factorization problem and RSA cryptosystem 5
1.3 Integer factorization algorithms . 6

1.3.1 Pollard p− 1 algorithm . 6
1.3.2 The elliptic curve factorization method . 7
1.3.3 The quadratic sieve factorization method . 7

1.4 The discrete logarithm problem and Elgamal cryptosystem 8
1.5 Algorithms for solving the discrete logarithm problem 10

1.5.1 The baby-step-giant-step algorithm . 10
1.5.2 The Pohlig-Hellman algorithm . 10
1.5.3 The Pollard rho algorithm . 11
1.5.4 The index calculus method . 11

Secure cryptosystems are built using computational problems that are believed to be hard. The RSA
and Diffie-Hellman key exchange are based on the assumption that the integer factorization and discrete
logarithm problems are hard respectively. If we can break the underlying assumption, then the cryptosystem
is not secure any more. In this regard, we are interested in trying to solve the underlying hard computational
problems of cryptosystems. If the computational problem is intrinsically easy, we can provide an algorithm
to solve the problem in polynomial time. If however the computational problem is intrinsically difficult,
we would wish to show that there is no algorithm that solves the problem. The lack of proof showing that
there is no efficient algorithm to solve the underlying hard computational problems in many cryptosytems
is our motivation for our research. We test computational assumptions by developing improved algorithms
to solve them. We give a summary of the existing algorithms to solve the integer factorization and discrete
logarithm problems.

3

1.1 Cryptography

Cryptography deals with securing communication channels, electronic transactions, sensitive data and
other critical information such as medical records. It is concerned with designing a cyptosystem or a cryp-
tographic system that is capable of providing services likes confidentiality, authenticity, integrity and non-
repudiation. By confidentiality we mean that a cryptosystem is intended to allow access to sensitive data
or information only to authorized users. Authenticity refers to the ability of a cryptosystem to validate the
source of data origin. Integrity refers to the assurance of a cryptosystem that a message was not modified in
transit intentionally or unintentionally through insertions, deletion, or modification. Non-repudation refers
to the ability of the cryptosystem to provide evidence in case a dispute arises by a sender claiming that
he/she did not send the data.

Nowadays, our daily secure digital communications are involving a cryptosystem. For example in
cellular communications, internet and browsers. More interestingly, the heart of the digital currency Bit-
coin [Nak09] is a cryptosystem. So cryptography plays a great role in our daily lives.

There are two branches of cryptography, namely symmetric and asymmetric. Symmetric cryptography
deals with designing cryptosystems (encryption functions, cryptographic hash functions, message authenti-
cation codes etc.) based on traditional design methodologies under the assumption that a shared key, which
is an essential part of a cryptosystem, is available between communicating parties. A symmetric cryptosys-
tem is composed of two transformation functions, an encryption Ek and a decryption function Dk. The
encryption function Ek takes a message m and a key k and produces a ciphertext c. The decryption func-
tion does the inverse, that is it takes a ciphertext c and a key k and recovers the original message m. The
two functions are assumed to be available publicly. If two communicating parties Alice and Bob want to
communicate securely under this cryptosystem, they need to agree on a common key K beforehand in a
safe way. If the key k is compromised then the cryptosystem gives no security. The main drawback of A
symmetric cryptography is key management and distribution.

Asymmetric cryptography, known as public key cryptography, uses hard computational problems to
design a cryptosystem, which allows two or more parties to communicate securely over unsecured chan-
nels without the need for prior key agreement. There are several functionalities provided by public key
cryptography such as encryption, signatures, key exchange and identification services.

In public key cryptography, two keys are generated. A private key sk and a public key pk. Every user
will have two keys. The private key is kept secret whereas the public key is published in a directory so that
any one else has access to it. The computational assumption is that given the public key pk, it is hard to
determine the private key sk.

If Alice wants to send a sensitive message to Bob over an insecure channel, Alice obtains the public key
pk of Bob and uses it to encrypt the message. Bob upon receiving the encrypted message uses his private key
sk to decrypt the message. We require the encryption function to be easily computable but hard to invert.
Functions which are easy to compute but hard to invert are called one-way functions.

Definition 1.1.1. (One-way functions) Let k be a security parameter and n be a function of k. Let f be
f : {0, 1}∗ 7→ {0, 1}∗ . Then f is a one-way function if

1. f is easy to compute. For all n and x ∈ {0, 1}n, there is a deterministic polynomial time algorithm
feval such that feval(x) = f(x).

2. f is hard to invert. For all probabilistic polynomial time algorithms A,

Pr
[
x← {0, 1}n, y = f(x), x′ ← A(1n, y) | f(x′) = y

]
<

1

2k
.

4

In addition to the one-wayness property of the encryption function, we also require Bob, who posses the
private key sk to decrypt the message. So we allow the decryption to be possible using a trapdoor, a secret
information that allows to easily invert the encryption function. Such functions are called one-way trapdoor
functions.

These one-way trapdoor functions are the building blocks of modern cryptosystems based on computa-
tional number theoretic assumptions such as the integer factorization and discrete logarithm problems.

1.2 The integer factorization problem and RSA cryptosystem

Definition 1.2.1. (Integer Factorization Problem) Let N be a positive composite integer. The integer fac-
torization problem is to find the prime factorization of N and write N as

N =

k∏
i=1

peii ,

where ei ≥ 1 and the primes pi are pair-wise co-prime.

The integer factorization problem is a well-studied problem and it is one of the number theoretic com-
putational problems believed to be a candidate for one-way function. The RSA [RSA78] public key cryp-
tosystem is based on the intractability assumption of factoring a large composite integer N = pq, where p
and q are two distinct primes. The integer N is called modulus.

The “naive” RSA cryptosystem is composed of the following algorithmic functions (See Chapter 24
Section 1 page 486 of [Gal12]).

KeyGen(k): On input a security parameter k, the probabilistic polynomial time key generation algorithm
KeyGen(k) generates two distinct primes p and q of size approximately k/2 bits each and sets N = pq. It
chooses a random integer e co-prime to p− 1 and q− 1 such that p, q 6≡ 1 (mod e), and computes d = e−1

(mod λ(N)), where λ(N) = LCM(p − 1, q − 1) is the Carmichael lambda function. The key generation
algorithm then outputs sk = (N, d) as the private key and pk = (N, e) as the public key. Note that LCM
stands for least common multiple.

Encrypt(pk,m): Let P = C = Z∗N be the plaintext and ciphertext spaces. The polynomial time encryption
algorithm Encrypt(pk,m) takes the public key pk, and m ∈ P as input and outputs c = me (mod N),
where c ∈ C is the encryption of the message m.

Decrypt(c, sk): The deterministic polynomial time decryption algorithm Decrypt(c, sk) takes the private
key sk and the cipher text c as input and outputs m = cd (mod N). It is required that
Decrypt(Encrypt(pk,m), sk) = m.

Sign(m, sk): On input the private key parameter sk and a message m. The probabilistic polynomial time
signing algorithm Sign(m, sk) outputs s = md (mod N), a signature of the message m. Note that there
attacks such as a chosen-plaintext and a chosen-ciphertext against this plain signature scheme. An actual
signature algorithm uses padding schemes and hash functions.

Verify(m, s, pk): On input the public key parameter pk, the signature s, and the messagem, the deterministic

5

polynomial time verification algorithm Verify(m, s, pk) computes m̃ ≡ se (mod n) and outputs valid if
m̃ = m otherwise returns invalid.

For encryption algorithm to be fast, it is tempting to take the public key e to be small such as e ∈
{24 +1, 216 +1}. The Rabin cryptosystem is a special type of RSA cryptosystem with e = 2 and the primes
p and q are selected to satisfy p ≡ q ≡ 3 (mod 4) to simplify computations. We refer to Chapter 24 Section
2 page 491 of [Gal12] for details.

To encrypt a message m given the public parameters pk = (N, e), we compute c ≡ me (mod N). The
corresponding private key sk = (N, d) acts as a trapdoor. Where as in the signature scheme, the holder of
the private key parameters signs a message or a document using the private key parameters. One can then
verify that indeed the message or document is signed by who claim to be the legitimate signer.

Definition 1.2.2. (RSA Problem) Let c ≡ me (mod N), where N = pq is a product of two distinct primes.
The RSA problem is to recover m given c and the public key parameters pk = (N, e). In other words, the
RSA problem is computing the eth root modulo N .

If factoring is easy, clearly breaking the RSA cryptosystem is easy too. We factor N to get its two prime
factors p and q, and we compute λ(N) = LCM(p − 1, q − 1). Finally we recover d by computing e−1

(mod λ(N)) using extended euclidean algorithm. So in order for the RSA cryptosystem to be secure, p and
q should be large primes such that it is computational infeasible to factor N with current methods.

1.3 Integer factorization algorithms

1.3.1 Pollard p− 1 algorithm

Definition 1.3.1. (B-Smooth) Let N =
∏r
i=1 p

ei
i be a positive integer, where the pi are distinct primes and

ei ≥ 1. Let B be some positive integer. If pi ≤ B for 1 ≤ i ≤ r, then N is called B-Smooth and if peii ≤ B
for 1 ≤ i ≤ r, then N is called B-Power Smooth.

Let p be a prime divisor of N and B be a smoothness bound. The idea behind the Pollard p − 1
algorithm [Pol74] is if p− 1 is B-Power Smooth, then we can find a non-trivial factor of N . Indeed if p− 1
is B-Power Smooth, then (p− 1) | B!. We refer to Chapter 12 Section 3 of the book [Gal12] and Chapter 5
Section 6 of the book [Sti56] for reference.

Let a ∈ Z/NZ be a random element. Suppose b = a, the Pollard p− 1 algorithm iteratively computes

b← bj (mod N) for 2 ≤ j ≤ B.

At the end of the iteration, we observe that b ≡ aB! (mod N). Since p | N , we have b ≡ aB! (mod p). By
Fermat’s little theorem aB! ≡ 1 (mod p) and hence,

b ≡ aB! ≡ 1 (mod p) =⇒ p | (b− 1).

Since p divides both N and b − 1, with high probability we can find a non-trivial factor d 6= {1, N} by
computing

d = GCD(b− 1, N).

6

Lemma 1.3.2. LetN be an odd composite integer andB be a bound for smoothness. Then the Pollard p−1
factorization algorithm has a total complexity of

O

(
B logB(logN)2 + (logN)3

)
bit operations.

The running time of the Pollard p−1 algorithm is exponential inB. So it is effective for small boundB.
This restricts N to have a prime factor p such that p− 1 has small prime factors. This makes it impractical
for factoring an RSA modulus N .

1.3.2 The elliptic curve factorization method

The elliptic curve factorization method [Len87] uses the same concepts as the Pollard p−1 factorization
algorithm. Instead of working with the group Z∗N as in the Pollard p − 1 factorization algorithm, we work
over an elliptic curve. The requirement that p− 1 is B-Smooth is also relaxed with this method.

Let N = pq where p and q are prime factors, the elliptic curve factorization method proceeds by
randomly choosing x1, y1, and a from the set {2, · · · , N − 1} to form a random elliptic curve E (see
Chapter 2 Section 2.2 for elliptic curve definition)

E : y2z = x3 + axz2 + bz3

over Z/NZ such that b = y2
1 − x3

1 − ax1 (mod N). Note that by the Chinese remainder theorem
E(ZN) ≡ E(Fp)× E(Fq).

We observe that P = (x1 : y1 : 1) is a point on the elliptic curve E. The algorithm sets Q = P and
iteratively computes

Q← [j]Q for 2 ≤ j ≤ B.
At the end of the iteration, we get Q = [B!]P ∈ E(Fp). We hope #E(Fp) to be B-Smooth so that
#E(Fp) | B! which impliesQ will be the identity element (0 : 1 : 0). Since the z coordinate is zero, it must
be the case that p | z. With high probability computing GCD(z,N) gives a non-trivial factor of N , where
GCD stands for greatest common divisor.

Lemma 1.3.3. Let N be an odd composite positive integer and denote by p the smallest prime factor of N .
The elliptic curve factorization method has an asymptotic complexity of

O

(
e(1+o(1))

√
2 ln p ln ln p(logN)2

)
bit operations.

Unlike the Pollard p − 1 algorithm, if the elliptic factorization method fails, we can pick a different
elliptic curve and it is likely that eventually #E(Fp) is B-smooth.

1.3.3 The quadratic sieve factorization method

Let N be an RSA modulus that we like to factor. The idea of the quadratic sieve factorization algo-
rithm [CP05] is based on the observation, if x2 ≡ y2 (mod N) such that x 6= ±y, then GCD(x − y,N)
and GCD(x+ y,N) are non-trivial factors of N . In this case, we have

(x− y)(x+ y) ≡ 0 (mod N) =⇒ N | (x− y)(x+ y).

7

Note that N neither divides x− y nor x+ y as x 6= ±y.
The quadratic sieve factorization method fixes a smoothness bound B and a sieving interval [b

√
Nc −

M, b
√
Nc+M] for some fixed positive integer M . Primes less than or equal to the bound B form a factor

base F .
Define the polynomial Q(x̃) to be Q(x̃) = x̃2 − N (see [Lan01]), then for x1 in the sieving interval,

Q(x1) ≡ x2
1 (mod N). So if we compute Q(x1), Q(x2), · · · , Q(xk) such that Q(xi) is B-Smooth for each

xi in the sieving interval, we have

Q(x1)Q(x2) · · ·Q(xk) ≡ x2
1x

2
2 · · ·x2

k (mod N). (1.1)

To make the left side of equation (1.1) a square, the quadratic sieve factorization method finds a subset
Q(x1), Q(x2), · · · , Q(xr) such that the product Q(x1)Q(x2) · · ·Q(xr) is a square. Let
Q(x1)Q(x2) · · ·Q(xr) = y2 and x = x1x2 · · ·xr . Then

Q(x1)Q(x2) · · ·Q(xr) ≡ x2
1x

2
2 · · ·x2

r (mod N) =⇒ y2 ≡ x2 (mod N).

Determining the subset {Q(x1), Q(x2), · · · , Q(xr)} such that the product is a square can be achieved using
a linear algebra. We collect relations of the form Q(x̃) = x̃2 − N for x̃ in the sieving interval which split
over the factor base completely as Q(x̃) = pe11 p

e2
2 · · · p

ek
k , where pi are primes constituting the factor base

and ei ≥ 0 is the exponent. The relations are written as row vectors with entries ei (mod 2) to finally form a
matrix A. Note if a product of a subset of the set {Q(x1), Q(x2), · · · , Q(xk)} results in an exponent vector
with all even entries, then the product is a perfect square. Thus finding the kernel of the matrix A modulo 2
gives the required set {Q(x1), Q(x2), · · · , Q(xr)}.

To reduce the size of the factor base and hence improve the linear algebra complexity, we can put a
further restriction on the factor base elements. If pi | Q(x̃) then x̃2 ≡ N (mod pi) and so N is a quadratic
residue modulo pi. Choosing the factor base elements such that N is a quadratic residue modulo pi gives a
reduced size.

Lemma 1.3.4. The quadratic sieve factorization algorithm has an asymptotic complexity of

O

(
e(1+o(1))

√
lnN ln lnN (logN)2

)
bit operations.

1.4 The discrete logarithm problem and Elgamal cryptosystem

As with the integer factorization problem, the discrete logarithm problem over finite fields is believed to
be a hard computational problem.

Definition 1.4.1. (DLP) Let (G, .) be a multiplicative group. Let g, h ∈ G. Define 〈g〉 to be

〈g〉 = {gi | 0 ≤ i ≤ r − 1},

where r is the order of g. Given h ∈ 〈g〉, the DLP is to find the unique integer a, 0 ≤ a ≤ r − 1, such that
h ≡ ga. It is denoted as logg h.

8

There are many cryptosystems that make use of the hardness of the discrete logarithm problem. A
popular example is the Elgamal cryptosystem [Elg85] (see also Chapter 6 Section 1 of [Sti56] and Chapter
20 Section 3 of [Gal12]). As in the design motivation of the RSA and Rabin cryptosystems, the principle
behind the design of DLP based cryptosystems is based on the one-way property of the exponentiation
function. Given a, we can compute ga easily using the square-and-multiply algorithm, whereas computing
the inverse (logg h) is a difficult computational problem for appropriate size parameters. Currently a key
length of 224 bits and a group size of 2048 bits is recommended [Gir15].

Let G = Z∗p, where p is a prime. The “naive” Elgamal cryptosystem is composed of the following
algorithms.

KeyGen(k): Let k be a security parameter. On input k, the probabilistic polynomial time key generation
algorithm KeyGen(k) generates a k bit prime p and an element g ∈ Z∗p. It then chooses a random integer
1 < a < p− 1 and sets h ≡ ga (mod p). The key generation algorithm finally outputs sk = (p, g, a) as the
private key and pk = (p, g, h) as the public key.

Encrypt(pk,m): Let P = Z∗p and C = Z∗p × Z∗p be the plaintext and ciphertext spaces respectively. The
probabilistic polynomial time encryption algorithm Encrypt(pk,m) takes the public key pk and a message
m ∈ P as input. It chooses a random integer 1 < b < p− 1 and sets c1 ≡ gb (mod p). It then outputs the
ciphertext pairs c = (c1, c2) ∈ C as the encryption of the message m, where c2 ≡ mhb (mod p).

Decrypt(c, sk): The deterministic polynomial time decryption algorithm Decrypt(c, sk) takes the private
key sk and the cipher text c = (c1, c2) as input and outputs m ≡ c2c

−a
1 (mod p).

Given a ciphertext c = (c1, c2), the Elgamal decryption correctly decrypts. Indeed

m ≡ c2c
−a
1 (mod p)

≡ mhbg−ab (mod p)

≡ mgabg−ab (mod p)

≡ m (mod p).

If we are able to solve the discrete logarithm problem, then the Elgamal cryptosystem is not secure. For
example, given a ciphertext c = (c1, c2), if we can compute logg c1 to recover b, then c2h

−b gives the
message m. We can also recover the private key a by computing logg h from the public key parameter h to
finally recover the message m by computing m ≡ c2c

−a
1 (mod p).

The Diffie-Hellman key exchange protocol [DH76] is another popular cryptosystem that makes use of
the hardness of the DLP over G. Similar to the Elgamal cryptosystem, we will have common public key
parameters p and g. Assume Alice and Bob want to exchange a key K over an insecure channel. Alice
generates a random integer 1 < a < p − 1 and sends ha ≡ ga (mod p) to Bob. And Bob does the same,
he chooses a random integer 1 < b < p − 1 and sends hb ≡ gb (mod p) to Alice. Then Alice and Bob
compute the same key K ≡ hab (mod p) and K ≡ hba (mod p) respectively. The exchanged key K can be
compromised if the Computational Diffie-Hellman (CDH) problem can be solved.

Definition 1.4.2. (CDH) Let G = Z∗p be a multiplicative group. Then the CDH problem is given the triple
(g, ga, gb) elements of G to compute gab.

As in the Elgamal cryptosystem, if we are able to solve the DLP, then clearly the CDH problem can be
solved.

9

1.5 Algorithms for solving the discrete logarithm problem

Let G = F∗p such that G = 〈g〉, where p is a prime. Let h ∈ 〈g〉. The DLP is to find a unique integer
a < p such that h ≡ ga. The problem definition can also be extended to the case when G ⊆ F∗q having a
generator g with order r, where q is a prime power and r = #G. We list some algorithms to solve the DLP
problem.

1.5.1 The baby-step-giant-step algorithm

Let m = d
√
re. Write a in base-m representation as a = im+ j for 0 ≤ i, j ≤ m. The baby-step-giant-

step algorithm [Sha71] is based on the observation gj = ga(g−m)i = h(g−m)i. The algorithm involves two
steps.

The baby-step phase: For 0 ≤ j < m, gj is computed and the values (j, gj) are stored in a list.

The giant-step phase: For 0 ≤ i < m, h(g−m)i is computed and checked for a match in the second entry of
the baby-step stored list.

If a match is found then a = j + im is a solution to the DLP. The baby-step-giant-step is a typical
example of a time/memory tradeoff algorithm. It requires O(

√
r) storage and O(

√
r) arithmetic operations

in G.

1.5.2 The Pohlig-Hellman algorithm

Let the order of g be given as r =
k∏
i=1

peii . The idea of Pohlig-Hellman algorithm [PH78] is based on the

observation of the group homomorphism

φpi(g) = gr/(p
ei
i)

from 〈g〉 to a cyclic subgroup of order pe. Under the homomorphism, we have

φpi(h) ≡ φpi(g)a (mod p
ei
i).

Let g0 have order pe for some e > 1 and let h0 ≡ ga0 (mod r). Observe that a can be written as
a = a0 + a1p + · · · + ae−1p

e−1, where 0 ≤ ai < p. To compute a modulo pe, it is enough to recover
(a0, a1, · · · , ae−1).

Let g1 = gp
e−1

0 . Then hp
e−1

0 = ga01 . So we can recover a0 by trying all possibilities (assuming p is not
large). We can also use other methods such as the baby-step-giant-step algorithm.

To recover a1, first define h1 to be h1 = h0g
−a0
0 = g

a1p+···+ae−1pe−1

0 . Then hp
e−2

1 = ga11 . So we can
recover a1 using the same technique we have recovered a0.

Similarly to recover a2, we define h2 = h1g
−a1p
0 = g

a2p2+···+ae−1pe−1

0 . Then we observe that hp
e−3

2 =
ga21 and a2 can be recovered. We continue to recover all ai this way. So now we know a modulo pe. For
each prime power peii in the factorization of r, compute a modulo peii . Then using the Chinese remainder
theorem, a can be recovered.

10

Lemma 1.5.1. Let g ∈ G has order r. Let B be a bound where r is B−smooth. Then the DLP can be
solved using the Pohlig-Hellman algorithm in

O

(
(log r)2 +B log r

)
group arithmetic operations in G.

1.5.3 The Pollard rho algorithm

To compute logg h, the idea of Pollard rho algorithm [Pol78] is based on finding collisions between two
sequences. Specifically, if we can find (bi, ci, bj , cj) ∈ Z/rZ such that

gbihci = gbjhcj ,

where ci 6≡ cj (mod r), then h = g(bj−bi)(ci−cj)−1 (mod r). So a ≡ (bj − bi)(ci − cj)−1 (mod r) is a
solution to the DLP.

We start by partitioning the group G into three parts S1, S2, S3 such that they are almost equal size.
Define the pseudorandom function f : (〈g〉,Z/rZ,Z/rZ) 7→ (〈g〉,Z/rZ,Z/rZ) as follows

(Xi+1, bi+1, ci+1) = f(Xi, bi, ci) =

(gXi, bi + 1, ci) if Xi ∈ S1

(X2
i , 2bi, 2ci) if Xi ∈ S2

(hXi, bi, ci + 1) if Xi ∈ S3.

Let Xi = gbihci . The starting sequence (Xi, bi, ci) is defined to be (1, 0, 0). Then we generate the next
sequence (Xi+1, bi+1, ci+1) according to f . As G is a finite set, by birthday paradox we expect a collision
Xi = Xj for some 1 ≤ i < j. If this is the case gbihci = gbjhcj . It is then immediate to find a solution to
the DLP.

The DLP in group G can be solved heuristically using the Pollard rho algorithm in O
(
√
r(log r)2

)
group arithmetic operations in G.

1.5.4 The index calculus method

The index calculus method [AD94] is the most effective algorithm to solve the DLP in finite fields
in subexponential running time. The concept is similar to the quadratic sieve factorization method (see
Section 1.3.3). The index calculus method remains our motivation to provide an index calculus algorithm
for solving discrete logarithm problem over binary curves presented in Chapter 3.

Let B be the smoothness bound. We define a factor base F to be the set of primes pi less than B,

F = {p1, p2, · · · , pk} ⊂ G.

The idea of the index calculus method is to find the discrete logarithm of each prime element in the factor
base F with respect to g to finally solve the discrete logarithm problem. It has three stages.

Stage 1: This is called the relation generation stage. Pick a random value k ∈ Z/rZ and compute R ≡ gk.

If R completely factors over the factor base F , that is R =
m∏
i=1

peii , then we have a relation. Taking logs,

11

each relation gives k ≡
#F∑
i=1

ei logg pi (mod r). We store k as column vector and (e1, e2, · · · , e#F) as a

row in a matrix.

Stage 2: This is a linear algebra stage. In this stage we compute the discrete logarithm of each factor
base element with respect to g. If we collect #F independent relations in stage 1, then applying Gaussian
elimination on the full rank matrix gives actual values of the discrete logarithm of the factor base elements
with respect to g. Note that if r is not prime, the Gaussian elimination (over the ring Zr) is not guaranteed
to work.

Stage 3: In this stage we find a relation that includes h. We continuously pick a random value k′ ∈ Z/rZ

until hgk
′

factors over the factor base F . Assume hgk
′

factors over the factor base, hgk
′ ≡

#F∏
i=1

p
e′i
i . Let the

discrete logs of each factor base elements found in stage 2 be given by bi ≡ logg pi. Then a solution to the
DLP is given by

logg h ≡ (

#F∑
i=1

e′ibi)− k′ (mod r).

Lemma 1.5.2. Let G = F∗p such that G = 〈g〉, where p is a large prime. Let h ≡ ga (mod p). The index
calculus algorithm solves logg h in subexponential time given by

O

(
ec(ln p)

1/2(ln ln p)1/2
)

arithmetic group operations in G for some constant c ∈ R greater than zero.

Proof. See pages 301−334 of [Gal12] for sketch of the proof.

12

Chapter 2

Elliptic Curves and Summation Polynomials

Contents
2.1 Computational algebraic geometry . 14

2.1.1 Ideals and affine varieties . 14
2.1.2 Gröbner basis . 16
2.1.3 Invariant theory . 18
2.1.4 Solving polynomial systems with symmetries using Gröbner basis 20

2.2 Elliptic curves . 22
2.2.1 Elliptic curve definition . 22
2.2.2 Elliptic curve representation . 25
2.2.3 The elliptic curve discrete logarithm problem (ECDLP) 27

2.3 Summation polynomials . 30
2.3.1 Summation polynomials definition . 31
2.3.2 Weil descent of an elliptic curve . 31
2.3.3 The index calculus algorithm . 32
2.3.4 Resolution of polynomial systems using symmetries 38

The main goal of this chapter is to explain the state of current research on solving the discrete logarithm
problem using the index calculus algorithm in elliptic curves defined over a field extension Fqn of char-
acteristic greater than three. The main idea of this approach is to translate the ECDLP to the problem of
solving systems of multivariate polynomial equations, and also linear algebra. We explain how symmetries
coming from low order points of curves are used to speed up the index calculus algorithm using summation
polynomials and Weil descent of elliptic curves.

We explore some existing algorithms to solve the elliptic curve discrete logarithm problem. We also
give an overview of some of the mathematical concepts needed for this chapter. Some of the concepts
from algebraic geometry we need to use include ideals and varieties, Gröbner basis, invariant theory and
polynomial system solving.

13

2.1 Computational algebraic geometry

In this section we introduce some concepts from algebraic geometry such as ideals, varieties and Gröbner
basis which are important for our applications. Our goal is to solve the elliptic curve discrete logarithm
problem. We will come to understand that solving the elliptic curve discrete logarithm problem is transferred
to solving a system of multivariate polynomial equations. Gröbner basis algorithms such as the F4 and
F5 are currently the most effective algorithms to solve the latter. The main complexity indicator of these
algorithms is the degree of regularity. We address the degree of regularity as our analysis critically depends
on this value.

Our system of multivariate polynomial equations has high degree. However, there is a natural group
action on it. Invariant theory provides a mechanism to lower the degree. This speeds up the algorithms to
find solutions. So we give an elementary introduction to invariant theory. We also show how to achieve the
degree reduction.

2.1.1 Ideals and affine varieties

Notation: We assume K is a field and K is its algebraic closure. We use x1, x2, · · · , xn as indeterminate
variables in monomial and polynomial expressions. A good reference can be found in [CLO07].

Definition 2.1.1. Let (α1, α2, · · · , αn) ∈ Zn≥0. A monomial m in the variables x1, x2, · · · , xn is a product
of the form

xα1
1 xα2

2 · · ·x
αn
n .

The monomial m can be abbreviated by xα, where

α = (α1, α2, · · · , αn)

is the vector of exponents of the monomial m. The sum of the vector exponents constitutes the total degree

of m. This is denoted as deg(m) = |xα| =
n∑
i=1

αi.

Definition 2.1.2. A polynomial f in the variables x1, x2, · · · , xn with coefficients in K is a finite linear
combination of monomials which can be written in the form∑

α

bαx
α for some bα ∈ K.

The set of all polynomials in the variables x1, x2, . . . , xn with coefficients in K is denoted as
K[x1, x2, · · · , xn]. In the expression of the polynomial f , bα is called the coefficient of the monomial xα.
If bα 6= 0, then bαxα is called a term. The total degree of f , denoted as deg(f), is given by

deg(f) = max{|α| | bα 6= 0}.

A polynomial f is said to be homogenous if all its monomials with non-zero coefficients have the same total
degree.

Definition 2.1.3. Let I ⊂ K[x1, x2, · · · , xn] be a non-empty subset, then I is called an ideal if it satisfies
the following properties:

1. If f, g ∈ I then f + g ∈ I,

14

2. If f ∈ I then for all h ∈ K[x1, x2, · · · , xn] , hf ∈ I.

Let f1, f2, · · · , fk ∈ K[x1, x2, · · · , xn], define 〈f1, f2, · · · , fk〉 to be

〈f1, f2, · · · , fk〉 =

{
k∑
i=1

hifi | hi ∈ K[x1, x2, · · · , xn]

}
.

Then 〈f1, f2, · · · , fk〉 is the ideal generated by f1, f2, · · · , fk.

Theorem 2.1.4. (Hilbert’s Theorem) An ideal I ∈ K[x1, x2, · · · , xn] is finitely generated, that is,
I = 〈f1, f2, · · · , fk〉 for some k.

Definition 2.1.5. Let F = {f1, f2, · · · , fk} ⊂ K[x1, x2, · · · , xn], then the set

V (F) = {(a1, a2, · · · , an) ∈ Kn | ∀ f ∈ F , f(a1, a2, · · · , an) = 0}

is called an affine variety.

Definition 2.1.6. Let V ⊂ Kn be an affine variety, then the set

I(V) = {f ∈ K[x1, x2, · · · , xn] | f(a1, a2, · · · , an) = 0 ∀ (a1, a2, · · · , an) ∈ V }

is an ideal and it is called the ideal of V .

Let I1 = 〈f1, f2, · · · , fk〉, then we observe that I1 ⊂ I(V (I1)). In general we have the following
proposition.

Proposition 2.1.7. Let V,W ⊂ Kn be affine varieties. Then

(i) V ⊂W ⇐⇒ I(V) ⊃ I(W).

(ii) V = W ⇐⇒ I(V) = I(W).

Definition 2.1.8. Let I ⊂ K[x1, x2, · · · , xn] be an ideal. Then the set
√
I = {g ∈ K[x1, x2, · · · , xn] | gm ∈ I for some m ≥ 1}

is called the radical of the ideal I. An ideal I is said to be a radical ideal if
√
I = I.

Definition 2.1.9. Let I ⊂ K[x1, x2, · · · , xn] be an ideal. If #V (I) <∞, then the dimension of the ideal I
is zero.

Definition 2.1.10. Let I ⊂ K[x1, x2, · · · , xn] be an ideal of dimension zero. Then the dimension as a
K−vector space of K[x1, x2, · · · , xn]/I is called the degree of I. We refer to pages 232–236 of [CLO07]
for details.

Proposition 2.1.11. I ⊂ K[x1, x2, · · · , xn] be an ideal of dimension zero with degreeD. Then #V (I) ≤ D
with equality if I is radical. In other words, the degree of I is equal to the number of solutions of I in K
counted with multiplicities.

Proof. See pages 234–236 of [CLO07].

15

2.1.2 Gröbner basis

An ideal has lots of possible sets of generators. Some choices of generators make it easier to understand
the ideal and its properties, and make computational problems easier to solve. A Gröbner basis of an ideal
of multivariate polynomials is one such set of generators. A Gröbner basis depends on a choice of monomial
ordering, so that is the first concept that needs to be defined. In particular, a Gröbner basis with respect to
the lexicographic monomial order can be used to efficiently find points in the algebraic set defined by the
ideal.

Definition 2.1.12. A relation > on Zn≥0 is a monomial ordering if it satisfies the following three properties.

1. > is a total ordering on Zn≥0.

2. If α > β then α+ γ > β + γ, for all {α, β, γ} ⊂ Zn≥0.

3. > is a well-ordering.

Such a relation defines an ordering on {xα|α ∈ Zn≥0} ⊆ K[x1, x2, · · · , xn].

The lexicographic and degree reverse lexicographic monomial orderings are important for our applica-
tion and they are defined as follows.

Definition 2.1.13. Let xα, xβ ∈ K[x1, x2, · · · , xn] be monomials. We define the lexicographic ordering
>lex by xα >lex xβ if and only if the left most non-zero entry of α− β is positive.

Definition 2.1.14. Let xα, xβ ∈ K[x1, x2, · · · , xn] be monomials. We define the graded reverse lexico-
graphic ordering >grlex by xα >grlex xβ if and only if |xα| > |xβ| or |xα| = |xβ| and xα >lex xβ .

We are now in a position to define a Gröbner basis with respect to either of these monomial orderings.
Define the leading term of the polynomial f =

∑
α

bαx
α to be

LT(f) = max> {bαxα | bα 6= 0},

where max> is with respect to the monomial ordering >. The Gröbner basis is defined as follows.

Definition 2.1.15. Let I ⊂ K[x1, x2, · · · , xn] be an ideal. Let LT(I) be the set of leading terms of I with
respect to some fixed ordering. Denote the ideal generated by the elements of LT(I) to be 〈LT(I)〉. Then
the set {g1, g2, · · · , gt} ⊂ I is a Gröbner basis of the ideal I if

〈LT(g1),LT(g2), · · · ,LT(gt)〉 = 〈LT(I)〉.

The set g = {g1, g2, · · · , gt} ⊂ I is a Gröbner basis if the leading term of every non-zero element in
I is divisible by some leading term of g. By Hilbert’s theorem, one can show that a Gröbner basis always
exists for an ideal I and I = 〈g1, g2, · · · , gt〉, which implies V (I) = V (g).

Given an ideal I = 〈f1, f2, · · · , fs〉, we can compute its Gröbner basis using the Buchberger [Buc06],
F4 [Fau99] and F5 [Fau02] algorithms. The Buchberger algorithm idea is to extend the generating set for
I to a Gröbner basis by adding new polynomials in I. The algorithm iteratively cancels the leading terms
of I and introduces possible new ones, by considering all pairs in the generating set, using the so called
Buchberger’s criterion. To define the Buchberger’s criterion we first define the S − polynomial of two
polynomials f and g.

16

Definition 2.1.16. Let f, g ∈ K[x1, x2, · · · , xn] be non-zero polynomials. Let LT(f) = axα and LT(g) =
bxβ for some a, b ∈ K. Assume xγ is the least common multiple of xα and xβ , xγ = lcm(xα, xβ). Then
the S− polynomial of f and g, written as S(f, g), is the polynomial obtained by a linear combination of f
and g given as

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g·

We observe that S(f, g) ∈ 〈f, g〉. Let G = {g1, g2, · · · , gt} ⊂ I. Define S(gi, gj)
G

, for all pairs i 6= j,
to be the remainder of S(f, g) on division by G. Then Buchberger’s criterion states that G is a Gröbner
basis if and only if S(gi, gj)

G
= 0, for all pairs i 6= j.

The F4 [Fau99] and F5 [Fau02] are more recent algorithms for computing a Gröbner basis of a given
ideal I. These algorithms involve performing linear algebra on the so called Macaulay matrix [Mac16,
Mac27] as studied by Lazard [Laz83].

Definition 2.1.17. (Macaulay matrix) Let F = {f1, f2, · · · , fl} ⊂ K[x1, x2, · · · , xn] be a set of polynomi-
als of degrees less than or equal to d. Consider the set of all monomials T of degree less than or equal to d
sorted in descending order for a fixed monomial ordering. The Macaulay matrix Md is the matrix obtained
by multiplying each polynomial fi ∈ F by all monomials tj ∈ T such that deg(fi) + deg(tj) ≤ d. The
coefficients of the product tjfi constitute the rows of the Macaulay matrix Md and the columns correspond
to the monomials.

Applying Gaussian elimination on the Macaulay matrix Md eliminates the largest monomial terms and
produces new polynomials which are algebraic combinations of the original polynomials.

The F4 and F5 Gröbner basis algorithms successively construct a Macaulay matrix Md of increasing
size until a Gröbner basis is reached. The complexity of these two algorithms is determined by the cost
of the Gaussian elimination. In particular the highest degree d reached during the creation of the Macaulay
matricesMd determines the cost of Gaussian elimination (See [BFS04]). The highest such degree d is called
the degree of regularity and denoted as dreg.

Theorem 2.1.18. [FGHR13] Let dreg be the degree of regularity and let n be the number of variables of
a zero-dimensional system. Then the arithmetic complexity of the F4 and F5 Gröbner basis algorithms is
given by

O

((
n+ dreg − 1

dreg

)ω)
field operations, where ω < 3 is the linear algebra constant.

The number of monomials determine the size of Md with the largest size given by
(n+dreg−1

dreg
)
. For

large n compared with dreg, the number of monomials is approximated to ndreg. The time and memory
complexity of computing a Gröbner basis using the F4 or F5 algorithms is then approximated to nωdreg and
n

2dreg respectively.
The F4 and F5 Gröbner basis algorithms are optimized to work with graded reverse lexicographic or-

dering. Change of ordering algorithms such as FGLM [FGLM93] and Gröbner walk [CKM97] are used to
convert a Gröbner basis of a given order to other orderings. For our application, the FGLM algorithm is used
to change a Gröbner basis in graded reverse lexicographic ordering into a Gröbner basis in lexicographic
ordering. The lexicographic ordering is suitable for recovering solutions of zero dimensional polynomial
systems (see Section 2.1.4).

17

Theorem 2.1.19. [FGLM93] Let G be a Gröbner basis with respect to graded reverse lexicographic or-
dering in n variables of a zero-dimensional system. Let D be the degree of the ideal generated by G,
equivalently the number of solutions counted with multiplicities over the algebraic closure of K. Then the
complexity of computing a Gröbner basis G̃ with respect to lexicographic ordering is given by

O

(
nD3

)
field operations.

2.1.3 Invariant theory

In our applications, we will have a finite group acting on our system of multivariate polynomial equa-
tions. These systems of multivariate polynomial equations are invariant under the action of the finite group.
We need to compute the generators of the invariant ring under the group in consideration. Thus we study
invariant theory. The motivation is that re-writing our system of equations in terms of invariants reduces the
complexity of solving it.

Definition 2.1.20. Let GL(n,K) be the set of all invertible n × n matrices with entries in K. Let G ⊂
GL(n,K) be a finite group. Suppose G acts on Kn by the usual matrix multiplication. Let
f ∈ K[x1, x2, · · · , xn] and σ ∈ G. Then we define σ.f ∈ K[x1, x2, · · · , xn] by

(σ.f)(y) = f(σ−1y) for all y = (x1, x2, · · · , xn) ∈ Kn.

This defines an action of G on K[x1, x2, · · · , xn]. Moreover a polynomial f ∈ K[x1, x2, · · · , xn] is in-
variant under G if for all σ ∈ G, it holds σ.f = f . The set of all invariant polynomials under G is given
by

K[x1, x2, · · · , xn]G =

{
f ∈ K[x1, x2, · · · , xn] | σ.f = f for all σ ∈ G

}
.

By Hilbert’s theorem, the invariant ring K[x1, x2, · · · , xn]G is finitely generated. Its Hironaka decom-
position (see Chapter 2 of [DK02]) is given by

K[x1, x2, . . . , xn]G =
t⊕
i=1

ηiK[θ1, θ2, · · · , θn],

where θ1, θ2, · · · , θn, η1, η2, · · · , ηt ∈ K[x1, x2, · · · , xn]G. We call {θ1, θ2, · · · , θn} an algebraically in-
dependent set of primary invariants and the set {η1, η2, · · · , ηt} is called an algebraically dependent set of
secondary invariants.

Definition 2.1.21. Let H ⊂ Kn be a hyperplane. Then a pseudo-reflection is a linear automorphism of Kn

that is not the identity map but leavesH point-wise invariant. A groupG ⊂ GL(n,K) is a pseudo-reflection
group if it is generated by pseudo-reflections.

IfG is a pseudo-reflection group [Kan01], the secondary invariants are reduced to 1 (see [Che55, ST54]).
Thus the invariant ring of G is a polynomial algebra,

K[x1, x2, · · · , xn]G = K[θ1, θ2, · · · , θn].

18

This gives an isomorphism between K[x1, x2, · · · , xn]G and K[y1, y2, · · · , yn] in the indeterminate vari-
ables yi. Under this isomorphism, a polynomial f ∈ K[y1, y2, · · · , yn] is mapped to f(θ1, θ2, · · · , θn) ∈
K[x1, x2, · · · , xn]G.

Invariant theory deals with finding the generators of the invariant ring K[x1, x2, · · · , xn]G under the
group G. If the characteristic of K does not divide the order of G, then averaging over the whole group
G using the Reynolds operator is a suitable procedure for finding the generators of the invariant ring
K[x1, x2, · · · , xn]G.

Definition 2.1.22. Let G ⊂ GL(n,K) be a finite group. The Reynolds operator of G is the map RG :
K[x1, x2, · · · , xn]→ K[x1, x2, · · · , xn] given by

RG(f)(x) =
1

|G|
∑
σ∈G

f(σ.x).

Consider the symmetric group Sn. A polynomial f ∈ K[x1, x2, · · · , xn] is symmetric if it is invariant
under the permutation of its variables. Let f be symmetric then f ∈ K[x1, x2, · · · , xn]Sn . The invariant
ring of Sn is generated by the symmetric invariant polynomials

e1 = x1 + x2 + · · ·+ xn,
e2 = x1x2 + x1x3 + · · ·xn−1xn,

...
en = x1x2x3 · · ·xn.

(2.1)

So we have K[x1, x2, · · · , xn]Sn = K[e1, e2, · · · , en]. We observe that the symmetric group Sn is a pseudo-
reflection group (see Definition 2.1.21).

Apart from the invariant rings under the symmetric group Sn, we will consider invariant rings under the
dihedral coxeter group Dn having order 2n−1n! given by the semi-direct product

Dn = (Z/2Z)n−1 o Sn.

In [FGHR13], the action of Dn on a polynomial f ∈ K[x1, x2, · · · , xn]Dn arises as a permutation and an
even number of sign changes in the variables due to the actions of Sn and (Z/2Z)n−1 respectively. The
invariant ring of Dn (as shown in [FGHR13]) is given by

K[x1, x2, · · · , xn]Dn = K[p2, p4, · · · p2(n−1), en] or K[x1, x2, · · · , xn]Dn = K[s1, s2, · · · , sn−1, en],

where

pi =

n∑
k=1

xik , si =
∑

1≤k1<···ki≤n

i∏
j=1

x2
kj
, and en = x1x2 · · ·xn. (2.2)

Note that the si, pi, en are the ith elementary symmetric polynomials in the variables x2
1, x

2
2, · · · , x2

n, the ith

power sum and the nth elementary symmetric polynomial in the variables x1, x2, · · · , xn respectively. The
secondary invariants are reduced to 1. Thus we observe the dihedral coxeter groupDn is a pseudo-reflection
group (see Definition 2.1.21).

The generators of the invariant ring K[x1, x2, · · · , xn]Sn and K[x1, x2, · · · , xn]Dn are used in [Gau09]
and in [FGHR13] respectively to lower the cost of polynomial system solving. The action Dn on a poly-
nomial f ∈ K[x1, x2, · · · , xn]Dn , where the characteristic of K is 2, will arise naturally in our applications

19

(see Section 3.2.3). More precisely the action of Sn arises as a permutation of variables and the action of
(Z/2Z)n−1 is from an even number of additions of 1 in the variables.

In general when the characteristic of K divides the order G, finding the generators of the invariant
ring K[x1, x2, · · · , xn]G is cumbersome. For the case when the characteristic of K is 3, we will adopt an
ad hoc technique to find the generators of an invariant ring under G using the Singular computer algebra
system [DGPS15].

2.1.4 Solving polynomial systems with symmetries using Gröbner basis

Definition 2.1.23. Let F be a zero dimensional system given by a set of polynomial equations

F = {f1, f2, · · · , fm}, where fi ∈ K[x1, x2, · · · , xn].

Then finding the zeroes of F , (z1, z3, · · · , zn) ∈ Kn
such that

f1(z1, z2, · · · , zm) = 0

f2(z1, z2, · · · , zm) = 0
...

fm(z1, z2, · · · , zm) = 0

is called the polynomial systems solving problem.

We solve a given polynomial system using the F4 or F5 Gröbner basis algorithm. Computing Gröbner
basis in degree reverse lexicographic ordering is fast compared to computing Gröbner basis in lexicographic
ordering since the latter involves elimination of variables and the resulting Gröbner basis set is relatively
larger than the former. On the other hand, Gröbner basis in lexicographic ordering is suitable for retrieving
the solutions of polynomial systems. Indeed, Gröbner basis in lexicographic ordering produces a triangular
form

h1,1(x1, x2, · · · , xn), · · · , h1,j1(x1, x2, · · · , xn),

h2,1(x2, · · · , xn), · · · , h2,j2(x2, · · · , xn),
...
hn−1,1(xn−1, xn), · · · , hn−1,j1(xn−1, xn),

hn(xn),

for some ji, where 1 ≤ i ≤ n− 1. The solutions can be read off from this triangular form by first factoring
the univariate polynomial hn(xn) using the Berlekamp algorithm [GG02] and then getting the values of xn.
Then by back substitution, the entire solution can be recovered.

So the solving strategy includes two steps. First a Gröbner basis in degree reverse ordering is computed
using the F4 or F5 algorithms (see Theorem 2.1.18) and then a lexicographic ordering Gröbner basis is
computed using the FGLM (see Theorem 2.1.19) change of ordering algorithm whose complexity depends
on the number of solutions.

Theorem 2.1.24. (Bezout’s theorem [Wal78]) Let F = {f1, f2, · · · , fm} ⊂ K[x1, x2, · · · , xn] be a zero

dimensional polynomial system such that deg(fi) = di for 1 ≤ i ≤ m. Then F has at most
m∏
i=1

di solutions

in the algebraic closure K counting with multiplicities.

20

If the number of solutions to the system of equations is small (for example when the system is overdeter-
mined), the cost of solving the polynomial system is dictated by the complexity of the F4 or F5 algorithms.
In fact the change of ordering FGLM algorithm is not needed. The Gröbner basis obtained in both orderings
will be the same.

To effectively determine the complexity of F4 or F5, an accurate estimate of the degree of regular-
ity (see Section 2.1.2) is needed. The degree of regularity of random polynomial system [Bar04] F =
{f1, f2, · · · , fm} ⊂ K[x1, x2, · · · , xn] is given by

1 +
m∑
i=1

(deg(fi)− 1). (2.3)

The exact estimate of the degree of regularity of polynomial systems having some structure (overdetermined
systems, sparse systems, systems having symmetries) is an open problem. Experimental evidence [PQ12] on
binary systems shows that for most systems the first fall degree (see [FJ03, DG10]), a degree fall that occurs
during Gröbner basis computation, is approximately equal to the degree of regularity. Thus the degree of
regularity can be approximated by the first fall degree.

Definition 2.1.25. Let F = {f1, f2, · · · , fm} ⊂ K[x1, x2, · · · , xn] be a polynomial system. The first fall
degree of F is the smallest degree dff such that there exists polynomials gi ∈ K[x1, x2, · · · , xn] with the

property maxi(deg(gi) + deg(fi)) = dff satisfying 0 < deg(
m∑
i=1

gifi) < dff .

The approximation of the degree of regularity by the first fall degree can be explained by observing how
a Gröbner basis is obtained by the F4 and F5 algorithms. Note that the F4 and F5 Gröbner basis algorithms
first fix a maximal degree d occurring in our system of polynomial equations to create a Macaulay matrix
Md (see Definition 2.1.17). Then, an initial Gaussian elimination is applied on Md. If new low degree
polynomials are obtained, they will be multiplied by all monomials and they are added to Md. A Gaussian
elimination is again applied onMd; and the process is repeated until Gröbner basis is reached . If no new low
degree polynomials are obtained, the maximal degree d is increased to allow new equations of low degree
polynomials to be added through the Gaussian elimination process and the iteration continues until Gröbner
basis is reached. Thus when a degree fall occurs during the Gröbner basis computation, the maximal degree
d can be approximated by the first fall degree.

We now explain why symmetries can be used to reduce the complexity of polynomial system solving.
Let F = {f1, f2, · · · , fm} ⊂ K[x1, x2, · · · , xn]G, where G is a finite group. Then the ideal I = 〈F〉 is
invariant under the action of G. The variety V (F) = V (I) is also invariant under the action of G on Kn.
Define the orbit space of the group G as follows.

Definition 2.1.26. (See [FR09]) Let a = (a1, · · · , an) ∈ Kn be a point. The orbit of a under the group G
is the set {σ.a | σ ∈ G} and it is called the G−orbit of a. The set of all G−orbits of Kn, denoted as Kn/G,
is called the orbit space of G.

Definition 2.1.27. Let I = 〈F〉. Then the relative orbit variety, denoted as V (I)/G, is the set of points
whose G−orbits are zeroes of I.

The polynomial system F admits a polynomial change of variables using the generators of the invariant
ring K[x1, x2, · · · , xn]G [FGHR13]. WriteF using the primary invariants θ1, · · · , θn ∈ K[x1, x2, · · · , xn]G.
So for each polynomial fi ∈ F , we have fi = gi(θ1, θ2, · · · , θn) for some g1, g2, · · · , gm ∈ K[y1, y2, · · · , yn].

21

Instead of solving F directly, we solve the system G = {g1, g2, · · · , gm}. In other words, we compute a
Gröbner basis of the ideal of G having variety V (I)/G instead of the original ideal I having variety V (I).
We now explain how to reconstruct V (I) from V (I)/G. Let ỹ = (ỹ1, ỹ2, · · · , ỹn) ∈ V (I)/G, then a
solution to the system of equations

{θ1(x1, · · · , xn)− ỹ1, θ2(x1, · · · , xn)− ỹ2, · · · , θn(x1, · · · , xn)− ỹn}

gives a point in V (I) which is in the orbit ỹ.
From the discussion above we observe that the solutions of the polynomial system G are the orbits of

V (I) under the action of G. The number of solutions of the ideal of G is less by a factor of |G| than the
number of solutions of the ideal generated by the original system F (equivalently the degrees of the ideals).
Thus a reduction in the complexity of the FGLM (see Theorem 2.1.19) by a factor of (|G|)3.

We use this idea to speed up the index calculus algorithm using symmetries coming from low order
points of elliptic curves to solve polynomial system of equations obtained by applying Weil descent on
summation polynomials of elliptic curves.

Another approach to solve polynomial systems defined over fields of characteristic 2 is to use SAT
solvers. We compare Gröbner basis and SAT solvers to solve polynomial systems defined over F2 in Chap-
ter 3 Section 3.5.

2.2 Elliptic curves

In this section we formally state the elliptic curve discrete logarithm problem. We recall the generic
algorithms to solve the elliptic curve discrete logarithm problem in exponential time. We also give emphasis
that the discrete logarithm problem is easy for certain types of curves which can be avoided by selecting
appropriate elliptic curve parameters.

We know that the discrete logarithm problem in the case of finite fields can solved in subexponential
time using the index calculus algorithm. The main aim of our research is to have a similar subexponential
time algorithm for solving the elliptic curve discrete logarithm problem. We will show that the elliptic curve
discrete logarithm problem is transferred to solving a system of multivariate polynomial equations. In this
section we study elliptic curve representations such as twisted Edwards curves and binary Edwards curves.
The reason for studying these curve equations is that addition by points of order 2 and 4 are easily expressed
in terms of the curve coordinates. Hence we can consider larger group actions on the corresponding system
of multivariate polynomial equations which ultimately speeds up their resolution of solving them.

2.2.1 Elliptic curve definition

Definition 2.2.1. Let K be a field. An elliptic curve over K is defined by a non-singular affine Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.4)

where a1, a2, a3, a4, a6 ∈ K.

By non-singular we mean the curve is smooth: ∂E∂x and ∂E
∂y do not vanish simultaneously. In other words

22

the system of equations
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

a1y − 3x2 − 2a2x− a4 = 0

2y + a1x+ a3 = 0

has no common solutions in K.

By applying a change of coordinates, the elliptic curve E can be transformed into a short Weierstrass
form.

Theorem 2.2.2. Let E be the elliptic curve given in (2.4). Assume Ẽ is another elliptic curve given by

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

Then E and Ẽ are said to be isomorphic over K if there exists u, r, s, t ∈ K such that the change of
coordinates

(x, y) 7→ (u2x+ r, u3y + u2sx+ t)

transforms the curve E to Ẽ.

Proof. See Chapter 3 Section 3 of [Sil09].

Corollary 2.2.3. (Short Weierstrass form) Assume char(K) 6∈ {2, 3}. Let E be an elliptic curve given by
the Weierstrass equation as in (2.4). Then there exist a, b ∈ K such that the elliptic curve Ẽ given by

Ẽ : y2 = x3 + ax+ b

is isomorphic to E.

Proof. Let ỹ = y+ (a1x+ a3)/2. Since char(K) 6= 2, completing the square method on the left side of the
curve equation (2.4) gives

ỹ = x3 +
d2

4
x2 +

d4

2
x+

d6

4
, (2.5)

where d2 = a2
1 + 4a2, d4 = 2a4 + a1a3 and d6 = a2

3 + 4a6. As char(K) 6= 3, substituting x by x̃ = x+ d2
12

on the right hand side of equation (2.5) gives

ỹ = x̃3 − c4

48
x̃− c6

864
,

where c4 = d2
2 − 24d4 and c6 = −d3

2 + 36d2d4 − 216d6. The transformation

(x, y) 7→
(
x− 3a2

1 − 12a2

36
,
y − 3a1x

216
− a3

1 + 4a1a2 − 12a3

24

)
,

taking the values of (u, r, s, t) = (1
6 ,−

a21+4a2
12 ,−a1

2 ,−
a31+4a1a2−12a3

24), gives the required isomorphism from
E to Ẽ for the pair (a, b) = (− c4

48 ,−
c6

864).

23

If char(K) = 3, applying a change of coordinate to the elliptic curve E given in equation (2.4) gives the
curves

y2 = x3 + a2x
2 + a6 (a2, a6 6= 0) and y2 = x3 + a4x+ a6 (a4 6= 0),

where the latter is a supersingular curve (see Definition 2.2.10). Similarly if char(K) = 2, applying a change
of coordinates gives two families of curves

y2 + xy = x3 + a2x
2 + a6 (a6 6= 0) and y2 + a3y = x3 + a4x+ a6 (a3 6= 0),

where the latter is a supersingular curve. For more details, we refer to Chapter 3 Section 1 of [HVM04].
The set of points of an elliptic curve form an abelian group. The group law is constructed geometrically

by the chord-and-tangent rule which has nice geometrical interpretations. To define the group law first we
introduce the projective curve.

Definition 2.2.4. Let ∼ be an equivalence relation given by (x0, x1, · · · , xn) ∼ (y0, y1, · · · , yn) if there
exists β ∈ K∗such that xi = βyi for 0 ≤ i ≤ n. Then the projective n-space over K , denoted by
Pn, is defined to be the set of all (n + 1)-tuples (x0, x1, · · · , xn) ∈ Kn+1 such that (x0, x1, · · · , xn) 6=
(0, 0, · · · , 0) modulo the equivalence relation ∼.

We denote an equivalence class {(βx0, βx1, · · · , βxn)} by [x0 : x1 : · · · : xn]. A polynomial f ∈
K[x0, x1, · · · , xn] is homogeneous of degree d if f(βx0, · · · , βxn) = βdf(βx0, · · · , βxn) for all β ∈ K∗.

Definition 2.2.5. Let F = {f1, f2, · · · , fm} ⊆ K[x0, x1, · · · , xn] be homogenous polynomials. Then the
set

V (F) = {(a0 : a1 : · · · : an) ∈ Pn | fi(a0, a1, · · · , an) = 0 ∀ 1 ≤ i ≤ m},

is called a projective variety.

In fact an elliptic curve is a projective curve which is reduced to an affine curve by setting the third
coordinate z to 1. Let E : y2 = x3 + ax + b be a short Weierstrass form over K, where char(K) 6∈ {2, 3}.
The corresponding homogenized curve equation of E is the projective curve given by

Ẽ : y2z = x3 + axz2 + bz3.

Observe that if (x : y : z) ∼ (x/z : y/z : 1) ∈ Ẽ then (x/z, y/z) ∈ E for z 6= 0 and (x, y, z) 6= (0, 0, 0).
If z = 0 then x = 0. We define the point (0 : y : 0) ∼ (0 : 1 : 0) to be the point at infinity and we denote it
∞.

The set of points of the elliptic curve E ∪ {∞} is a group with group operation given by a chord-and-
tangent rule. The point at infinity∞ acts as the identity element of the group. We focus on the group law
given algebraically. We refer to Chapter 3 Section 1 of [Sil09, HVM04] for the geometrical construction of
the group law.

Definition 2.2.6. (Group Law) To define the group law algebraically, let P1 = (x1, y1), P2 = (x2, y2) ∈ E.

1. (Identity): P1 +∞ =∞+ P1 = P1.

2. (Inverse): −P1 = (x1,−y1)

3. (Point Addition): Assume P1 6= ±P2 and let m be the slope joining P1 and P2, m = y2−y1
x2−x1 , then

P1 + P2 = (x3, y3), where

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1.

24

4. (Point Doubling): Let P1 6= −P1 andm =
3x21+a

2y1
be the slope of the line through P1 which is tangent

to the curve E, then P1 + P1 = (x3, y3), where

x3 = m2 − 2x1 and y3 = m(x1 − x3)− y1.

The number of points of an elliptic curve

Elliptic curves defined over finite fields play a central role in defining public key based cryptographic
schemes. These schemes involve selection of a suitable curve E and a base point P . For wise selection of
the parameters, it is important to understand the group structure of an elliptic curve which is determined by
the number of rational points of the curve.

Theorem 2.2.7. (Hasse) Let q be a prime power pr where p is prime and r ∈ Z≥1. Let K = Fq. Let E be
an elliptic curve defined over K. Denote #E(K) to be the number of rational points in E(K). Then

q + 1− 2
√
q ≤ #E(K) ≤ q + 1 + 2

√
q.

Definition 2.2.8. Denote [n]P to be P + · · ·+ P︸ ︷︷ ︸
n times

for an integer n ∈ Z>0. Let E be an elliptic curve over

K. The set
E[n] = {P ∈ E(K) | [n]P =∞}

is called a torsion group. Any element R ∈ E[n] is called a torsion element.

Definition 2.2.9. Let E be an elliptic curve over Fp for a prime p. Then E is said to be an anomalous curve
if #E(Fp) = p.

Definition 2.2.10. Let E be an elliptic curve over Fqn for q a power of a prime p. Then E is said to be
supersingular if #E(Fqn) = qn + 1− t where p | t.

2.2.2 Elliptic curve representation

Elliptic curves can be represented in many forms. Some popular elliptic curve models include: Mont-
gomery curves [Mon87], Twisted Edwards curve [BBJ+08] which encompass Edwards curve [Edw07,
BL07], Twisted Jacobi intersection curves [FNW10] which contain Jacobi intersection curves [LS01], Hes-
sian curves [JQ01, GGX11], Huff curves [Huf48, JTV10] and their variants. Some of these curves offer
more efficient computations (reducing the cost of point doubling and point addition) and some provide
resistance to side channel attacks.

Twisted Edwards Curve

Twisted Edwards curve is a generalization of Edwards curves [Edw07, BL07] introduced by Bernstein
et al. [BBJ+08]. These curves were suitable for attacking the discrete logarithm problem associated with
elliptic curves in [FGHR13, FHJ+14]. Particularly the symmetries coming from points of order 2 and 4, as
we will describe shortly, are exploited to attack the discrete logarithm problem for elliptic curves.

Let K be a field of characteristic not equal to 2. Let (a, d) ∈ K. The twisted Edwards curve is defined
by

Ea,d : ax2 + y2 = 1 + dx2y2.

Let P1 = (x1, y1), P2 = (x2, y2) ∈ Ea,d. The group law of the twisted Edwards curve is defined as follows.

25

1. (Identity): The neutral element is (0, 0).

2. (Inverse): Let P = (x, y) ∈ Ea,d, then −P = (−x, y).

3. (Point Addition): P1 + P2 = (x3, y3), where

(x3, y3) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

The point T2 = (0,−1) is a point of order 2. For any point P = (x, y) 6= (0, 0), we have P + T2 =
(−x,−y). If the constant a is a square in K, then (a−1/2, 0) and (−a−1/2, 0) are points of order 4.

Binary Edwards curve

Bernstein et al. [BLF08] introduced the binary Edwards curve. This curve has points of order 2 and 4.
We exploit the symmetry coming from these points to solve the discrete logarithm problem for this curve.
This is possible mainly because the addition by points of order 2 and 4 is simpler than when using the
Weierstrass model as noted in [FGHR13, FHJ+14].

Let K be a field of characteristic 2. Let d1, d2 ∈ K such that d1 6= 0 and d2 6= d2
1 + d1. The binary

Edwards curve is given by

Ed1,d2 : d1(x+ y) + d2(x2 + y2) = xy + xy(x+ y) + x2y2 (2.6)

which is symmetric in the variables x and y.

Definition 2.2.11. To define the group law of binary Edwards curve Ed1,d2 , let P1 = (x1, y1), P2 =
(x2, y2) ∈ Ed1,d2 .

1. (Identity): The neutral element is the point P0 = (0, 0).

2. (Inverse): Let P = (x, y) ∈ Ed1,d2 then −P = (y, x).

3. (Point Addition): P1 + P2 = (x3, y3), where

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1)(x2 + y2)

.

We observe that the point T2 = (1, 1) ∈ Ed1,d2 is a point of order 2. Under the group law P + T2 =
(x+ 1, y+ 1) for any point P = (x, y) ∈ Ed1,d2 . The addition by T2 to any point (x, y) ∈ Ed1,d2 is simple,
adding 1 to each coordinate, which is useful for our attack. We will also notice that if the constants d1 and
d2 are equal, we will obtain a point of order 4 whose addition to any point is not complicated (See Chapter 3
Section 3.2.3).

26

2.2.3 The elliptic curve discrete logarithm problem (ECDLP)

Elliptic curves were introduced for cryptography by Koblitz [Kob87] and Miller [Mil86], these curves
defined over finite fields have become a substitute in the definition of public key cryptosystems that are
close analogs of existing schemes such as Diffie-Hellman Key exchange schemes [DH76, ANSI97] and
digital signature algorithms [ANSI98, NIST94]. Their applications range to primality testing and integer
factorization [Men93, Len87].

Elliptic curves are good choices for the design of cryptosystems mainly because they offer relatively
small key sizes [LV01] and more efficient computations [BL13]. More importantly the ECDLP, which is the
heart of the security of these cryptosystems, has no known subexponential attack in general.

Definition 2.2.12. (ECDLP) Consider an elliptic curve E defined over a field K. Let P ∈ E be a point
having order n and let Q ∈ E. The elliptic curve discrete logarithm problem is to find β, if it exists, such
that Q = [β]P .

The ECDLP is believed to be a hard computational problem for an appropriate size of parameters.
However there are some known attacks which could be easily avoided. Most of the attacks transfer the
ECDLP to some other group where the DLP is easy. For example, the Weil descent and the GHS at-
tacks [GHS02, GS99] transfer the DLP for elliptic curves defined over binary extension fields to DLP for hy-
perelliptic curves, where subexponential algorithms to solve the discrete logarithm problem exist [JMS01].

In what follows we focus on attacks that transfer the ECDLP to the DLP over finite field extensions.
We also highlight that most of the algorithms discussed in Section 1.5 are not able to solve the ECDLP in
subexponential time. The hope is to develop an index calculus algorithm to solve the ECDLP similar to the
case it solves the DLP over finite fields and their extensions in subexponential time.

Generic attacks

Le P ∈ E be a point of order n. Our goal is to find an integer β such that Q = [β]P . Algorithms
that are used to solve the DLP over finite fields and their extensions namely baby-step-giant step, Pollard
rho/kangaroo, Pohlig-Hellman as discussed in Section 1.5 are also applicable to solve the ECDLP. These
algorithms do not take advantage of the structure of the group type, they are called generic algorithms. But
their running time is exponential in the input size.

Since the Pohlig-Hellman algorithm reduces the DLP to subgroups of prime order, taking n prime, the
best algorithm to attack the ECDLP among these generic attacks is the Pollard rho/kangaroo algorithm and
its variants. Recall that the Pollard rho algorithm first defines a sequence of points in 〈P 〉

X0, Xi+1 = f(Xi),

where Xi ∈ 〈P 〉. It then defines a pseudo random function f : 〈P 〉 7→ 〈P 〉 (a similar function as discussed
in Section 1.5 except that the group operation is now addition). Such a sequence will be ultimately periodic.
The algorithm then tries to find a match in the sequence, Xi = Xj (for i 6= j). By birthday paradox we
expect to find a collision after

√
nπ
2 iterations. Then a solution to the ECDLP will be found with high

probability.
The Pollard rho algorithm can be parallelised [OM99] which improves the running time. Assume we

have M processors coordinated by a central server. The server instantiates the processors with a random
starting point X0 for each processor using the same function f . We expect collision per processor to occur
after 1

M

√
nπ
2 steps (see alo Chapter 4 Section 1 of [HVM04]).

27

The running time of the Pollard rho algorithm can be further improved using equivalence classes [GLV99,
WZ98]. Suppose ψ : 〈P 〉 7→ 〈P 〉 be an automorphism of groups. Let ψ has order k, ψk(R1) = R1 for any
R1 ∈ 〈P 〉. Define an equivalence class

[R1] = {R1, ψ(R1), ψ2(R1), · · · , ψk−1(R1)}.

Let R̃ = {R̃1, R̃2, R̃3, · · · } be the set of representatives of the equivalence class. Instead of applying the
pseudo random function f on 〈P 〉, we apply it on a well-defined and unique representative of the equivalence
class R̃.

Assume we know ψ(P) = [α]P for some α ∈ Z/nZ, then given X = [a1]P + [b1]Q for some known
random integer values a, b ∈ Z/nZ, we can determine its representative class x̃ = [a2]P + [b2]Q. Indeed if
X̃ = ψi(X), then a2 = αia1 (mod n) and b2 = αib1 (mod n).

If the size of each equivalence class is k, then the search space is reduced from n to n
k . So the expected

running time of the parallelized Pollard rho using equivalence class is O(1
M

√
nπ
2k).

Anomalous attack

Anomalous attack [SA98, Sem98, Sma99] exploits the group structure of the elliptic curve to attack the
ECDLP. Recall that given E over Fq, #E(Fq) = q + 1 − t, where |t| ≤ 2

√
q and q is a prime power. We

specialize to the case when q = p where p is a prime.
The attacks on anomalous elliptic curves due to Satoh-Araki [SA98], Semaev [Sem98] and

Smart [Sma99] are based on the idea of transferring the ECDLP to a weaker group . All these attacks have
running time O(log p).

Consider the attack by Smart [Sma99]. Let E(Qp) : y2 = x3 + a4x + a6 be an elliptic curve defined
over the p-adic field Qp (see Chapter XI Section 6 of [Sil09]). Define the reduction modulo p map

φ : E(Qp) 7→ Ẽ(Fp).

The nth subgroup of E(Qp) is defined to be En(Qp) = {W ∈ E(Qp) | vp(x(W)) ≤ −2n}∪{∞}, where
vp(x(W)) is the p-adic valuation of the x-coordinate of the point W . Particularly, we are interested in the
first three groups of En(Qp).

1. The kernel of φ, E1(Qp) = {W ∈ E(Qp) | φ(W) = ∞̃}.

2. E0(Qp) = {W ∈ E(Qp) | φ(W) ∈ Ẽ(Fp)}.

3. The group E2(Qp) = {W ∈ E(Qp) | vp(x(W)) ≤ −4} ∪ {∞}.

Theorem 2.2.13. Define the p-adic elliptic logarithm map ψp : E1(Qp) 7→ pZp which sends P 7→ −x(P)
y(P)

(see chapters IV and VII in [Sil09]). Then

E(Qp)/E1(Qp) ' Ẽ(Fp) and E0(Qp)/E1(Qp) ' E1(Qp)/E2(Qp) ' Fp.

Proof. We refer to chapters IV and VII of [Sil09].

Using the isomorphism given in theorem (2.2.13), we are in a position to describe the attack. Assume
Ẽ(Fp) : y2 = x3 + ã4x + ã6 is an anomalous curve defined over the field Fp. Let P̃ , Q̃ ∈ Ẽ(Fp) be such

28

that Q̃ = [β]P̃ . The problem is to find β given R̃ and P̃ . The First step is to lift the points Q̃ and P̃ to points
Q,P ∈ E(Qp) respectively using Hensel’s Lemma [Sil09]. Then we observe that

Q− [β]P = R ∈ E1(Qp).

Multiplying both sides by p results [p]Q − [β][p]P = [p]R ∈ E2(Qp) (Note that [p]Q, [p]P ∈ E1(Qp) and
for R ∈ E1(Qp), then [p]R ∈ E2(Qp)). Applying the p-adic elliptic logarithm ψp, we get

ψp([p]Q)− βψp([p]P) ∈ p2Zp.

This implies ψp([p]Q) ≡ βψp([p]P) (mod p2). Since if (x, y) ∈ E1(Qp), ψp(x, y) ≡ −x
y (mod p2), we

have β =
ψp([p]Q)
ψp([p]P) (mod p) which solves the ECDLP.

The Menezes-Okamoto-Vanstone (MOV) attack

The MOV [MOV93] attack uses the Weil pairing to transfer the DLP for elliptic curves defined over Fq
to the DLP for the finite field extension Fqk of Fq. One can then solve the DLP using the subexponential
index calculus algorithm. We recall the definition of the Weil pairing.

Definition 2.2.14. Let E(Fq) be an elliptic curve and n be positive integer such that GCD(n, q) = 1. Then
the Weil pairing is the map

en : E[n]× E[n] 7→ µn,

where µn ∈ Fq is the nth root of unity with the following properties.

1. (bilinear): Let P, P1, P2, Q,Q1, Q2 ∈ E[n], then

en(P1 + P2, Q) = en(P1, Q)en(P2, Q) and en(P,Q1 +Q2) = en(P,Q1)en(P,Q2).

2. (Nondegenerate): en(P,Q) = 1 for all Q ∈ E[n] if and only if P =∞.

3. (Identity): en(P, P) = 1 for all P ∈ E[n].

4. (Alternating): en(P,Q) = en(Q,P)−1 for all P,Q ∈ E[n].

Let E be an elliptic curve defined over the field Fq such that P ∈ E(Fq) has order n. The idea of the
MOV attack is to use the Weil pairing to form a group homomorphism from the group generated by P and
the group of nth roots of unity in Fqk , where k is the embedding degree defined as follows.

Definition 2.2.15. Let E be an elliptic curve defined over the field Fq. Let P ∈ E(Fq) be a point of order n.
Assume GCD(n, q) = 1. Then the embedding degree of 〈P 〉 is the smallest integer k such that n | qk − 1.

Theorem 2.2.16. Let E be an elliptic curve defined over the field Fq such that E[n] ⊆ E(Fqk), where k is
the embedding degree with GCD(n, q) = 1. Let P ∈ E[n] be of order n. Then there exists Q ∈ E[n] such
that en(P,Q) is a primitive nth root of unity.

Proof. Let Q ∈ E[n], then en(P,Q)n = en(P, [n]Q) = en(P,∞) = 1, which implies en(P,Q) ∈ µn.
There are n cosets of 〈P 〉 within E[n] . If P1, P2 ∈ E[n] are in the same coset then en(P, P1) = en(P, P2).
So as we vary Q among the representative cosets, en(P,Q) varies among the elements of µn.

29

Thus if Q ∈ E[n] is such that en(P,Q) is a primitive nth root of unity, then the map

φ : 〈P 〉 7→ µn

R 7→ en(P,R)

is a group isomorphism.
Let E(Fq) be an elliptic curve such that #〈P 〉 = n, where GCD(n, q) = 1. Let Q = [β]P . Recall that

the ECDLP problem is to find β. To recover β, the MOV attack proceeds by first finding the embedding
degree k. We then find a random element R ∈ E[n] such that α = en(P,R) has order n. Compute
γ = en(Q,R). Then

γ = en(Q,R) = en([β]P,R) = en(P,R)β = αβ =⇒ β = logα γ in Fqk .

The Weil pairing is efficiently computed using Miller’s algorithm (see Chapter XI Section 8 in [Mil86]
and [Mil04]). However for most elliptic curves the embedding degree k is large, as large as k ≈ n, so that
the index calculus method for solving the DLP in Fqk becomes infeasible. Indeed it is shown in [BK98]
that the probability of an elliptic curve of prime order defined over a prime field being susceptible to this
attack is negligible. However, supersingular curves have small embedding degree k ∈ {1, 2, 3, 4, 6} and
are susceptible to the MOV attack. The attack could be foiled by avoiding low degree embedding curves in
cryptographic applications.

The Frey-Rück attack

The Frey-Rück attack [FR94] makes use of the Tate-Lichtenbaum pairing instead of the Weil pairing to
transfer the ECDLP to solving the DLP in Fqk , where k is the embedding degree.

Definition 2.2.17. Let E(Fq) be an elliptic curve and P ∈ E(Fq) be of order n with GCD(n, q) = 1. Let
nE(Fq) = {nQ | Q ∈ E(Fq)}. Then the Tate pairing is given by the map

t : E(Fq)[n]× E(Fq)/nE(Fq) 7→ F∗q/(F∗q)n.

One can observe that the quotient group F∗q/(F∗q)n is isomorphic to the roots of unity µn. The Tate
pairing outputs a coset in this group. In the modified Tate pairing, the output is raised to the power (qk−1)/n
so that it is an element of the multiplicative group F∗qk . The rest of the attack is quite similar to the MOV
attack.

2.3 Summation polynomials

The idea of the index calculus algorithm to solve the elliptic curve discrete logarithm problem uses
summation polynomials and Weil descent of an elliptic curve. The Weil descent is applied on the summa-
tion polynomial to get a system of multivariate polynomial equations. We discuss these concepts in detail
accompanied with a complexity analysis of solving the resulting system of equations.

We also study how the naturally arising group action on the resulting system of equations coming from
suitable elliptic curves such as the twisted Edwards curve or the binary Edwards curve speeds up the reso-
lutions of solving the multivariate polynomial equations.

30

2.3.1 Summation polynomials definition

Definition 2.3.1. LetE be an elliptic curve in Weierstrass form over a field K. We define themth summation
polynomial to be

fm(x1, x2, · · · , xm) ∈ K[x1, x2, . . . , xm]

such that for all X1, X2, . . . , Xm ∈ K,

fm(X1, X2, · · · , Xm) = 0

if and only if there exist Y1, Y2, . . . , Ym ∈ K such that (Xi, Yi) ∈ E(K) for all 1 ≤ i ≤ m and (X1, Y1) +
(X2, Y2) + · · ·+ (Xm, Ym) =∞, where∞ is the identity element.

Theorem 2.3.2. (Semaev [Sem04]) Let E : y2 = x3 + a4x + a6 be an elliptic curve over a field K of
characteristic 6∈ {2, 3}. The summation polynomials for E are given as follows.

f2(x1, x2) = x1 − x2.

f3(x1, x2, x3) = (x1 − x2)2x2
3 − 2((x1 + x2)(x1x2 + a4) + 2a6)x3

+((x1x2 − a4)2 − 4a6(x1x2)).

fm(x1, · · · , xm) = Resultantx(fm−j(x1, · · · , xm−j−1, x), fj+2(xm−j , xm−j+1, · · · , xm, x))

for all m, and j, such that m ≥ 4, and 1 ≤ j ≤ m− 3,

where Resultantx(f, g) is the resultant of the two polynomials f and g with respect to x. For m ≥ 3, the
mth summation polynomial fm is an irreducible symmetric polynomial having degree 2m−2 in each of the
variables.

Proof. See Semaev [Sem04]. We will prove how to construct the 3rd summation polynomial in the case of
binary Edwards curve when we prove Theorem 3.1.1.

2.3.2 Weil descent of an elliptic curve

Before we define the Weil descent of an elliptic curve, we illustrate the Weil descent concept by an
example. Let L be a field extension of K such that [L : K] = d. The Weil descent relates a t dimensional
object over L to a td dimensional object over K. Assume K = Fq and L = Fq2 = K(i), where i2 = −1.
Let x, y ∈ L, then x = x0 + ix1 and y = y0 + iy1, where x0, x1, y0, y1 ∈ K.

Let V ⊆ A2(K) be the affine algebraic set defined by x2 + y2 − 1 = 0. Then
(x0 + ix1)2 + (y0 + iy1)2 − 1 = 0 if and only if{

x2
0 − x2

1 + y2
0 − y2

1 − 1 = 0,

2x0x1 + 2y0y1 = 0.

If W ⊂ A2(K) is the algebraic set of this system of equations. Then W defines the Weil descent of V .
There is a bijection from V (L) to W (K).

Let E be an elliptic curve defined over Fqn . Write Fqn as Fq[θ]/(f(θ)), where f(θ) is an irreducible
polynomial of degree n over the base field Fq and θ ∈ Fqn is a root. The Weil descent W of the affine
curve E is the algebraic set of 2n-tuples of elements (x0, x1, · · · , xn−1, y0, y1, · · · , yn−1) ∈ F2n

q such that
x = x0 + x1θ + · · · + xn−1θ

n−1 and y = y0 + y1θ + · · · + yn−1θ
n−1, where (x, y) ∈ E(Fqn). Since

y0, y1, · · · , yn−1 are algebraic over x0, x1, · · · , xn−1, the dimension of W is n. The map φ : E(Fqn) 7→
W (Fq)∪{∞} is a bijection map and the group law onE(Fqn) corresponds to a group law onW (Fq)∪{∞}.

31

2.3.3 The index calculus algorithm

The index calculus algorithm solves the discrete logarithm problem in the case of finite fields and their
extensions in subexponential time. Motivated by the existence of such an algorithm, we wish to adopt the
index calculus concept to the elliptic curve setting so that we may have a subexponential algorithm to solve
the ECDLP.

Let E be an elliptic curve defined over the field Fqn . Let Q = [β]P . The idea of the index calculus
algorithm to solve the ECDLP includes three stages.

– Factor base definition: The first stage is to define a suitable factor base F = {P1, P2, · · · , PN} ⊂
E(Fqn).

– Relation gathering: The second stage is to decompose a random element R ∈ E(Fqn) as a sum of n
elements of the factor base F .

– Linear algebra: After collecting at least #F relations in stage 2, apply Gaussian elimination on the
set of relations to recover a solution to the ECDLP.

For an elliptic curve E(Fqn), where n > 1, Gaudry [Gau09] defined the factor base F to be

F = {P = (x, y) ∈ E(Fqn) | x ∈ Fq}.

The number of points in the factor base is #F = q+O(
√
q) (see [Wei49, CF05]). As

√
q is small compared

to q, #F ≈ q. Once the factor base is defined, the next stage in the index calculus algorithm is to decompose
a random element of an elliptic curve as a sum of the factor base elements. This is the critical stage of the
algorithm.

Definition 2.3.3. (Point Decomposition Problem) Let E(Fqn) be an elliptic curve. Let F be the factor base
defined as above. Given a random element R ∈ E(Fqn), the Point Decomposition Problem (PDP) is to
write R as a sum of n elements of the factor base F ,

R = P1 + P2 + · · ·+ Pn,

where Pi ∈ F .

Gaudry used summation polynomials and Weil descent of an elliptic curve to solve the point decompo-
sition problem and ultimately to solve the ECDLP. Assume the order of P is r and the ECDLP is to solve
β such that Q = [β]P . Generate two random integers (a, b) ∈ Z/rZ, then R = [a]P + [b]Q is a random
element in E(Fqn). To solve the PDP for the point R as

R = ε1P1 + ε2P2 + · · ·+ εnPn, (2.7)

where Pi ∈ F and εi ∈ {−1, 1}, then it is enough to solve the summation polynomial

fn+1(x(P1), x(P2), · · · , x(Pn), x(R)) = 0, (2.8)

where x(Pi) denotes the x-coordinate of the point Pi. Sometimes we drop the notation x(Pi) and instead
use xi, and in place of x(R), we use xR. Since Pi ∈ F we restrict xi ∈ Fq.

32

Let Fqn = Fq[x]/f(x), where f(x) ∈ Fq[x] is an irreducible polynomial of degree n having θ ∈ Fqn as
a root. Applying Weil descent to the summation polynomial, we obtain

fn+1(x1, x2, · · · , xn, xR) = 0 ⇐⇒
n−1∑
i=0

φi(x1, x2, · · · , xn)θi = 0,

where φi(x1, x2, · · · , xn) ∈ Fq[x1, x2, · · · , xn]. But notice that
n−1∑
i=0

φi(x1, x2, · · · , xn)θi = 0 if and only

if the following system of polynomial equations have common zeroes.
φ0(x1, x2, · · · , xn) = 0

φ1(x1, x2, · · · , xn) = 0
...
φn−1(x1, x2, · · · , xn) = 0

(2.9)

Hypothesis 2.3.4. (See [Gau09, FGHR13]) The system of polynomial equations (2.9) coming from the
resolution of the PDP given by equation (2.7) are of dimension zero.

Remark 2.3.5. When we restrict xi to be in Fq and add the field equations xqi − xi = 0 to the system of
polynomial equations (2.9), then we have a dimension zero. In all our discussions, the system of polynomial
equations coming from the resolution of the PDP given in equation (2.7) are considered to be of dimension
zero.

So the system of polynomial equations (2.9) can be solved using the F4 or F5 Gröbner basis algorithms
(see Theorem 2.1.18) for the graded reverse lexicographic ordering followed by the FGLM algorithm (see
Theorem 2.1.19).

After collecting enough independent relations in the second stage of the index calculus algorithm, the
third stage is to apply linear algebra. Basically, we build a matrixM such that the relations correspond to the
rows and the factor base elements correspond to the columns of the matrix M . Assume we have collected
N > #F relations of the form

Ri = [ai]P + [bi]Q =
∑
Pj∈F

Mi,PjPj ,

where the integer valueMi,Pj ∈ [−n, n] corresponds to the entry of the ith row and Pj column of the matrix
M . Then there exists a kernel element (v1, v2, · · · , vN) 6= 0 such that (v1, v2, · · · , vN)M = 0. So for all

Pj ∈ F ,
N∑
i=1

viMi,Pj = 0. Then

N∑
i=1

viRi =

(N∑
i=1

vi[ai]

)
P +

(N∑
i=1

vi[bi]

)
Q =

∑
Pj∈F

N∑
i=1

viMi,PjPj = 0.

33

As Q = [β]P ,
(N∑
i=1

vi[ai]

)
P +

(N∑
i=1

vi[bi]

)
Q =

(N∑
i=1

vi[ai]

)
P +

(N∑
i=1

vi[bi]

)
[β]P = 0. Thus

β = −

N∑
i=1

viai

N∑
i=1

vibi

(mod r),

is a solution to the ECDLP provided that
N∑
i=1

vibi is invertible mod r.

Variants of the index calculus attack

Gaudry noted that for an elliptic curve E over an extension field Fqn , with a suitable choice of factor
base, the problem of finding solutions to summation polynomials can be approached using the Weil descent
with respect to Fqn/Fq. In other words, the problem of solving fn+1(x1, . . . , xn, x(R)) = 0 for xi ∈ Fq
can be reduced to a system of polynomial equations over Fq as shown by equation (2.9).

The cost of solving the system of polynomial equations depends on the number of variables and on the
degree of the summation polynomials. The higher the number of variables and the degree of the summation
polynomials, the higher the cost is. To resolve the system, Joux and Vitse [JV13] proposed an n−1 scheme.
The idea is to decompose a random element as a sum of n− 1 elements of the factor base F instead of as a
sum of n factor base elements as in the Gaudry case. Accordingly we have

R = [a]P + [b]Q = P1 + P2 + · · ·+ Pn−1,

where Pi ∈ F . So one needs to solve fn(x1, x2, · · · , xn−1, xR) = 0. The number of variables is reduced
from n to n− 1 and the total degree of the summation polynomial is reduced from 2n−1 to 2n−2 compared
with solving the summation polynomial given by the equation (2.8). The Weil descent produces n polyno-
mial equations in both cases. But with the new method we have an overdetermined system and the resolution
is greatly sped up. The resolution of the system does not come for free. The probability of decomposing a
random element is decreased. We cover the complexity in the following Section.

Gaudry’s [Gau09] approach restricts x to be in the base field Fq. So the factor base cannot be increased
in this case. Diem’s [Die11] approach to solving the ECDLP generalizes the factor base definition. Assume
we want to decompose a random element as a sum of m factor base elements instead of n in the Gaudry
case. Let ` be such that n ≈ `m. Diem defined the factor base F to be

F = {(x, y) ∈ E(Fq) | xi ∈ V, yi ∈ Fqn},

where V ⊆ Fqn is a vector space of dimension `.

Complexity analysis

The total complexity of the index calculus algorithm is dominated by the complexity of the point de-
composition problem and the linear algebra stage. First we give a complexity estimate of the PDP followed
by the complexity of the linear algebra stage. A given point R ∈ E(Fqn) can be decomposed as a sum of n

34

elements of the factor base F , {(x, y) ∈ E(Fqn) | x ∈ Fq, y ∈ Fqn}, with a probability approximately 1
n! .

Indeed consider the map

ψ : Fn 7→ A, (2.10)

(P1, P2, · · · , Pn) 7→ P1 + P2 + · · ·+ Pn.

Then we have ψ(σ(P)) = ψ(P) (see equation 3.4), where Sn denotes the symmetric group having order n!
and σ ∈ Sn, and so ψ is well-defined on Fn/Sn. We use the approximations #A = qn and #(Fn/Sn) =
qn/n!. The probability of a random element R to be decomposed as a sum of n elements of the factor base
is given by

#(Fn/Sn)

#A
≈ 1

n!
.

Let c(n, q) be the complexity of checking a given point R is actually decomposable in the factor base or
not. This is simply the cost of solving the system of polynomial equations (2.9). Since we have to collect
q relations, the total complexity of the relation search stage of the index calculus algorithm is n!c(n, q)q.
From the definition of the factor base, P ∈ F =⇒ −P ∈ F . So by only keeping one representative (P
or −P), the size of the factor base can be reduced to q/2 bringing the total cost of relation search stage to
n!c(n, q)q/2.

We now estimate the cost of the linear algebra stage. The matrix M constructed from the relation search
stage has roughly q rows and columns, with a maximum of n non-zero entries per row. Utilizing the sparse
nature of the matrix M , the overall Gaussian elimination cost using Wiedemann algorithm [Wie86, CF05]
is O(nq2 log2 q). So the total complexity of the index calculus algorithm is

O(n!c(n, q)q + nq2 log2 q)

arithmetic operations.
Taking the Joux and Vitse [JV13] n − 1 scheme, decomposing a random element as a sum of n − 1

factor base elements, the probability of finding a relation is decreased from 1
n! to 1

q(n−1)! . Indeed by the map
described in equation (2.10), we have

#(Fn−1/Sn−1)

#E
=

#Fn−1

(n− 1)!#E
≈ qn−1

(n− 1)!qn
=

1

q(n− 1)!
.

The total complexity using this scheme is then given by

O((n− 1)!c(n− 1, q)q2 + (n− 1)q2 log2 q).

Clearly the cost of solving the system of equations is reduced from c(n, q) to c(n − 1, q). The system has
now n− 1 variables and a total degree of 2n−2 in each variable and hence there is a speed up. Above all the
system is now overdetermined and if a solution exists, we get only few solutions. The cost of c(n − 1, q)
is determined by solving the system of polynomial equations using the F4 and F5 Gröbner basis algorithms
(see Theorem 2.1.18). The change of ordering algorithm FGLM (see Theorem 2.1.19) is not needed. Indeed
computing a Gröbner basis of an overdetermined system using the F4 or F5 algorithm in degree reverse
lexicographic ordering produces the same result as computing in lexicographic ordering.

Theorem 2.3.6. LetE be an elliptic curve defined over Fqn . For fixed n, Gaudry [Gau09] solves the ECDLP
using index calculus algorithm in

Õ(q2−2/n)

arithmetic operations, with a hidden constant c(n, q), which is exponential in n.

35

Before we prove Theorem 2.3.6, we discuss a technique called ‘double large prime variation’ [GTTD07,
Thé03], to balance the cost of the relation search stage and linear algebra stage. Assume the linear algebra
cost is high relative to the relation search stage. According to [GTTD07, Thé03], if we reduce the size of the
factor base, obviously the cost of the linear algebra is decreased. On the other hand, the cost of the relation
search stage increases as the probability of decomposing a random element over the factor base is reduced.

To balance the two costs, the idea is to divide the factor base F into two sets F1 and F2. We call F1 a
factor base and it contains (#F)r ≈ qr elements, where 0 < r ≤ 1. Decomposition of a random element R
of a curve over F1 corresponds to the normal decomposition

R = [ai]P + [bi]Q = P1 + P2 + · · ·+ Pn, (2.11)

where Pi ∈ F1. Where as the set F2 contains elements of the factor base F that are not considered in F1

and are called ‘large primes’. Decomposition of a random element of R over the factor base F1 with respect
to the set F2 has two forms

R = [ai]P + [bi]Q = P1 + P2 + · · ·+ Pn−1 + P̃1, (2.12)

R = [ai]P + [bi]Q = P1 + P2 + · · ·+ Pn−2 + P̃1 + P̃2, (2.13)

where P̃1, P̃2 ∈ F2 and P1, · · · , Pn−1 ∈ F1. Note that decomposition of the form (2.13) are relatively
easier followed by (2.12) and (2.11).

We collect relations coming from these decompositions. Relations involving large primes are recorded
using graphs (see [GTTD07, Thé03]). The idea is if during the collection phase, we encounter decomposi-
tion involving identical large primes either in (2.12), (2.13) or a combination of (2.12) and (2.13), then they
can be combined together to form decomposition of the form (2.11). As a result, we obtain a new (possibly
many) relation(s).

The size of the new factor base F1 is qr, hence the complexity of the linear algebra is Õ(q2r). The

complexity of the relation search stage is Õ
(

(1 + rn−1
n)(n − 2)!q1+(n−2)(1−r)c(n, q)

)
(see [GTTD07])

arithmetic operations. The optimal value r = 1− 1
n is obtained by setting q2r = q1+(n−2)(1−r). Hence, the

overall complexity is
Õ(q2(1− 1

n
)) (2.14)

arithmetic operations.

Proof. (Theorem 2.3.6) Let E(Fqn) be an elliptic curve. For fixed n, the cost of solving the system of
polynomial equation (2.9) over Fq with fixed degree and number of variables is polynomial in log q. So
the overall cost of the index calculus algorithm is dominated by the linear algebra stage which is given by
Õ(nq2).

Gaudry used a technique called ‘double large prime variation’ [GTTD07, Thé03] to balance the cost of
the relation search stage and linear algebra stage as discussed above. According to the large prime variation,
the overall complexity is given by (2.14). Thus for fixed n, the cost of solving the index calculus algorithm
using Gaudry’s approach is Õ(q2−2/n).

We can observe that Gaudry’s approach to solve the ECDLP is faster than Pollard rho whose complexity
is O(qn/2) for n ≥ 3. But the analysis hides the constant c(n, q). Diem [Die13] also showed that if q is
large enough then the ECDLP can be solved in an expected subexponential time.

To precisely estimate the cost of c(n, q), recall that the usual strategy of solving the system of equa-
tion (2.9) as discussed in Section 2.1.4 is to first use the Gröbner basis algorithms F4 or F5 in degree reverse

36

ordering and then a change of ordering FGLM algorithm is applied to get Gröbner basis in lexicographic
ordering. So the complexity of the c(n, q) involves the complexity of the two steps.

For the system of equations derived from the symmetric summation polynomial having n variables with
a total degree of 2n−1 in each variable, Bezout Theorem 2.1.24 tells us that there are at most n!2n(n−1)

solutions. The cost of recovering such solutions using the FGLM algorithm as described in Theorem 2.1.19
is

O

(
nD3

)
= O

(
n(n!2n(n−1))3

)
arithmetic operations in Fq, where D is the number of solutions counted with multiplicities in the algebraic
closure of Fq.

The complexity of computing a Gröbner basis using the F4 or F5 algorithms as indicated in Theo-
rem 2.1.18 is

O

((
n+ dreg − 1

dreg

)ω)
field operations. This complexity can be upper bounded by

O

(
n

(
n+ dreg

n

)ω)
arithmetic operations. But note that the F5 algorithm is more efficient than the F4 algorithm as its gets rid
off useless computations.

As highlighted in Section 2.1.4, the precise estimate of the degree of regularity is not known for all types
of system of polynomial equations. We make the following assumption as in [FGHR13].

Assumption 2.3.7. Let E be an elliptic curve over Fqn , the degree of regularity of polynomial systems

arising from the Weil descent (2.9) (see [BFSY05]) is estimated to be 1 +
n−1∑
i=0

(deg(φi)− 1).

By Assumption 2.3.7, the degree of regularity dreg of the system of polynomial equations (2.9), having
n variables with degree 2n−1 in each variable is estimated to be

dreg ≤ 1 +

n−1∑
i=0

(deg(φi)− 1) ≤ n2n−1 − n+ 1.

Thus the complexity of computing a Gröbner basis using the F4 or F5 algorithms is given by

O

(
n

(
n+ dreg

n

)ω)
≤ O

(
n

(
n2n−1 + 1

n

)ω)
arithmetic operations. So the overall cost of c(n, q) includes the complexity of computing a Gröbner basis
using the F4 or F5 algorithms and the complexity of the change of ordering FGLM (see Theorem 2.1.19)
algorithm and is given by

O

(
n

(
n2n−1 + 1

n

)ω
+ n(n!2n(n−1))3

)
= O

(
n(n!2n(n−1))3

)
. (2.15)

We observe that the complexity of the FGLM algorithm is exponential in n and it is the main complexity
indicator in the overall complexity analysis given in equation (2.15). If the number of solutions to the

37

system of equations is reduced, we know the complexity of the FGLM will also be reduced. Previous
and our research focus on minimizing the number of solutions of a system of polynomial equations using
symmetries to lower the FGLM complexity.

However if we have an overdetermined system, such as polynomial systems obtained by Weil descent
for the Joux and Vitse [JV13] n − 1 scheme (see also 3.3), the number of solutions is few. So the FGLM
complexity is negligible and the complexity of solving an overdetermined system is determined by the
complexity of the F4 or F5 Gröbner basis algorithms which in turn depends on the degree of regularity. The
use of symmetries with these systems makes the polynomial equations compact and our experiment (see
Section 3.6) shows that the degree of regularity is less compared to original system.

2.3.4 Resolution of polynomial systems using symmetries

The summation polynomials are symmetric. Gaudry [Gau09] noticed that these polynomials belong to
the invariant ring under the symmetric group,

fn+1(x1, x2, · · · , xn, x(R)) ∈ Fqn [x1, x2, · · · , xn]Sn ,

where Sn is the symmetric group. The generators of the invariant ring Fqn [x1, x2, · · · , xn]Sn are the ele-
mentary symmetric polynomials e1, e2, · · · , em. So the summation polynomial can be re-written in terms
of e1, e2, · · · , en to get f̃n+1(e1, e2, · · · , en, xR) ∈ Fqn [e1, e2, · · · , en]. f̃n+1 has n variables and a total
degree of 2n−1.

When we restrict xi ∈ Fq then we also have ei ∈ Fq. Applying Weil descent to f̃n+1, we get a system
of equations denoted by S ⊂ Fq[e1, e2, · · · , en] with n polynomial equations and total degree 2n−1. The
degree of the ideal of the system S is bounded by 2n(n−1). In other words we expect 2n(n−1) solutions
though most of them lie in a field extension of Fq. By making use of the new variables, the degree of
the ideal of the system S is less by n! than the original system (equivalently the number of solutions are
decreased by n!). This results a decrease in the FGLM cost by (n!)3. See Section 2.1.4 for details.

In [FGHR13], the curve structure is exploited to further reduce the cost of polynomial system solving.
Particularly, we consider the twisted Edwards curve and twisted Jacobi intersection curve instead of the
Weierstrass model. Focusing on the former, that is on the twisted Edwards curve, the existence of low order
rational points (order 2, and order 4 points) on these curves speeds up the resolution of polynomial systems
arising from the Weil descent.

The twisted Edwards curve defined in Section 2.2 over Fqn is given by Ea,d : ax2 + y2 = 1 + dx2y2 ,
where a, d ∈ Fqn . We consider the point of order two T2 = (0,−1). For any point P = (x, y) ∈ Ea,d, by
the group law T2 + P = (−x,−y).

The factor base F is defined in terms of the invariant variable under the map [−1] : Ea,d 7→ Ea,d,
P 7→ −P . Note that −P = (−x, y). So the y-coordinate remains invariant under the negation map.
Accordingly the factor base is defined as

F = {(x, y) ∈ Ea,d | y ∈ Fq, x ∈ Fqn}.

38

The summation polynomials [FGHR13] are also constructed using the y-coordinate and are given by

f2(y1, y2) = y1 − y2,

f3(y1, y2, y3) = (y2
1y

2
2 − y2

1 − y2
2 +

a

d
)y2

3 + 2
d− a
d

y1y2y3

+
a

d
(y2

1 + y2
2 − 1)− y2

1y
2
2,

fn(y1, · · · , yn) = Resultanty(fn−j(y1, · · · , yn−j−1, y), fj+2(yn−j , yn−j+1, · · · , yn, y))

for all n, and j, such that n ≥ 4, and 1 ≤ j ≤ n− 3 .

For n ≥ 3, the summation polynomial are symmetric, irreducible having n variables and a total degree of
2n−1 in each variable.

If R = P1 +P2 + · · ·+Pn for Pi ∈ F , then fn+1(y1, y2, · · · , yn, y(R)) = 0, where yi = y(Pi) denotes
the y-coordinate of the points Pi and y(R) denotes a known y-coordinate value of R. Assume we have a
decomposition R = P1 + P2 + · · ·+ Pn for Pi ∈ F , then

R = (P1 + u1T2) + (P2 + u2T2) + · · ·+ (Pn + unT2),

where (u1, u2, · · · , un) ∈ {0, 1} such that
n∑
i=1

ui (mod 2) = 0. The observation is that an even number

of additions of T2 cancels out. From one decomposition of R, we get 2n−1 distinct decompositions for
free by running over all possible values of (u1, u2, · · · , un). We also get 2n−1 distinct solutions corre-
sponding to these decompositions. Indeed applying an even number of sign changes to the original solution
(y1, y2, · · · , yn) gives 2n−1 distinct solutions.

Consider the dihedral coxeter group Dn = (Z/2Z)n−1 oSn having order 2n−1n! acting on the solution
set of the summation polynomial fn+1, where (Z/2Z)n−1 changes the sign on an even number of the
solutions and Sn permutes them, then the summation polynomials are invariant under the group action Dn.
Thus

fn+1(y1, y2, · · · , yn, y(R)) ∈ Fqn [y1, y2, · · · , yn]Dn ,

where Fqn [y1, y2, · · · , yn]Dn is the invariant ring under the dihedral coxeter group Dn. This is a well
known invariant ring generated either by the polynomials (p2, · · · p2(n−1), en) or (s1, s2, · · · , sn−1, en) (see
equation (2.2)).

Writing the summation polynomial fn+1(y1, y2, · · · , yn, y(R)) in terms of the new variables
(p2, · · · p2(n−1), en) or (s1, s2, · · · , sn−1, en), we get f̃n(p2, · · · p2(n−1), en) ∈ Fqn [p2, · · · p2(n−1), en] or
f̃n(s1, s2, · · · , sn−1, en) ∈ Fqn [s1, s2, · · · , sn−1, en], where f̃n denotes fn+1 evaluated at y(R). After Weil
descent, we obtain a system of equations S ⊂ Fq[p2, · · · p2(n−1), en] or S ⊂ Fq[s1, s2, · · · , sn−1, en]. The
degree of the ideal of S (see Proposition 2.1.11 and Definition 2.1.10) is then decreased by the order of Dn

(see Section 2.1.4), in other words the number of solutions have decreased from n!2n(n−1) to n!2n(n−1)

#Dn
=

n!2n(n−1)

n!2n−1 = 2(n−1)2 . The overall effect is that we gain a speed up in the FGLM algorithm by (n!2n−1)3.

39

Chapter 3

Index Calculus Algorithm to Solve the DLP
for Binary Edwards Curve

Contents
3.1 Summation polynomials of binary Edwards curve . 41

3.1.1 Factor base definition . 43
3.1.2 Weil descent of binary Edwards curve . 44

3.2 Symmetries to speed up resolution of polynomial systems 45
3.2.1 The action of symmetric group . 45
3.2.2 The action of a point of order 2 . 45
3.2.3 The action of points of order 4 . 46

3.3 Index calculus algorithm . 47
3.4 Breaking symmetry in the factor base . 50
3.5 Gröbner basis versus SAT solvers comparison . 51
3.6 Experimental results . 52
3.7 Splitting method to solve DLP for binary curves . 57

This chapter presents our main results. We discuss the point decomposition problem to solve the DLP
for Edwards curves defined over the field F2n . With this curve, we get symmetries coming from the action
of points of order 2 and 4. We exploit these symmetries to speed up the resolution of a system of polynomial
equations over F2 obtained by applying Weil descent to the summation polynomials of this curve. We
provide experimental evidence showing that our approach gives an improvement over previous work. We
also give a comparison between using SAT solvers and using Gröbner basis methods for solving the system
of polynomial equations.

Finally we describe some ideas to increase the probability of decomposing a random element of the
curve as a sum of factor base elements with or without using symmetries coming from low order points.
Following our work [GG14], a new idea based on “splitting” the summation polynomials is suggested. We
discuss the splitting technique as our conclusion to this chapter.

This chapter is a joint work with Steven Galbraith.

40

3.1 Summation polynomials of binary Edwards curve

Recall from Section 2.2.2 that a binary Edwards curve is an affine curve given by equation (2.6),

Ed1,d2(F2n) : d1(x+ y) + d2(x2 + y2) = xy + xy(x+ y) + x2y2,

where d1 6= 0 and d2 6= d2
1 + d1 for d1, d2 ∈ F2n . The conditions d1 6= 0 and d2 6= d2

1 + d1 ensure
that the curve is non-singular. If TrF2n/F2

(d2) = 1, i.e., there is no element v ∈ F2n such that v satisfies
v2 +v+d2 = 0, then the addition law on the binary Edwards curve is complete [BLF08]. In other words, the
denominators in the addition law (see Definition 2.2.11), d1 +(y1 +y2

1)(x2 +y2) and d1 +(x1 +x2
1)(x2 +y2)

never vanish.
We are interested in this curve because the point T2 = (1, 1) is a point of order 2 whose addition to any

point in Ed1,d2 is given by a simple formula. Such structures of curves defined over a field of characteristic
greater than 3 have been exploited in [FGHR13] for solving the ECDLP.

We now define the summation polynomials for binary Edwards curve. For an elliptic curve E given
by the Weierstrass equation, Semaev [Sem04] defined the summation polynomials in terms of the invariant
variable x under the negation map [−1] : E 7→ E, P 7→ [−]P : If P = (x, y) ∈ E then [−]P = (x,−y).
In [FGHR13], an elliptic curve Ẽ represented by twisted Edwards curve (see Section 2.2) defined over a
field of characteristic greater than 3 is considered. The summation polynomials for this curve are defined in
terms of the invariant variable y under the negation map: If P = (x, y) ∈ Ẽ then [−]P = (−x, y).

In our case, we consider the function t : Ed1,d2(F2n)→ P1, t(P) = x(P)+y(P), where x(P) and y(P)
denote the x-coordinate and y-coordinate of a point P ∈ Ed1,d2 respectively. This function is invariant under
the action of the negation map. Note that if P = (x, y) ∈ Ed1,d2(F2n), then [−]P = (y, x). In [BLF08], the
value t(P) named as ’ω’ is used for differential addition.

Theorem 3.1.1. Let Ed1,d2 be an Edwards curve over F2n with P0 = (0, 0) the identity element. Then the
summation polynomials of Ed1,d2 given by

f2(t1, t2) = t1 + t2

f3(t1, t2, t3) = (d2t
2
1t

2
2 + d1(t21t2 + t1t

2
2 + t1t2 + d1))t23 + d1(t21t

2
2 + t21t2 + t1t

2
2 + t1t2)t3

+d2
1(t21 + t22)

fm(t1, . . . , tm) = Resultantu(fm−k(t1, t2, . . . , tm−k−1, u), fk+2(tm−k, tm−k+1, . . . , tm, u)),

for m ≥ 4 and 1 ≤ k ≤ m− 3,

have the following properties: for any points P1, . . . , Pm ∈ Ed1,d2(F2) such that P1 + · · ·+ Pm = P0, we
have fm(t(P1), . . . , t(Pm)) = 0. Conversely, given any t1, . . . , tm ∈ F2 such that fm(t1, . . . , tm) = 0, then
there exist points P1, . . . , Pm ∈ Ed1,d2(F2) such that t(Pi) = ti for all 1 ≤ i ≤ m and P1 + · · ·+Pm = P0.
The summation polynomials are symmetric and irreducible having degree 2m−2 in each variable.

Proof. Due to the recursive construction of the summation polynomials, it is sufficient to prove the theorem
for the case m = 2 and m = 3. Let Pi = (xi, yi) ∈ Ed1,d2 and ti = xi + yi for 1 ≤ i ≤ m. We start with
m = 2. If P1 + P2 = P0 then P1 = −P2 = (y2, x2) which implies t(P1) = y2 + x2 = t(P2) = x2 + y2.
Thus t1 = t2 and it is clear to see that f2(t1, t2) = t1 + t2 = 0. The other properties can also be easily
verified.

For m = 3, we have to construct the 3rd summation polynomial f3(t1, t2, t3) corresponding to P1 +
P2 + P3 = P0. We follow Semaev’s [Sem04] construction method. Let (x3, y3) = (x1, y1) + (x2, y2) and

41

(x4, y4) = (x1, y1)− (x2, y2). Applying the group law, we have

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1)(x2 + y2)

·

So t3 = x3 + y3 is given by

t3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

+

d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2
1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1)(x2 + y2)

·

Similarly we compute (x4, y4) to get

x4 =
d1(x1 + y2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(y2(y1 + x2 + 1) + y1x2)

d1 + (x1 + x2
1)(x2 + y2)

,

y4 =
d1(y1 + x2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(x2(x1 + y2 + 1) + x1y2)

d1 + (y1 + y2
1)(x2 + y2)

·

Let t4 = x4 +y4. Then we construct a quadratic polynomial in the indeterminate variable θ whose roots
are t3 and t4, θ2 +(t3 + t4)θ+ t3t4. We can use the EliminationIdeal() function of Magma [BCP97]
and the curve equation to express t3 + t4 and t3t4 in terms of the variables t1 and t2 to finally get

t3+t4 =
d1t1t2(t1t2 + t1 + t2 + 1)

d2
1 + d1

(
t1 + t21

)
t2 +

(
d1t1 + d2t21

)
t22

and t3t4 =
d2

1(t1 + t2)2

d2
1 + d1

(
t1 + t21

)
t2 +

(
d1t1 + d2t21

)
t22
·

So the quadratic polynomial constructed is

θ2 + (t3 + t4)θ + t3t4 =
(
d2

1 + d1

(
t1 + t21

)
t2 +

(
d1t1 + d2t

2
1

)
t22
)
θ2

+ (d1t1t2(t1t2 + t1 + t2 + 1)) θ + d2
1(t1 + t2)2.

Note that if P1 = P2 then (x3, y3) = (x1, y1) + (x1, y1) then t3 = x3 + y3 is also the root of the quadratic
polynomial constructed above. So taking the summation polynomial

f3(t1, t2, t3) = (d2t
2
1t

2
2 + d1(t21t2 + t1t

2
2 + t1t2 + d1))t23 + d1(t21t

2
2 + t21t2 + t1t

2
2 + t1t2)t3 + d2

1(t1 + t2)2

gives the result. For m ≥ 4 we use the fact that P1 + · · ·+ Pm = P0 if and only if there exists a point R on
the curve such that P1 + · · ·+ Pm−k−1 +R = P0 and −R+ Pm−k + · · ·+ Pm = P0. It follows that

fm(t1, . . . , tm) = Resultantu(fm−k(t1, t2, . . . , tm−k−1, u), fk+2(tm−k, tm−k+1, . . . , tm, u)),

(for all m ≥ 4 and m− 3 ≥ k ≥ 1),

where the resultant is taken with respect to the variable u.
We can observe that the 3rd summation polynomial is symmetric from its construction and has degree 2

in each variable ti. As shown by Semaev [Sem04], irreducibility follows from the fact that f(t1, t2, t3) = 0
is isomorphic over K(x3) to the binary Edwards curve Ed1,d2 .

42

Corollary 3.1.2. Let Ed1,d2 be a binary Edwards curve. Let d1 = d2 and P0 = (0, 0) be the identity point.
Then the summation polynomials of Ed1,d2 given by

f2(t1, t2) = t1 + t2,

f3(t1, t2, t3) = (d1 + t1t2(t1 + 1)(t2 + 1))t23 + (t1t2 + (t1 + 1)(t2 + 1))t3 + d1(t1 + t2)2,

fm(t1, . . . , tm) = Resultantu(fm−j(t1, t2, . . . , tm−j−1, u), fj+2(tm−j , tm−j+1, . . . , tm, u))

(for all m ≥ 4 and 1 ≤ j ≤ m− 3)

satisfy the following properties: for any points P1, . . . , Pm ∈ Ed1,d2(F2) such that P1 + · · ·+Pm = P0, we
have fm(t(P1), . . . , t(Pm)) = 0. Conversely, given any t1, . . . , tm ∈ F2 such that fm(t1, . . . , tm) = 0, then
there exist points P1, . . . , Pm ∈ Ed1,d2(F2) such that t(Pi) = ti for all 1 ≤ i ≤ m and P1 + · · ·+Pm = P0.
The summation polynomials are symmetric and irreducible having degree 2m−2 in each variable.

Proof. Substitute the constant d2 by d1 for the 3rd summation polynomial in Theorem 3.1.1 . Then the
summation polynomial has d1 as a factor. Since d1 6= 0, the result follows.

We use the summation polynomials given by Corollary 3.1.2 through out this chapter.

3.1.1 Factor base definition

Definition 3.1.3. Let Ed1,d2(F2n) be a binary Edwards curve. Let V ⊂ F2n be a vector subspace of
dimension `. We define the factor base to be the set,

F = {P ∈ Ed1,d2(F2n) | t(P) ∈ V }.

We heuristically assume that #F ≈ #V . Accordingly the size of the factor base is approximately 2`.
Decomposing a random element R ∈ Ed1,d2 as a sum of m factor base elements will correspond to having
relations of the form R = P1 + P2 + · · · + Pm where Pi ∈ F . Hence, the probability that a uniformly
chosen point R ∈ Ed1,d2(F2n) can be decomposed as a sum of m factor base elements is

#(Fm/Sm)

#Ed1,d2
=

#Fm

m!#Ed1,d2
≈ 2`m

m!2n
=

1

m!2n−`m
,

where Sm is the symmetric group of order m!. To have a solution on average we choose ` = bn/mc, where
bn/mc denotes the nearest integer to n/m.

If n = `m, then V is a subfield of F2n and hence the factor base is defined over a subfield of F2n . In
this case, symmetries coming from the action of order 2 and 4 points reduce the complexity of the FGLM
algorithm. We will discuss this briefly in Section 3.2.

If however n is prime, it is more difficult to get a good algorithm as the number of variables involved in
the final system of equations becomes large. Nevertheless, we give experimental evidence (in Section 3.6)
that using symmetries coming from these low order points produces a compact polynomial system which
speeds up the resolution of polynomial systems obtained by applying Weil descent to the summation poly-
nomials of the binary Edwards curve. The complexity of solving such polynomial systems is dictated by the
complexity of the F4 or F5 Gröbner basis algorithms. Since the complexity of these algorithms is expressed
in terms of the degree of regularity, we record the degree of regularity and compare our algorithm with
previous works in our experimental Section 3.6.

43

3.1.2 Weil descent of binary Edwards curve

To decompose a random element R as a sum of m factor base elements, R = P1 +P2 + · · ·+Pm where
Pi ∈ F , we need to solve the summation polynomial of the binary Edwards curve fm+1(t1, t2, · · · , tm, tm+1).
If such a decomposition exists, then fm+1(t(P1), · · · , t(Pm), t(R)) = 0.

First consider a special case where the vector subspace V is a subfield of F2n of dimension ` (in other
words, `|n). Let F2n = F2` [θ]/f(θ), where f ∈ F2` [θ] is an irreducible polynomial of degree m having
θ ∈ F2n as a root. First we evaluate the summation polynomial fm+1(t1, t2, · · · , tm, tm+1) at tm+1 by
substituting t(R) , then we apply Weil descent to obtain

m−1∑
i=0

φi(t1, t2, · · · , tm)θi = 0.

This is true if and only if

φ0(t1, t2, · · · , tm) = φ1(t1, t2, · · · , tm) = · · · = φm−1(t1, t2, · · · , tm) = 0, (3.1)

where φi(t1, t2, · · · , tm) ∈ F2` [t1, t2, · · · , tm].
The polynomial system given by equation (3.1) has m equations and m variables. By Hypothesis 2.3.4,

the polynomial system is of dimension zero. So we can solve this polynomial system using the F4 or
F5 Gröbner basis algorithms (see Theorem 2.1.18) in degree reverse lexicographic ordering followed by
the FGLM algorithm in lexicographic ordering. The complexity of solving such a polynomial system is
governed by the complexity of the FGLM algorithm (see Theorem 2.1.19) given by O(mD3), where D =
m!2m(m−1) is the degree of the ideal of the polynomial system. In this case, our goal is to reduce the
complexity of the FGLM algorithm using symmetries coming from the action of points of order two and
four.

If however n is prime and the factor base is defined with regard to the F2 vector subspace V of F2n of di-
mension ` such that ` = bn/mc, then we get an overdetermined system of equations. Indeed consider F2n as
a vector space over F2. Suppose F2n is represented using a polynomial basis {1, θ, . . . , θn−1}where f(θ) =
0 for some irreducible polynomial f(x) ∈ F2[x] of degree n. We will take V to be the vector subspace of F2n

over F2 with basis {1, θ, . . . , θ`−1}. Let R = P1 +P2 + · · ·+Pm then fm+1(t(P1), · · · , t(Pm), t(R)) = 0,
where t(Pj) ∈ V and t(R) ∈ F2n . Write t(R) = r0 + r1θ+ r2θ

2 + · · ·+ rn−1θ
n−1 with ri ∈ F2, and t(Pj)

as

t(Pj) =

`−1∑
i=0

cj,iθ
i (3.2)

where 1 ≤ j ≤ m and cj,i ∈ F2. Let f̃m be fm+1 evaluated at t(R). Then we have

0 = f̃m(t1, t2, · · · , tm)

= f̃m(
`−1∑
i=0

c1,iθ
i,
l−1∑
i=0

c2,iθ
i, · · · ,

l−1∑
i=0

cm,iθ
i)

=

n−1∑
i=0

φi(c1,0, c1,2, · · · , c1,`−1, c2,0, · · · , cm,`−1)θi

⇐⇒ φ1(c1,0, · · · , cm,`−1) = φ2(c1,0, · · · , cm,`−1) = · · · = φn−1(c1,0, · · · , cm,`−1) = 0, (3.3)

where φi ∈ F2[c1,0, · · · , cm,`−1].

44

So applying Weil descent on f̃m gives a system of n equations in the `m binary variables cj,i. As
n > `m, we have an overdetermined system. Moreover adding the field equations c2

j,i − cj,i = 0, we get a
polynomial system with n+ `m equations and `m binary variables. It is clear that the number of solutions
for an overdeterimined system is very small (actually in most cases it is zero). As a result the change of
ordering algorithm FGLM (see Theorem 2.1.19) is not needed. So the complexity of solving the system of
polynomial equations (3.3) is determined by the complexity of the F4 or F5 Gröbner basis algorithms. In
Sections 3.3 and 3.6, we discuss how to solve this system of polynomial equations.

3.2 Symmetries to speed up resolution of polynomial systems

Let the polynomial system to be solved be the polynomial system of equations given by equation (3.1).
We discuss how symmetries coming from the action of the symmetric group Sm, the action of points of
order 2 and 4 speed up the complexity of solving this polynomial system.

3.2.1 The action of symmetric group

Let Ed1,d2 be a binary Edwards curve. Let Pi = (xi, yi) ∈ Ed1,d2 . Define the action of the symmetric
group Sm on (P1, P2, · · · , Pm) by

σ(P1, P2, · · · , Pm) = (Pσ(1), Pσ(2), · · · , Pσ(m)), (3.4)

where σ ∈ Sm. Then the symmetry in the addition of points P1 + · · · + Pm = R induces a symmetry on
the corresponding summation polynomials. As a result the summation polynomials of the binary Edwards
curve Ed1,d2 belong to the invariant ring under the symmetric group Sm. Let f̃m be fm+1 evaluated at t(R)
then

f̃m(t1, t2, . . . , tm) ∈ F2n [t1, t2, . . . , tm]Sm .

We express the summation polynomial f̃m in terms of the elementary symmetric polynomials
e1, e2, . . . , em to get f̃m(e1, e2, · · · , em). As discussed in Section 2.3, the degree of the ideal of the poly-
nomial system of equations obtained by applying Weil descent on f̃m(e1, e2, · · · , em) is less by m! than
the polynomial system of equations given by equation (3.1). As a result the FGLM (see Theorem 2.1.19)
complexity is reduced by a factor of (m!)3.

3.2.2 The action of a point of order 2

As shown in Section 2.2, if P = (x, y) ∈ Ed1,d2 then P + T2 = (x+ 1, y + 1). Note that t(P + T2) =
(x + 1) + (y + 1) = x + y = t(P) so the function t is already invariant under addition by T2. Since the
factor base is defined in terms of t(P) we have that P ∈ F implies P + T2 ∈ F .

Let R = P1 + · · ·+ Pm and let u = (u1, . . . , um−1) ∈ {0, 1}m−1. Then

R = (P1 + u1T2) + (P2 + u2T2) + · · ·+ (Pm−1 + um−1T2) +

(
Pm +

(
m−1∑
i=1

ui

)
T2

)
. (3.5)

This gives 2m−1 different decompositions. Since t(Pi) = t(Pi + T2), it follows that if t1, t2, · · · , tm is a
solution to the summation polynomial corresponding to the original decomposition then the same solution is
true for all 2m−1 decompositions (3.5). We wish to have non-unique solutions so that we reduce size of the
solution set by applying a change of variables thereby reducing the degree in the ideal of the corresponding

45

polynomial system. But this has been taken care of by the design of the function t. So the FGLM complexity
is already reduced.

To speed up the linear algebra, the size of the factor base can be reduced. Each solution (t1, . . . , tm)
corresponds to many relations. Let us fix, for each t(P), one of the four points {P,−P, P + T2,−P + T2},
and put only that point into our factor base. As a result the size of F is exactly the same as the number of
t(P) ∈ V that correspond to elliptic curve points, which is roughly 1

4#V .
So for a point R, given a solution fm+1(t1, . . . , tm, t(R)) = 0 there is a unique value z0 ∈ {0, 1},

unique points P1, . . . , Pm ∈ F , and unique choices of sign z1, . . . , zm ∈ {−1, 1} such that

R+ z0T2 =

m∑
i=1

ziPi.

It follows that the size of the matrix we build after collecting enough relations is reduced by a factor of 1/4
(with one extra column added to store the coefficient of T2). This means we need to find fewer relations and
the complexity of the linear algebra is reduced by a factor of (1/4)2.

3.2.3 The action of points of order 4

We now consider the binary Edwards curve Ed1,d2 in the case d1 = d2. We observe that T4 = (1, 0) ∈
Ed1,d2 and one can verify that T4 + T4 = (1, 1) = T2 and so T4 has order four. The group generated by T4

is therefore {P0, T4, T2,−T4 = (0, 1)}.
For a point P = (x, y) ∈ Ed1,d2 , we have P +T4 = (y, x+ 1). So t(P +T4) = t(P) + 1. We construct

our factor base F such that (x, y) ∈ F implies (y, x + 1) ∈ F . For example, we can choose a vector
subspace V ⊆ F2n such that v ∈ V if and only if v + 1 ∈ V and set F = {P ∈ Ed1,d2(F2n) | t(P) ∈ V }.

Let R = P1 + P2 + · · ·+ Pm, where Pi ∈ F . Let (u1, . . . , um−1) ∈ {0, 1, 2, 3}m−1 then we get

R = (P1 + [u1]T4) + (P2 + [u2]T4) + · · ·+ (Pm−1 + [um−1]T4) + (Pm + [−
m−1∑
i=1

ui]T4), (3.6)

decompositions of R as a sum of m factor base elements for free. This gives 4m−1 distinct decompositions.
A factor of 2m−1 of these decompositions are due to the action of T2, taking ui ∈ {0, 2}. The remaining
2m−1 factors of these decompositions are due to the action of T4 and−T4. So if t1, t2, · · · , tm is a solution to

the original decomposition, then we get 2m−1 distinct solutions of the form (t1+r1, t2+r2, · · · , tm+

m−1∑
i=1

ri)

for (r1, . . . , rm−1) ∈ {0, 1}m−1. This corresponds to an even number of times, addition of 1 to the original
solution.

We observe that the dihedral coxeter groupDm = (Z/2Z)m−1oSm acts on the summation polynomial,
where (Z/2Z)m−1 adds 1 an even number of times to the solutions of the summation polynomial and Sm
permutes them. This group leaves invariant the summation polynomials. So we have

fm+1(t1, t2, . . . , tm, t(R)) ∈ F2n [t1, t2, . . . , tm]Dm .

To express the summation polynomial in terms of the generators of the invariant ring F2n [t1, t2, . . . , tm]Dm ,
it suffices to note that the invariants under the map ti 7→ ti+1 in characteristic 2 are ti(ti+1) = t2i + ti (this

46

is mentioned in Section 4.3 of [FHJ+14]). So we construct such invariant variables under this map using the
elementary symmetric polynomials in the variables t2i + ti,

s2 = (t21 + t1)(t22 + t2) + · · ·+ (t2m−1 + tm−1)(t2m + tm),
...

sm = (t21 + t1)(t22 + t2) · · · (t2m + tm).

(3.7)

One might also expect to use

s1 = t1 + t21 + · · ·+ tm + t2m = e1 + e2
1,

where e1 = t1 + · · ·+ tm. But since the addition by T4 cancels out in equation (3.6), we actually have that
e1 remains invariant. Thus we use the invariant variables e1, s2, . . . , sm as the generators of the invariant
ring F2n [t1, t2, . . . , tm]Dm .

Rewriting the summation polynomial in terms of the new variables reduces the number of solutions by
the order of the group Dm. This in turn reduces the degree of the ideal of the corresponding polynomial
system by the same amount. As a result, the complexity of the FGLM algorithm (see Theorem 2.1.19) is
reduced by a factor of (m!2m−1)3.

It is clear that we further halve the size of the factor base by choosing a unique representative of the orbit
under the action. Note that a solution to the summation polynomial equation exists if there exists a unique
value z0 ∈ {0, 1, 2, 3}, unique points P1, . . . , Pm ∈ F , and unique choices of sign z1, . . . , zm ∈ {−1, 1}
such that

R+ z0T4 =

m∑
i=1

ziPi.

Overall due to the action of the symmetric group Sm of order m! and the point T4 of order 4, the factor base
is reduced in total by a factor of 1/8. As a result the complexity of the linear algebra is reduced by a factor
of (1/8)2.

3.3 Index calculus algorithm

We now present the full index calculus algorithm (see Algorithm 2) combined with the new variables
introduced in Section 3.2.3. We work in E(F2n) = Ed1,d2(F2n) where n is prime and Ed1,d2 is a binary
Edwards curve with parameters d2 = d1. Since n is prime, we are trying to solve the polynomial system of
equations given by equation (3.3).

For the linear algebra stage of the index calculus algorithm, we will require #F + 1 ≈ #V = 2l

relations of the form
ujP + wjQ = zj,0T4 +

∑
Pi∈F

zj,iPi,

where M = (zj,i) is a sparse matrix with at most m non-zero entries per row, ujP +wjQ = R is a random
element for known random integer values of uj and wj , and zj,0 ∈ {0, 1, 2, 3}.

If we can find a solution (t1, t2, . . . , tm) ∈ V m satisfying fm+1(t1, t2, . . . , tm, t(R)) = 0 then we
need to determine the corresponding points, if they exist, (xi, yi) ∈ E(F2n) such that ti = xi + yi and
(x1, y1)+· · ·+(xm, ym) = R. Finding (xi, yi) given ti is just taking roots of a univariate quartic polynomial.
Once we have m points in E(F2n), we may need to check up to 2m−1 choices of sign and also determine an

47

additive term zj,0T4 to be able to record the relation as a vector. The cost of computing the points (xi, yi) is
almost negligible, but checking the signs may incur some cost for large m.

If a random point R can be written as a sum of m factor base elements, then there exists a solution
(t1, . . . , tm) ∈ V m to the polynomial system that can be lifted to points in E(F2n). When no relation exists
there are two possible scenarios: Either there is no solution (t1, . . . , tm) ∈ V m to the polynomial system,
or there are solutions but they do not lift to points in E(F2n).

Let r be the order of P (assumed to be odd). If S is any vector in the kernel of the matrix M , that is
SM ≡ 0 (mod r)), then write u = S(u1, . . . , u`+1)T andw = S(w1, . . . , w`+1)T . We have uP+wQ = 0
(the T4 term must disappear if r is odd) and so u+ wa ≡ 0 (mod r). A solution to the ECDLP is then a.

We now detail how to use the invariant variables (3.7) to speed up the resolution of solving the system
of polynomial equations (3.3). From our discussion we have t(Pj) =

∑`−1
i=0 cj,iθ

i (3.2) for 1 ≤ j ≤ m. We
have observed that the polynomial system has n + `m equations and `m binary variables cj,i. The system
of polynomial equations (3.3) is obtained by first substituting t(Pj) and then applying Weil descent to the
summation polynomials. This time instead of substituting tj , we make use of the invariant variables. Let us
drop the notation t(Pj) and write instead tj .

As noted by Huang et al. [HPST13], write the invariant variables e1 and sj in terms of binary variables
with respect to the basis for F2n . We find the smallest vector subspace in terms of the dimension of the
vector subspace V of F2n that contains each invariant variable. For example e1 = t1 + t2 + · · ·+ tm. Since
each tj ∈ V and the operation of addition is closed in the vector subspace V . It follows that e1 ∈ V and it
can be written as

e1 = d1,0 + d1,1θ + d1,2θ
2 + · · ·+ d1,`−1θ

`−1, (3.8)

where di,j ∈ F2. Similarly the invariant variables s2, . . . , sm can be written as,

s2 = d2,0 + d2,1θ + d2,2θ
2 + · · ·+ d2,4(`−1)θ

4(`−1),
...

sj = dj,0 + dj,1θ + dj,2θ
2 + · · ·+ dj,2j(`−1)θ

2j(`−1)

where 1 ≤ j ≤ k = min(bn/(2(`− 1))c,m),
sj+1 = dj+1,0 + dj+1,1θ + dj+1,2θ

2 + · · ·+ dj+1,(n−1)θ
n−1,

...
sm = dm,0 + dm,1θ + dm,2θ

2 + · · ·+ dm,n−1θ
n−1·

(3.9)

Suppose k = n/(2(` − 1)) ≈ m/2 and it takes the value m̃ = dm/2e, where dm/2e denotes the smallest
integer greater or equal to m/2. Then the number of binary variables di,j is

N = `+ (4(`− 1) + 1) + (6(`− 1) + 1) + · · ·+ (2m̃(`− 1) + 1) + m̃n ≈ (m2`+mn)/2.

Let f̃m be fm+1 evaluated at t(R). Then substituting e1, s2, · · · , sm in f̃m we obtain

0 = f̃m(t1, t2, · · · , tm),

= f̃m(e1, s2, · · · , sm),

= f̃m(
`−1∑
j=0

d1,jθ
j , · · · ,

n−1∑
j=0

dm,jθ
j),

=

n−1∑
i=0

φi(d1,0, d1,1 · · · , dm,n−2, dm,n−1)θi,

⇐⇒ φ1(d1,0, · · · , dm,n−1) = φ2(d1,0, · · · , dm,n−1) = · · · = φn−1(d1,0, · · · , dm,n−1) = 0,(3.10)

48

where φi ∈ F2[d1,0, · · · , dm,n−1]. This forms a system of n equations in the N binary variables dj,i. We
add the field equations d2

j,i − dj,i. Denote the system of equations by sys1.
One could attempt to solve sys1 using the F4 or F5 Gröbner basis algorithms. But solving sys1 is harder

than solving the original polynomial system of equations (3.3) as the number of binary variables N is too
large compared with the number of equations. Therefore, we add a large number of new equations to sys1

relating the cj,̃i to the dj,i via the tj , using equations (3.7) and (3.2). But this also introduces
`m < n variables cj,̃i. So for the invariant variables e1, s2, · · · , sm, we get the relations

d1,0 + d1,1θ + · · ·+ d1,`−1θ
`−1 =

m∑
j=1

`−1∑
ĩ=0

cj,̃iθ
ĩ,

...

d1,0 + d1,1θ + · · ·+ d1,n−1θ
n−1 =

m∏
j=1

`−1∑
ĩ=0

cj,̃iθ
ĩ,

respectively. Applying Weil descent to this gives N additional equations in the N + `m binary variables.
After adding the field equations c2

j,̃i
− cj,̃i, we denote the system of equations by sys2.

The combined system of equations sys = sys1 ∪ sys2 has n + N equations, N + `m field equations
and N + `m binary variables. So sys is an overdetermined system. Finally we solve sys using the F4 or
F5 Gröbner basis algorithms. If a solution to the systems of equations exists, for each candidate solution
cj,̃i, one computes the corresponding solution (t1, t2, . . . , tm). For each tj the corresponding point Pj is
computed and the points P1, P2, · · · , Pm are checked if they form a relation. If they do, we record the
relation and continue the operation until we get enough relations for the linear algebra stage.

Algorithm 1 Index Calculus Algorithm
1: Set Nr ← 0
2: while Nr ≤ #F do
3: Compute R← uP + wQ for random integer values u and w.
4: Compute the summation polynomial with respect to invariant variables, fm+1(e1, s2, . . . , sm, t(R)).
5: Evaluate the summation polynomial fm+1 at t(R) to get f̃m.
6: Use Weil descent to write f̃m(e1, s2, . . . , sm) as n polynomial equations in the binary variables dj,i.
7: Add the field equations d2

j,i − dj,i to get system of equations sys1.
8: Build new polynomial equations relating the variables dj,i and cj,̃i.
9: Add field equations c2

j,̃i
− cj,̃i to get system of equations sys2.

10: Solve system of equations sys = sys1 ∪ sys2 to get (cj,̃i, dj,i).
11: Compute corresponding solution(s) (t1, . . . , tm).
12: For each tj compute, if it exists, a corresponding point Pj = (xj , yj) ∈ F
13: if z1P1 + z2P2 + · · ·+ zmPm + z0T4 = R for suitable z0 ∈ {0, 1, 2, 3}, zi ∈ {1,−1} then
14: Nr ← Nr + 1
15: Record zi, u, w in a matrix M for the linear algebra
16: Use linear algebra to find non-trivial kernel element to solve the ECDLP.

49

3.4 Breaking symmetry in the factor base

If #V m ≈ 2n, the probability of decomposing a random element R as a sum of m factor base elements
is approximately 1

m! . If m is large then the probability of finding a relation is low. Although in practice for
small m the running time of the index calculus algorithm is extremely slow, it is worth investigating how
to increase the probability of finding a relation to approximately equal to 1. The probability of finding a
relation is approximately 1 means, the cost of finding a relation is reduced roughly by m!.

We now explain how to break symmetry in the factor base while using the invariant variables (3.7). This
is our greedy approach to lower the probability of finding a relation as well as enhancing the resolution of
solving the system of equations sys (see line 10 of Algorithm 2).

Suppose F2n is represented using a polynomial basis and take V to be the subspace with basis
{1, θ, . . . , θ`−1}. We choosem elements vi ∈ F2n (which can be interpreted as vectors in the n-dimensional
F2-vector space corresponding to F2n) as follows:

v1 = 0,

v2 = θ` = (0, 0, . . . , 0, 1, 0, . . . , 0) where the 1 is in position ` Similarly ,

v3 = θ`+1,

v4 = θ`+1 + θ`,

v5 = θ`+2,
...

In other words, vi is represented as a vector of the form (0, . . . , 0, w0, w1, w2, . . .) where · · ·w2w1w0 is
the binary expansion of i− 1. Note that the subsets V + vi in F2n are pair-wise disjoint.

Accordingly, we define the factor bases to be

Fi = {P ∈ E(F2n) | t(P) ∈ V + vi} for 1 ≤ i ≤ m,

where t(x, y) = x+y. A similar factor base design is mentioned in Section 7 of [Nag13] to solve DLP over
hyper elliptic curves.

The decomposition over the factor base of a point R will be a sum of the form R = P1 +P2 + · · ·+Pm
where Pi ∈ Fi for 1 ≤ i ≤ m. Since we heuristically assume that #Fi ≈ 2`, we expect the number of
points in {P1 + · · · + Pm | Pi ∈ Fi} to be roughly 2`m. Note that there is no 1/m! term here. The entire
purpose of this definition is to break the symmetry in the factor base to increase the probability of relations.
So the probability that a uniformly chosen pointR ∈ E(F2n) can be decomposed in this way is heuristically
2`m/2n = 1/2n−`m, which is approximately 1 for n ≈ `m.

As the points Pi are chosen from distinct factor bases Fi in the decomposition R = P1 + · · · + Pm,
one does not have the action by the symmetric group Sm. But the summation polynomials have the action
by Sm. So they can be written in terms of the invariant variables e1, s2, · · · , sm. The trick is to distinguish
the computation of the invariant variables during the construction of the system of equations sys via Weil
descent.

Take for example m = 4, we are decomposing a random element R as a sum of 4 factor base elements
(R = P1 +P2 +P3 +P4). So one needs to solve the summation polynomial f5(t1, t2, t3, t4, t(R)). Without

breaking the symmetry in the factor base, we have tj ∈ V which can be written as tj =

`−1∑
ĩ=0

cj,̃iθ
ĩ. But with

50

the symmetry breaking of the factor base we have

t1 = c1,0 + c1,1θ + c1,2θ
2 + · · ·+ c1,`−1θ

`−1,

t2 = c2,0 + c2,1θ + c2,2θ
2 + · · ·+ c2,`−1θ

`−1 + θ`,

t3 = c3,0 + c3,1θ + c3,2θ
2 + · · ·+ c3,`−1θ

`−1 + θ`+1,

t4 = c4,0 + c4,1θ + c4,2θ
2 + · · ·+ c4,`−1θ

`−1 + θ` + θ`+1.

It follows that the invariant variable

e1 = t1 + t2 + t3 + t4 = d1,0 + d1,1θ + · · ·+ d1,`−1θ
`−1

can be represented exactly as in (3.8). But the other invariant variables are less simple. For example,

s2 = (t21 + t1)(t22 + t2) + · · ·+ (t23 + t3)(t24 + t4)

= d2,0 + d2,1θ + d2,2θ
2 + · · ·+ d2,4(`−1)θ

4(`−1) + · · ·+ θ4`+4.

Without breaking the symmetry in the factor base s2 has the highest term d2,4(`−1)θ
4`−4 (3.9) but now with

breaking the symmetry in the factor base it has highest terms d2,4(`+1)θ
4`+4. The number of variables has

increased by 8. But most of them are either 0 or 1 and they can be fixed during the Weil descent. For
example the coefficient of θ4`+4 is 1. So d2,4(`+1) = 1. In general we require more variables than with the
symmetry in the factor base case. So breaking the symmetry in the factor base increases the probability of a
relation but produces a harder system of equations to solve.

An additional consequence of this idea is that the factor base is now roughly m times larger than in the
symmetric case. So the number of relations required is increased by a factor m. So the speed up actually is
approximately m!/m = (m− 1)! and the cost of the linear algebra is also increased by a factor m2.

To determine the usefulness of breaking the symmetry in the factor base, it is necessary to perform some
experiments (see Section 3.6). As our experiment shows, breaking the symmetry in the factor base gives an
advantage as n gets larger and the size of the factor base is small.

3.5 Gröbner basis versus SAT solvers comparison

Shantz and Teske [ST13] discuss a standard idea [YC04, YCC04, BFP09] called the “hybrid method”,
which is to partially evaluate the system at some random points before applying the F4 or F5 Gröbner basis
algorithms. It is argued that it is better to just use the “delta method”, ∆ = n − m` > 0. The main
observation is that using smaller ` speeds up the Gröbner basis computation at the cost of decreasing the
probability of getting a relation.

We investigated other approaches to solve polynomial systems of equations over a binary field. In
particular, we experimented with SAT solvers. We used Minisat 2.1 [SE08] (see also [ES, SE05]), coupled
with the Magma system for converting the polynomial system into conjunctive normal form (CNF).

SAT solvers take an input in Conjunctive Normal Form (CNF): a conjunction of clauses where a clause is
a disjunction of literals, and a literal is a variable or its negation. The Magma interface with Minisat performs
the conversion from polynomial equations to CNF. The number of variables, the number of clauses, and the
total length of all the clauses determines the size of the CNF expression. Although the running time of SAT
solvers in the worst case is exponential in the number of variables in the problem, practical running times
may be shorter as we will see in our experimental Section 3.6.

51

3.6 Experimental results

We conducted several experiments using elliptic curves E over F2n . We always use the (m + 1)th

summation polynomial to find relations as a sum of m points in the factor base. The factor base is defined
using a vector space of dimension `. In our experiments we examine the effect of the invariant variables
e1, s2, . . . , sm on the computation of intermediate results and the degree of regularity dreg. Recall that dreg is
the main complexity indicator of the F4 or F5 Gröbner basis algorithms. The time and memory complexities
are roughly estimated to be N3dreg and N2dreg respectively where N is the number of variables.

Experiment 1: For the summation polynomials we use the invariant variables e1, e2, . . . , em, which are the
generators of the invariant ring under the group Sm (the action of T2 is exploited in this experiment). The
factor base is defined with respect to a fixed vector space of dimension `.

Experiment 2: For the summation polynomials we use the invariant variables e1, s2, . . . , sm, which are the
generators of the invariant ring under the group Dm = (Z/2Z)m−1 oSm (note the action of T4 is exploited
in this experiment). The factor base is defined with respect to a fixed vector space V of dimension ` such
that v ∈ V if and only if v + 1 ∈ V .

Experiment 3: For the summation polynomials we use the invariant variables e1, s2, . . . , sm, which are
generators of the invariant ring under the group (Z/2Z)m−1 o Sm. The symmetry in the factor base is
broken. We define the factor base by taking affine spaces (translations of a vector space of dimension `).

We denote the time taken for the set-up operations (lines 4 to 9 of Algorithm 2) by TInter, while TGB

denotes the time taken to do line 10 of the algorithm. Other notation includes Mem (the average memory
used in megabytes by the Minisat SAT solver or Gröbner basis), dreg (the degree of regularity), Var (the
total number of variables in the system) and Pequ (the total number of equations).

In Table 3.1 we also give a success probability Psucc the percentage of times our SAT program terminated
with solution within 200 seconds, TSAT the average running times in seconds to compute step 10 using a
SAT solver, and #Clauses and #Literals are the average number of clauses and total number of literals
(i.e., total length) of the CNF input to the SAT solver.

All experiments are carried out using a computational server (3.0GHz CPU x8, 28G RAM). In all our
experiments, timings are averages of 100 trials except for values of TGB + TInter > 200 seconds (our
patience threshold), in this case they are single instances.

Table 3.1 compares Minisat with Gröbner basis methods (Experiment 2) for m = 4. The experiment
shows that SAT solvers can be faster and, more importantly, handle larger range of values for `. As is shown
in Table 3.1, we can work with ` up to 7. But the F4 or F5 Gröbner basis algorithms are limited to ` ∈ {3, 4}
for fixed value m = 4 in our experiments.

However, on the negative side, the running time of SAT solvers varies a lot depending on many factors
such as the curve parameter d1, and the hamming weight of possible solutions. Further, our experimental
investigation shows that they seem to be faster when there is a solution of low hamming weight. We also
observe from our experiment that SAT solvers are slightly slow when no solution exists. This behavior is
very different to the case of Gröbner basis methods, which perform rather reliably and are slightly better
when our system of equations have no solution. For both methods, Table 3.1 shows only the case when our
system of equations have a solution.

SAT solvers with an “early abort” strategy gives an advantage. That is one can generate a lot of instances
and run SAT solvers in parallel and then kill all instances that are still running after some time threshold has
been passed (a similar idea is mentioned in Section 7.1 of [MCP07]). This could allow the index calculus
algorithm to be run for a larger set of parameters. The probability of finding a relation is now decreased.

52

The probability that a relation exists must be multiplied by the probability that the SAT solver terminates in
less than the time threshold, in the case when a solution exists. It is this latter probability that we estimate
in the Psucc column of Table 3.1.

Table 3.2 compares Experiment 1 and Experiment 2 in the case m = 3. Gröbner basis methods are used
in both cases. Timings are averages from 100 trials except for values of TGB + TInter > 200 seconds, in
this case they are single instances.

Experiments in [HPST13] are limited to the casem = 3 and ` ∈ {3, 4, 5, 6} for prime degree extensions

n ∈ {17, 19, 23, 29, 31, 37, 41, 43, 47, 53}.

This is due to high running times and large memory requirements, even for small parameter sizes. As shown
in Table 3.2, we repeated these experiments. Exploiting greater symmetry (in this case Experiment 2) is
seen to reduce the computational costs. Indeed, we can go up to ` = 8 with reasonable running time for
some n, which is further than [HPST13]. The degree of regularity stays ≤ 4 in both cases.

Table 3.4 considers m = 4, which was not done in [HPST13]. For the sake of comparison, we gather
some data for Experiment 1 and Experiment 2. Again, exploiting greater symmetry (Experiment 2) gives
a significant decrease in the running times, and the degree of regularity dreg is slightly decreased. The
expected degree of regularity for m = 4, stated in [PQ12], is m2 + 1 = 17. The table shows that our choice
of coordinates makes the case m = 4 much more feasible.

Our idea of breaking symmetry in the factor base (Experiment 3) is investigated in Table 3.3 for the
case m = 3. Some of the numbers in the second tabular column already appeared in Table 3.2. Recall
that the relation probability is increased by a factor 3! = 6 in this case, so one should multiply the timings
in the right hand column by (m − 1)! = 2 to compare overall algorithm speeds. The experiments are not
fully conclusive (and there are a few “outlier” values that should be ignored), but it shows that breaking the
symmetry in the factor base gives a speedup in many cases when n is large.

For larger values of n, the degree of regularity dreg is often 3 for breaking the symmetry in the factor
base case while it is 4 for most values in Experiment 2. So the performance we observe with breaking the
symmetry in the factor base is explained by the fact that the degree of regularity stayed at 3 as n grows.

Conclusion

We conclude that cryptosystems making use of the DLP for binary curves as proof of their security
are safe. As the above experiments show, our index calculus algorithm is limited to very small range of
parameters. So the Pollard rho/lambda and its variants remain the best algorithms to solve the DLP for
binary curves.

53

Table 3.1: Comparison of solving polynomial systems, when there exists a solution to the system, in Ex-
periment 2 using SAT solver (Minisat) versus Gröbner basis methods for m = 4. #Var and #Pequ are the
number of variables and the number of polynomial equations respectively. Mem is average memory used
in megabytes by the SAT solver or Gröbner basis algorithm. #Clauses, #Literals, and Psucc represent the
average number of clauses, total number of literals, and the percentage of times Minisat halts with solutions
within 200 seconds respectively.

Experiment 2 with SAT solver Minisat
n ` #Var #Pequ #Clauses #Literals TInter TSAT Mem Psucc

17 3 54 59 46678 181077 0.35 7.90 5.98 94%
4 67 68 125793 485214 0.91 27.78 9.38 90%

19 3 54 61 55262 215371 0.37 3.95 6.07 93%
4 71 74 140894 543422 1.29 18.38 18.05 86%

23 3 54 65 61572 240611 0.39 1.53 7.60 87%
4 75 82 194929 760555 2.15 5.59 14.48 83%
5 88 91 394759 1538560 4.57 55.69 20.28 64%

29 4 77 90 221828 868619 3.01 7.23 19.05 87%
5 96 105 572371 2242363 9.95 39.41 32.87 67%
6 109 114 855653 3345987 21.23 15.87 43.07 23%
7 118 119 1063496 4148642 36.97 26.34 133.13 14%

31 4 77 92 284748 1120243 3.14 17.12 20.52 62%
5 98 109 597946 2345641 11.80 33.48 45.71 57%
6 113 120 892727 3489075 26.23 16.45 118.95 12%
7 122 125 1307319 5117181 44.77 21.98 148.95 8%

37 4 77 98 329906 1300801 3.41 26.12 29.97 59%
5 100 117 755621 2977220 13.58 48.19 50.97 40%
6 119 132 1269801 4986682 41.81 42.85 108.41 11%
7 134 143 1871867 7350251 94.28 40.15 169.54 6%

41 4 77 102 317272 1250206 3.08 19.28 27.59 68%
5 100 121 797898 3146261 15.71 27.14 49.34 65%
6 123 140 1353046 5326370 65.25 31.69 89.71 13%

43 4 77 104 374011 1477192 2.97 17.77 28.52 68%
5 100 123 825834 3258080 13.85 29.60 54.83 52%

47 4 77 108 350077 1381458 3.18 11.40 29.93 59%
5 100 127 836711 3301478 14.25 27.56 61.55 43%

53 4 77 114 439265 1738168 11.02 27.88 32.35 75%
5 100 133 948366 3748119 14.68 34.22 64.09 62%
6 123 152 1821557 7200341 49.59 41.55 123.38 11%
7 146 171 2930296 11570343 192.20 67.27 181.20 4%

Experiment 2 with Gröbner basis: F4

n ` #Var #Pequ TInter TGB Mem
17 3 54 59 0.29 0.29 67.24

4 67 68 0.92 51.79 335.94
19 3 54 61 0.33 0.39 67.24

4 71 74 1.53 33.96 400.17
23 3 54 65 0.26 0.31 67.24

4 75 82 2.52 27.97 403.11
29 3 54 71 0.44 0.50 67.24

4 77 90 3.19 35.04 503.87
31 3 54 73 0.44 0.58 67.24

4 77 92 3.24 9.03 302.35
37 3 54 79 0.36 0.43 67.24

4 77 98 3.34 9.07 335.94
41 3 54 83 0.40 0.54 67.24

4 77 102 3.39 17.19 382.33
43 3 54 85 0.43 0.53 67.24

4 77 104 3.44 9.09 383.65
47 3 54 89 0.50 0.65 67.24

4 77 108 3.47 9.59 431.35
53 3 54 95 0.33 0.40 67.24

4 77 114 11.43 11.64 453.77

54

Table 3.2: Comparison of solving our systems of equations, having a solution, using Gröbner basis methods
in Experiment 1 and Experiment 2 for m = 3. Notation is as above. ’*’ indicates that the time to complete
the experiment exceeded our patience threshold

Experiment 1
n ` dreg #Var #Pequ TInter TGB

17 5 4 42 44 0.08 13.86
19 5 4 42 46 0.08 18.18

6 4 51 52 0.18 788.91
23 5 4 42 50 0.10 35.35

6 4 51 56 0.21 461.11
7 * * * * *

29 5 4 42 56 0.11 31.64
6 4 51 62 0.25 229.51
7 4 60 68 0.60 5196.18
8 * * * * *

31 5 4 42 58 0.12 5.10
6 5 51 64 0.27 167.29
7 5 60 70 0.48 3259.80
8 * * * * *

37 5 4 42 64 0.18 0.36
6 4 51 70 0.34 155.84
7 4 60 76 0.75 1164.25
8 * * * * *

41 5 4 42 68 0.16 0.24
6 4 51 74 0.36 251.37
7 4 60 80 0.77 1401.18
8 * * * * *

43 5 4 42 70 0.19 0.13
6 4 51 76 0.38 176.67
7 3 60 82 0.78 1311.23
8 * * * * *

47 5 4 42 74 0.19 0.14
6 4 51 80 0.54 78.43
7 * * * * *
8 * * * * *

53 5 4 51 80 0.22 0.19
6 5 51 86 0.45 1.11
7 4 60 92 1.20 880.59
8 * * * * *

Experiment 2
n ` dreg #Var #Peq TInter TGB

17 5 4 54 56 0.02 0.41
19 5 3 56 60 0.02 0.48

6 4 62 63 0.03 5.58
23 5 4 60 68 0.02 0.58

6 4 68 73 0.04 2.25
7 * * * * *

29 5 4 62 76 0.03 0.12
6 4 74 85 0.04 2.46
7 4 82 90 0.07 3511.14
8 * * * * *

31 5 4 62 78 0.03 0.36
6 4 76 89 0.05 2.94
7 4 84 94 0.07 2976.97
8 * * * * *

37 5 4 62 84 0.04 0.04
6 4 76 95 0.06 4.23
7 4 90 106 0.09 27.87
8 * * * * *

41 5 4 62 88 0.03 0.04
6 4 76 99 0.06 0.49
7 4 90 110 0.09 11.45
8 * * * * *

43 5 3 62 90 0.04 0.05
6 4 76 101 0.06 5.35
7 4 90 112 0.10 15.360
8 * * * * *

47 5 4 62 94 0.04 0.06
6 4 76 105 0.06 1.28
7 4 90 116 0.13 8.04
8 4 104 127 0.16 152.90

53 5 3 62 100 0.04 0.02
6 4 76 111 0.06 0.19
7 4 90 122 0.14 68.23
8 4 104 133 0.19 51.62

55

Table 3.3: Comparison of solving our systems of equations using Gröbner basis methods having a solution
in Experiment 3 and Experiment 2 when m = 3. Notation is as in Table 3.1. For a fair comparison, the
timings in the right hand column should be doubled.

Experiment 3
n ` dreg #Var #Pequ TInter TGB

37 5 3 68 90 0.04 0.25
6 4 80 99 0.07 5.67
7 * * * * *

41 5 4 68 94 0.05 0.39
6 3 80 103 0.07 4.55
7 4 93 113 0.11 1905.21

43 5 4 68 96 0.05 0.21
6 4 80 105 0.08 4.83
7 3 94 116 0.12 100.75

47 5 4 68 100 0.05 0.17
6 3 80 109 0.08 3.88
7 3 94 120 0.11 57.61

53 5 3 68 106 0.06 0.08
6 4 80 115 0.09 12.75
7 3 94 126 0.14 11.38

59 5 4 68 112 0.06 0.05
6 4 80 121 0.10 0.59
7 4 94 132 0.16 13.60

61 5 4 68 114 0.06 0.04
6 4 80 123 0.11 0.46
7 4 94 134 0.16 8.61

67 5 3 68 120 0.07 0.02
6 3 80 129 0.11 0.17
7 4 94 140 0.16 121.33

71 5 3 68 124 0.07 0.02
6 3 80 133 0.12 0.12
7 4 94 144 0.18 2.06

73 5 3 68 126 0.08 0.02
6 3 80 135 0.12 0.11
7 4 94 146 0.18 1.47

79 5 3 68 132 0.08 0.02
6 4 80 141 0.12 0.07
7 4 94 152 0.19 0.62

83 5 3 68 136 0.08 0.02
6 4 80 145 0.13 0.04
7 3 94 156 0.21 0.29

89 5 3 68 142 0.09 0.02
6 3 80 151 0.14 0.03
7 3 94 162 0.21 0.17

97 5 3 68 150 0.09 0.02
6 3 80 159 0.14 0.03
7 4 94 170 0.22 0.10

Experiment 2
n ` dreg #Var #Pequ TInter TGB

37 5 4 62 84 0.04 0.04
6 4 76 95 0.06 4.23
7 4 90 106 0.09 27.87

41 5 4 62 88 0.03 0.04
6 4 76 99 0.06 0.49
7 4 90 110 0.09 11.45

43 5 3 62 90 0.04 0.05
6 4 76 101 0.06 5.35
7 4 90 112 0.10 15.360

47 5 4 62 94 0.04 0.06
6 4 76 105 0.06 1.28
7 4 90 116 0.13 8.04

53 5 3 62 100 0.04 0.02
6 4 76 111 0.06 0.19
7 4 90 122 0.14 68.23

59 5 4 62 106 0.04 0.02
6 3 76 117 0.07 0.11
7 4 90 128 0.11 4.34

61 5 4 62 108 0.04 0.02
6 3 76 119 0.07 0.09
7 4 90 130 0.11 5.58

67 5 4 62 114 0.04 0.02
6 4 76 125 0.07 0.07
7 4 90 136 0.11 0.94

71 5 4 62 118 0.04 0.02
6 4 76 129 0.07 0.04
7 3 90 140 0.12 0.25

73 5 4 62 120 0.05 0.02
6 4 76 131 0.07 0.03
7 3 90 142 0.13 0.22

79 5 4 62 126 0.05 0.02
6 4 76 137 0.08 0.03
7 4 90 148 0.12 0.33

83 5 4 62 130 0.05 0.02
6 4 76 141 0.09 0.03
7 4 90 152 0.13 0.13

89 5 4 62 136 0.05 0.02
6 4 76 147 0.09 0.03
7 4 90 158 0.13 0.05

97 5 4 62 144 0.05 0.02
6 4 76 155 0.09 0.03
7 4 90 166 0.13 0.04

56

Table 3.4: Comparison of solving our systems of equations, having a solution, using Gröbner basis methods
in Experiment 1 and Experiment 2 for m = 4. Notation is as above. The second tabular column already
appeared in Table 3.1.

Experiment 1
n ` dreg #Var #Pequ TInter TGB

17 3 5 36 41 590.11 216.07
4 * * * * *

19 3 5 36 43 564.92 211.58
4 * * * * *

23 3 5 36 47 1080.14 146.65
4 * * * * *

29 3 5 36 53 1069.49 232.49
4 * * * * *

31 3 5 36 55 837.77 118.11
4 * * * * *

37 3 5 36 61 929.82 178.04
4 * * * * *

41 3 4 36 65 1261.72 217.22
4 * * * * *

43 3 4 36 67 1193.13 220.25
4 * * * * *

47 3 4 36 71 1163.94 247.78
4 * * * * *

53 3 4 36 77 1031.93 232.110
4 * * * * *

Experiment 2
n ` dreg #Var #Pequ TInter TGB

17 3 4 54 59 0.29 0.29
4 4 67 68 0.92 51.79

19 3 4 54 61 0.33 0.39
4 4 71 74 1.53 33.96

23 3 4 54 65 0.26 0.31
4 4 75 82 2.52 27.97

29 3 4 54 71 0.44 0.50
4 4 77 90 3.19 35.04

31 3 4 54 73 0.44 0.58
4 4 77 92 3.24 9.03

37 3 4 54 79 0.36 0.43
4 4 77 98 3.34 9.07

41 3 4 54 83 0.40 0.54
4 4 77 102 3.39 17.19

43 3 4 54 85 0.43 0.53
4 4 77 104 3.44 9.09

47 3 4 54 89 0.50 0.65
4 4 77 108 3.47 9.59

53 3 4 54 95 0.33 0.40
4 4 77 114 11.43 11.64

3.7 Splitting method to solve DLP for binary curves

Despite making use of symmetries to speed up the point decomposition problem, our experiment to
solve the DLP for binary Edwards curve using the index calculus algorithm are still limited for small pa-
rameters n, `, and m. This is mainly because the degree of the summation polynomial is high and when
the Weil descent is made, the number of variables over the field F2 is quite large. We have concluded that
cryptosystems making use of the DLP for binary curves as their security assumption are safe.

To lower the degree of the summation polynomials, a new idea is suggested in [Sem15, PTH15, Kar15,
HKY15]. The idea is to split the summation polynomial into lower degree summation polynomials. The
lowering of the degree of the summation polynomial comes at a cost of introducing new variables which in
turn increases the complexity.

Let K = F2n for a prime n. Let E be a binary elliptic curve defined over the field K given by the
Weierstrass equation E : y2 + xy = x3 + a2x

2 + a6, where {a2, a6} ∈ K. For the curve E, the 3rd

summation polynomial due to Semaev [Sem04] is given by

f3(x1, x2, x3) = x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 + x1x2x3 + a6. (3.11)

For m ≥ 4, the summation polynomials are constructed using resultants recursively as follows

fm(x1, · · · , xm) = Resultantx(fm−j(x1, x2, · · · , xm−j−1, x), fj+2(xm−j , xm−j+1, . . . , xm, x))

for 1 ≤ j ≤ m− 3.
Let the factor base be defined in the usual way as

F = {(x, y) ∈ E(F2n) | x ∈ V }, (3.12)

57

where V is a vector subspace of F2n of dimension ` such that n ≈ `m. Let (1, θ, θ2, · · · , θ`−1) be the
basis of V and (1, θ, θ2, · · · , θn−1) be the basis of F2n over F2, where θ is a root of a degree n irreducible
polynomial f with coefficients in F2.

The splitting idea [Sem15, PTH15, Kar15, HKY15] is based on the observation that decomposing a
random element R as a sum of m factor base elements Pi is equivalent to decomposing R as a sum of
intermediate subset sums of thesem factor base elements Pi. So we haveR = P1+P2+· · ·+Pm if and only
if the possible intermediate sums of these points sum toR. For example ifm = 3, we haveR = P1+P2+P3

if and only if R = R1 +P3, where R1 = P1 +P2. If m = 4, we have R = P1 +P2 +P3 +P4 if and only if

R =

R1 +R2, where R1 = P1 + P2, and R2 = P3 + P4

P4 +R3, where R1 = P1 + P2, and R3 = P3 +R1

R1 + P3 + P4, where R1 = P1 + P2.

(3.13)

Note that R1, R2 ∈ E(F2n). The summation polynomials corresponding to these decompositions respec-
tively are

f5(x1, x2, x3, x4, x(R)) = 0 ⇐⇒

f3(x(R1), x(R2), x(R)) = 0

f3(x1, x2, x(R1)) = 0

f3(x3, x4, x(R2)) = 0,

(3.14)

f5(x1, x2, x3, x4, x(R)) = 0 ⇐⇒

f3(x(R3), x4, x(R)) = 0

f3(x1, x2, x(R1)) = 0

f3(x3, x(R1), x(R3)) = 0,

(3.15)

f5(x1, x2, x3, x4, x(R)) = 0 ⇐⇒

{
f3(x1, x2, x(R1)) = 0

f4(x3, x4, x(R1), x(R)) = 0.
(3.16)

The original summation polynomial f5(x1, x2, x3, x4, x(R)) is of degree 8 in each of the 4 variables. On
the other hand the summation polynomials on the right side of equation (3.14) and (3.15) are of degree 2
in each of the 3 variables. So instead of applying Weil descent on f5, the Weil descent is applied on these
derived 3rd summation polynomials.

From our trivial observation, the degree of the derived summation polynomials is lower than the original
summation polynomial. So we expect a speed up in solving the corresponding polynomial systems. However
the number of intermediate field variables (“auxiliary variables”) introduced in turn increase the complexity
of solving the polynomial systems. For example the system of polynomial equations derived from the
summation polynomials on the right side of equation (3.14) or (3.15) introduce the variables x(R1), x(R2) ∈
F2n and hence an increase by 2n additional binary variables in the Weil descent of these polynomial systems.

There is a typical tradeoff between lowering the degree of the summation polynomials and increasing the
number of variables. As in previous discussions, the two important parameters that determine the complexity
of solving such polynomial systems using the F4 or F5 Gröbner basis algorithms are the degree of regularity
and the number of variables involved in the system.

The independent contributions from [Kar15, Sem15, PTH15] are almost similar (see also [HKY15]). For
example in [Kar15], the original summation polynomial is split into two derived summation polynomials
as shown by equation (3.16). Whereas in [Sem15] and [PTH15], the summation polynomial is split into
m − 1 derived summation polynomials as shown in equation (3.14). We focus on the latter. So if R =

58

P1 + P2 + · · ·+ Pm then

fm+1(x1, · · · , xm, x(R)) = 0 ⇐⇒

f3(x1, x2, x(R1)) = 0

f3(x3, x(R1), x(R2)) = 0

f3(x4, x(R2), x(R3)) = 0
...
f3(xm, x(Rm−2), x(R)) = 0.

(3.17)

We apply Weil descent on the right hand side of equation (3.17) instead of applying the Weil descent on the
summation polynomial fm+1. This introduces m − 2 intermediate field variables of the form x(Ri). After
the Weil descent, we have n(m− 2) more binary variables than the original system.

Consider the 3rd summation polynomial f3(x1, x2, x(R1)) = 0. The first fall degree dff of the poly-
nomial system F obtained by applying Weil descent to the 3rd summation polynomial is 3 (see [Kar15]).
Indeed the monomials we get after the Weil descent are

{1, x2
1x

2
2, x

2
1x

2
R, x

2
2x

2
R, x1x2xR},

where xR is x(R). So for each polynomial fi ∈ F , we have maxi(deg(fi)) = 3 over F2. By the definition
of the first fall degree (see Definition 2.1.25), taking g = x1, we have maxi(deg(fi)+ deg(g)) = 4 but
deg(x1fi) = 3. Note that the monomials of x1F are

{x1, x
3
1x

2
2, x

3
1x

2
R, x1x

2
2x

2
R, x

2
1x2xR}.

Since x2
i − xi = 0 over F2, we have deg(x1fi) = 3.

Under the assumption that the degree of regularity dreg ≤ dff + 1, we expect dreg ≤ 4. Indeed exper-
iments made by the three independent contributions show that this is the case for small parameters. The
experiments made are not conclusive. In [PTH15], experiments for the case m ∈ {3, 4, 5, } and small pa-
rameters n, ` show that the degree of regularity almost stayed at 4 which is consistent with the first fall
degree assumption.

The splitting technique gives an advantage over existing approach. For example in our experiment, we
handled decompositions up to m = 4 for small parameters n, ` (see Table 3.4). Whereas experiments made
in [PTH15] handle up to m = 6 although the running time is huge. The best running times recorded are
122559.83, 48122.94, and 88161.21 seconds, which is approximately 34, 13, and 24 hours for the (n, `,m)
pairs (29, 3, 4), (29, 3, 5), and (23, 3, 6) respectively.

New factor base definition

The probability of decomposing a random element R as a sum of m elements of the factor base is
1/(m!). If m is large, we require fewer relations. Thus the relation search stage and linear algebra costs are
reduced. However the probability of finding a relation is decreased. We give one possible definition of the
factor base to bring the probability of finding a relation close to 1. This is a similar technique to the factor
base definition we saw in Chapter 3 Section 3.4.

Definition 3.7.1. (Factor base)

Fi = (x, y) ∈ E | x ∈ span{θ(i−1)`, θ(i−1)`+1, · · · , θi`−1} for 1 ≤ i ≤ m.

Note that F1 ∩ F2 ∩ · · · ∩ Fm = 0. Heuristically, the size of each factor base Fi is 2`. Under the above
definition of the factor base, the probability of decomposing a random element as a sum of m factor base
elements is 2`m/2n ≈ 1.

59

Chapter 4

The DLP for Supersingular Ternary Curves

Contents
4.1 Elliptic curve over a field of characteristic three . 60
4.2 Automorphisms and resolution of point decomposition problem 61
4.3 Invariant rings under the automorphism and symmetric groups 62

In this chapter we consider the question of whether an automorphism of an elliptic curve can be used to
speed up the point decomposition problem. The previous chapter has used the automorphism [-1] as well as
the translation map by a point of order 2 or 4. As a first case of study we consider an automorphism of order
3 arising from a supersingular curve. The point of this section is not to attack supersingular curves, but to
attack curves with non-trivial automorphisms. Our preliminary findings are that, unlike low order torsion
points, general automorphisms of elliptic curves do not seem to be a useful tool to speed-up the actual
point decomposition problem. Indeed, our approach is worse than just forgetting the automorphism. On
the positive side, our approach does reduce the size of the factor base. That means the number of relations
required in the relation search stage is reduced. So in an indirect way, it gives a speed up in the point
decomposition problem. It also reduces the cost of the linear algebra.

4.1 Elliptic curve over a field of characteristic three

Recall that elliptic curves can be divided into ordinary and supersingular elliptic curves. Supersingular
curves defined over F3n or F2n are special types of elliptic curves which are very important for the imple-
mentation of pairing based cryptosystems. These curves have small embedding degree. Thus the Tate or
Weil pairing can be computed efficiently using Miller’s algorithm.

We also observe the existence of an automorphism of order 3, whose action is simple (not complicated),
in supersingular elliptic curves defined over F3n . Thus it is worth investigating the DLP for these curves.

Consider the Weierstrass equation E given by

E : y2 = x3 − x+ 1

to be the supersingular elliptic curve defined over F3n . We recall the group law for point addition and point
doubling adapted for this curve. Let P1 = (x1, y1), P2 = (x2, y2) ∈ E. The group law for point addition
and doubling is given as follows.

60

1. (Point Addition:) Assume P1 6= ±P2 and let λ be the slope joining P1 and P2, λ = y2−y1
x2−x1 , then

P1 + P2 = (x3, y3) where,

x3 = λ2 − x1 − x2 and y3 = (y1 + y2)− λ3.

2. (Point Doubling): Let P1 6= −P1 and λ = 1
y1

be the slope of the line through P1 which is tangent to
the curve E, then P1 + P1 = (x3, y3) where,

x3 = λ+ x1 and y3 = −(y1 + λ3).

Following the work of Semaev [Sem04], one can easily compute the 3rd summation polynomial to be

f3(x1, x2, x3) = (x2
1 + x2

2 + x1x2)x2
3 + (x2

1x2 + x1x
2
2 − x1 − x2 − 1)x3 + (4.1)

x2
1x

2
2 − x1x2 − x1 − x2 + 1.

This corresponds to decomposing a random point R = (x3, y3) as a sum of two elements of a factor base,
R = P1 + P2, where P1 = (x1, y1), and P2 = (x2, y2). The factor base is defined in the usual way as a
vector subspace of F3n of dimension `.

As discussed in previous chapters, the summation polynomials of higher degrees are constructed recur-
sively. By construction, the summation polynomials are symmetric. So they are invariant under the action
of the symmetric group Sm. We can then re-write the summation polynomials using the primary symmetric
invariant polynomials in the variables xi. This lowers the degree bym!, the order of the group. For example,
the 3rd summation polynomial f3 given in equation (4.1) can be re-written as

f̃3(e1, e2, x3) = (e2
1 − e2)x2

3 + (e2e1 − e1 − 1)x3 + e2
2 − e2 − e1 + 1, (4.2)

where e2 = x1x2 and e1 = x1 + x2 are the fundamental symmetric invariant variables. Clearly solving
equation (4.2) is easier than solving equation (4.1) after both are evaluated at x3 .

Assume we have a larger group acting on the summation polynomials such that the action leaves them
invariant. Then one can imagine that if the generators of the invariant ring under the group can easily be
computed, then by re-writing the original summation polynomial in terms of the new generators we get a
lowered degree. In the following section we will examine an automorphism group whose action leaves the
summation polynomials invariant.

4.2 Automorphisms and resolution of point decomposition problem

The Pollard rho/lambda algorithm and its variants are currently the most effective generic algorithms
to solve the DLP problem in elliptic curves. As discussed in 2.2.2, an automorphism of order k of an
elliptic curve is used to speed up the Pollard rho/lambda algorithm by

√
k (see [DGM99]). The overall

expected running time of the algorithm is Õ(
√
πn/2/(

√
kM)) group operations, where M is the number

of processors used and n is the group order.
The index calculus algorithm solves the DLP defined in hyperelliptic curves in subexponential time. The

presence of an order k automorphism speeds up the algorithm. Specifically it decreases the factor base by a
factor of k. So the number of relations required is decreased by the same quantity which in turn speeds up
the running time of the linear algebra by a factor of k2. We refer to [Gau09] for details.

The research on DLP defined in elliptic curves seems to focus on exploiting low order points, whose
group action is simple (not complicated), to speed up the PDP. To explore other ways, we investigate the

61

presence of an automorphism group of order 3, whose action is simple under the group law operation, in
elliptic curves defined over a field of characteristic 3.

Let P = (x, y) ∈ E. Consider the Frobenius map φ : (x, y) 7→ (x3, y3). Let ψ be φ+ 1. Then ψ maps:

(x, y) 7→ (x+ 1, y).

Indeed ψ(P) = (φ+1)(P) = P+φ(P). It can be easily verified using the group law that (x, y)+(x3, y3) =
(x+ 1, y). So ψ ∈ End(E) satisfying the characteristic polynomial x2− 5x+ 7, where End(E) refers the
endomorphism ring of E. Clearly ψ has order three. In [Kob98], it is denoted as ω and it is used for efficient
supersingular implementation of the elliptic curve digital signature algorithm in a field of characteristic
three.

Assume a random element R ∈ E can be written as sum of m elements of the factor base, that is
R = P1 + P2 + · · ·+ Pm. Then the action of ψ on the decomposition of R produces decompositions of the
form

ψj(R) = ψj(P1) + ψj(P2) + · · ·+ ψj(Pm)

for 1 ≤ j ≤ 3. If (x1, x2, · · · , xm, x(R)) is a solution to the corresponding summation polynomial, then
the solution (x1 + j, x2 + j, · · · , xm + j, x(R) + j) corresponds to the action of ψj for 1 ≤ j ≤ 3.

Let G = H × Sm be a group which is a product of the groups H = Z3 and Sm, where H = Z3 is a
group of order 3 representing the automorphism group and Sm is the symmetric group with order m!. The
action of the group G on the summation polynomial is a combination of addition of j for j ∈ {0, 1, 2} to
each variable simultaneously accompanied by a permutation of the variables. Clearly the action leaves the
summation polynomial invariant. So if one can find the generators of the invariant ring under G, one can
hope that the degree of the summation polynomial could be reduced by the order of G, that is by a factor of
3m!.

To exploit the action of the automorphism group, we define the factor base in such a way that if (x, y) ∈
E is in the factor base, then the points (x+ 1, y), (x+ 2, y) are also in the factor base. By keeping only one
element in the factor base for each orbit under ψj for 1 ≤ j ≤ 3, the size of the factor base is reduced by
a factor of 3. This reduces the number of relations required by a factor of 3 and the linear algebra cost by
a factor of 9. We also note that the trivial automorphism which sends (x, y) 7→ (x,−y) reduces the factor
base by a factor of 2. Hence in total the number of relations requirement is reduced by a factor 6 and the
linear algebra cost is reduced by a factor of 36.

4.3 Invariant rings under the automorphism and symmetric groups

Let R = P1 + P2 + · · ·+ Pm be a relation. Unlike the action of low order torsion points, the action of
H on this relation is both on the sum R and the points of the factor base summing to R. In other words, we
get another valid relation for a different element Q which is related to R. Note that in the case of the action
of low order torsion points for the same R we get different relations.

Let m = 2 be fixed. Then the action of G on f3(x1, x2, x3) is a combination of the action of H = Z3

and the symmetric group S2. We introduce a “dummy” variable y which is fixed to be 1 to homogenize the
action of H . We order the variables as y, x1, x2, x3, where the xi are the indeterminate variables. Let H and
S2 be generated by the matrices A and B respectively. Then

A

y
x1

x2

x3

 =

y

x1 + y
x2 + y
x3 + y

 and B

y
x1

x2

x3

 =

y
x2

x1

x3

 ·
62

So the matrices A and B are represented by

A =

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 and B =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ·
We need to find the generators of the invariant ring under the group G. Since the characteristic of K divides
the order of G (3 | #G), finding the generators of the invariant ring K[x1, x2, · · · , xn]G is cumbersome.
So we will adopt an ad hoc technique to find the generators of an invariant ring under G using the Sin-
gular computer algebra system [DGPS15]. The system uses Kemper’s algorithm [Kem96] for “calculating
invariant rings of finite groups over arbitrary fields”. The algorithm makes use of the following proposition.

Proposition 4.3.1. (Kemper [Kem96]) Let G̃ be a finite group. Let F = {f1, · · · , fi} ⊂ K[x1, x2, · · · , xn]G̃

be a set of homogeneous invariants. Then F can be extended to a system of primary invariants if and only if

dim(f1, · · · , fi) = n− i.

Moreover the set F forms a system of primary invariants if and only if i = n and V (F) = {0}, where V (F)
denotes the variety of F over the algebraic closure of K.

Kemper’s algorithm (see [Kem96]) starts with low degree polynomials to find polynomial basis
f1, · · · , fi fulfilling Proposition 4.3.1. A base element fi+1 is added to this set if it does not lie in the radical
of the ideal spanned by the fi.

We provide a Singular source code to compute the primary invariants for the invariant ring under G =
Z3 × S2 for the case m = 2 which can be extended for larger m.

Line 1: LIB ”finvar.lib”

Line 2: ring R = 3, (y, x1, x2, x3), dp;

Line 3: matrix A[4][4] = 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1;

Line 4: matrix B[4][4] = 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1;

Line 5: matrix D(1..2) = invariant ring(A,B);

Line 6: D(1);

Executing the above program, we get the primary invariants, denoted as si, of the invariant ring under the
group G to be

s1 = x1 + x2 + x3,

s2 = x2
1 + x1x2 + x2

2,

s3 = x1 − x3
1 + x2 − x3

2.

So now we know the primary invariant of the invariant ring under the group G = Z3 × S2. This is
sufficient to test if these invariants actually speed up the point decomposition problem. Consider the 3rd

summation polynomials f3(x1, x2, x3) corresponding to the decomposition P1 + P2 = R with x3 is the
known x-coordinate of the random point of R and xi = x(Pi). In the standard approach, first we evaluate

63

the summation polynomial at x3 and then we re-write it using the invariant variables. Finally we apply
Weil descent. But here due to the action of H (x3 is not fixed), we re-write f3 using the invariant variables
then we evaluate and apply the Weil descent respectively. One can observe that the invariant variable S1 no
more lies in our chosen subspace for the factor base but instead lies in F3n (observe that x3 lies in F3n). As
a result, the number of variables in the resulting system is increased and the resulting system is relatively
harder to solve which cannot be compensated due to the group action. This is also verified in our experiment
which is not reported here.

We conclude that an automorphism of an elliptic curve can speed up the point decomposition problem
by reducing the factor base. As a result we require fewer relations in the relation search stage and the cost
of the linear algebra is reduced. But an automorphism of an elliptic curve is worse in the actual polynomial
system solving.

The MOV attack (see section 2.2.3), which transfer the DLP to finite fields, remain the best attack
against supersingular ternary curves. Currently the DLP record for characteristic three finite field is F35.479

(see [JP14]).

64

Chapter 5

The Approximate Common Divisor
Problem and Lattices

Contents
5.1 Lattices and computational assumptions . 66

5.1.1 Algorithms to solve CVP and SVP . 68
5.1.2 Solving Knapsack problem . 70

5.2 Algorithms to solve the approximate common divisor problem 71
5.2.1 Exhaustive search . 73
5.2.2 Simultaneous Diophantine approximation . 74
5.2.3 Orthogonal vectors to common divisors (NS-Approach) 76
5.2.4 Orthogonal vectors to error terms (NS*-Approach) 80
5.2.5 Multivariate polynomial equations method (CH-Approach) 82

5.3 Comparison of algorithms for the ACD problem . 85
5.3.1 Experimental observation . 87

5.4 Pre-processing of the ACD samples . 88

The security of the DGHV cryptosystem [DGHV10] and its variants such as [CMNT11] depend on the
hardness assumption of the ACD problem (see Definition 5.2.1). In this chapter we focus on the application
of lattices to solve the ACD problem. We review and compare existing algorithms to solve the ACD problem.
Our main contribution is to simplify two standard lattice attacks on ACD and give a precise analysis of them.
Under the assumption that a short basis for a given lattice exists, we show that we can recover a solution to
the ACD problem from the kernel of a system of equations. This system is obtained from the short basis
of the lattice using two existing algorithms based on the idea of orthogonal lattices. Another contribution is
to compare the Cohn-Heninger approach with other methods. We find that the Cohn-Heninger algorithm is
slower than other methods. Our third contribution is on preprocessing of ACD instances to extend the range
of lattice attacks.

65

5.1 Lattices and computational assumptions

Lattices have many cryptographic applications. Similar to the design of cryptosystems based on the
assumption that integer factoring and discrete logarithm problem are hard, we can design cryptographic
primitives whose security relies on hard computational problems in lattices [AR04, Kho04]. In fact lattice
based cryptographic schemes [Ajt96] and subsequent works [GGH97, Reg04] have advantages over existing
systems. Existing cryptosystems such as RSA are based on average-case assumptions contrary to worst-case
hardness assumed by lattice problems. This gives an extra confidence on the security of our cryptographic
primitives: a proof based on the assumption that if one is able to break the cryptographic primitive with
small probability then any instance of the lattice problem can be solved.

Another advantage of lattice based constructions is their efficiency. The arithmetic operations involved
with lattices are only modular addition which is simple and can also be parallelized due to the structure
of lattices. They are also currently the most promising alternatives to existing number theoretic based
cryptographic schemes. If quantum computers are publicly available, such existing systems are not secure
any more. An efficient quantum algorithm [Sho97] for factoring and solving discrete logarithm problems
already exists. To date, there is no such attack against lattice computational problems.

Apart from cryptographic primitive constructions, lattices have been used as cryptanalytic tools as
in [JS98], finding small roots in Copersmith’s algorithms [Cop96a, Cop96b, Cop97] (see [NS01] for a
survey on cryptanalytic application of lattices). For our application, we focus on the use of lattices to solve
the approximate common divisor problem which is the heart of the security proof of the homomorphic
encryption based on the integers [DGHV10]. So in this section we study lattices and some of the hard
computational problems associated with lattices. We also introduce the use of lattices to solve the Knap-
sack problem which is quite similar to the way lattices are used to solve the approximate common divisor
problem using orthogonal lattice based approach.

Lattice

Some references on lattices use columns and others use rows. The two theories are exactly the same.
Here we use them interchangeably.

Definition 5.1.1. (Lattice) A lattice is a set

L = {Bc | c ∈ Zn} =

{∑
i

ci.bi | ci ∈ Z
}
,

where B = [b1,b2, · · · ,bn] is a matrix of n linearly independent column vectors bi ∈ Rm.

The matrix B is called the basis of the lattice L. The parameters m,n refer to the dimension and rank
of the lattice respectively. If n = m, the lattice is called full rank.

Definition 5.1.2. (Fundamental Parallelepiped) Given a lattice basis matrix B = [b1,b2, · · · ,bn], the
fundamental parallelepiped associated with the matrix B is the set of points

P(B) =

{∑
i

ci.bi | 0 ≤ ci < 1

}
.

The determinant of the lattice L is given by the n-dimensional volume of the fundamental parallelepiped
P(B). It can be shown that

det(L) =
√
B>B, (5.1)

66

where B> is the transpose of B (when using row lattices the formula is
√
BB>). If the lattice is full rank,

the determinant of L is the same as the determinant of B.

Definition 5.1.3. (Gram Schmidt orthogonalization)
Given a sequence of n linearly independent vectors b1,b2, · · · ,bn, the Gram Schmidt orthogonaliza-

tion is the sequence of vectors b̃1, b̃2, · · · , b̃n defined by

b̃i = bi −
i−1∑
j=i

µi,jb̃j ,

where µi,j =
〈bi,b̃j〉
〈b̃j ,b̃j〉

.

Let B̃ = [b̃1, b̃2, · · · , b̃n]. The lattice basis B = [b1,b2, · · · ,bn] can be uniquely re-written as follows

B = B̃

1 µ2,1 µ3,1 · · · µn,1
1 · · · µn,2

. . .
1

= C

||b̃1|| µ2,1||b̃1|| µ3,1||b̃1|| · · · µn,1||b̃1||
||b̃2|| · · · µn,2||b̃2||

. . .
||b̃n||

,

where C = [b̃1/||b̃1||, b̃2/||b̃2||, · · · , b̃n/||b̃n||] is the orthonormal basis obtained by normalization of the
Gram Schmidt vectors b̃1, b̃2, · · · , b̃n. The notation ||x|| denotes the `2 norm of the vector x.

Lemma 5.1.4. Let B be the basis matrix of the lattice L as above, then the determinant of L is given by∏n
i=1 ||b̃i||.

The length of the shortest non-zero vector, denoted by λ1, is a very important parameter of a lattice. It is
expressed as the radius of the smallest zero-centered ball containing a non-zero linearly independent lattice
vector. More generally we have successive minima defined as follows:

Definition 5.1.5. (Successive minima) Let L be a lattice of rank n and dimension m. For 1 ≤ i ≤ n, the
ith-successive minima is defined as

λi(L) = min{r | dim(span(L ∩ B(0, r))) ≥ i},

where B(0, r) = {x ∈ Rm | ||x|| ≤ r} is a ball centered at the origin.

The number of lattice points within a ball is estimated by the Gaussian heuristic.

Heuristic 5.1.6. (Gaussian Heuristic) Let L be a full rank lattice in Rm. Let K be a measurable subset
of Rm, then the Gaussian heuristic estimates the number of lattice points in K ∩ L to be approximately
vol(K)/ det(L), where vol(K) denotes the m dimensional volume.

Heuristic 5.1.7. (First Minima) Let L be a full rank lattice in Rm. Then by the Gaussian heuristic the length
of the shortest non-zero vector λ1 in L is estimated by

λ1 =

√
m

2πe
det(L)1/m. (5.2)

67

Computational assumptions in lattices

There are some hard computational problems in lattices. The most well-known include the Shortest
Vector Problem (SVP) and the Closest Vector Problem (CVP) along with their approximation version SVPγ
and CVPγ respectively for some parameter γ > 1. We define them as follows.

Definition 5.1.8. Let B be the basis matrix for a lattice L and λ1 be the first minima. Let γ > 1 be a
parameter. The Shortest Vector Problem (SVP) is to find a non-zero vector v ∈ L such that ||v|| is minimal
(that is ||v|| = λ1). The Approximate Shortest Vector Problem (SVPγ) is to find a non-zero vector v ∈ L
such that ||v|| ≤ γλ1.

Definition 5.1.9. Let B be the basis matrix for a latticeL. Let γ > 1 be a parameter. Then the Closest Vector
Problem (CVP) is given a target vector w ∈ Rn to find a vector v ∈ L such that ||w − v|| is minimal. The
Approximate Closest Vector Problem (SVPγ) is to find a vector v ∈ L such that ||w − v|| ≤ γ||w −Bx||
for all x ∈ Zn.

5.1.1 Algorithms to solve CVP and SVP

The SVP and CVP are hard problems. We refer to [Ajt98, DKS98, Mic98] for details. We mention some
of the common algorithms to solve these problems.

Babai’s rounding technique

Given a basis matrix B = [b1,b2, · · · ,bn] for a lattice L and a target vector w ∈ Rn, the CVP is to
find a non-zero vector v ∈ L such that ||w−v|| is minimal. The rounding technique by Babai (see Chapter
18 of [Gal12]) is one method to solve the CVP. It works best if the lattice basis vectors bi are orthogonal

or close to orthogonal. The idea is to write w as w =
n∑
i=1

libi, where li ∈ R. In other words, we compute

B−1w to get the vector (l1, l2, · · · , ln). Then a solution to the CVP is

v =
n∑
i=1

bliebi,

where blie is the nearest integer to the real number l.

Embedding technique

Let L be a full rank lattice with basis matrix [b1,b2, · · · ,bn]. Let w ∈ Rn be a target vector for the
CVP. Another alternative to Babai’s rounding technique to solve the CVP is to use the embedding technique
(see Chapter 18 of [Gal12]). Let the solution to the CVP correspond to the integers (l1, l2, · · · , ln) such that

w ≈
n∑
i=1

libi. Then define e to be

e = w −
n∑
i=1

libi.

68

The idea of the embedding technique is to construct a lattice L̃ that contains the short vector e. We define
the lattice L̃ to have a basis matrix B̃ such that

B̃ =

[
b1 b2 · · · bn w
0 0 · · · 0 1

]
.

Let ẽ =

[
e
1

]
. Then one observes that ẽ is in the lattice L̃. Indeed taking linear combination of the columns

of B̃ with coefficients (−l1,−l2, · · · ,−ln, 1) gives the vector ẽ. If w is very close to a lattice point in L̃
then we would like ẽ to be the shortest vector in L̃. Then if one solves SVP in the lattice L̃ to get a vector ẽ
then a solution v to CVP is given by

v = w − e.

The success of the algorithm depends on the size of the vector e compared to short vectors in the lattice L.
Let λ1 be the first minima of the lattice L. We require ||ẽ|| ≤ λ1 which implies ||e||2 + 1 ≤ λ1. Hence the
size of e should be less than λ1. Note that this is still not guaranteed to succeed. For example for a small

integer µ 6= ±1, µ
[
w
1

]
−

n∑
i=1

li

[
bi
0

]
=

[
e′

µ

]
is close to µw but not to w.

LLL algorithm

Definition 5.1.10. A basis B = [b1,b2, · · · ,bn] is δ-LLL reduced if the following conditions are satisfied.

1. For all 1 ≤ i ≤ n and j < i, |µi,j | ≤ 1
2 .

2. For all 1 ≤ i < n, j < i, δ||b̃i||2 ≤ ||µi+1,ib̃i + b̃i+1||2.

Theorem 5.1.11. (LLL algorithm [LLL82]) Given a basis B = [b1,b2, · · · ,bn] of a lattice L ⊆ Zm, the
LLL algorithm outputs a δ-LLL reduced basis B′ = [b′1,b

′
2, · · · ,b′d] in polynomial time given by

Õ(n5m log3(max
j
||bj ||)), (5.3)

where the maximum is taken over all elements of bj ∈ B. The δ-LLL reduced basis satisfies various
bounds. For δ = 3/4, we have

1. ||b′1|| ≤ 2
n−1
2 λ1.

2. ||b′1|| ≤ 2
n−1
4 det(B)

1
n , and ||b′n|| ≤ 2

n(n−1)
4(n−d+1) det(B)

1
n−d+1 . Thus the LLL algorithm solves

SVPγ for the approximation factor γ = 2
n
2 .

The LLL algorithm [LLL82] is a very popular lattice reduction algorithm in cryptography mainly used
in the cryptanalysis [MV10] of public key systems. The BKZ algorithm is a blockwise generalizations of the
LLL algorithm (see [GHKN06, GN08b, Sch87, SE94]), introduced by Schnorr and Euchner [SE91, SE94].
It has better approximation factors especially in high dimensions, but the running time is not polynomial
time. For comparison of the heuristic running time versus the quality of the output of various blockwise
lattice reduction algorithms, we refer to [GN08a].

69

The LLL algorithm and its blockwise generalization output an approximation of a short vector. Consider
a lattice L, then the LLL algorithm can efficiently compute an approximation of a short vector up to 2

dim(L)
2 .

So if v is the shortest lattice vector, then v can be found using the LLL algorithm if

λ1 = ||v|| < 2(dim(L)−1)/2λ1(L) < λ2(L).

On the other hand, block based lattice reduction algorithms approximately take time 2dim(L)/k to solve
SVP2k [AKS01, Sch87].

Other lattice reduction algorithms include enumeration algorithms which are either space efficient [GNR10,
FP85, Poh81] or with exponential space requirement [AKS01, MV10, NV08]. Unlike the approximation
based lattice reduction algorithms, these types of lattice reduction algorithms output an exact short vector
(with no approximation). They do not run in polynomial time and so are only useful in low dimensional
examples.

For our application we will focus on the LLL algorithm.

5.1.2 Solving Knapsack problem

The Knapsack problem is given an integer b and a set S = {s1, s2, · · · , st} of positive integers, is there
P ⊆ S that sum to b. So, we have the following formal statement of the problem

Definition 5.1.12. (Knapsack problem) Let S = {s1, s2, · · · , st}, and b be positive integers. The Knapsack
problem is to find xi ∈ {0, 1}, if they exist, such that

b =

t∑
i=1

xisi.

Cryptosystems [MH78, LO85] make use of the Knapsack problem for proof of their security. One
observes that finding an arbitrary solution to the linear equation is not hard; that is finding integer values

(y1, y2, · · · , yt) such that
t∑
i=1

yisi = b can be achieved in polynomial time using the extended euclidean

algorithm. But if the yi are required to belong to {0, 1} the problem becomes hard.

Definition 5.1.13. Given the set S = {s1, s2, · · · , st} of positive integers. The Knapsack density is defined
as

d =
t

max1≤i≤t(log2(si))
.

If the Knapsack problem in consideration has low-density, the problem can be reduced to solving the
short vector problem using the embedding technique. Let x = (x1, · · · , xt), and y = (y1, · · · , yt) be
exact and arbitrary solutions of the Knapsack problem respectively. Let z = (y1 − x1, · · · , yt − xt), then
t∑
i=1

(yi − xi)si = 0. We build a lattice L spanned by all integer vectors z such that
t∑
i=1

zisi = 0. In other

words, a vector z = (z1, z2, · · · , zt) ∈ L if and only if

z1s1 + z2s2 + · · ·+ ztst = 0.

70

The lattice L has dimension t− 1 with determinant

det(L) =

√√√√ t∑
i=1

s2
i ≈ 2t/d

√
t

[NS01], where d is the Knapsack density.
Let B be the basis of L. To solve the Knapsack problem, we construct a lattice of embedding L1 spanned

by the basis of the lattice L and the arbitrary integer solution y. So the lattice L1 is spanned by(
B
0

)
and

(
y
1

)
.

If z = (y1 − x1, · · · , yt − xt) ∈ L. We observe that ||z− y|| = ||x|| ≈
√
t/2. Then with high probability

the vector v = (z− y) = (x1, · · · , xt, 1) is the shortest vector in the lattice L1 [NS01].
By the Gaussian heuristic the vector v is likely to be the shortest vector in L if

√
t/2 = ||v|| < det(L)1/t

√
t

2πe
≈ 21/d

√
t

2πe
=⇒ 21/d >

√
πe.

We observe that 21/d >
√
πe =⇒ d < 1

log2(
√
πe)
≈ 0.64 [NS01, LO85]. The bound can be improved by

taking y = (y1 − 1/2, y2 − 1/2, · · · , yn − 1/2) [NS01, CJL+92] instead of y = (y1, y2, · · · , yn) in the
lattice of embedding construction.

5.2 Algorithms to solve the approximate common divisor problem

Lattices are also used to solve the approximate common divisor problem, which is the heart of the
homomorphic encryption of van Dijk et al. [DGHV10].

A homomorphic encryption scheme is an encryption scheme that allows computations (addition, and
multiplications) on encrypted data without learning anything about the plain data. In other words if
Encrypt(mi) = ci, then given f̃ there exists f such that

Decrypt(f(c1, c2, · · · , ct)) = f̃(m1,m2, · · · ,mt),

where f̃ is an allowed boolean function on the original data. A major application area in cryptography
is in cloud computing. As we know storage and processing power are critical and yet we are interested
in computing with huge amounts of data sensitive data (say medical records). One possible option is to
outsource our computations to a third party, say to a cloud. But we also like nothing to be learned about
our data. So we encrypt our data and allow the cloud to make arithmetic operations on the encrypted data.
Only the authorised user with the private key can decrypt the computed encrypted data corresponding to
computations on our original data.

More formally, let λ be a security parameter. A homomorphic encryption scheme is composed of four
probabilistic polynomial time algorithms

(KeyGen,Encrypt,Decrypt,Evaluate)

each defined as follows.

71

Key Generation: (pk, sk) ← KeyGen(λ). The polynomial time algorithm KeyGen(λ) generates public
encryption key pk, and secret decryption key sk on input security parameter λ.

Encryption: ci ← Encrypt(pk,mi). The encryption algorithm Encrypt(pk,mi) takes input the public en-
cryption key pk, and a plain text message mi ∈M and outputs a cipher text ci ∈ C, whereM and C are the
message and cipher text spaces respectively. If m = (m1,m2, · · · ,mt) and c = (c1, c2, · · · , ct), we have
c← Encrypt(pk,m).

Decryption: mi ← Decrypt(sk, ci). On input cipher text ci, and secret encryption sk, the decryption
algorithm Decrypt(sk, ci) outputs the plain text message mi.

Evaluate: c∗ ← Evaluate(pk, f̃ , c1, c2, · · · , ct). The evaluation algorithm

Evaluate(pk, f̃ , c1, c2, · · · , ct)

takes a public encryption key pk, a function f̃ , where f̃ is an allowed boolean function on the original data,
and a list of ciphertexts (c1, c2, · · · , ct) that are encryption of (m1,m2, · · · ,mt) respectively as input. Then
it computes a function f , where f is an allowed boolean function on the encrypted data and outputs a cipher
text c∗ using f which is a valid encryption of f̃(m1,m2, · · · ,mt) under the public encryption key pk.

The DGHV scheme [DGHV10] and other variants such as [CMNT11] have simple constructions; as
they make use of the hardness of the partial approximate common divisor problem for their proof of security.
There are four important security parameters that are to be appropriately set in the construction of the DGHV
scheme. These are γ, η, and ρ which represent the bit length of integers in the public key, secret key and
the noise respectively. The fourth parameter τ represents the number of integers in the public keys. These
parameters are set to (λ5, λ2, λ, γ + λ) respectively, where λ is a security parameter.

Define [y]x to be y (mod x) and Dγ,ρ(p) to be the following efficiently sampleable distribution over γ
bit integers for an η bit odd prime p.

Dγ,ρ(p) = {pq + r | q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ)}. (5.4)

Then the DGHV scheme is constructed as follows.

KeyGen(λ). On input security parameter λ, the key generation algorithm KeyGen(λ) generates an η bit odd
prime integer p,

p← (2Z + 1) ∩ [2η−1, 2η)

as the secret key sk and samples xi ← Dγ,ρ(p) for 0 ≤ i ≤ τ . It then reorders the xi so that x0 is the largest.
KeyGen(λ) restarts until x0 is odd and [x0]p is even. It then sets the public key pk = 〈x0, x1, · · ·xτ 〉.

Encrypt(pk,m). To encrypt a message m ∈ {0, 1}, the encryption algorithm Encrypt(pk,m) chooses a
random subset S ⊂ {1, 2, · · · , τ} and a random integer r ∈ (−2ρ, 2ρ) and outputs

c = [m+ 2r + 2
∑
i∈S

xi]x0 .

Decrypt(sk, c). The decryption algorithm Decrypt(sk, c) outputs m̃← (c (mod p)) (mod 2).

72

Evaluate(pk,C, c1, c2, · · · , ct). Given t ciphertexts c1, c2, · · · , ct as input and the boolean circuit C with
t inputs, apply the addition and multiplication gates of C to the ciphertexts, perform all additions and
multiplications over the integers and return the resulting integer.

Given the public key information can we recover p? Formally the approximate common divisor problem
is stated as follows.

Definition 5.2.1. (Approximate Common Divisor problem) Let Dγ,ρ(p) be as in equation (5.4) for security
parameters (γ, η, ρ) and a randomly chosen fixed prime p of bit size η. Given polynomially many samples
xi sampled according to Dγ,ρ(p), the approximate common divisor problem is to recover p.

In the xi construction if all ri 6= 0, we have a General Approximate Common Divisor (GACD) problem.
If however one of the xi’s say x0 is given as an exact multiple (a0 = pq0), then it is called Partial Approxi-
mate Common Divisor (PACD) problem. Clearly PACD problem cannot be harder than GACD problem. It
is a special instance of GACD problem.

5.2.1 Exhaustive search

The ACD problem can be solved using the exhaustive search if the error terms ri are small compared to
the size of p. Given two GACD samples x0 = pq0 + r0 and x1 = pq1 + r1, one can recover p by computing
the Greatest Common Divisor (GCD) of x0 − r̃0 and x1 − r̃1 for all possible error terms r̃0 and r̃1 provided
that GCD(x0− r̃0, x1− r̃1) is sufficiently large prime. If r0 = 0, we only need to check if GCD(x0, x1− r̃1)
is sufficiently large prime for all possible values of r̃1.

Let the size of ri be given by ρ bit. Then clearly an exhaustive search takes Õ(2ρ) and Õ(22ρ) GCD
computations on xi samples of size γ to solve the PACD and GACD problems respectively.

Chen et al. [CN12] improve the complexity of the exhaustive search on PACD and GACD samples to
Õ(2

ρ
2) and Õ(2

3ρ
2) respectively. Consider we have PACD samples with x0 = pq0. The idea is to observe

that

p = GCD
(
x0,

2ρ−1∏
i=0

(x1 ± i) (mod x0)
)
. (5.5)

Based on the observation, Chen et al. [CN12] construct a multi-evaluation polynomial

fj(x) =

j−1∏
i=0

(x1 ± (x+ i)) (mod x0) of degree j with coefficients modulo x0. Then for ρ̃ = bρ2c

2ρ−1∏
i=0

(x1 ± i) ≡
2ρ−ρ̃−1∏
k=0

f2ρ̃(2
ρ̃k) (mod x0)

and hence we have

p = GCD
(
x0,

2ρ−ρ̃−1∏
k=0

f2ρ̃(2
ρ̃k) (mod x0)

)
.

The overall cost of computing the GCD includes 2(2ρ−ρ̃ − 1) modular multiplications and multi-evaluation
of a polynomial of degree 2ρ̃ at 2(2ρ−ρ̃) points. So, Chen et al. [CN12] claim the complexity to be Õ(

√
2ρ),

which is square root of GCD exhaustive search on PACD samples. But, it incurs a memory cost of Õ(
√

2ρ).
Applying similar method on GACD samples, the GACD problem has complexity of Õ(2

3ρ
2) arithmetic

operations. In [CNT12], this complexity is improved to Õ(2ρ).
GCD exhaustive search and the multi-evaluation based GCD exhaustive can be made infeasible by se-

lecting an appropriate size bit of the errors ri.

73

5.2.2 Simultaneous Diophantine approximation

(SDA-Approach) We define the simultaneous Diophantine approximation as follows.

Definition 5.2.2. (Simultaneous Diophantine approximation) Let a, b ∈ Z and y ∈ R. Let 1 < i ≤ t for
some positive integer t. The Diophantine approximation is to approximate y by a rational number a/b such
that |y − a/b| < 1

2b2
. The simultaneous Diophantine approximation is given many yi ∈ R to approximate

them all by the rational numbers ai/b with ai ∈ Z such that |yi − ai/b| < 1
b(1+1/t) .

Van Dijk et al. [DGHV10] showed that the approximate common divisor problem can be solved using
the simultaneous Diophantine approximation method. Assume we have t ACD samples xi = pqi + ri such
that x0 > xi for all i > 0 (and hence q0 ≥ qi) for all values of i in that range. If one is able to find qi
then clearly a solution to the ACD problem is easy. We compute xi (mod qi) to get ri (as ri is small). So
we recover p as p = (xi − ri)/qi. Let the rational numbers yi = xi/x0 for 1 ≤ i ≤ t. The idea with the
simultaneous Diophantine approximation is to find a common approximate denominator q0 of yi.

Definition 5.2.3. Let yi = xi/x0 | xi, x0 ∈ Z for 1 ≤ i ≤ t be rational numbers. Let q0 ∈ Z be the
approximate common denominator of yi. Then q0 is of quality (ε, δ) if q0 > 0 and the following conditions
hold.

• q0 ≤ εx0 and

• q0yi is within δ/2 of an integer for all (1 ≤ i ≤ t). In other words, there exists ui such that
|xi/x0 − ui/q0| ≤ δ/(2q0).

Lemma 5.2.4. Let xi = pqi + ri be ACD samples such that that x0 > xi. Let yi = xi/x0 for all i > 0
and q0 ∈ Z be the approximate common denominator of yi. Then q0 is quality (ε, δ) with ε ≤ 2−η+1 and
δ ≤ 2ρ−η+3.

Proof. Let ε = q0/x0 then

ε = q0/(q0p+ r0) = q0/(q0(p+ r0/q0)) ≤ 1/(p− 1) ≤ 2−η+1.

We also note that

q0xi/x0 = q0(qip+ ri)/(q0p+ r0) =
qi(p+ r0/q0)− (qi/q0)r0 + ri

p+ r0/q0
= qi +

ri − (qi/q0)r0

p+ r0/q0
.

Noting that the fractional part ri−(qi/q0)r0
p+r0/q0

is less than 1, the distance between q0(xi/x0) and the nearest

integer (that is qi) is δ/2 = | ri−(qi/q0)r0
p+r0/q0

| ≤ |r1|+|r0|p−1 ≤ 2ρ+1

2η−1 = 2ρ−η+2 and we have δ ≤ 2ρ−η+3.

Taking the parameter δ
2ε = 2ρ−η+3

2.2−η+1 = 2ρ+1, we build a lattice L with dimension t+ 1 generated by the
rows of the basis matrix

B =

2ρ+1 x1 x2 · · · xt

−x0

−x0

. . .
−x0

 . (5.6)

Since the basis matrix B of the lattice L is given in upper triangular form, the determinant of L is easily
computed as det(L) = 2ρ+1xt0.

74

Lemma 5.2.5. Let xi = pqi + ri for 1 ≤ i ≤ t be ACD samples with x0 being the largest sample. Let
yi = xi/x0 andL be the lattice with basis matrix B. Then there is a lattice vector v containing a factor of the
approximate common denominator q0 of yi in its first entry having norm approximately 2γ−η+ρ+1

√
t+ 1.

Proof. Given xi = pqi + ri for 1 ≤ i ≤ t, consider the integers values (q0, q1, · · · , qt). The vector v

v = (q0, q1, · · · , qt)B
= (2ρ+1q0, q0x1 − q1x0, · · · , q0xt − qtx0)

= (q02ρ+1, q0r1 − q1r0, · · · , q0rt − qtr0)

is in the lattice L. Since the length of each qi is 2γ−η, the length of the first entry of the vector v is
approximately 2γ−η+ρ+1. The length of the rest of the entries of v, which are of the form q0ri − qir0 for
1 ≤ i ≤ t, is estimated to be |q0ri−qir0| ≤ 2|q0ri| ≈ 2γ−η+ρ+1. Taking the norm of v gives the result.

Definition 5.2.6. Let v be a lattice vector having norm as in Lemma 5.2.5. Then we call v a target (lattice)
vector.

To be able to break the ACD problem, we want the target vector v to be the shortest lattice vector. It is
not possible to give a rigorous result as we have no lower bound on λ1(L). Instead our analysis relies on the
Gaussian heuristic estimate of λ1(L).

Assumption 5.2.7. Let L be the lattice generated by the rows of the basis matrix B. Let v be a lattice vector
having norm as in Lemma 5.2.5. Suppose

||v|| < det(L)1/(t+1)

√
t+ 1

2πe
.

Then

1. λ1(L) = ||v|| .

2. λ2(L) = det(L)1/(t+1)(1 + o(1))
√

t+1
2πe = 2

tγ+ρ+1
t+1 (1 + o(1))

√
t+1
2πe .

Lemma 5.2.8. Let v be a target lattice vector. Assume Assumption 5.2.7 holds. Then v is the shortest lattice
vector if the dimension of the lattice satisfies dim(L) > γ

η .

Proof. Let v the shortest lattice vector. By assumption (5.2.7), ||v|| = λ1(L) ≈ 2γ−η+ρ+1
√
t+ 1 and the

second minima satisfies

λ2(L) = 2γ+ ρ−γ+1
t+1 (1 + o(1))

√
t+ 1

2πe
.

Then we have λ1(L) < λ2(L). So 2γ−η+ρ+1
√
t+ 1 < 2

tγ+ρ+1
t+1 (1 + o(1))

√
t+1
2πe which is implied by

2γ−η+ρ+1 < 2γ+ ρ−γ+1
t+1 .

This is equivalent to t+ 1 > γ−ρ−1
η−ρ−1 ≈

γ
η .

75

So t should be greater than γ
η to ensure that the target vector v will likely be the shortest vector in the

lattice L. However if t < γ
η , the target vector v will not most likely be the shortest one and it is difficult to

compute using the LLL algorithm. This is because there will be many vectors of that length in magnitude in
the lattice.

If t is not too large, then we can compute v using the LLL algorithm [LLL82]. The theoretical running
time is given by Õ(t6 log3(maxj ||bj ||)), where ||bj || ≈ 2γ is the maximum norm taken over the row vectors
of the basis matrix B. Practical running times for different values of γ are given in Section 5.3.

Lemma 5.2.9. Let γ = η2 and dim(L) be given by t = 2(γ/η). Assume Assumption 5.2.7 holds. Let the
approximation factor of the LLL algorithm be α = 2t/8. Then the LLL algorithm computes the target vector
v as its shortest vector output.

Proof. Let dim(L) be given by t as in the lemma. By Lemma 5.2.5, the norm of the target vector is
||v|| = 2γ−η+ρ+1

√
t. Its approximation by α is given by

α||v|| = 2
η
4 2γ−η+ρ

√
2η = 2γ−

3η
4

+ρ
√

2η.

We need to show α||v|| < λ2(L). By Assumption 5.2.7, we have

λ2(L) = det(L)1/(dim(L))(1 + o(1))

√
dim(L)

2πe
≈ 2γ−

η
2

√
2η(1 + o(1))

√
η

πe
.

Up to some constant, clearly we have α||v|| < λ2(L).

From Lemma 5.2.9, we observe that short vector outputs of the LLL algorithm depend on the size of γ
and η. If dim(L) is approximately 2η for the parameter γ set to η2, then the LLL algorithm will most likely
output v as the shortest vector.

On the other hand if we take γ = η2Ω(λ), say γ = η3, and t = 2γη = 2η2. Then by the Gaussian

heuristic, short vectors are of size approximately 2
γ+ ρ−γ

2η2

√
t

2πe ≈ 2γ−
η
2

√
t

2πe . But the LLL algorithm with

approximation factor 22εη2 , where ε ∈ (0, 1), can find approximation of the target vector up to size

22εη22γ−η+ρ
√

2η2 = 2γ+2εη2−η+ρ
√

2η2,

which is much greater than 2γ−
η
2

√
η
πe . As a result, it is difficult for the LLL algorithm to recover the target

vector.
Once we find the target vector v using the LLL algorithm, we divide the first entry of v, which cor-

responds to q02ρ+1, by 2ρ+1 to get q0. Finally using q0, we can recover p from the given ACD sample
x0 = pq0 + r0.

5.2.3 Orthogonal vectors to common divisors (NS-Approach)

Van Dijk et al. [DGHV10] discuss Nguyen and Stern’s orthogonal lattice to solve the approximate com-
mon divisor problem. Assume we have ACD samples xi = pqi + ri for for 1 ≤ i ≤ (t + 1). The idea
of Nguyen and Stern’s orthogonal lattice attack is to construct an orthogonal lattice L⊥x such that a vector
z = (z1, · · · zt+1) ∈ L⊥x if and only if

z1x1 + z2x2 + · · ·+ ztxt + zt+1xt+1 = 0.

76

Let L⊥q,r be another orthogonal lattice such that a vector u = (u1, · · · , ut+1) ∈ L⊥q,r if and only if u1q1 +

· · ·ut+1qt+1 = 0 and u1r1 + · · ·ut+1rt+1 = 0. Then we observe that the vector u ∈ L⊥x . The final
task is to find t − 1 linearly independent vectors in L⊥q,r that are shorter than any vector in L⊥x to recover
q = (q1, · · · , qt+1) and r = (r1, · · · , rt+1) and hence p.

Nguyen and Stern’s orthogonal lattice attack to the ACD problem requires finding a vector which is
both orthogonal to q and r. In a similar way to Nguyen and Stern’s orthogonal lattice attack, in [DT14]
it is discussed that if we can find orthogonal vectors to q only, then we can recover p as a solution to the
ACD problem. As the requirement for a vector which is also orthogonal to r is eased, we focus on the latter
method and we denote it as the NS-Approach. The NS notation is to denote Nguyen and Stern’s first idea
on orthogonal lattices to solve the ACD problem.

Suppose (xi = pqi + ri) for 1 ≤ i ≤ t. If we can find short orthogonal vectors to q = (q1, q2, · · · , qt)
[DT14], then we can directly find the error terms ri to ultimately recover p as a solution to the approximate
divisor problem. The method proceeds by building a t-dimensional lattice L. Then running the LLL algo-
rithm on the lattice L to find enough short vectors for basis of L to form a system of t− 1 linear equations
in t variables of the ri.

In the traditional approach, we consider a lattice spanned by the kernel of the matrix obtained from the
system of linear equations to finally build a lattice of embedding to recover ri. Instead we give a simplified
algorithm which has the added advantage of being easier to analyse in practice.

Assume xt ≥ xt−1 ≥ · · · ≥ x1. Let the lattice L have basis given by the rows of the matrix

B =

1 x1

1 x2

1 x3

. . .
...

1 xt−1

xt

. (5.7)

Any vector v in the lattice L is of the form (u1, u2, · · · , ut)B = (u1, u2, · · · , ut−1,
t∑
i=1

uixi) for integer

values ui. The last entry of the vector v gives the relation
t∑
i=1

uixi =
t∑
i=1

uiri (mod p) (since xi = pqi+ri).

To exploit the relation, we need to construct a system of linear equations involving the ri over the integers
to recover ri or qi to finally recover p. So we require the relation to hold over integers,

t∑
i=1

uixi =
t∑
i=1

uiri, (5.8)

without the mod operation.

Theorem 5.2.10. Let xi = pqi + ri for 1 ≤ i ≤ t be ACD samples such that GCD(q1, q2, · · · , qt) = 1.
Let B be the basis matrix of L as given above. Suppose there exists a basis matrix B̃ for the lattice L with
all basis vectors short enough, with norm less than 2η−ρ−2−log2 t. Let the ith row of the matrix B̃ be given
by uiB, where the integer entries ui,j form the rows of a matrix U. Consider the linear system of equations

77

obtained from the last entry of each row of the matrix B̃.
u1,1 u1,2 · · · u1,t

u2,1 u2,2 · · · u2,t

u3,1 u3,2 · · · u3,t
...

... · · ·
...

ut−1,1 ut−2,2 · · · ut−1,t

r1

r2

r3
...
rt

 =

u1,1 u1,2 · · · u1,t

u2,1 u2,2 · · · u2,t

u3,1 u3,2 · · · u3,t
...

... · · ·
...

ut−1,1 ut−2,2 · · · ut−1,t

x1

x2

x3
...
xt

 . (5.9)

Then 〈q1, q2, · · · , qt〉 is a generator for the Z-module kernel of U.

To prove Theorem 5.2.10, we show the existence of short vectors for the basis of the lattice L.

Lemma 5.2.11. Let v = (v1, v2, · · · , vt) = uB, where u = (u1, u2, · · · , ut) for integer values ui. Assume
||v|| < 2η−ρ−3−log2 t, then

t∑
i=1

uiqi = 0 and
t∑
i=1

uixi =
t∑
i=1

uiri.

Proof. Let v = uB with u = (u1, u2, · · · , ut). Assume ||v|| < N for some N , then |ui| < N for

1 ≤ i ≤ t− 1 and |vt| < N . We need to bound ut. Observe that ut = (vt −
t∑
i=1

uixi)/xt. So

|ut| =

∣∣∣∣(vt − t∑
i=1

uixi)/xt

∣∣∣∣
≤ |vt|+ (t− 1)|ui||xi|

|xt|

≤ N + (t− 1)N |xi|
|xt|

(xt > xi)

≤ tN.

Consider a bound on |
t∑
i=1

uiri|.

|
t∑
i=1

uiri| ≤ |
t−1∑
i=1

uiri|+ |utrt|

≤ (t− 1)N2ρ + tN2ρ

≤ 2tN2ρ.

By taking N = 2η−ρ−3−log2 t, we have 2tN2ρ < 2η−2 which implies |
t∑
i=1

uiri| < p/2.

To prove
t∑
i=1

uiqi = 0. Assume it is not so that p|
t∑
i=1

uiqi| > 2η. We have

vt =

t∑
i=1

uixi = p(

t∑
i=1

uiqi)+

t∑
i=1

uiri. Then |vt| = |
t∑
i=1

uixi| < N =⇒ p|(
t∑
i=1

uiqi)| < N + |
t∑
i=1

uiri|.

78

So

p|(
t∑
i=1

uiqi)| < N + p/2. Since N < 2η−ρ−2−log2 t, we have N + p/2 < p. This is contradiction to our

assumption. So we must have
t∑
i=1

uiqi = 0 which completes the proof.

Definition 5.2.12. Let v be a lattice vector. If ||v|| < 2η−ρ−3−log2 t, then v is called a target vector.

From the target vector Definition 5.2.12 and Lemma 5.2.11, we conclude that a target vector is an
orthogonal vector to q. Each target vector is a relation. We need t− 1 target vectors to be able to solve for
r1, · · · , rt or q1, · · · , qt.

Assumption 5.2.13.

λt−1(L) = det(L)1/(t)

√
t

2πe
.

Remark 5.2.14. This is a strong assumption hoping to get t − 1 short vector basis of the lattice L with
the maximum norm less than 2η−ρ−3−log2 t. The LLL algorithm outputs such vectors with some success
probability (see Section 5.3).

Lemma 5.2.15. Let vt−1 be a target vector with maximum norm. Then vt−1 is a short vector if the dimen-
sion of the lattice dim(L) > γ

η−ρ .

Proof. Assume Assumption 5.2.13 holds, then we require det(L)1/(t)
√

t
2πe < 2η−ρ−3−log2 t. Ignoring√

t
2πe this is implied by

2γ/t < 2η−ρ−3−log2 t

which is equivalent to t > γ
η−ρ−3−log2 t

≈ γ
η−ρ .

So if t = dim(L) > γ
η−ρ , the target vector vt−1 will be short.

Lemma 5.2.16. Let γ = η2, ρ < η/4, and dim(L) be given by t = 2(γ/η). Assume Assumption 5.2.13
holds. Then the LLL algorithm with approximation factor α = 2dim(L)/8 = 2

η
4 computes a target vector as

its shortest vector output.

Proof. By Assumption 5.2.13, we have

λt−1(L) = det(L)1/t

√
t

2πe
< 2η−ρ−3−log2 t.

Let ||vt−1|| be a target vector with maximum norm. The LLL algorithm with approximation factor α can
compute a target vector of size αλt−1(L). We need to show αλt−1(L) < 2η−ρ−3−log2 t. By substitution

αλt−1(L) = 2
η
4 2

η
2

√
η

πe
= 2

3η
4

√
η

πe
,

which is less than 2η−ρ−3−log2 t up to some constant.

79

If however we set γ = η3 and t = 2η2, then the LLL algorithm with approximation factor 22εη2 outputs
an approximation of the short vector of size 22εη2+ η

2

√
η
πe , which is greater than 2η−ρ−3−log2 t. So the LLL

algorithm fails to output a target vector.

Proof. (Theorem 5.2.10) Let Z be the null space of the linear system of equations (5.9). Then Z is of dimen-
sion one. Let z = (z1, z2, · · · , zt) ∈ Zt be a basis vector for Z chosen such that GCD(z1, z2, · · · , zt) = 1,
then z satisfies the relation

ui,1z1 + ui,2z2 + · · ·+ ui,tzt = 0.

But each row ui of the matrix U gives the relation

ui,1q1 + ui,2q2 + · · ·+ ui,tqt = 0.

This implies (q1, q2, · · · , qt) = k(z1, z2, · · · , zt) for some k ∈ Q. Since qi ∈ Z and GCD(q1, q2, · · · , qt) =
1, we must have k = ±1. So 〈q1, q2, · · · , qt〉 is a generator for the Z-module kernel of U.

As a result of Theorem 5.2.10, we obtain a solution to the ACD problem. The values of (q1, q2, · · · , qt)
are obtained directly from the basis of the null space of the system equations (5.9). Recovering p is then
immediate.

5.2.4 Orthogonal vectors to error terms (NS*-Approach)

Let xi = pqi + ri be ACD samples, where 1 ≤ i ≤ t, with x0 = pq0. In Section 5.2.3, we considered
short orthogonal vectors to q = (q1, q2, · · · , qt) to solve the ACD problem. A similar method by Van Dijk
et al. is proposed in Appendix B.1 of [DGHV10]. Instead of orthogonal vectors to q, orthogonal vectors to
the vector (1, −r1R1

, −r2R2
, · · · , −rtRt

), where Ri is an upper bound on each error term ri, are used. This is also
mentioned in [CS15]. We call this method the NS*-Approach.

The way the NS*-Approach works is similar to our discussion in Section 5.2.3. A system of linear
equations will be built involving the variables ri from short vector outputs of the LLL algorithm applied on
a lattice L. If the short vectors used to construct the system of equations are sufficiently small enough, the
kernel reading of the corresponding system of equations reveals the values of q.

Assume the same bound R for all error bounds Ri. Let L be a lattice with basis matrix

B =

x0

x1 R
x2 R
x3 R
...

. . .
xt R

. (5.10)

Notice that each row of B corresponds xi − ri ≡ 0 (mod p). As B is a triangular matrix, det(L) = x0R
t.

The lattice L is similar to the lattice considered in Section 5.2.3 with the diagonals scaled by the error
bound R. In Appendix B.1 of [DGHV10], the first row of the matrix B, x0 = pq0 with error term 0 is not
considered. For the sake of bounding the determinant easily, we include it in our analysis.

Any vector v = (v0, v1, · · · , vt) ∈ L is of the form

v = (u0, u1, · · · , ut)B = (
t∑
i=0

uixi, u1R, u2R, · · · , utR),

80

where ui ∈ Z. The main observation of Van Dijk et al. [DGHV10] is

v0 −
t∑
i=1

vi
R
ri =

t∑
i=0

uixi −
t∑
i=1

uiR

R
ri =

t∑
i=1

ui(xi − ri) = 0 (mod p). (5.11)

To be able to form a system of linear equations involving the variables ri, we require equation (5.11) to hold

over the integers. Clearly if |v0 −
t∑
i=1

vi
R
ri| < p/2,

v0 −
t∑
i=1

vi
R
ri = 0. (5.12)

So we need the following lemma to satisfy this condition.

Lemma 5.2.17. Let v = (u0, u1, u2, · · · , ut)B. Let ||v|| < 2η−2−log2(t+1). Then

|v0 −
t∑
i=1

vi
R
ri| < p/2 and

t∑
i=1

uiqi = 0.

Proof. Let v = (v0, v1, · · · , vt) = (
t∑
i=0

uixi, u1R, u2R, · · · , utR). Let ||v|| < N for some positive real

number N . Then |v0| < N and |uiR| < N for 1 ≤ i ≤ t. Thus

|v0 −
t∑
i=1

vi
R
ri| < |v0|+ |

t∑
i=1

uiri| < N + tN.

Taking N = 2η−2−log2(t+1), we have (t+ 1)N < 2η−2. So |v0 −
t∑
i=1

vi
R
ri| < p/2.

To prove
t∑
i=0

uiqi = 0, suppose
t∑
i=0

uiqi 6= 0 so that p|
t∑
i=0

uiqi| > 2η. Since xi = pqi + ri, we have

p|
t∑
i=0

uiqi| < |
t∑
i=0

uixi|+ |
t∑
i=1

uiri| < 2η−2−log2(t+1) + (t+ 1)2η−2−log2(t+1) < p.

This is contradiction to our assumption. We must have
t∑
i=0

uiqi = 0.

Definition 5.2.18. Let v be a lattice vector in L. If ||v|| < 2η−2−log2(t+1), then v is called a target vector.

As can be observed from equation (5.12) and Lemma 5.2.17, if v = (u0, u1, · · · , ut)B is a target vector
having norm less than 2η−2−log2(t+1), then v is an orthogonal vector to

(1,
−r1

R1
,
−r2

R2
, · · · , −rt

Rt
),

and implicitly the vector (u0, u1, · · · , ut) is orthogonal to (q0, q1, q2, · · · , qt). We need t − 1 such target

vectors to form a linear system of equations of the form
t∑
i=1

uixi =

t∑
i=1

uiri in the unknown variables ri.

81

Theorem 5.2.19. Let xi = pqi + ri be ACD samples, where 1 ≤ i ≤ t, such that GCD(q1, q2, · · · , qt) = 1.
Let B be the basis matrix of L as given above. Suppose there exists a basis matrix B̃ for the lattice L with
all basis vectors short enough, with norm less than 2η−1−log2(t+1). Let the ith row of the matrix B̃ be given
by uiB, where ui,j ∈ Z form the rows of a matrix U. Consider the linear system of equations

u1,1 u1,2 · · · u1,t

u2,1 u2,2 · · · u2,t

u3,1 u3,2 · · · u3,t
...

... · · ·
...

ut−1,1 ut−2,2 · · · ut−1,t

r1

r2

r3
...
rt

 =

u1,1 u1,2 · · · u1,t

u2,1 u2,2 · · · u2,t

u3,1 u3,2 · · · u3,t
...

... · · ·
...

ut−1,1 ut−2,2 · · · ut−1,t

x1

x2

x3
...
xt

 . (5.13)

Then 〈q1, q2, · · · , qt〉 is a generator for the Z-module kernel of U.

Proof. We follow similar steps used to prove Theorem 5.2.10. Note that given a lattice vector
v = (v0, v1, · · · , vt) = (u0, u1, · · · , ut)B, then ui = vi

R for 1 ≤ i ≤ t.

This method relies on finding t− 1 short vectors. As discussed in Section 5.2.3, by Assumption 5.2.13
for the target vector Definition 5.2.18, the LLL algorithm outputs such short vectors with some success
probability (see Section 5.3) enough to build a linear system of equations (5.13). Then we directly recover
the values of (q1, · · · , qt) from the kernel of the system of equations. It is then immediate to recover p a
solution to the ACD problem.

5.2.5 Multivariate polynomial equations method (CH-Approach)

Howgrave-Graham [HG01] studied the PACD problem given two ACD sample inputs, N = pq1 and
a = pq2+r1. The idea is based on solving modular univariate linear equations of the form a+x = 0 (mod p)
for unknown p. A solution x = r1 to the modular equation is expected to be small. The key observation is
based on the following lemma.

Lemma 5.2.20. (Howgrave-Graham) Let Q(x1, · · · , xm) ∈ Z[x1, · · · , xm] be an integer polynomial given
as

Q(x1, · · · , xm) =
∑

j1,··· ,jm

Qj1···jmx
j1
1 · · ·x

jm
m .

Define the norm of a polynomial |Q(x1, · · · , xm)| to be
√∑

Q2
j1···jm . Assume that Q has ω monomials. If

• Q(r1, · · · , rm) = 0 (mod pk) for |r1| < R1, · · · , |rm| < Rm , where the Ri error bounds and

• |Q(R1x1, · · · , Rmxm)| < pk√
ω

,

then Q(r1, · · · , rm) = 0 over the integers.

In [DGHV10] (see Appendix B.2), Howgrave-Graham’s approach is generalized to a multivariate ver-
sion of the problem which is an extension of Coppersmith’s method [Cop96b]). A more general multivariate
approach is mentioned in [CH13] and we focus on the latter. Let β ∈ (0, 1) and N = pq0 such that p = Nβ .
Let ai = qip + ri for 1 ≤ i ≤ m. Clearly we have ai − ri ≡ 0 (mod p). The idea of [CH13] is based on
the observation that the products (ai − ri)2 ≡ 0 (mod p2), (ai − ri)(aj − rj) ≡ 0 (mod p2) and so on and
so forth. In general polynomials constructed as a linear combination of the products modulo the power of p
have the same roots.

82

One can then construct polynomials Q1, Q2, · · ·Qm in m variables such that Q(r1, · · · , rm) ≡
0 (mod pk) for some k. The hope is now if the constructed polynomials are sufficiently small when evaluated
at small integer values, then with high probability solving the system of equations over Q gives candidates
for the roots r1, · · · , rm.

Assume k, `, t are parameters to be optimized. If the constructed polynomials have small coefficients,
the congruence modulo pk holds over the integers. The idea is to build Q such that |Q(r1, · · · , rm)| < pk.
To ensure that Cohn et al. [CH13] construct the polynomials

Q(r1, · · · , rm) ≡ 0 (mod pk) (5.14)

as integer linear combinations of the products

(x1 − a1)i1 · · · (xm − am)imN `

such that i1 + · · ·+ im + ` ≥ k in the indeterminate variables x1, · · · , xm.
Accordingly Cohn et al. [CH13] consider the lattice L generated by the coefficient row vectors of the

products
(R1x1 − a1)i1 · · · (Rmxm − am)imN `, (5.15)

such that i1 + · · ·+ im ≤ t and ` = max(k −
∑

j ij , 0).
Let f = (R1x1 − a1)i1 · · · (Rmxm − am)imN `. Let f[i1,2,··· ,ij] denote f evaluated at (i1, i2, · · · im)

(this is mentioned in [TK13]). If one orders the monomials occurring in f[i1,2,··· ,ij], say with degree reverse
lexicographic ordering, then the basis matrix of the corresponding lattice L is lower triangular. For example,
for choices of t = 3,m = 2, k = 1, the corresponding basis matrix B of the lattice L is of the form

B =

f[i1,i2] 1 x1 x2 x2
1 x1x2 x2

2 . . . x3
2

f[0,0] N 0 0 0 0 0 . . . 0
f[1,0] −a1 R1 0 0 0 0 . . . 0
f[0,1] −a2 0 R2 0 0 0 . . . 0
f[2,0] a2

1 −2a1R1 0 R2
1 0 0 . . . 0

f[1,1] a1a2 −a2R1 −a1R2 0 R1R2 0 . . . 0
f[0,2] a2

2 0 −2a2R2 0 0 R2
2 . . . 0

...
...

...
...

...
...

...
. . .

...
f[0,3] −a3

2 0 3a2
2R2 0 0 −3a2R

2
2 . . . R3

2

. (5.16)

Lemma 5.2.21. Assume m > 1 and t > 1. Then the dimension of the lattice L generated by the coefficient
row vectors of the products given by equation (5.15) is

(
t+m
m

)
.

Proof. The dimension of the lattice is clearly the number of possible polynomials of the form (R1x1 −
a1)i1 · · · (Rmxm − am)imN ` in the variables (x1, · · · , xm). So we need to count the possible number of
combinations of the exponents ij , where ij ≥ 0, so that 0 ≤ i1 + · · · + im ≤ t. Assigning t + 1 values
(0, 1, 2, · · · , t) to m exponents ij can be done in

(
m+t
m

)
ways.

Equivalently, we count the number of non-negative integer solutions to the equation i1 + · · · + im = t̃

in the variables ij . It has
(m+t̃−1

t̃

)
possible number of solutions. Adding all possible number of solutions

for 0 ≤ t̃ ≤ t gives the result. Note that since
(
m+t
m

)
=
(
m+t−1

t

)
+
(
m+t−1
t−1

)
,(

m− 1

0

)
+

(
m

1

)
+ · · ·+

(
m+ t− 1

t

)
=

(
m+ t

m

)
.

83

Lemma 5.2.22. Let the error bounds Ri have the same value R. Then the determinant of the lattice L
generated by the coefficient row vectors of the products given by equation (5.15) is

det(L) = R(t+mm) mt
m+1N(k+mm) k

m+1 = 2(t+mm) ρmtm+1
+(k+mm) γk

m+1 .

Proof. det(L) = NSNRmSR , where SN is the sum of exponents of N and SR is the sum of exponents of
Ri. Lemma 5.2.21 implies that there are in total

(
t+m
m

)
monomials with

(
m+i−1

i

)
of them having exponent

i. This implies that on average each Ri has exponent i
(
m+i−1

i

)
/m =

(
m+i−1
i−1

)
. Summing up for 1 ≤ i ≤ t

gives the total exponent of Ri. So we have

SR =

(
m

0

)
+

(
m+ 1

1

)
+ · · ·+

(
m+ t− 1

t− 1

)
=

(
m+ t

t− 1

)
=

(
m+ t

m

)(m+t
t−1

)(
m+t
m

) =

(
m+ t

m

)
t

m+ 1
.

The exponent of N in each monomial expression is `, where ` = max(k −
∑

j ij , 0). In other words
we demand (i1 + i2 + · · ·+ im ≤ k). A similar analysis gives the exponent of N to be SN =

(
m+k
m

)
k

m+1 .
Substituting N and R by their size estimates 2γ and 2ρ respectively gives the result.

If |Q(r1, · · · , rm)| < pk, clearly equation 5.14 holds over the integers. We need to estimate the norm
of the corresponding lattice vector. Let Q(x1, · · · , xm) =

∑
j1,··· ,jm

(Qj1···jmx
j1
1 · · ·x

jm
m). Its corresponding

lattice vector v is
v =

∑
j1,··· ,jm

(Qj1···jmR
j1
1 · · ·R

jm
m).

We note that |Q(r1, · · · , rm)| ≤ |v|1, where |v|1 is the `1 norm of v. Indeed

|Q(r1, · · · , rm)| ≤
∑

j1,··· ,jm

|Qj1···jm ||r1|j1 · · · |rm|jm

≤
∑

j1,··· ,jm

|Qj1···jm |R
j1
1 · · ·R

jm
m

= |v|1.

So we define a target vector as follows.

Definition 5.2.23. Let L be the lattice generated by the coefficient row vectors of the products given by
equation (5.15). Let v be a vector in L. If |v|1 < pk for some positive integer k then v is called a target
vector.

Each target vector gives a relation. So if we have m relations, we solve the corresponding polynomial
equations in m variables. We need a heuristic assumption to get m such target vectors.

Assumption 5.2.24. Let L be the lattice generated by the coefficient row vectors of the products given by
equation (5.15). Then λm(L) = det(L)1/(ω)

√
ω

2πe , where ω =
(
t+m
m

)
is the dimension of L.

Lemma 5.2.25. Let L be the lattice generated by the coefficient row vectors of the products given by equa-

tion (5.15). Then λm(L) is short if ω =
(
t+m
m

)
>

(k+mm)γ
(m+1)(η−ρ) .

84

Proof. If Assumption 5.2.24 hods, then we require λm(L) < pk which implies log2 det(L) < ωkη. So we
have

ωρ
mt

m+ 1
+ γ

(
k +m

m

)
k

m+ 1
< kωη

which is implied by γ
(
k+m
m

)
1

m+1 < ω(η − ρ(t/k)). This is equivalent to

ω =

(
t+m

m

)
>

(
k+m
m

)
γ

(m+ 1)(η − ρ(t/k))
≈

(
k+m
m

)
γ

(m+ 1)(η − ρ)
.

By Lemma 5.2.25 for ω >
(k+mm)γ

(m+1)(η−ρ) , the first m output vectors vi of the LLL algorithm satisfy
|vi| < pk giving us polynomial relations between r1, · · · , rm. More specifically we write v = (u1, · · · , uω)
and consider the ω monomials (1, x1, x2, x

2
1, x1x2, x

2
2, · · · , xtm) in degree reverse ordering. Then the corre-

sponding polynomial to lattice vector v is

Q(x1, x2, · · · , xm) =

ω∑
i=1

ui

Rj11 · · ·R
jm
m

xj11 · · ·x
jm
m .

We collect m such independent polynomial equations. The system of equations coming from these
relations can then be solved using the F4 [Fau99] or F5 [Fau02] Gröbner basis algorithms to directly find
all r1, · · · , rm ∈ Z. Note that the first m output of the LLL algorithm do not necessarily give an algebraic
independent vectors. In this case we add some next output vectors of the LLL algorithm with `1 norm less
than pk (if there are any). Alternatively we factorize the polynomial equations to get algebraic independent
polynomial equations. Finally with high probability we recover p by computing

gcd(N, a1 − r1, a2 − r − 2, · · · , am − rm).

The drawback of the CH-Approach is that we may not find enough independent polynomial equations.
Our experiment (see Table 5.1) shows that indeed this is the case. As a result, the running time of the
Gröbner basis part is stuck even for small parameters.

5.3 Comparison of algorithms for the ACD problem

The approximate common divisor problem is currently a hard problem for appropriate parameter set-
tings. We have discussed that there are cryptographic applications that exploit the hardness of the ACD
problem. The DGHV homomorphic [DGHV10] encryption over the integers is a particular example. For
an ACD sample xi = pqi + ri, recall that γ, η, ρ are the bit size of the parameters xi, p, r respectively.
In [DGHV10], the parameters are set as γ = η2Ω(λ), η = λ2 and ρ = λ for security parameter λ.

The security proof analysis of the DGHV homomorphic [DGHV10] encryption and other variants such
as [CMNT11] are based on the complexity analysis of the different algorithms to solve the ACD computa-
tional problem. These algorithms are in turn based on the worst-case performance of the LLL algorithm. It
is important to analyze the current most effective algorithm to solve the ACD problem from practical point
of view.

The CH-Approach (see Section 5.2.5) reduces solving the ACD problem to solving multivariate poly-
nomial equations. For this approach to be successful, the dimension of the lattice L must satisfy dim(L) >

85

(k+mm)γ
(m+1)(η−ρ) ≈ γ/(η − ρ) (for some parameters k,m > 1). As γ is set to be greater than η2 (see [CS15]
for tighter bounds), the CH-Approach becomes infeasible to solve the ACD problem for such parameter
settings.

The SDA-Approach (see Section 5.2.2) solves the ACD problem using simultaneous Diophantine ap-
proximation method. The dimension of the lattice required is greater than γ/η. As explained if the ratio of
these parameters is too large, the LLL algorithm cannot produce the required output. Similarly in the case
of NS-Approach and NS*-Approach, see Sections 5.2.3 and 5.2.4 respectively, the dimension of the lattice
required is greater than γ/(η − ρ).

One can see that the lattice dimension requirement dim(L) > γ/η in the case of SDA-Approach and
dim(L) > γ/(η− ρ) in the case of CH-Approach, NS-Approach and NS*-Approach are the limiting factor
of the LLL algorithm. In all cases if the ratio of γ to η is large, the LLL algorithm fails to output target
vectors in the lattice constructed for each approach.

Assuming parameters are not large as in [DGHV10], we ask ourselves which algorithm for the approxi-
mate common divisor problem is best in practice? We ran experiments for some fixed values of parameters.
Basically since the limiting factor is the ratio γ/η, we fix p to be of size η = 100 and we let the size of xi,
γ grow linearly up to η2. In other words, the size of the qi goes from 1 to η as shown in Table 5.1.

86

Table 5.1: Comparison of NS-Approach, NS*-Approach, SDA-Approach and CH-Approach. The common
parameters ρ and γ indicate the size of error terms ri and the size of the GACD samples xi in bits (respec-
tively) for a fixed common parameter prime p of size η = 100 bits. Time indicates the running time of the
four approaches, dim(L) represents the dimension of the lattice constructed required for each approach and
Success denotes the percentage of times each algorithm recovers the correct p. The experiment is repeated
100 times except for those indicated with ∗ and ?, which in these cases are repeated only once and 10 times
respectively. The notation × indicates the running time is too high for us to get any useful data.

NS-Approach NS*-Approach SDA-Approach CH-Approach with (t, k) = (3, 2)
γ ρ dim(L) Time Success Time Success Time Success dim(L) Time Success

150 10 12 0.009 100% 0.002 100% 0.008 100% 35 0.199 100%
49 13 0.009 100% 0.002 100% 0.008 48% 35 0.134 100%
50 13 0.009 100% 0.009 100% 0.009 0% 35 0.132 100%
58 14 0.009 100% 0.010 100% 0.009 0% 35 0.110 100%

300 10 13 0.007 100% 0.005 100% 0.010 100% 35 0.321 100%
58 17 0.010 100% 0.007 100% 0.013 100% 35 0.141 100%
90 40 0.036 2% 0.056 78% 0.086 72% 35 0.355 0%
92 48 0.052 0% 0.088 26% 0.136 18% 35 0.345 0%

600 10 17 0.022 100% 0.016 100% 0.025 100% 35 1.108 100%
30 19 0.021 100% 0.016 100% 0.032 100% 35 0.945 100%
85 50 0.137 1% 0.276 56% 0.591 58% 35 0.205 0%
88 60 0.213 0% 0.488 1% 1.010 1% 35 0.179 0%

1200 10 23 0.065 100% 0.059 100% 0.115 100% 56 53.060 100%
20 25 0.081 100% 0.072 100% 0.152 100% 56 10.401 100%
75 58 0.589 8% 0.929 61% 2.926 68% 56 8.515 0%
80 70 0.879 0% 1.780 1% 5.225 85% 56 6.955 0%

2400 10 37 0.513 100% 0.476 100% 1.565 100% × ×
50 58 2.444 94% 2.133 97% 8.181 100% × ×
70 90 8.907 0% 9.823 0% 36.164 2% × ×

5000 10 66 8.205 100% 8.154 100% 44.372 100% × ×
20 73 12.388 100% 11.200 100% 63.273 100% × ×
40 94 28.833 9% 29.135 33% 137.928 50% × ×

6000 10 77 17.169 94% 17.315 98% 97.953 100% × ×
15 81 21.604 98% 19.716 97% 118.114 90% × ×
40 110 63.245 0% 63.121 0% 403.000 0% × ×

7000 10 88 33.894 100% 33.231 100% 208.151 80% ? × ×
15 92 40.163 100% 40.914 88% 263.172 90% ? × ×
30 110 112.113 40% 137.165 100% 497.381 0% ? × ×

8000 10 99 65.523 100% 58.707 90% 464.465 100% ? × ×
15 104 84.627 80% 72.206 70% 718.458 50% ? × ×
20 120 111.400 70% ? 104.652 90% ? 2414.070 100% ∗ × ×

9000 10 120 122.516 80% ? 103.297 40% ? 4108.840 100% ∗ × ×
15 126 236.098 50% ? 239.258 60% ? 3585.130 100% ∗ × ×
20 133 392.627 40% ? 395.834 90% ? 5246.490 100% ∗ × ×

104 10 131 304.395 40%? 283.870 100% ? 5917.750 100% ∗ × ×
15 138 618.203 30% ? 306.982 100% ? 5472.070 100% ∗ × ×
20 145 1136.870 20%? 934.202 60%? 8151.022 100% ∗ × ×

5.3.1 Experimental observation

In Table 5.1, Time refers to the total running time of each approach to solve the ACD problem and
Success refers to how accurate each approach outputs the correct solution p for a given error size. The
common parameters of the four approaches ρ, η and γ refer to the size of the error terms, the size of the
prime p and the size of ACD samples in bits respectively and dim(L) denotes the dimension of the lattice
used.

Given a fixed dimension dim(L), an algorithm for solving ACD problem is best if it has better running

87

time with maximum accuracy for a given error size. An algorithm capable of handling larger errors ri is
also preferable.

Considering the running time of the four approaches, we clearly observe from our experiment that the
NS-Approach and NS*-Approach are the fastest ones. In other words, the two orthogonal lattice based
approaches have low running times compared with the other two. As the dimension of the lattice increases,
the SDA-Approach has slower running time than the running time of the NS-Approach and NS*-Approach.
This is mainly because the volume of the lattice constructed for the SDA-Approach is larger than the NS-
Approach and NS*-Approach.

The CH-Approach has the worst running time compared with the others. Its running time is extremely
slow. As it can be observed from the Table 5.1 for most parameter values, the algorithm is extremely slow!.

This is mainly because the volume of the lattice constructed is higher at least by a factor of
k(k+mm)
m+1 than

the other approaches. Consequently the dimension of the lattice required to output short vectors is greater

than (k+mm)γ
(m+1)(η−ρ) which is higher than the dimension requirement for the other approaches for the same

parameters considered. Hence as Table 5.1 shows, the CH-Approach is only effective when the size of the
ACD samples indicated as γ is close to the size of the prime p. In other words, the qi’s are so small. But in
practice the qi’s are large. So the CH-Approach is not effective algorithm to solve ACD problem. Moreover,
solving multivariate polynomials using the F4 or F5 Gröbner basis algorithms is slow.

So we conclude that orthogonal lattice based approaches (the NS-Approach and NS*-Approach) fol-
lowed by the SDA-Approach are best attacks available today against the ACD problem. The CH-Approach
is always slower than the four approaches except when the qi are so small.

5.4 Pre-processing of the ACD samples

The limiting factor of the different algorithms to solve the approximate common divisor problem for
parameters settings as in [DGHV10] is the ratio of the size of the xi given in γ bits to the ratio of the size
of p given in η bits is large. This ultimately is the limiting factor of the LLL algorithm whose complexity is
dependent on the ratio of these parameters.

To reduce the size of the ACD samples xi, we suggest a pre-processing step of the ACD samples.
Assume we have τ = γ + ρ ACD samples [DGHV10]. Then observe that the samples xi+1 − xi =
p(qi+1 − qi) + ri+1 − ri for 1 ≤ i ≤ τ obtained by subtracting consecutive samples of the xi are also ACD
samples potentially with size ≤ γ − 1.

Let ∆k represent the ACD samples at round k with ∆k[i] representing an ACD sample in the ith position.
Define ∆0[i] = xi. Assume the xi are in base-10 numeration system. To get ∆k ACD samples, we eliminate
the most significant digit of the ∆k−1 ACD samples as follows. Select 9 values with distinct most significant
digits of the ∆k−1 ACD samples. Assume ∆k−1[1],∆k−1[2], · · · ,∆k−1[9] are consecutive ACD samples
having distinct most significant digits.

Consider now ∆k−1 ACD samples for 10 ≤ i ≤ #∆k−1. For each ∆k−1[i] ACD sample, we match its
most significant digit with the most significant digits of ∆k−1[j] ACD samples, where 1 ≤ j ≤ 9. Then
taking positive difference of the samples whose most significant digits match gives ∆k[i].

We note that the number of ∆k ACD samples is at most 10 less than ∆k−1 ACD samples. We continue
this operation until we are able to solve the ACD problem using the orthogonal lattice based methods. The
following Algorithm 2 generalizes the idea of the pre-processing step of the ACD samples.

The number of digits of xi is polynomial in the size of the input. So we have a polynomial time running
algorithm. The disadvantage of the pre-processing step of the ACD samples is that the error size might

88

increase. Precisely at round k, in the worst-case the error size is scaled up by a factor of 2k.

Algorithm 2 Pre-processing of the ACD samples
1: Input: τ GACD sample xi and a base 2b.
2: ∆0[i]← xi.
3: d← Digits(2γ) % Number of digits of an ACD sample.
4: s← bd % Initial number of shifts to get the most significant digit.
5: k ← 1 % Number of rounds.
6: while Until we get enough reduced ACD samples do
7: T [j]← 0 % Initialize temporary storage of size b.
8: while i ≤ #∆k−1 do
9: MSB← ShiftRight(∆k−1[i], s) % Compute most significant digits of ∆k−1[i].

10: if MSB is zero then
11: Add ∆k−1[i] to our new reduced sample ∆k.
12: else if T[MSB] is zero then
13: T [MSB] = ∆k−1[i].
14: else
15: Take positive difference of ∆k−1[i] and T [MSB] and add it to ∆k.
16: s← s− b.
17: k ← k + 1.

Lemma 5.4.1. Let k be the number of times the outer loop of Algorithm 2 runs. Assume algorithms for
solving the ACD problem can handle up to η/2 error size. Then any of these algorithms making use of the
pre-processing of the ACD samples step has a negligible success probability if k > η − 2ρ.

Proof. The number of errors involved in each round of the ∆k pre-processing step is 2k. Specifically, at

round k, ∆k is of the form ∆k[i] =
2k∑
i=1

cixi, where ci = ±1. Let r̃k be the corresponding error sum.

Then r̃k =

2k∑
i=1

ciri, where ci = ±1. Since ri is uniformly distributed on (2−ρ, 2ρ), its expected value is

0 with variance approximately equal to 1
3(22ρ). Thus r̃k is normally distributed with mean 0 and variance

approximately equal to 1
3(22ρ+k). So the expected sum of all the errors involved in the final reduced ∆k

ACD sample is given by the standard deviation of r̃k√
1

3
(22ρ+k) ≈ 2k/2+ρ.

By assumption, existing algorithms are able to solve the ACD problem with η/2 error size. So we require
2k/2+ρ ≤ 2η/2 to have a non-negligible success of probability. This implies k ≤ η − 2ρ.

Suppose k ≤ η− 2ρ. Then the algorithm reduces the size of the ACD samples by k digits. As a result q
is smaller. But to reduce significantly, we need k ≈ λ5 which is not less than k ≤ η − 2ρ ≈ λ2 − 2λ. Thus
the pre-processing idea does not have a serious impact on the ACD problem.

89

Bibliography

[AD94] L. Adleman, J. DeMarrais. A subexponential algorithm for discrete logarithms over all finite fields.
In Advances in Cryptology-CRYPTO’93, pages 147−158, 1994.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM Symp. on Theory of
Computing, pages 99−108, 1996.

[Ajt98] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions. In STOC’98,
pages 10−19, 1998.

[AKS01] M. Ajtai, R. Kumar, D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In
Proc. STOC’01, pages 601−610, 2001.

[ANSI97] ANSI X9.63-199x. Public Key Cryptography for the Financial Services Industry: Elliptic Curve
Key Agreement and Transport Protocols, 1997.

[ANSI98] ANSI X9.62-199x. Public Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm (ECDSA), 1998.

[AR04] D. Aharonov, O. Regev. Lattice problems in NP intersect coNP. Journal of the ACM, vol. 52(5),
pages 749−765, 2005.

[Bar04] M. Bardet. Etude des systèmes algèbriques surdèterminès. Applications aux codes correcteurs et à
la cryptographie. PhD thesis, Universitè Paris, 2004.

[BBJ+08] D. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters. Twisted Edwards curves. Progress in
Cryptology–Africacrypt 2008, Vol. 5023 of LNCS, pages 389−405, 2008.

[BCP97] W. Bosma, J. Cannon, C. Playoust. The Magma algebra system. I. The user language, Journal
Symbolic Computation, vol. 24, pages 235−265, 1997.

[BFP09] L. Bettale, J. Faugère, L. Perret. Hybrid approach for solving multivariate systems over finite
fields, Journal Mathematics Cryptology, vol. 3, pages 177−197, 2009.

[BFS04] M. Bardet, J. Faugère, B. Salvy. On the complexity of Gröbner basis computation of semi-regular
overdetermined algebraic equations. In International Conference on Polynomial System Solving - ICPSS,
pages 71−75, 2004.

[BFSY05] M. Bardet, J. Faugère, B. Salvy, B. Yang. Asymptotic behaviour of the degree of regularity
of semi-regular polynomial systems. The Effective Methods in Algebraic Geometry Conference, Mega
2005, pages 1−14, 2005.

90

[BL07] D. Bernstein, T. Lange. Faster addition and doubling on elliptic curves. In ASIACRYPT, pages
29−50, 2007.

[BL13] D. Bernstein, T. Lange. ECRYPT Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to, 2013.

[BLF08] D. Bernstein, T. Lange, R. Farashahi. Binary Edwards Curves. Cryptographic Hardware and Em-
bedded Systems–CHES 2008, Vol. 5154 of LNCS, pages 244-265, 2008.

[BK98] R. Balasubramanian, N. Koblitz. The improbability that an elliptic curve has subexponential dis-
crete log problem under the Menezes-Okamoto-Vanstone algorithm. Journal of Cryptology, vol. 11, pages
141−145, 1998.

[Buc06] B. Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements
of the residue class ring of a zero dimensional polynomial ideal. Journal Symbolic Computation, vol.
41(3-4), pages 475−511, 2006.

[CF05] H. Cohen, G. Frey. Handbook of elliptic and hyperelliptic curve cryptography. CRC Press, 2005.

[CH13] H. Cohn, N. Heninger. Approximate common divisors via lattices. ANTS X, vol. 1 of The Open
Book Series, pages 271−293, 2013.

[Che55] C. Chevalley. Invariants of finite groups generated by reflections. American Journal of Mathemat-
ics, vol. 77(4), pages 778−782, 1955.

[CJL+92] M. Coster, A. Joux, B. LaMacchia, A. Odlyzko, C. Schnorr, J. Stern. Improved low-density
subset sum algorithms. Computational Complexity, vol. 2, pages 111−128, 1992.

[CKM97] S. Collart, M. Kalkbrener, D. Mall. Converting bases with the Gröbner walk. Journal of Symbolic
Computation, vol. 24, pages 465−469, 1997.

[CLO07] D. Cox, J. Little, D. OShea. Ideals, Varieties, and Algorithms: an Introduction to Computational
Algebraic Geometry and Commutative Algebra,vol. 10, Springer, 2007.

[CMNT11] J. Coron, A. Mandal, D. Naccache, M. Tibouchi. Fully homomorphic encryption over the inte-
gers with shorter public keys. Advances in Cryptology–CRYPTO 2011, pages 487−504, 2011.

[CN12] Y. Chen, P. Nguyen. Faster algorithms for approximate common divisors: Breaking fully ho-
momorphic encryption challenges over the integers. Advances in Cryptology–EUROCRYPT’12, pages
502−519, 2012.

[CNT12] J. Coron, D. Naccache, M. Tibouchi. Public Key Compression and Modulus Switching for Fully
Homomorphic Encryption over the Integers. EUROCRYPT’12, vol. 7237 of LNCS, pages 446−464,
2012.

[Cop97] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
Journal of Cryptology, vol. 10(4), pages 233−260, 1997.

[Cop96a] D. Coppersmith. Finding a small root of a univariate modular equation. In EUROCRYPT, pages
155−165, 1996.

91

http://bench.cr.yp.to

[Cop96b] D. Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits
known. In EUROCRYPT, pages 178−189, 1996.

[CP05] R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. Second Edition,
Springer, 2005.

[CS15] J. Cheon, Damien Stehlè. Fully Homomorphic Encryption over the Integers Revisited. In Proc.
EUROCRYPT’15, vol. 9056-9057 of LNCS, pages 513–536, 2015.

[DG10] V. Dubois, N. Gama. The degree of regularity of HFE systems. ASIACRYPT, vol. 6477 of LNCS,
pages 557−576, Springer, 2010.

[DGHV10] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan. Fully homomorphic encryption over the
integers. In Proc. of Eurocrypt, vol. 6110 of LNCS, pages 24−43,2010.

[DGM99] I. Duursma, P. Gaudry, F. Morain. Speeding up the discrete logarithm computation on curves
with automorphisms. ASIACRYPT 1999, vol. 1716 of LNCS, pages 103−121, 1999.

[DGPS15] W. Decker, M. Greuel, M. Pfister, H. Schönemann. SINGULAR 4-0-2 — A computer algebra
system for polynomial computations. http://www.singular.uni-kl.de, 2015.

[DH76] W. Diffie, M. Hellman. New directions in cryptography. IEEE Trans. Information Theory, vol.
IT−22(6), pages 644−654, 1976.

[Die11] C. Diem. On the discrete logarithm problem in elliptic curves. Compositio Mathematica, vol. 147,
pages 75−104, 2011.

[Die13] C. Diem. On the discrete logarithm problem in elliptic curves ii, Algebra and Number Theory, vol.
7, pages 1281−1323, 2013.

[DK02] H. Derksen, G. Kemper. Computational Invariant Theory. Springer Berlin Heidelberg, 2002.

[DKS98] I. Dinur, G. Kindler, S. Safra. Approximating-cvp to within almost-polynomial factors is np-hard.
In Proc. of FOCS ’98, pages 99−111, 1998.

[Edw07] H. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society
vol. 44(3), pages 393−422, 2007.

[Elg85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
Advances in cryptology, vol. 196 of LNCS, pages 10−18, 1985.

[ES] N. Eén, N. Sörensson. The Minisat Page.
http://www.minisat.se/(http://minisat.se/Papers.html.

[Fau02] J. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
In Proc. of the 2002 international symposium on Symbolic and algebraic computation, ISSAC ’02, pages
75−83, 2002.

[Fau99] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Ap-
plied Algebra, vol. 139(1-3), pages 61−88, 1999.

92

http://www.singular.uni-kl.de
http://www.minisat.se/ (http://minisat.se/Papers.html

[FGHR13] J. Faugère, P. Gaudry, L. Huot, G. Renault. Using Symmetries in the Index Calculus for Elliptic
Curves Discrete Logarithm. Journal of Cryptology, vol. 27(4), pages 595−635, 2014.

[FGLM93] J. Faugère, P. Gianni, D. Lazard, T. Mora. Efficient Computation of zero-dimensional Gröbner
bases by change of ordering. Journal of Symbolic Computation, vol. 16(4), pages 329–344, 1993.

[FHJ+14] J. Faugère, L. Huot, A. Joux, G. Renault, V. Vitse. Symmetrized summation polynomials: Using
small order torsion points to speed up elliptic curve index calculus. EUROCRYPT’14, vol. 8441, pages
40−57, Springer 2014.

[FJ03] J Faugère, A. Joux. Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems using
Gröbner basis. CRYPTO, vol. 2729 of LNCS, pages 44−60, 2003.

[FNW10] R. Feng, M. Nie, H. Wu. Twisted jacobi intersections curves. Theory and Applications of Models
of Computation, pages 199−210, 2010.

[FP85] U. Fincke, M. Pohst. Improved methods for calculating vectors of short length in a lattice, including
a complexity analysis. Mathematics of Computation, vol. 44(170), pages 463−471, 1985.

[FR09] J. Faugère, S. Rahmany. Solving systems of polynomial equations with symmetries using SAGBI-
Gröbner basis. In Proc. of the 2009 International Symposium on Symbolic and Algebraic Computation,
ISSAC’09, pages 151−158, 2009.

[FR94] G. Frey , H. Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor
class group of curves. Journal Mathematics Comp., vol. 62(206), pages 865−874, 1994.

[Gal12] S. Galbraith. Mathematics of Public Key Cryptography. Cambridge University Press, Page 615,
2012.

[Gau09] P. Gaudry. Index calculus for abelian varieties of small dimension and the elliptic curve discrete
logarithm problem. Journal of Symbolic Computation, vol. 44(12), pages 1690–1702, 2009.

[GG02] J. Gathen, J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2002.

[GG14] S. Galbraith, S. Gebregiyorgis. Summation Polynomial Algorithms for Elliptic Curves in Charac-
teristic Two, INDOCRYPT’14, vol. 8885 of LNCS, pages 409–427, 2014.

[GGH97] O. Goldreich, S. Goldwasser, S. Halevi. Eliminating decryption errors in the Ajtai-Dwork cryp-
tosystem. In Advances in cryptology. Vol. 1294 of LNCS, pages 105–111, 1997.

[GGX11] H. Gu, D. Gu, W. Xie. Efficient Pairing Computation on Elliptic Curves in Hessian form. Infor-
mation Security and Cryptology–ICISC 2010, vol. 6829 of LNCS, pages 169–176, 2011.

[GHKN06] N. Gama, N. Howgrave-Graham, H. Koy, P. Nguyen. Rankin’s constant and blockwise lattice
reduction. In Proc. CRYPTO’06, vol. 4117 of LNCS, pages 112–130, 2006.

[GHS02] S. Galbraith, F. Hess, N. Smart. Extending the GHS Weil descent attack. In Advances in
cryptology–EUROCRYPT’02, vol. 2332 of LNCS, pages 29–44, 2002.

[Gir15] D. Giry. BlueKrypt| Cryptographic Key Length Recommendation. http://www.keylength.
com/en/. BlueKrypt, vol. 29.2, 2015.

93

http://www.keylength.com/en/
http://www.keylength.com/en/

[GLV99] R. Gallant, R. Lambert, S. Vanstone. Improving the parallelized Pollard lambda search on binary
anomalous curves. Mathematics of Computation, vol. 69, pages 1699–1705, 1999.

[GN08a] N. Gama, P. Nguyen. Predicting lattice reduction. In Proc. EUROCRYPT’08, vol. 4965 of LNCS,
pages 31–51, 2008.

[GN08b] N. Gama and P. Nguyen. Finding short lattice vectors within Mordell’s inequality. In Proc.
STOC’08, pages 207–216, 2008.

[GNR10] N. Gama, P. Nguyen, O. Regev. Lattice enumeration using extreme pruning. In Proc. EURO-
CRYPT’10, vol. 6110 of LNCS, 2010.

[GS99] S. Galbraith, N. Smart. A cryptographic application of Weildescent. In Cryptography and coding,
vol. 1746 of LNCS, pages 191–200, 1999.

[GTTD07] P. Gaudry, E. Thomé, N. Thériault, C. Diem. A double large prime variation for small genus
hyperelliptic index calculus. Mathematics of Computation, vol. 76, pages 475–492, 2007.

[HG01] N. Howgrave-Graham. Approximate integer common divisors. In Cryptography and Lattices, vol.
2146 of LNCS, pages 51–66, 2001.

[HKY15] M. Huang, M. Kosters, S. Yeo. Last Fall Degree, HFE, and Weil Descent Attacks on ECDLP.
Advances in Cryptology–CRYPTO 2015, vol. 9215 of LNCS, pages 581−600, 2015.

[HPST13] Y. Huang, C. Petit, N. Shinohara, T. Takagi. Improvement of Faugère et al.’s Method to Solve
ECDLP. IWSEC’13, vol. 8231 LNCS, pages 115–132, 2013.

[Huf48] G. Huff. Diophantine problems in geometry and elliptic ternary forms. Duke Mathematical Journal,
vol. 15, pages 443–453, 1948.

[HVM04] D. Hankerson, S. Vanstone, A. Menezes. Guide to elliptic curve cryptography. Springer Science
and Business Media, 2004.

[JMS01] M. Jacobson, A. Menezes, A. Stein. Solving elliptic curve discrete logarithm problems using Weil
descent. Journal Ramanujan Mathematical Society, vol. 16(3), pages 231–260, 2001.

[JP14] A. Joux, C. Pierrot. Improving the Polynomial time Precomputation of Frobenius Representation
Discrete Logarithm Algorithms - Simplified Setting for Small Characteristic Finite Fields. Advances in
Cryptology - ASIACRYPT 2014, vol. 8873 of LNCS, pages 378–397,2014.

[JQ01] M. Joye, J. Quisquater. Hessian elliptic curves and side channel attacks. Cryptographic Hardware
and Embedded Systems–CHES 2001, vol. 2162 of LNCS, pages 402–410, 2001.

[JS98] A. Joux, J. Stern. Lattice reduction: A toolbox for the cryptanalyst. Journal Cryptology, vol. 11(3),
pages 161–185, 1998.

[JTV10] M.Joye, M. Tibbouchi, D. Vergnaud. Huff’s Model for Elliptic Curves. Algorithmic Number
Theory–ANTS-IX, vol. 6197 of LNCS, pages 234–250, 2010.

[JV13] A. Joux, V. Vitse. Elliptic curve discrete logarithm problem over small degree extension fields -
application to the static Diffie-Hellman problem on E(Fq5). Journal Cryptology, vol. 26(1), pages 119–
143, 2013.

94

[Kan01] R. Kane. Reflection Groups and Invariant Theory. Springer, 2001.

[Kar15] K. Karabina. Point decomposition problem in binary elliptic curves. Cryptology ePrint Archive,
2015/319, 2015.

[Kem96] G. Kemper. Calculating Invariant Rings of Finite Groups over Arbitrary Fields. Journal of Sym-
bolic Computation, vol. 21(3), pages 351–366, 1996.

[Kho04] S. Khot. Hardness of approximating the shortest vector problem in lattices. In Proc. 45th Annual
IEEE Symp. on Foundations of Computer Science, pages 126–135, 2004.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, vol. 48(177), pages 203–
209, 1987.

[Kob98] N. Koblitz. An Elliptic Curve Implementation of the Finite Field Digital Signature Algorithm.
Advances in Cryptology–CRYPTO’98, vol. 1462 of LNCS, pages 327–337, 1998.

[Lan01] E. Landquist. MATH 488: Cryptographic Algorithm.
http://www.cs.virginia.edu/crab/QFS_Simple.pdf, 2001.

[Laz83] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations.
In Proc. of the European Computer Algebra Conference on Computer Algebra, vol. 162 of LNCS, 1983.

[Len87] H. Lenstra. Factoring integers with elliptic curves. Annuals of Mathematics, vol. 126, pages 649–
673, 1987.

[Len93] A. Lenstra. The Development of the Number Field Sieve. LNM, vol. 1554, Springer, 1993.

[LLL82] A. Lenstra, H. Lenstra, L. Loväsz. Factoring polynomials with rational coefficients. Mathematis-
che Annalen, vol. 261(4), pages 515–534, 1982.

[LO85] J. Lagarias, A. Odlyzko. Solving low-density subset sum problems. Journal of the Association for
Computing Machinery, 1985.

[LS01] P. Liardet, N. Smart. Preventing SPA/DPA in ECC systems using the Jacobi form. Cryptographic
Hardware and Embedded Systems–CHES 2001, vol. 2162 of LNCS, pages 391–401, 2001.

[LV01] A. Lenstra, E. Verheul. Selecting cryptographic key sizes. Journal of Cryptology, vol. 14(4), pages
255–293, 2001.

[Mac16] F. Macaulay. The algebraic theory of modular systems. Cambridge University Press, vol. xiv(19),
page 112, 1916.

[Mac27] F.S. Macaulay. Some properties of enumeration in the theory of modular systems. Proc. London
Mathematical Society, vol. 26, pages 531–555, 1927.

[MCP07] C. McDonald, C. Charnes, J. Pieprzyk. Attacking Bivium with MiniSat. ECRYPT Stream Cipher
Project, Report 2007/040, 2007.

[Men93] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, 1993.

95

http://www.cs.virginia.edu/crab/QFS_Simple.pdf

[MH78] R. Merkle, M. Hellman. Hiding Information and Signatures in Trapdoor Knapsacks. IEEE Trans-
actions on Information Theory, vol. 24, pages 525–530, 1978.

[Mic98] D. Micciancio. The shortest vector in a lattice is hard to approximate to within some constant.
FOCS’98, pages 92–98, 1998.

[Mil04] V. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, vol. 17, pages
235–261, 2004.

[Mil86] V. Miller. Use of elliptic curves in cryptography. Advances in cryptology–CRYPTO 85, vol. 218 of
LNCS, pages 417–426, 1986.

[Mon87] P. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of
computation, vol. 48(177), pages 243–264, 1987.

[MOV93] A. Menezes, T. Okamoto, S. Vanstone. Reducing elliptic curve logarithms to logarithms in a
finite field. Transactions on Information Theory, vol. 39(5), pages 1639–1646, 1993.

[MV10] D. Micciancio, P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. In
Proc. SODA’10, pages 1468–1480, 2010.

[Nag13] K. Nagao. Decomposition formula of the Jacobian group of plane curve. Cryptology ePrint
Archive, Report 2013/548, 2013.

[Nak09] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf, 2009.

[NIST94] National Institute for Standards and Technology. Digital signature standard, FIPS PUB 186, 1994.

[NS01] P. Nguyen, J. Stern. The two faces of lattices in cryptology. CaLC’01, vol. 2146 of LNCS, pages
146–180, Springer, 2001.

[DT14] J. Ding, C. Tao. A New Algorithm for Solving the General Approximate Common Divisors Problem
and Cryptanalysis of the FHE Based on the GACD problem. Cryptology ePrint Archive, Report 2014/042,
2014.

[NV08] P. Nguyen, T. Vidick. Sieve algorithms for the shortest vector problem are practical. Journal of
Mathematical Cryptology, vol. 2(2), pages 181–207, 2008.

[OM99] P. van Oorschot, M. Wiener. Parallel collision search with cryptanalytic applications. Journal of
Cryptology, vol. 12, pages 1–28, 1999.

[PH78] S. Pohlig, M. Hellman. An improved algorithm for computing logarithms over GF (p) and its cryp-
tographic significance. IEEE Transactions on Information Theory, vol. IT-24, pages 106–110, 1978.

[Poh81] M. Pohst. On the computation of lattice vectors of minimal length, successive minima and reduced
bases with applications. SIGSAM Bulletin, vol. 15(1), pages 37–44, 1981.

[Pol74] J. Pollard. Theorems on factorisation and primality testing. Proc. of the Cambridge Philosophical
Society, vol. 76, pages 521–528, 1974.

96

http://bitcoin.org/bitcoin.pdf

[Pol78] J. Pollard. Monte Carlo methods for index computation (mod p). Mathematical Computation, vol.
32(143), pages 918–924, 1978.

[PQ12] C. Petit, J. Quisquater. On Polynomial Systems Arising from a Weil Descent. ASIACRYPT’12, vol.
7658, pages 451–466, 2012.

[PTH15] C. Petit, T. Takagi, Y. Huang. On generalised first fall degree assumptions, Cryptology ePrint
Archive, Report 2015/358, 2015.

[Reg04] O. Regev. New lattice-based cryptographic constructions. Journal of the ACM, vol. 51(6), pages
899–942, 2004.

[RSA78] R. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, vol. 21(2), pages 120–126, 1978.

[SA98] T. Satoh, K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous
elliptic curves. Comment. Math. Univ. St. Paul., vol. 47(1), pages 81–92, 1998.

[SAT+98] C. Gomes, B. Selman, H. Kautz. Boosting combinatorial search through randomization. AAAI,
pages 431–437, 1998.

[Sch87] C. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer
Science, vol. 53(2-3), pages 201–224, 1987.

[SE05] N. Sörensson, N. Eén. MiniSat-A SAT Solver with Conflict-Clause Minimization. SAT’05, 2005.

[SE08] N. Sörensson, N. Eén. Minisat 2.1 and minisat++ 1.0 sat race 2008 editions, 2008.

[SE91] C. Schnorr, M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset
sum problems. FCT’91, vol. 529 of LNCS, pages 68–85, Springer, 1991.

[SE94] C. Schnorr, M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset
sum problems. Mathematical Programming, vol. 66, pages 181–199, 1994.

[Sem04] I. Semaev. Summation polynomials and the discrete logarithm problem on elliptic curves. Cryp-
tology ePrint Archive, Report 2004/031, 2004.

[Sem15] I. Semaev. New algorithm for the discrete logarithm problem on elliptic curves, Cryptology ePrint
Archive, Report 2015/310, 2015.

[Sem98] I. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in
characteristic p. Mathematical Computation, vol. 67(221), pages 353–356, 1998.

[Sha71] D. Shanks. Class number, a theory of factorization, and genera. Proc. Sympos. Pure Math., vol. 20,
pages 415–440, 1971.

[Sho97] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM, vol. 26(5), pages 1484–1509, 1997.

[Sil09] J. Silverman. The Arithmetic of Elliptic Curves. GTM vol. 106, 1986. Expanded 2nd Edition, 2009.

97

[Sma99] N.P. Smart. The discrete logarithm problem on elliptic curves of trace one. Journal Cryptology,
vol. 12(3), pages 193–196, 1999.

[ST13] M. Shantz, E. Teske. Solving the Elliptic Curve Discrete Logarithm Problem Using Semaev Poly-
nomials, Weil Descent and Gröbner Basis Methods-An Experimental Study. Number Theory and Cryp-
tography, vol. 8260, pages 94–107, 2013.

[ST54] G. Shephard, J. Todd. Finite unitary reflection groups. Canadian Journal of Mathematics, vol. 6,
pages 274–304, 1954.

[Sti56] D. Stinson. Cryptography : theory and practice. CRC Press, 1995.

[Thé03] N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In Advances in
Cryptology–ASIACRYPT’03, vol. 2894 of LNCS, pages 75–92, 2003.

[TK13] A. Takayasu, N. Kunihiro. Better Lattice Constructions for Solving Multivariate Linear Equations
Modulo Unknown Divisors. ACISP’13, 2013.

[Wal78] R. Walker. Algebraic Curves. Springer, 1978.

[Wei49] A. Weil. Numbers of solutions of equations in finite fields. Bulletin of the American Mathathemat-
ical Society, vol. 55(5), pages 497–508, 1949.

[Wie86] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Informa-
tion Theory, vol. 32(1), pages 54–62, 1986.

[WZ98] M. Wiener, R. Zuccherato. Faster attacks on elliptic curve cryptosystems. Selected Areas in Cryp-
tography’98, vol. 1556 of LNCS, pages 190–120, 1998.

[YC04] B. Yang, J. Chen. Theoretical analysis of XL over small fields. ACISP, vol. 3108, pages 277–288,
2004.

[YCC04] B. Yang, J. Chen, N. Courtois. On asymptotic security estimates in XL and gröbner bases-related
algebraic cryptanalysis. ICICS, vol. 3269, pages 401–413, 2004.

98

	Cryptography and Computational Assumptions
	Cryptography
	The integer factorization problem and RSA cryptosystem
	Integer factorization algorithms
	Pollard p-1 algorithm
	The elliptic curve factorization method
	The quadratic sieve factorization method

	The discrete logarithm problem and Elgamal cryptosystem
	Algorithms for solving the discrete logarithm problem
	The baby-step-giant-step algorithm
	The Pohlig-Hellman algorithm
	The Pollard rho algorithm
	The index calculus method

	Elliptic Curves and Summation Polynomials
	Computational algebraic geometry
	Ideals and affine varieties
	Gröbner basis
	Invariant theory
	Solving polynomial systems with symmetries using Gröbner basis

	Elliptic curves
	Elliptic curve definition
	Elliptic curve representation
	The elliptic curve discrete logarithm problem (ECDLP)

	Summation polynomials
	Summation polynomials definition
	Weil descent of an elliptic curve
	The index calculus algorithm
	Resolution of polynomial systems using symmetries

	Index Calculus Algorithm to Solve the DLP for Binary Edwards Curve
	Summation polynomials of binary Edwards curve
	Factor base definition
	Weil descent of binary Edwards curve

	Symmetries to speed up resolution of polynomial systems
	The action of symmetric group
	The action of a point of order 2
	The action of points of order 4

	Index calculus algorithm
	Breaking symmetry in the factor base
	Gröbner basis versus SAT solvers comparison
	Experimental results
	Splitting method to solve DLP for binary curves

	The DLP for Supersingular Ternary Curves
	Elliptic curve over a field of characteristic three
	Automorphisms and resolution of point decomposition problem
	Invariant rings under the automorphism and symmetric groups

	The Approximate Common Divisor Problem and Lattices
	Lattices and computational assumptions
	Algorithms to solve CVP and SVP
	Solving Knapsack problem

	Algorithms to solve the approximate common divisor problem
	Exhaustive search
	Simultaneous Diophantine approximation
	Orthogonal vectors to common divisors (NS-Approach)
	Orthogonal vectors to error terms (NS*-Approach)
	Multivariate polynomial equations method (CH-Approach)

	Comparison of algorithms for the ACD problem
	Experimental observation

	Pre-processing of the ACD samples

