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Abstract

The discrete logarithm problem (DLP) is a problem used throughout cryptog-

raphy and information security as the bedrock of the security of many systems.

The DLP applies in any group but is only considered a hard problem in certain

groups. We focus on the DLP in these groups and particularly the DLP in an

interval that is smaller than the order of the group.

The Pollard kangaroo algorithm solves the DLP in an interval of size N with

heuristic expected running time approximately 2
√
N group operations. It is well-

known that the Pollard rho method can be sped-up by using equivalence classes,

but such ideas have not been used for the DLP in an interval. Pollard very

recently showed how to solve the DLP in an interval with heuristic expected

running time of less than 1.71
√
N group operations, using just one inversion in

the group. Our two main results in this area are to give algorithms to solve the

DLP in an interval of size N with heuristic expected running time of less than

1.72
√
N group operations for a generic group and 1.47

√
N group operations for

groups with fast inversion.

We also present an improvement to the Gaudry-Schost low-memory algorithm

for solving the 2-dimensional DLP and extend this improvement to the general
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multidimensional DLP. The main tool of the algorithm is a multidimensional

pseudorandom walk which we analyse thoroughly in the 1, 2 and 3 dimensional

cases as well as giving some discussion for higher dimensions.
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Chapter 1

Introduction

The discrete logarithm problem (DLP) is a problem used throughout cryptogra-

phy and information security as the bedrock of the security of many systems. The

DLP can be found in security standards such as the Digital Signature Standard

[23]. It also forms the basis of the Elgamal cryptosystem [9] and the Diffie-

Hellman key exchange protocol [8]. The hardness of solving this problem is what

makes cryptosystems which use the DLP secure. However there are algorithms for

solving the DLP. As these algorithms improve, meaning that their running times

decrease, the security of these systems fall. In this thesis we look at a number

of algorithms for solving variants of the DLP. In particular we focus on the DLP

in an interval in Chapter 3. The main difference between this problem and the

standard DLP is that the interval of possible solutions is smaller than the order

of the group. This problem arises naturally in a number of contexts, for example

the DLP with c-bit exponents (c-DLSE) [20, 33, 47], counting points on curves or

abelian varieties over finite fields [19], the analysis of the strong Diffie-Hellman
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problem [5, 24], and side-channel or small subgroup attacks [21, 29].

• In Chapter 2 we look at the standard DLP. We briefly discuss the problem in

special groups such as prime fields and the subexponential algorithms that

work in those special cases. However the main part of this chapter will be to

describe in detail two algorithms to solve the DLP in a generic group namely

Shanks’ Baby-Step Giant-Step and Pollard’s Rho. The running times of

these algorithms are similar but the main difference is that Pollard’s Rho

is a low memory algorithm and that is what we focus on throughout the

thesis.

• In Chapter 3 we define the DLP in an interval which is a variant of the

DLP that we will spend the most time on. Here we describe the current

algorithms for solving this problem namely Pollard’s kangaroo algorithm

and the method of van Oorchost and Wiener which parallelises the kangaroo

algorithm. Finally we finish off this chapter with an explanation of the

Tame-Wild Birthday Paradox which is required in the following chapter.

• In Chapter 4 we introduce the Gaudry-Schost algorithm together with its

different form of analysis that utilises the Tame-Wild Birthday Paradox.

These algorithms are all well-known in the field. At this point we build on

the literature by

– Improving the Gaudry-Schost algorithm,

– Presenting all the details of Pollard’s own improvement of his kangaroo

algorithm,
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– And making further improvements to the Gaudry-Schost algorithm

following new insights of Pollard.

Finally we compare the running times of all the algorithms up to this point

as well as giving experimental data to support them. Together with Pollard

we are in the process of writing a research paper on his improved kangaroo

algorithm and our improved Gaudry-Schost algorithm [13].

• In Chapter 5 we consider the DLP in an interval in groups which have

fast inversion such as the group of points on an elliptic curve. Then using

equivalence classes we make further improvements to the Gaudry-Schost

algorithm to obtain the fastest algorithm for solving the DLP in an inter-

val with groups with fast inversion. We again give a comparison of all the

algorithms as well as experimental results of the algorithms presented in

this chapter. Our research paper on this topic [14] was accepted to the In-

docrypt 2009 conference in New Delhi, India but has since been withdrawn

and resubmitted to the Public Key Cryptography 2010 conference in Paris,

France.

• Finally in Chapter 6 we consider the analogous multidimensional problem

of the DLP in an interval. First we motivate the multidimensional DLP

by providing a number of examples in cryptography where the multidi-

mensional problem appears and therefore showing that any improvements

to the current algorithm are useful. In addition we give an example of

where the multidimensional DLP arises in the process of counting points

on curves. We present the general Gaudry-Schost algorithm for solving the

multidimensional DLP. Then we describe in detail our improvement to this

15



algorithm as well as give a thorough analysis of the bounds for the number

of bad steps that the algorithm is likely to produce. Our research paper

on the improved algorithm and its analysis [15] was published in the pro-

ceedings of the 12th IMA International Conference on Cryptography and

Coding in Cirencester, UK.
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Chapter 2

Computing Discrete Logarithms

in Generic Groups

In this chapter we define the discrete logarithm problem and the elliptic curve

discrete logarithm problem which form the motivation for this thesis. We present

and discuss the two main algorithms for solving these problems in the general case

along with their running times. The first is the Baby-Step Giant-Step algorithm

which has the smallest running time but a large memory requirement. This is a

deterministic algorithm and as such has a probability of success equal to 1. Then

we look at the Pollard rho algorithm which has a similar running time but very

low memory requirement. This is a probabilistic algorithm and has a possibility

of failure (not solving the DLP) although this is negligible for large groups.
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2.1 Elliptic Curve Discrete Logarithm Problem

Throughout this thesis we will use elliptic curve notation to explain the many

algorithms to solve the discrete logarithm problem in a generic abelian group.

Traditionally the group law in an abelian group is written multiplicatively how-

ever on an elliptic curves it is usually written additively. Therefore we will use

additive notation as introduced in the next definition.

Definition 2.1.1. Let G be a group with a binary operator written additively.

Let P ∈ G then

[k]P = P + P + · · ·+ P︸ ︷︷ ︸ .
k times

Using the notation above the DLP is as follows.

Definition 2.1.2. Let G be an abelian group and let P,Q ∈ G, then the Discrete

Logarithm Problem is to find the smallest positive integer n such that

Q = [n]P. (2.1)

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is the same as the

above except that the group G is E(Fq)[r] which is defined in the next definition.

Definition 2.1.3. Let E be an elliptic curve over Fq and denote by E(Fq) the

set of points on the curve with coordinates in Fq. Further, let E(Fq)[r] be the set

of r-torsion points on the elliptic curve i.e.

E(Fq)[r] = {P ∈ E(Fq) | [r]P = O} .
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The DLP is regarded as a ‘hard’ problem meaning that there is no known polyno-

mial time algorithm for solving it in a generic group. There are many cryptosys-

tems such as Elgamal [9] that use the hardness of the DLP for their security. El-

liptic curves are specifically used in Elliptic Curve Integration Encryption Scheme

(ECIES) [4]. The DLP is also used in the Diffie-Hellman key exchange [8], the

Digital Signature Standard [23] and many other signature schemes. Originally

the group used in many of the cryptographic applications was the multiplicative

group of a finite field Fq where q is a prime power. In this specific group the DLP

can be solved in subexponential running time. To present the running time of an

algorithm which terminates in subexponential time we use the following equation

Lr[v; c] = e(c+o(1))(log r)v(log log r)1−v

. (2.2)

The first subexponential algorithm for solving the DLP in a prime field (i.e. Fp

where p is prime) is the Index calculus algorithm. A basic description of this

algorithm can be found in Stinson [43] and Ruprai [37]. Using equation (2.2)

the running time for this algorithm is Lr[1/2; 1]. Adleman used a very similar

approach on the finite field Fq where q is a power of 2, and achieved the same

running time. Coppersmith improved on Adleman’s result to obtain an algo-

rithm with running time Lr[1/3; c] for some small constant c. This method was

later extended to finite fields of many forms by using number field and function

field sieves as shown by Gordon [22], Adleman and Demarris [1], Schirokauer et.

al. [38], Joux and Lercier [25] and more recently Joux, Lercier, Smart and Ver-

cauteren [26]. The running time remains Lr[1/3; c] where the constant c varies

depending on the particular finite field.
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Although we will be using elliptic curve notation throughout the thesis, many

of the applications will not be restrained to elliptic curves so we will consider

algorithms for solving the DLP as opposed to just the ECDLP.

2.2 Shanks’ Baby-Step Giant-Step algorithm

Shanks’ Baby-Step Giant-Step (BSGS) algorithm [40, 42] solves the DLP in run-

ning time O(
√
r) group operations. We give brief details as to how the algorithm

proceeds. The discrete logarithm has bounds 0 < n < r, so let m = d
√
re. Then

we can write the discrete logarithm as n = im + j for 0 ≤ i, j < m and so the

DLP becomes

Q =[im+ j]P

Q− [j]P =[im]P.

We precompute and store (j,Q − [j]P ) for 0 ≤ j < m. These are known as the

‘baby-steps’. Therefore we are storing approximately
√
r pairs which have to be

sorted by their second component i.e. Q − [j]P as we will be searching through

this list a number of times. We then evaluate [im]P (‘giant-steps’) for 0 ≤ i < m

and for each i we check whether this is equal to the second component of one of

the pairs we have stored in the easily accessible data structure. When we have

a match the first component of the pair gives us the value of j and we have the

value of i from the corresponding giant-step so we can easily calculate n = im+j.

Algorithm 1 presents the BSGS algorithm using the notation as laid out here.
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Algorithm 1 Shanks’ Baby-Step Giant-Step algorithm

Input: P,Q ∈ G, r = #G
Output: An integer n such that Q = [n]P
1: m := d

√
re

2: Let T be a hash table to store 2-tuples and sorted by the element of G
3: x := Q
4: for j ∈ {0 . . .m− 1} do
5: Insert (j, x) into the correct place in T
6: Update x := x− P
7: end for
8:
9: y := 0

10: for i ∈ {0 . . .m− 1} do
11: Search for (j∗, y) in T for some j∗
12: if (j∗, [im]P ) ∈ T for some j∗ then
13: return im+ j∗
14: end if
15: Update y := y + [m]P
16: end for

If we neglect the searching time of the the giant-steps, the running time of Shanks’

algorithm is
√
r group operations for the precomputation phase and a further

maximum
√
r group operations for the giant-steps. Therefore the running time

is O(
√
r). However the storage requirement of this algorithm is also non-trivial.

As we have to store all the baby-steps the storage requirement is O(
√
r) group

elements. For large groups, Shanks’ algorithm is unusable in practice as the

storage requirement is too large. In the next section we consider an algorithm

which has the same running time but is low memory and therefore more suitable

for implementation purposes.
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2.3 Pollard’s Rho algorithm

Pollard’s rho algorithm was first introduced by Pollard [34] to solve the DLP

and has since been improved by Brent [3] and Teske [44]. The advantage of

the rho algorithm over the BSGS algorithm is that it requires very low memory

while still having a running time of O(
√
r) group operations. However unlike the

BSGS algorithm, the rho algorithm is randomised, so the running time is only

an expected value. We describe the main parts of the algorithm but we need to

first revise some theory on pseudorandom walks.

2.3.1 Pseudorandom walks

The goal of a pseudorandom walk is to mimic (as much as possible) selecting

elements from G uniformly at random. Of course we can never obtain a truly

random walk but we believe that we can get close enough to it. The pseudoran-

dom walk needs to be deterministic, meaning that there is no random input when

deciding on the next step of the walk. In this way two different walks which land

on the same point will continue along the same path as both walks are deter-

mining their next steps from the same well defined function. This will enable us

to solve the discrete logarithm problem as follows; First we partition G into ns

distinct sets, denoted by Si, as follows

G = S0 ∪ S1 ∪ . . . ∪ Sns−1.

Using this partitioning of G we define a selection function which takes as input an

element of G and outputs the index, {0, . . . , ns − 1}, of the partition it belongs
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to.

Definition 2.3.1. A selection function S : G→ {0, 1, . . . , ns − 1} maps elements

of G to the integers modulo ns so the partitions of G can be written as Si =

{g ∈ G | S(g) = i}.

The design of a selection function is only briefly mentioned in the literature as a

hash function (Pollard, [35]) so we now give an example related to elliptic curves.

Example 2.3.2. Let G be the group of r-torsion points on an elliptic curve over a

finite field i.e. G = E(Fq)[r] where q is a prime power. Then the selection function

S maps the points in G to the integers modulo some ns. Let P = (xP , yP ) ∈ G

where xP , yP ∈ Fq. As points on an elliptic curve can be defined by their xP co-

ordinate and a sign, the selection function need only look at the first co-ordinate

of P . As q = pt for some prime p and natural number t, elements of Fq can be

represented as polynomials of degree strictly less than t. So

xP = ct−1x
t−1 + ct−2x

t−2 + . . .+ c1x+ c0

where ci ∈ Zp for i ∈ {0, . . . , t− 1}. We can write each ci as a binary string

((ci)2) and concatenate to have a unique binary string for each element of Fq.

We convert the binary string to an integer modulo ns and output as required.

Therefore the selection function is given by

S(xP , yP ) = (ct−1)2‖(ct−2)2‖ . . . ‖(c1)2‖(c0)2 mod ns.

In fact, elements of Fq are stored on a computer as t-tuples of binary strings

(the coefficients). Therefore the computing cost of the concatenation and the

23



subsequent binary to integer modulo ns conversion is effectively free.

Assumption 2.3.3. If the group order of G is significantly large then the output

of the selection function (as described in Example 2.3.2) is sufficiently random

that it partitions the elements of G evenly into ns distinct sets.

Definition 2.3.4. A pseudorandom walk on a group G is a sequence of elements

of G, i.e. R1, R2, . . . , Rn such that the next element of the sequence is determined

by function with no random element to the input.

For each partition of G, Si, we associate a ‘step size’ or increment, ti, in the

exponent of the current element of the pseudorandom walk. These step sizes can

be predetermined or can be a function of the current exponent such as doubling

the exponent. We call the Ris the footprints of the walk. For example the next

footprint of the pseudorandom walk could be calculated as follows

Ri+1 = f(Ri) = Ri + [tS(Ri)]P.

2.3.2 The idea of Pollard Rho

We will use the notation laid out in Definition 2.1.2 to describe the rho algorithm.

The idea of the Pollard rho algorithm is to find integers (ai, bi) and (aj, bj) such

that

[ai]P + [bi]Q = [aj]P + [bj]Q.
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We call this a collision. Pollard uses a pseudorandom walk to find a collision and

we then solve the DLP as

n = (ai − aj)(bj − bi)
−1 (mod r)

assuming that (bj− bi) is invertible modulo r. Now we look at the pseudorandom

walk that Pollard uses. We take ns = 3 so we are partitioning the group as

G = S0 ∪S1 ∪S2. Let Ri be the elements that the pseudorandom walk visits and

we start by taking R1 = P then the pseudorandom walk is as follows

Pseudorandom Walk - 1D 1 (Rho).

Ri+1 = f(Ri) =


Ri + P if S(Ri) = 0

[2]Ri if S(Ri) = 1

Ri +Q if S(Ri) = 2.

Each step only requires one group operation and one call to the selection function

which can be made effectively free. In addition to each group operation we need

to keep track of the decomposition of Ri. When i = 1 we set a1 = 1 and b1 = 0.

We update these exponents as follows

(ai+1, bi+1) =


(ai + 1, bi) if S(Ri) = 0

(2ai, 2bi) if S(Ri) = 1

(ai, bi + 1) if S(Ri) = 2,

A final issue remains as to how a collision, Ri = Rj where i 6= j, is found. As

G is finite the pseudorandom walk will eventually cycle which will enable us to
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find such a collision. One approach could be to store all the Ri and for each

new Rj we can check whether that group element has already been stored. In

fact this naive method will store
√
πr/2 group elements which is more than the

BSGS algorithm to solve the DLP. Instead we can view the pseudorandom walk

as having a ‘tail’ (the part of the walk which is not cyclic) and a ‘head’ (the cyclic

part of the walk) which one can say forms a ‘rho’ shape, hence the name of the

algorithm. Let lh and lt be the lengths of the head and tail respectively then the

first collision is

Rlt+lh = Rlt .

Floyd’s cycle finding method [10], which also appears in Knuth [27], compares Ri

and R2i for a collision. So in practice we have two pseudorandom walks which

both start at the same point R1 = P . The first walks one step at a time and the

second walks two steps at a time. This way we only ever have to store two group

elements with their associated exponents.

Lemma 2.3.5. Let the notation be as above then we have the following:-

1. Ri = R2i ⇔ lh|i and i ≥ lt.

2. There is some lt ≤ i < lt + lh such that Ri = R2i.

Proof. We prove each part of the lemma separately

1. The difference between the indices i and 2i must be a multiple of the length

of the head therefore 2i− i = clh where c is a positive integer. So lh|i and

as a collision can only occur after the tail it follows that i ≥ lt.

2. This statement follows as there is a multiple of lh between lt and lt + lh.
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Floyd’s cycle finding method has since been improved by Brent [3] who claims

that, on average, his cycle finding method is 30% quicker than Floyd’s and also

speeds up the Pollard rho algorithm by 24%. Sedgewick, Szymanski and Yao [39]

showed that by storing a few more of the elements visited on the pseudorandom

walk, a collision can be found around three times faster. Although the storage

in this case is greater than O(1) group elements it is far less than the storage

requirement of BSGS. More recently Cheon, Hong and Kim [6] have shown that

by not fully calculating every step of the pseudorandom walk Pollard rho can be

made up to 10 times faster when the group is a prime field.

2.3.3 The basic algorithm

We now present the basic Pollard rho algorithm. For simplicity we will take the

steps of the pseudorandom walk to be just an extended version of the function f

defined in Definition 2.3.4, which takes as input (Ri, ai, bi) and returns the triple

(Ri+1, ai+1, bi+1). Although the algorithm shows a possibility of failure in line 20

the likelihood of this is negligible in large groups.

2.3.4 Running Time Analysis

It remains an open problem to give a rigorous running time analysis of the Pollard

rho algorithm as we require a heuristic assumption.

Theorem 2.3.6 (Birthday Paradox). Given a set A of r elements, if elements

are sampled uniformly at random from A then the expected number of samples to

27



Algorithm 2 The Pollard rho algorithm
Input: P,Q ∈ G
Output: An integer n such that Q = [n]P , or ⊥
1: Choose randomly the function S as explained above
2: function f(R, a, b)
3: if S(R) = 0 mod 3 then
4: f(R, a, b) := (R + P, a+ 1, b)
5: else if S(R) = 1 mod 3 then
6: f(R, a, b) := ([2]R, 2a, 2b)
7: else if S(R) = 2 mod 3 then
8: f(R, a, b) := (R +Q, a, b+ 1)
9: end if

10: return f
11: end function
12:
13: R1 := P, a1 := 1, b1 := 0
14: (R2, a2, b2) := f(R1, a1, b1)
15: while (R1 6= R2) do
16: (R1, a1, b1) := f(R1, a1, b1)
17: (R2, a2, b2) := f(f(R2, a2, b2))
18: end while
19: if b1 ≡ b2 mod r then
20: return ⊥
21: else
22: return (a2 − a1)(b1 − b2)

−1 mod r
23: end if

be taken before some element is sampled twice is less than

√
πr

2
+ 2 ≈

√
πr

2
.

The Birthday Paradox is stated in many references but the basic probabilistic

argument can be found in Menezes, Vanstone and van Oorschot [30] whilst a full

proof can be found in Galbraith [11].

Heuristic 2.3.7. As r becomes large then
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1. the Pseudorandom walk 1 behaves like a random walk.

2. there exists a small ε > 0 such that the values of lt and lh are independent

with expected value (1 + ε)
√
πr/8.

Part 2 of Heuristic 2.3.7 follows from the Birthday Paradox, as the first collision

is expected in lt + lh =
√
πr/2 steps when the walk is random. Smart [41] shows

that if the pseudorandom walk picks elements uniformly at random from G then

ε = 0 but in practice the pseudorandom walk can never be truly random although

we can get close to it. Teske [44] shows that the original Pollard rho with ns = 3

is not optimal. In practice one should take ns ≥ 20 and Pseudorandom walk

1 will have ns different steps which are randomly chosen before the algorithm

begins. In such a setting part 2 of Heuristic 2.3.7 seems to be true for ε < 0.04.

Theorem 2.3.8. Let the notation be as above and assume Heuristic 2.3.7 then

the Pollard rho algorithm has expected running time of 3(1+ε)
√
πr/2 when using

Floyd’s cycle finding method.

Proof. By the Birthday Paradox (Theorem 2.3.6) we expect to see a collision

within (1 + ε)
√
πr/2 iterations of the while loop in Algorithm 2. When using

Floyd’s cycle finding method, we make 3 functions calls per iteration of the loop

so the result follows.
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Chapter 3

Current Methods for Computing

Discrete Logarithms in Intervals

In this chapter and the following, we consider a slight variation of the discrete

logarithm problem which we call the discrete logarithm problem in an interval.

Definition 3.0.9. Let G be a group of order r. Let P1, Q ∈ G and N1 ∈ N be

given. Then the discrete logarithm problem in an interval is to find an integer

n1 ∈ [−N1, N1] such that

Q = [n1]P1. (3.1)

N.B. Let the size of the entire search space (total number of possible values of

n1) be given by N = 2N1 + 1. Also the interval of exponents [−N1, N1] refers to

the interval of integers −N1 ≤ i ≤ N1.

Without loss of generality we have restricted Definition 3.0.9 to intervals centred

around 0. We can do this because if we are given a DLP in an interval, say [x, y],
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we can shift the problem instance so that the interval is centred around 0. We

do this by taking the middle of the interval, so in this case (x + y)/2, and shift

our problem instance thus,

Q′ = Q− [(x+ y)/2]P1.

Therefore our new problem instance Q′ will have a discrete logarithm in the

interval [
−y − x

2
,
y − x

2

]
.

In this chapter we present the current best low-memory algorithm for solving this

problem namely Pollard’s kangaroo algorithm. Then we present a parallel version

of this algorithm by van Oorschot and Wiener. Finally we finish off this chapter

with an explanation of the Tame-Wild Birthday Paradox which is required in

Chapter 4.
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3.1 Pollard’s kangaroo algorithm

Pollard’s kangaroo or ‘lambda’ algorithm [34] specifically tackles the DLP in an

interval. We will use the notation as described in Definition 3.0.9. The main

idea of this algorithm is that we have two kangaroos or pseudorandom walks; a

tame kangaroo which starts at the element at the right hand end of the interval

of exponents and a wild kangaroo which starts at Q. The tame kangaroo takes

a prescribed number of steps and we store the final footprint together with its

discrete logarithm. This is known as the ‘trap’. Then the wild kangaroo also

takes a prescribed number of steps and we hope that one of the steps lands on

a footprint of the tame kangaroo. In which case the wild kangaroo will continue

on the same path as the tame kangaroo and land in the trap and so we can solve

for the DLP.

3.1.1 Algorithm in detail

We have seen in Section 2.3 how to construct a pseudorandom walk and also the

walk used in Pollard’s rho algorithm. The pseudorandom walk here is somewhat

different. In practice the number of partitions of G, ns, is taken as 20 or 32.

Also each of the different steps of the pseudorandom walk is smaller than those

in Pollard’s rho algorithm. Let xi be the footprints of the pseudorandom walk

and let ai be the exponent of the element visited at stage i.

Pseudorandom Walk - 1D 2 (kangaroo). The pseudorandom walk proceeds

as follows,

• We have a selection function S as described in Section 2.3.1 which takes
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as input the current footprint of the pseudorandom walk and outputs the

index of the partition of G which that element belongs to.

• For 0 ≤ j < ns we choose random step sizes 1 ≤ uj ≤ 2c
√
N (where the

constant c is determined later) and then precompute [uj]P1. Pollard [34, 35]

used powers of 2 as the step sizes i.e. ui = 2i. In practice these work well

but Pollard does not claim that this is the best choice.

• We define the mean step size

m =
1

ns

ns−1∑
j=0

uj.

We want m ≈ c
√
N and one can choose the uj’s in such a way that this

occurs as shown by Pollard.

• The pseudorandom walk is as follows

xi+1 = f(xi) = xi + [uS(xi)]P1.

We update the exponent as well i.e. ai+1 = ai + uS(xi).

The tame kangaroo starts at the element x1 = [N1]P1 and continues for T = tm

steps. Let t ∈ R≥1 therefore the total number of tame kangaroo steps is some

multiple of the mean step size. The value of t is decided dependant on what

probability of success of the algorithm we require (see Section 3.1.2). Then we

store the final footprint or ‘trap’ along with its discrete logarithm, (xT , aT ). The

wild kangaroo starts at y1 = Q and continues until it lands on the trap or has

gone past it. The discrete logarithm of the trap, aT , is also the distance from
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the middle of the interval to the trap, so the wild kangaroo will have passed

the trap (for all problem instances) after it has traveled a distance greater than

N1 + aT +1. Let bi be the exponent of the wild kangaroo at stage i. At each step

we test whether yi = xT . If so we have

Q+ [bi]P1 = yi = xT = [aT ]P1

and so n1 = (aT−bi) mod r solving the DLP in an interval. We present Pollard’s

kangaroo in Algorithm 3.

Algorithm 3 The Pollard kangaroo algorithm

Input: P1, Q ∈ G and N1 ∈ N
Output: An integer n1 such that Q = [n1]P1, or ⊥
1: Choose ns to be the number of partitions of G
2: Choose t dependent on the probability of success required
3: Choose randomly the function S as explained in Section 2.3.1
4: function f(R, a)
5: f(R, a) := (R + [uS(R)]P1, a+ uS(R))
6: return f
7: end function
8:
9: x := [N1]P, a := N1

10: for i ∈ {1, . . . , d(1 + ε)ct
√
Ne} do

11: (x, a) := f(x, a)
12: end for
13: y := Q, b := 0
14: while (y 6= x) do
15: if b > N1 + a+ 1 then
16: return ⊥
17: end if
18: (y, b) := f(y, b)
19: end while
20: return (a− b) mod r
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3.1.2 Running Time Analysis

Unlike Pollard’s rho algorithm the Birthday Paradox is not utilised to analyse

the running time of the kangaroo algorithm. Instead we use a mean step size

approach and optimise the running time by choosing the constant c depending

on whether we are optimising for the worst or average cases. However there is a

tradeoff between the running time and probability of success as we will see.

We have set up the algorithm such that the tame walk takes tm steps which

are of size m on average. To recap, when we discuss the size of a step we are

referring to the increment in the exponent. Therefore the tame kangaroo covers

a distance tm2 from the right hand edge of the interval of possible exponents.

So we expect that in each subinterval of length m, after the exponent N1, there

is one tame footprint. The wild kangaroo has to use the same deterministic

pseudorandom walk so has the same mean step size m. Once the wild kangaroo

passes the exponent N1, in every subinterval of size m we also expect it to have

one footprint. Therefore the probability that the wild kangaroo lands on the

footprint of the tame walk is 1/m. We deduce that the probability of no collision

is (
1− 1

m

)tm

≤
(
e−1/m

)tm
= e−t.

So the probability of a collision and for solving the DLP in an interval is approx-

imately 1 − e−t. This is the probability of success. We have assumed that the

tame and wild steps are uniformly spread out in the interval [N1, N1 + tm2) so

we are assuming the following heuristic holds.

Heuristic 3.1.1. Using the pseudorandom walk described above there is a small
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ε ≥ 0 such that if the tame kangaroo takes (1+ ε)tm steps and the wild kangaroo

takes (1 + ε)tm in the same region then the probability of success is 1− e−t.

For example when t = 1, 2, 3, 4 the probability of success is 0.63, 0.86, 0.95 and

0.98 respectively. Using Heuristic 3.1.1 we can optimise the running time of the

kangaroo algorithm for both the worst and average cases.

Theorem 3.1.2. Using Pollard’s kangaroo algorithm to solve the DLP in an

interval of size N and assuming Heuristic 3.1.1 holds,

1. If we optimise for the worst case then c = 1/
√

2 and the average case

expected running time is (2 + t)(1 + ε)
√
N/2t group operations and the

worst case expected running time is 2(1 + ε)
√

2tN group operations.

2. If we optimise for the average case then c1 = 1/2 and the average case

expected running time is 2(1 + ε)
√
tN group operations and the worst case

expected running time is 3(1 + ε)
√
tN group operations.

Proof. 1. In the worst case Q lies on the left hand edge of the interval of

exponents. Therefore for the wild kangaroo to ‘leap’ across the interval it

must take (1+ ε)N/m steps on average. Then it will continue by taking the

same number of steps as the tame kangaroo. Therefore the total number of

steps is

(1 + ε)
N

m
+ 2(1 + ε)tm = (1 + ε)

√
N

[
1

c
+ 2ct

]
To minimise the running time we minimise the term inside the square brack-

ets to obtain c = 1/
√

2t. So adding up the number of tame and wild kan-

garoo steps gives the expected number of group operations in the worst
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case

2(1 + ε)
√

2tN.

In the average case Q lies in the middle of the interval so the wild kangaroo

only needs to bound across half of the interval so the running time is given

by

(1 + ε)
√
N

[
2√
2t

+

√
t√
2

]
=

2 + t√
2t

(1 + ε)
√
N.

2. In the average case Q lies in the middle of the interval so the total number

of steps is

(1 + ε)
N

2m
+ 2(1 + ε)tm = (1 + ε)

√
N

[
1

2c
+ 2ct

]

To minimise the running time we minimise the term inside the square brack-

ets to obtain c = 1/(2
√
t) and this leads to an average case expected running

time of 2(1 + ε)
√
tN group operations and in the worst case an expected

running time of 3(1 + ε)
√
tN group operations.

The memory requirement of this algorithm is very small as we only store the

‘trap’. However the biggest issue with Pollard’s kangaroo algorithm is that the

running time depends on what probability of success we choose. For example

with a probability of success of 0.63 the average case expected running time is a

low as 2(1 + ε)
√
N but when the probability of success is 0.98 the average case

expected running time is twice that, 4(1+ ε)
√
N . Ideally we would like to have a

probability of success close, if not equal to, 1 without compromising the overall
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running time. In the next section we look at the method of van Oorschot and

Wiener which has a probability of success close to 1, is easily parallelisable and

has a very similar running time to that of Pollard’s kangaroo algorithm when

t = 1.

3.2 The van Oorschot & Wiener method

The van Oorschot and Wiener method [48] is a parallelised version of Pollard’s

kangaroo algorithm but through this process of parallelising the probability of

solving the DLP in an interval increases close to 1.

3.2.1 Distinguished Points

Before we can describe the algorithm it is necessary to first understand what

a distinguished point is. A distinguished point is an element of the group we

are working in e.g. an elliptic curve point or an element of a finite field, which

has a particular feature that is easily checked and confirmed. In practice these

elements are stored as binary strings so for an element to be distinguished it

may need to have a consecutive number of leading zero bits. Van Oorschot and

Wiener, [48], and Benits, [2], take their distinguished points to have 32 leading

zero bits followed by another 8 bits which have value less than or equal to 234.

Therefore the probability that an element is a distinguished point is given by

θ =
234

256
2−32 = 234 · 2−40.
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This seems quite arbitrary and we will see that the value of θ depends on the size

of the space in which we are searching namely N .

3.2.2 Algorithm in detail

In Pollard’s kangaroo algorithm we had two kangaroos one called Tame and the

other Wild. Each of these walks were long as enough footprints needed to be made

for the probability of solving the DLP in an interval to be significant. Instead

if we have many short walks although the storage requirement will be greater

we can easily parallelise the algorithm making it faster than Pollard’s kangaroo

algorithm. When a walk lands on a distinguished point they are stored on a

server and is analogous to the ‘trap’ in Pollard’s kangaroo algorithm. An obvious

question at this point: Is the parallelised version of Pollard still low-memory?

This answer to this is yes because we can set parameters is such a way that the

storage requirement is constant, where that constant is actually the storage space

that we have access to.

Let NP be the number of processors. Half of the processors will work on tame

walks (call these the Tame processors) and the other half will work on the wild

walks (call these the Wild processors). Now we will describe the tame and wild

walks that van Oorschot and Wiener used in more detail. Let S be the selection

function as explained in Section 2.3.1 and U the set of step sizes of the pseudo-

random walk. In the same way as Pollard’s kangaroo algorithm we have a mean

step size m which will be defined later.

A tame walk starts in the middle of the interval of possible exponents and each

different tame walk starts a small distance, v, apart from each other but still

39



roughly in the middle of the interval of exponents. So the starting element of

tame walk i is given by x1 = [iv]P1. We then apply the pseudorandom walk to x1

and continue until we hit a distinguished point. At each step we increment the

exponent and so the exponent at step k will be as follows

iv +
k−1∑
j=1

uS(xj).

When the pseudorandom walk lands on a distinguished point the processor sends

the element with its exponent to a server where it is stored in an easily accessible

data structure i.e. a binary tree. The processor then continues the walk until

it hits another distinguished point or is told to terminate the operation by the

server.

A wild walk starts near Q and the different walks start a small distance, v apart

i.e. the starting element of wild walk i is y1 = Q + [iv]P1. We then apply the

pseudorandom walk function to y1 and continue until we hit a distinguished point.

At each step we increment the exponent and so the exponent before step k will

be as follows

n1 + iv +
k−1∑
j=1

uS(yj).

When we land on a distinguished point, the element together with its multiple of

P1 is sent to the server for storage and again the processor continues its walk.

The server stores distinguished points discovered by the different walks in two

separate, easily manageable data structures. Before the server stores a distin-

guished point it first checks whether that distinguished point is currently stored

in the opposite data structure i.e. if a distinguished point is received from a tame
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processor then the server checks whether that point is currently being stored in

the data structure containing the distinguished points discovered from the wild

walks and vice versa. We will assume searching and storing takes polynomial

time and therefore will omit these operations from the Algorithm 4.

When we have a tame walk and a wild walk which meet/collide at the same point

they follow the same path until they hit the same distinguished point. Let (R, at)

and (R, bw) be the distinguished points for a tame and wild processor respectively.

Then we solve the DLP in an interval by simply calculating

n1 = at − bw mod r.

3.2.3 Issues and Assumptions

Before we can look at the actual running time of the algorithm there are a number

of issues that need to be dealt with. One of the key advantages to the van

Oorschot and Wiener method is that it gives a linear speed up (by the number of

processors) to Pollard kangaroo as well as giving a probability of success of close

to 1. However as Algorithm 4 shows, the van Oorschot and Wiener method will

continue until the DLP in an interval is solved so there is a possibility, although

very small, that it will never terminate. In practice this does not occur.

Throughout the analysis of the van Oorschot and Wiener method as well as

the Gaudry-Schost algorithm described in Section 4.1.2 we will need to know the

expected number of steps in a walk. Recall that θ is the probability of an element

or point being a distinguished point, therefore we have the following theorem:

41



Algorithm 4 The van Oorschot and Wiener method: Server side

Input: P1, Q ∈ G and number of processors NP

Output: An integer n1 such that Q = [n1]P1

1: Choose ns to be the number of partitions of G
2: Choose randomly the function S as explained in Section 2.3.1
3: Choose randomly the jumps U = {u0, . . . , uns−1} and the spacing v
4: Initialise hash tables AT and AW to store distinguished points with their

exponents from tame and wild walks respectively.
5: for i ∈ {1, . . . , NP/2} do
6: start := iv
7: Initiate Tame processor i with start, ns, S and U
8: Initiate Wild processor i with start, ns, S and U
9: end for

10: while DLP in an interval is not solved do
11: if received tuple from Tame Processor i then
12: Construct tuple as zT := (R, at)
13: if (R, bw) ∈ AW for some bw then
14: Send terminate signal to all processors
15: return (at − bw) mod r
16: else if zT ∈ AT then
17: Send a random jump signal to the sender of zT

18: else
19: Insert zT into AT

20: end if
21: else if received tuple from Wild Processor then
22: Construct tuple as zW := (R, bw)
23: if (R, at) ∈ AT for some at then
24: Send terminate signal to all clients
25: return (at − bw) mod r
26: else if zW ∈ AW then
27: Send a random jump signal to the sender of zW

28: else
29: Insert zW into AW

30: end if
31: end if
32: end while

Theorem 3.2.1. Assuming that a pseudorandom walk behaves like a random

walk then the expected number of steps in a pseudorandom walk before we land
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Algorithm 5 The van Oorschot and Wiener method: Tame Processor

Input: P1, Q ∈ G, selection function S, jumps U and start
1: a1 := start
2: R := [a1]P1

3: repeat
4: R := R + [uS(R)]P1

5: ai+1 := ai + uS(R)

6: if R is a distinguished point then
7: Send (R, at) to the server
8: if Random jump signal received from server then
9: R := R + [uRandom]P1

10: end if
11: end if
12: until Terminate signal from server

Algorithm 6 The van Oorschot and Wiener method: Wild Processor

Input: P1, Q ∈ G, N1, ns ∈ N, selection function S, jumps U and start
1: b1 := start
2: R := Q+ [b1]P1

3: repeat
4: R := R + [uS(R)]P1

5: bi+1 := bi + uS(R)

6: if R is a distinguished point then
7: Send (R, bw) to the server
8: if Random jump signal received from server then
9: R := R + [uRandom]P1

10: end if
11: end if
12: until Terminate signal from server

on a distinguished point is 1/θ.

Proof. Let Y be the random variable for the number of steps before we expect to

hit a distinguished point. Then the expectation of Y is

E(Y ) =
∞∑
i=1

i(1− θ)i−1θ = θ
∞∑
i=1

i(1− θ)i−1
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If we let S =
∑∞

i=1 i(1− θ)i−1 then we can simplify S as follows

S − (1− θ)S =
∞∑
i=0

(i+ 1)(1− θ)i −
∞∑
i=1

i(1− θ)i

= 1 +
∞∑
i=1

(1− θ)i

= 1 +
1− θ

θ

=
1

θ
.

Therefore S = 1
θ2 and so we can now find the expectation of Y which is given by

E(Y ) = θS =
1

θ
.

There is a very small possibility that a walk never reaches a distinguished point

so to combat this van Oorschot and Wiener defined a maximum number of steps

of a walk before it is abandoned. They chose the maximum number of steps to

be 20/θ. Although this seems arbitrary, it stops processing time being wasted in

a never ending walk. In the analysis of their algorithm this is not very important

but we will show in Section 4.1.6 (Lemma 4.1.9) that the proportion of walks

which never reach a distinguished point using the limit of 20/θ steps is bounded

above by 5×10−8. This is a very small proportion and again in practice this does

not cause any problems.

Another possibility when having numerous walks of one type is that two walks of

one type collide and continue to the same distinguished point.
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Definition 3.2.2. The different collisions between the walks will be defined as

follows: -

• A TT collision is a collision resulting from two Tame walks terminating

at the same distinguished point,

• A WW collision is a collision resulting from two Wild walks terminating

at the same distinguished point,

• A TW collision is a collision resulting from a Tame and Wild walk termi-

nating at the same distinguished point.

TT and WW collisions are a problem as we are starting walks of the same type

quite close to each other therefore there is a probability that they will collide.

Teske [45] has shown that the expected number of collisions within the same type

of walks is 2. Therefore in practice this problem can be ignored. We summarise

these points in Heuristic 3.2.3.

Heuristic 3.2.3. Suppose N1 is sufficiently large, the selection function is chosen

at random and θ is chosen appropriately then it is expected that a walk will reach

a distinguished point in 1/θ steps and footprints of walks of the same type are

mutually independent.

When we look at the Gaudry-Schost algorithm TT and WW collisions will be

dealt with more rigourously.
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3.2.4 Running Time Analysis

In a similar fashion to Pollard’s kangaroo algorithm we optimise the running time

dependent on whether we expect to see more worst case or average case problem

instances. We will use Pseudorandom walk 2 to analyse the running time of the

van Oorschot and Wiener method and give the relevant constants in this setting.

Theorem 3.2.4. Using the method of van Oorschot and Wiener and Pseudoran-

dom walk 2 to solve the DLP in an interval of size N and assuming Heuristic

3.2.3 holds,

1. If we optimise for the worst case then c1 = NP/
√

8 and m = NP

√
N/8.

Therefore the average case expected running time is 2.12(1 + ε)
√
N/NP +

1/θ group operations and the worst case expected running time is 2.83(1 +

ε)
√

2N/NP + 1/θ group operations.

2. If we optimise for the average case then c1 = NP/4 and m = NP

√
N/4.

Therefore the average case running time is 2(1 + ε)
√
N/NP + 1/θ group

operations and the worst case running time is 3(1 + ε)
√
N/NP + 1/θ group

operations.

N.B. All of these running times are ‘per processor’.

Proof. In the van Oorschot and Wiener method we do not know where the wild

walks are in relation to the tame walks. They could be in front of or, equally,

behind the tame walks. Therefore we consider the walks of one type as a ‘herd’

so we now have a front and back herd.
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1. In the worst case the distance (in exponents) between the front and back

herd is N/2. It is expected to take N/2m steps for the back herd to reach

the starting point of the front herd. Let us now consider the region already

visited by the front herd and where the back herd are now stepping. In every

interval of length m we expect NP/2 footprints of the front herd (assuming

each walk is independent as given by Heuristic 3.2.3). The probability that

one of the back herd lands in a footprint of the front herd is then NP/2m.

Again assuming Heuristic 3.2.3 holds, the probability that one of the walks

of the back herd lands in one of these footprints is

NP

2m
· NP

2
=
N2

P

4m
.

Therefore the expected number of steps before a collision occurs is 4m/N2
P .

A collision is only detected once a distinguished point is visited so we expect

each processor to make a further 1/θ steps. Putting this all together, in the

worst case we expect each processor to make the following number of group

operations before a collision

N

2m
+ (1 + ε)

4m

N2
P

+
1

θ
. (3.2)

Taking ε = 0 we can minimise equation (3.2) by taking c1 = NP/
√

8 and

therefore the mean step sizem = NP

√
N/8 so in the worst case the expected

running time is 2.83(1 + ε)
√
N/NP + 1/θ group operations per processor.

In the average case the distance between the front herd and the back herd

is N/4m so the expected running time is 2.12(1 + ε)
√
N/NP + 1/θ group

operations per processor.
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2. In the average case the distance between the front and back herds is N/4m.

Assuming Heuristic 3.2.3 holds, we expect the following number of group

operations before a collision

N

4m
+ (1 + ε)

4m

N2
P

+
1

θ
. (3.3)

Taking ε = 0 we can minimise equation (3.3) by taking c1 = NP/4 and

therefore the mean step size m = NP

√
N/4 so in the average case the ex-

pected running time is 2(1+ε)
√
N/NP +1/θ group operations per processor.

Using this mean step size in the worst case gives an expected running time

of 3(1 + ε)
√
N/NP + 1/θ group operations per processor.

We expect to store NP distinguished points when using the van Oorschot Wiener

method to solve the DLP in an interval which is still constant storage. In addition

this method gives a linear speedup (by the number of processors) to the kangaroo

algorithm by distributing the work between clients but due to its very nature the

number of clients needs to be known before the method starts. As a result one

is not able to take advantage of more processors if they become available. We

will next see an algorithm by Gaudry and Schost [19] which does not require the

knowledge of the number of clients prior to starting and in addition can easily

utilise extra clients if they become available.
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3.3 The Tame-Wild Birthday Paradox

In this section we will revise a slight alteration to the Birthday Paradox which is

used by Gaudry and Schost [19] to analyse their algorithm.

Menezes, van Oorschot and Vanstone [30, Fact 2.28] describe this problem as

follows: Suppose that there are two urns, one containing M white balls numbered

1 to M , and the other containing M red balls numbered 1 to M . First, m1 balls

are selected from the first urn and their numbers listed. Thenm2 balls are selected

from the second urn and their numbers listed. Finally, the number of coincidences

between the two lists are counted. We consider the setting where the balls from

both urns are drawn one at a time, with replacement.

Theorem 3.3.1. Given that we are picking the balls uniformly at random, the

expected number of selections that need to be made in total before we have a

coincidence between the lists is

√
πM +O(1).

Sketch of proof. Nishimura and Sibuya [31] prove that the probability of zero

coincidences after m1 steps in urn 1 and m2 steps in urn 2 is given by,

P(M,m1,m2) =
1

Mm1+m2

m1∑
t1=0

m2∑
t2=0

M (t1+t2)

 m1

t1


 m2

t2

 . (3.4)

If we let the number of selections be equal and of the following order m1 = m2 =

m = O(
√
M) and M → ∞ then Nishimura and Sibuya showed that the above
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probability tends to the following,

P(M,m,m) → exp

(
−m

2

M

[
1 +O

(
1√
M

)])
≈ exp

(
−m

2

M

)
. (3.5)

Let X be the random variable of the number of selections from urn 1 before

we have a coincidence between the lists. Then the probability in equation (3.5)

can be denoted by P(X > m). We can use this probability to calculate the

expectation of X which is

E(X) =
∞∑
l=1

lP(X = l)

=
∞∑
l=1

lP(X > l − 1)−
∞∑
l=1

lP(X > l)

=
∞∑
l=0

(l + 1)P(X > l)−
∞∑
l=1

lP(X > l)

=
∞∑
l=0

P(X > l)

≈
∞∑
l=0

exp

(
− l2

M

)
.

As exp
(
− l2

M

)
is monotonically decreasing and takes values in [0, 1], the maximum

difference between this sum and its corresponding integral is at most 1. Therefore

we can can instead estimate this sum as

∫ ∞

x=0

exp

(
−x

2

M

)
dx =

√
M

∫ ∞

u=0

exp (−u2)du =

√
πM

2
. (3.6)

This equation gives us an approximation of the number of selections from urn 1

or 2 before we can expect a coincidence between the lists. Therefore the total
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number of selections is twice this which completes the proof.

Henceforth we will use the term Tame-Wild Birthday Paradox to denote this

problem with its associated running time.
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Chapter 4

New Methods for Computing

Discrete Logarithms in Intervals

In this chapter we look at the new low-memory algorithms for solving the DLP

in an interval. These algorithms utilise the Tame-Wild Birthday Paradox(as

described in Section 3.3) and are explained in their order of running times which

reduce as we progress.

• In Section 4.1 we start off with an explanation of the standard algorithm

of Gaudry and Schost which is not as fast as Pollard’s kangaroo method.

• We make a small improvement to the Gaudry-Schost algorithm in Section

4.1.5 which will become useful in Chapter 6.

• Then in Section 4.2 we present Pollard’s very recent (and as a result of a

personal communication with us) improvement to his kangaroo algorithm

which does not currently appear anywhere in the literature. These come in
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the three and four kangaroo variants.

• Finally we put together the new ideas of Pollard and our previous improve-

ment of the Gaudry-Schost algorithm in Section 4.3 to have three new vari-

ants of the Gaudry-Schost algorithm namely the 3 set, 4 set and improved

4 set variants.

Together with Pollard we are in the process of writing a research paper on his

improved kangaroo algorithm and our improved Gaudry-Schost algorithm [13].

These two algorithms are now the fastest algorithms for solving the DLP in an

interval.
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4.1 The Gaudry-Schost algorithm

Gaudry and Schost [19] developed an algorithm to solve the DLP in an inter-

val using a different type of analysis to that of the Pollard kangaroo algorithm

[34, 35]. More precisely they use the Tame-Wild Birthday Paradox to analyse

the expected running time of their algorithm. The Gaudry-Schost algorithm is

designed principally to be a distributed across a number of processors in a similar

way to the method of van Oorschot and Wiener [46, 48].

4.1.1 Tame and Wild Sets

We have defined tame and wild walks in Section 3.2 but for the Gaudry-Schost

algorithm we need to specify some more about the sets in which they walk. From

Definition 3.0.9 we know that

Q ∈ {[a1]P1 | a1 ∈ [−N1, N1]} .

Rather than looking at the set of possible group elements we will consider these

sets in terms of their exponents.

Definition 4.1.1. Given the DLP in an interval as in Definition 3.0.9 then define

T = {a1 | a1 ∈ [−N1, N1]} .

We call this the ‘Tame’ set.

The exponent of Q lies somewhere in the tame set, T . We then centre a similar

set of the same cardinality around n1 where Q = [n1]P1.
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Definition 4.1.2. Given the DLP in an interval as in Definition 3.0.9 then define

W = n1 + T

We call this the ‘Wild’ set.

In the case of the wild set, an element w ∈ W refers to the group element

Q+ [w]P1.

4.1.2 The algorithm in brief

The Gaudry-Schost algorithm proceeds as follows. Just as in the van Oorschot

and Wiener algorithm we have NP processors. Half of the processors will work on

tame walks (call these the Tame processors) and the other half will work on the

wild walks (call these the Wild processors). Each tame or wild processor chooses

a random starting point in T or W respectively and performs a pseudorandom

walk until a distinguished point is hit. This distinguished point is then stored

together with its exponent on a server and is analogous to the ‘trap’ which is

set in Pollard’s kangaroo algorithm [11, 35]. The processor then chooses another

random starting point and repeats the task. After a certain number of steps

(elements/points visited) have been taken we expect to find a collision between a

tame processor and a wild one. If this occurs on a point that is not distinguished

then the two walks will continue on the same path to the same distinguished point.

As this distinguished point is stored after the first walk then seen again on the

second walk we find a collision and the server can solve for the discrete logarithm

of Q. For the purposes of presenting the algorithm we assume there is a function
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walk(xi, ai) which computes the next step in the random walk and returns the

tuple (xi+1, ai+1). Also we will store the distinguished points in an easily searched

storage structure such as a hash table. So we will assume searching and storing

times are constant and therefore will omit these operations from Algorithm 7.

In Algorithms 8 and 9 we refer to a maximum walk length which is discussed in

Section 4.1.6.

Algorithm 7 The Gaudry-Schost Algorithm: Server side
Input: N1 ∈ N, P1, Q ∈ G
Output: Integer tuple n1 such that Q = [n1]P1

1: Choose the function walk uniformly at random
2: Let AT be a hash table to store distinguished points from tame walks
3: Let AW be a hash table to store distinguished points from wild walks
4: while DLP in an interval not solved do
5: if received tuple from Tame Processor then
6: Construct tuple as zT := (R, at)
7: if (R, aw) ∈ AW for some aw then
8: Send terminate signal to all clients
9: return (at − aw) mod r

10: else
11: Insert zT into AT

12: end if
13: else
14: Construct tuple as zW := (R, aw)
15: if (R, at) ∈ AT for some at then
16: Send terminate signal to all clients
17: return (at − aw) mod r
18: else
19: Insert zW with AW

20: end if
21: end if
22: end while

Algorithm 7, 8 and 9 presents a brief outline of the Gaudry-Schost algorithm

when applied to the DLP in an interval. However a number of issues need to be

resolved.
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Algorithm 8 The Gaudry-Schost Algorithm: Tame Processor

Input: N1 ∈ N, P1, Q ∈ G, function walk
1: repeat
2: Choose a random integer a1 ∈ [−N1, N1]
3: x1 := [a1]P1, Counter:= 0
4: while xi is not a distinguished point and Counter ≤ 20/θ do
5: Counter++
6: (xi+1, ai+1) := walk(xi, ai)
7: end while
8: Send (xt, at) to the server.
9: until The server sends terminate signal

Algorithm 9 The Gaudry-Schost Algorithm: Wild Processor

Input: N1 ∈ N, P1, Q ∈ G, function walk
1: repeat
2: Choose a random integer a1 ∈ [−N1, N1]
3: y1 := Q+ [a1]P1, Counter:= 0
4: while yi is not a distinguished point and Counter ≤ 20/θ do
5: Counter++
6: (yi+1, ai+1) := walk(yi, ai)
7: end while
8: Send (yw, aw) to the server.
9: until The server sends terminate signal

1. What will our deterministic pseudorandom walk look like?

2. What is the expected number of steps before we see a collision?

3. How do we decide the value of θ?

4. How many steps will be needed in practice i.e. are there any wasted or

‘bad’ steps?

The average expected running time of the Gaudry-Schost algorithm for solving the

DLP in an interval of size N is approximately 2.08
√
N group operations. Gaudry

and Schost [19, Section 3.1] give a proof of this but they do not give any discussion
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on ‘bad’ walks or steps. There are two types of bad steps that we have to consider.

The first type comes from walks which never reach a distinguished point (type 1)

and the second type comes from walks which step outside of the tame and wild

sets (type 2). Our analysis will be able to deal with walks anywhere in T or W

but walks outside of these sets cannot be dealt with. So if we allow walks to start

near the edges of the tame or wild sets then these could be wasted. To resolve this

we do not start walks near the edges of the tame and wild sets and the subsets

of T and W where walks cannot start will be discussed in Section 4.1.6. First we

will analyse the original Gaudry-Schost algorithm and then investigate whether

there are any improvements possible which make this algorithm competitive with

Pollard’s kangaroo algorithm or the method of van Oorschot and Wiener.

4.1.3 The Original Gaudry-Schost algorithm

We now apply the original Gaudry-Schost algorithm to solve the DLP in an

interval of size N . We will continue to use elliptic curve notation, for clarity, let

G = E(Fq)[r] and so let P1, Q ∈ G where P1 is a generator of the group. We want

to find an integer n1 such that Q = [n1]P1 where we have some extra information

that n1 ∈ [−N1, N1] where N1 is less than the order of G. Let N = 2N1 + 1.

Let A = T ∩W be the set of exponents that are common to both the tame and

wild sets and let M be the cardinality of A. We will use the Tame-Wild Birthday

Paradox (Section 3.3) to solve for the expected number of steps before we have a

TW collision. However a TW collision can ONLY occur in the overlap of T and

W namely A. The tame steps are analogous to the selections from urn 1 and the

wild steps are analogous to the selections from urn 2. However the problem with
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using Theorem 3.3.1 to analyse the Gaudry-Schost algorithm is that we will not

be picking the elements in T and W uniformly at random. Although the starting

point of the pseudorandom walks will be random, inherently the rest of the steps

will not be random so we only obtain a heuristic running time. Later we give

experimental results which show that the pseudorandom walks get close enough

to random selection. The pseudorandom walk we will use in the Gaudry-Schost

algorithm to solve the DLP in an interval is described in Pseudorandom walk 3.

Pseudorandom Walk - 1D 3 (Gaudry-Schost). The pseudorandom walk pro-

ceeds as follows,

1. We have a selection function S as described in Section 2.3.1 which takes

as input the current footprint of the pseudorandom walk and outputs the

index of the partition of G which that element belongs to.

2. We define a mean step size m such that m/θ =
√
N so that the subset of the

interval where walks are not permitted to start is only of size approximately
√
N as we will see in Section 4.1.6.

3. For 0 ≤ j < ns we choose random step sizes 1 ≤ uj ≤ 2m and then

precompute [uj]P1.

4. The pseudorandom walk is as follows

xi+1 = f(xi) = xi + [uS(xi)]P1.

We update the exponent as follows ai+1 = ai + uS(xi).
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The expected length of a walk i.e. the distance traveled by a walk in terms of

exponents is given by Lemma 4.1.3

Lemma 4.1.3. The expected length of a pseudorandom walk before we land on a

distinguished point is m
θ
.

Proof. Let Y be the random variable for the number of steps before we expect to

hit a distinguished point. From Theorem 3.2.1 we know that E(Y ) = 1
θ
. Now if

we let Z be the random variable of the size of each step in terms of the exponents

then E(Z) = m. The random variables Y and Z are independent so the expected

length of a walk is the expectation of the product of Y and Z so

E(Y Z) = E(Y ) · E(Z) =
1

θ
·m =

m

θ
.

Unlike the pseudorandom walk that is used in Pollard’s kangaroo algorithm we

do not want our walks to travel a long distance. The reason for this is that in

our analysis we do not want walks to jump outside of the tame and wild sets. In

addition we do not want our walks to be too localised otherwise Heuristic 4.1.4

will not hold hence part 2 of Pseudorandom walk 3. The interval where walks

are not permitted to start will be the distance given in Lemma 4.1.3, so in order

to keep this small we define m as shown in part 2 of Pseudorandom walk 3.

To counteract walks jumping outside of T and W we will not start walks within

m/θ of the right hand edge of T and W . Therefore our tame walks start with
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x1 = [a1]P for some a1 ∈ [−N1, N1 −m/θ] and continue as follows

xi+1 = f(xi) = xi + [uS(xi)]P.

The wild walks start with y1 = Q + [a1]P for some a1 ∈ [−N1, N1 − m/θ] and

continues as follows

yi+1 = f(yi) = yi + [uS(yi)]P.

If a1 = N1 −m/θ for any walk then there is a 50% chance that walk will jump

outside of T or W . This probability drops as a1 reduces so we can limit the

expected number of steps wasted in this way. In Section 4.1.6 we look at this in

more depth. Due to not starting walks within m/θ of the right hand edge of T and

W we have a further problem of selecting elements uniformly in (N1 −m/θ,N1].

In practice as the set where walks are not allowed to start is small in comparison

to the size of the interval this does not cause any problems.

4.1.4 Running time analysis

Both Pollard’s kangaroo algorithm and the method by van Oorschot & Wiener

use the mean step size to optimise the running times of their algorithms. In

the Gaudry-Schost approach we use a Tame-Wild Birthday Paradox analysis

on the overlap of the tame and wild sets, A, to obtain an expected running

time. Therefore the mean step size is not important to the running time analysis,

however as shown above and in Section 4.1.6 it will be constrained when we

consider the wasted or ‘bad’ steps, which cannot be included in the analysis.

If N is sufficiently large then we can assume Heuristic 2.3.3 and we have the
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following,

Heuristic 4.1.4. If N is sufficiently large then Pseudorandom walk 3 is suffi-

ciently random that the Tame-Wild Birthday Paradox analysis applies to the set

A.

Similarly to both Pollard’s kangaroo algorithm and the method of van Oorschot &

Wiener, the running time of the Gaudry-Schost algorithm depends on the location

of Q within the tame set, T . To compare between the different algorithms for

solving the DLP in an interval of size N it is easier if we take the number of

processors to be 1 i.e. NP = 1. Now we look at the two extreme cases.

4.1.4.1 The best case

Lemma 4.1.5. Assuming Heuristic 4.1.4, the expected number of group opera-

tions to solve the DLP in an interval of size N using the original Gaudry-Schost

algorithm in the best case (without considering the bad steps) is

√
πN +

1

θ
. (4.1)

Proof. In the best case Q lies in the middle of the interval i.e. Q = [0]P , then

A = T = W and M = N . So every step taken by a tame or wild walk is in

the overlap A. Therefore using the Tame-Wild Birthday Paradox analysis from

Theorem 3.3.1, the number of steps before we expect to see a collision is
√
πN .

Then the final walk will need to continue to the distinguished point already being

stored and we have the result.
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4.1.4.2 The worst case

Lemma 4.1.6. Assuming Heuristic 4.1.4, the expected number of group opera-

tions to solve the DLP in an interval of size N using the original Gaudry-Schost

algorithm in the worst case (without considering the bad steps) is

√
2πN +

1

θ
. (4.2)

Proof. In the worst case Q lies at the end of the interval (e.g., Q = [−N1]P ),

then M = |T |/2 = |W |/2 = N/2. So on average only half of each of the tame and

wild walks are in A. Therefore using the Tame-Wild Birthday Paradox analysis

from Theorem 3.3.1, the number of steps in the overlap before we expect to see a

collision is
√
πN/2. So the expected number of group operations before we have

a TW collision is given by

2
√
πN/2 =

√
2πN.

Then the walk will need to continue to the distinguished point already being

stored and we have the result.

4.1.4.3 The average case

Theorem 4.1.7. Assuming Heuristic 4.1.4, the average expected number of group

operations to solve the DLP in an interval of size N using the original Gaudry-

Schost algorithm (without considering the bad steps) is approximately

2.08
√
N +

1

θ
. (4.3)
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Proof. To obtain an average case expected running time we need to average out

over all possibilities of Q. Let us consider Q = [−N1 + xN ]P where x ∈ [0, 1/2]

then the overlap A is of size M = (1/2 + x)N . The proportion of steps or walks

in the overlap is (1/2 +x) therefore the we expect to make (1/2 +x)−1 selections

from the tame and wild sets to have 1 step in the overlap. So we have

2

∫ 1/2

x=0

1

1/2 + x

√
π(1/2 + x)N dx

= 2
√
πN

∫ 1/2

x=0

1

(1/2 + x)1/2
dx

= 4
√
πN

(
1− (1/2)1/2

)
≈ 2.076559

√
N.

Then the walk will need to continue to the distinguished point already being

stored and we have the result.

As the running time of the different algorithms depends of the position of Q

within the tame set, T , it would be greatly beneficial if we could somehow have a

constant running time regardless of the position of Q. We deal with this situation

in the next section.

4.1.5 Improving the Gaudry-Schost Algorithm

The running time of the original Gaudry-Schost algorithm depends on the size

of the overlap between the tame and wild sets. If it is possible to make the size

of this overlap constant for all possible Q then the expected running time will

be constant for all problem instances. One way to approach this is to make the
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worst case (where Q lies at the end of the interval [−N1, N1]) better. We start

our random walks uniformly in some subset of the search space of size kN , rather

than over the whole space, where 0 < k < 1. We call this new approach the

‘Improved Gaudry-Schost algorithm’. Note that when k = 1 we have the original

Gaudry-Schost approach. In the tame set we will search through kN elements

centred around the middle of the interval. Therefore the ‘New Tame’ set is,

T ′ = {a1 | a1 ∈ [−kN1, kN1]} .

In the wild set we will split the new search space into two equal parts at either

ends of the interval so the ‘New Wild’ set is,

W ′ = {n1 + a1 | a1 ∈ [−N1,−N1(1− k)] ∪ [(1− k)N1, N1]} .

W ′ is the union of two disjoint sets which are given below,

W ′
1 = {n1 + a1 | a1 ∈ [−N1, (k − 1)N1]}

W ′
2 = {n1 + a1 | a1 ∈ [(1− k)N1, N1]} .

Let A′ = T ′∩W ′ denote the overlap between the new tame and wild sets and M ′

its cardinality. In the previous best case Q lies in the middle of the interval so

the cardinality of A′ is M ′ = (2k− 1)N . In the previous worst case Q lies at the
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Figure 4.1: Searching kN of the Tame and Wild Sets

end of the interval so M ′ = kN
2

. Equating these two different values of M ′ we get

2k − 1 =
k

2

k =
2

3
.

Theorem 4.1.8. Assuming Heuristic 4.1.4, the expected number of group oper-

ations to solve the DLP in an interval of size N (without considering the bad

steps) using the improved Gaudry-Schost algorithm with k = 2
3

is

√
4

3
πN +

1

θ
≈ 2.05

√
N +

1

θ
. (4.4)

Proof. When k = 2/3 we can see in Figure 4.1 that for all problem instances

(different positions of Q) the overlap has cardinality

|A′| = M ′ =
N

3
.

On average half of all walks are in the overlapA′ just as in the previous worst case.
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However the new tame and wild sets are smaller than in the original algorithm

so the expected number of steps before we have a TW collision is given by

2

√
π
N

3
=

√
4

3
πN.

Then the walk will need to continue to the distinguished point already being

stored and we have the result.

This is an improvement on the original Gaudry-Schost algorithm for solving the

DLP in an interval (Theorem 4.1.7) with the added bonus that the worst and

average cases are the same. In the next section we will look at the wasted or ‘bad’

steps which cannot be counted in the Tame-Wild Birthday Paradox analysis and

therefore must be added to the expected running time.

4.1.6 Counting bad steps in the Gaudry-Schost Algorithm

In this section we give bounds on the number of wasted or ‘bad’ steps. The first

type comes from a walk which never reaches a distinguished point and the second

type comes from walks which step outside of the tame and wild sets and therefore

cannot be added to the Tame-Wild Birthday Paradox.

4.1.6.1 Bad steps of type 1

To guard against walks which get stuck in a loop i.e. hitting an element that has

already been visited in that walk, or walks which never reach a distinguished point

van Oorschot & Wiener [48] set a maximum number of steps in a walk. They take
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the maximum number of steps to be 20 times as long as the expected number of

steps in a walk. We know from Theorem 3.2.1 that the expected number of steps

is 1
θ
. Let T denote the maximum number of steps in a walk which we will also

set to be 20
θ
. Van Oorschot and Wiener gave the following lemma and proof.

Lemma 4.1.9. If we take T = 20
θ

then the proportion of steps which cannot be

included in the Tame-Wild Birthday Paradox analysis due to walks which never

reach a distinguished point is bounded by 5× 10−8.

Proof. The probability that a walk never reaches a distinguished point is bounded

as follows

(1− θ)20/θ ≤ (exp (−θ))20/θ = exp (−20).

Each abandoned walk is 20 times longer than the average walk so the proportion

of bad steps of type 1 is approximately 20 exp (−20) < 5× 10−8.

This shows that the proportion of bad steps of type 1 are very small and only

has a minute effect on the expected running time.

4.1.6.2 Bad steps of type 2

As the new tame set, T ′, and wild set, W ′, are not of the same form the bad steps

of type 2 will be calculated differently for the tame and wild walks. Nevertheless

the number of bad steps of type 2 from the tame walks is less than half the

number from wild walks as there are two disjoint sets that the pseudorandom

walk start in.

Definition 4.1.10. Let B denote the number of bad steps of type 2.
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We now need to define the maximum step size. From Pseudorandom walk 3 we

know that the largest step is no bigger than 2m so we will take this to be our

maximum step size.

When solving the DLP in an interval the pseudorandom walks move in a positive

direction (to the right) in terms of the exponents so starting a walk near the

righthand edge of the sets T ′, W ′
1 or W ′

2 will mean that these walks are highly

likely to reach a distinguished point outside of the sets. Whilst in practice these

distinguished points can be used to get a TW collision we cannot use walks that

step outside of the sets in our Tame-Wild Birthday Paradox analysis. This is

because we can only apply a Tame-Wild Birthday Paradox analysis to a set of

known size i.e. |A| = M so steps outside of this set cannot be counted even

though in practice any such distinguished point will be stored on the server.

Therefore by Lemma 4.1.3 we will not start a walk on an element with exponent

less than m
θ

from the righthand edge of T ′, W ′
1 or W ′

2.

Lemma 4.1.11. Given that the algorithm has made K steps, then we can bound

the number of bad steps of type 2 as,

B <
39m

2Nθ/3− 2m
· 30K =

585K

Nθ/3−m
(4.5)

Proof. Let X denote the set of all elements of T ′ such that if a pseudorandom

walk starts at those elements there is a nonzero probability that the walk will

step outside of the search space. Then

X =

{
a1

∣∣∣∣ a1 ∈
[
2N1

3
− 20 · 2m

θ
,
2N1

3
− m

θ

]}
.
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A crude bound on the number of bad steps of type 2 that occur from tame walks

can be given by the following calculation: the probability that a tame walk starts

in X × the expected number of tame walks ×T . So the probability that a walk

starts in X is
40m

θ
− m

θ
2N
3
− m

θ

=
39m

2Nθ/3−m
.

Given that the algorithm has made K steps, the expected number of tame walks

is just the total number of tame steps, K/2, multiplied by the probability of a

point being distinguished namely θ. Therefore we have a bound for the tame

walk component of B which is

39m

2Nθ/3−m
× Kθ

2
× 20

θ
=

39m

2Nθ/3−m
· 10K.

For the wild walks we do the same calculations for W ′
1 and W ′

2. A bound for each

of these sets will be the same so let us consider W ′
1 only. Let Y denote the set

of all elements of W ′
1 such that if a pseudorandom walk starts at those elements

there is a nonzero probability that the walk will step outside of the search space.

Then

Y =

{
a1

∣∣∣∣ a1 ∈
[
−N1

3
− 40m

θ
,−N1

3
− m

θ

]}
.

The probability of a walk starting in Y is

40m
θ
− m

θ
N
3
− m

θ

=
39m

Nθ/3−m
.

So a bound for the W ′
1 component of B is

39m

Nθ/3−m
× Kθ

4
× 20

θ
=

39m

2Nθ/3− 2m
· 10K.
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This is marginally larger than the tame walk component of B so multiplying this

by 3 takes into account both the tame and wild walk components of B hence

proving the result.

We can see from Lemma 4.1.11 that the bound on B depends upon N , θ and

m. Another way to look at it is: if we want to bound B as a certain proportion

of the total number of steps (i.e., 1%) then for a specific N there may be limits

to how large θ and m can be. Table 4.1 gives the minimum bounds for N if we

want to keep B as 1% of the total number of steps for different values of θ and

m. For smaller N we cannot have too small a probability of an element being

distinguished or too large a mean step size.

θ = 2−8 θ = 2−16 θ = 2−32

m = 32 232 240 256

m = 4096 240 248 264

m = 52428 244 252 268

m = 134217728 256 264 280

Table 4.1: Minimum values of N to have B < 1% of the total number of steps
for different θ and m

When deciding on the value of θ another consideration needs to be made. If

we let K be the total number of steps of the algorithm before we can solve for

the DLP in an interval then we expect to have made Kθ walks. Therefore we

expect to store Kθ distinguished points. In order to use only constant storage as

K ≈ 2
√
N for all of the Gaudry-Schost and kangaroo algorithms we must take

θ = c/
√
N where c is approximately half of the storage space available.
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4.1.7 The complete improved running time

To conclude the Gaudry-Schost algorithm in this setting we put the bad steps to-

gether with the Tame-Wild Birthday Paradox analysis to get an expected running

time.

Lemma 4.1.12. The expected number of group operations before we can solve

for the DLP in an interval of size N using the improved Gaudry-Schost algorithm

and bounding the proportion of bad steps to 1% of the total steps, is

2.07
√
N +

1

θ
.

Proof. Let K be the total number of steps. Then K must include enough steps to

get a TW collision, to counteract those walks which never reach a distinguished

point and those walks which step outside the tame and wild sets. For clarity let

us exclude the 1
θ

term from K for the moment thus

K =

√
4

3
πN + (5× 10−8)K + 0.01K

(
1− (5× 10−8)− 0.01

)
K =

√
4

3
πN

K ≈2.067327
√
N,

and the result follows.

4.1.7.1 Comparison

The expected running time of the three algorithms, Pollard’s kangaroo, the

method of van Oorschot & Wiener and the original Gaudry-Schost, are all de-
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pendent on the position of Q. These running times are all symmetrical about the

centre of the interval [−N1, N1]. To get an idea of how these algorithms compare

we compare the average expected running time in Table 4.2, the worst case ex-

pected running time in Table 4.3 and the running times of different positions of

Q in Figure 4.2. For the Gaudry-Schost algorithm in both the original and im-

proved cases we take into account the bad steps to give a better comparison. We

can see that the improved Gaudry-Schost algorithm is better than the original

Gaudry-Schost algorithm in both the average and worst cases. We can see that

Name of Algorithm Average Expected Run-
ning time

Van Oorschot & Wiener optimised for the
average case

2(1 + ε)
√
N + 1

θ

Van Oorschot & Wiener optimised for the
worst case

2.16(1 + ε)
√
N + 1

θ

Original Gaudry-Schost 2.1
√
N + 1

θ

Improved Gaudry-Schost 2.07
√
N + 1

θ

Table 4.2: Average expected running time of algorithms solving the DLP in an
interval of size N

Name of Algorithm Worst Case Expected
Running Time

Van Oorschot & Wiener optimised for the
average case

3(1 + ε)
√
N + 1

θ

Van Oorschot & Wiener optimised for the
worst case

2.83(1 + ε)
√
N + 1

θ

Original Gaudry-Schost 2.53
√
N + 1

θ

Improved Gaudry-Schost 2.07
√
N + 1

θ

Table 4.3: Worst case expected running time of algorithms solving the DLP in
an interval of size N
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Figure 4.2: Running time as Q = [−N1 + xN ]P for 0 ≤ x ≤ 1/2

the improved Gaudry-Schost algorithm is slightly slower that the method by van

Oorschot & Wiener but is still competitive. In addition the Gaudry-Schost algo-

rithm does not require knowledge of the number of processors prior to starting

and so, unlike the method of van Oorschot and Wiener, processors can be added

and removed while the algorithm is running.

N.B. In the remaining sections of this chapter we focus on average expected run-

ning times.
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4.2 Pollard’s improved kangaroo algorithm

Very recently (and as a result of a personal communication with us) Pollard

has improved the running time of the kangaroo algorithm by using more than 2

kangaroos [13, 36]. We first describe the intuition behind this improvement and

then give the improved running time analysis. The van Oorschot and Wiener

method which parallelises the original kangaroo algorithm and thereby having a

probability of success close to, if not equal to, 1 can also be applied to Pollard’s

improved algorithms. For simplicity we explain the improvement in terms of

the serial case and omit the extra steps with regards to distinguished points in

Theorems 4.2.3 and 4.2.4. However in Section 4.2.3 we do briefly discuss the van

Oorschot and Wiener version of Pollard’s improved kangaroo algorithms.

The intuition behind this improvement is as follows. Using the notation of Defini-

tion 3.0.9 let us assume that we can calculate the inverse of Q i.e. −Q = [−n1]P1.

In the case of elliptic curves this is trivial. Now let it be the case that we have

started two wild walks, one at Q and the other at −Q which have collided so

Q+ [aw1]P1 =−Q+ [aw2]P1

n1 + aw1 =− n1 + aw2

n1 =(aw2 − aw1)/2.

Therefore we can solve for the discrete logarithm of Q. This shows that a WW

collision of a certain type can be useful. Pollard used this idea to show that 3

kangaroos or even 4 kangaroos walking a smaller distance in terms of the interval

of exponents can solve the DLP in an interval in less steps that the standard 2
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kangaroo approach. We will briefly describe the algorithm as well as the improved

running time.

4.2.1 The 3 kangaroo improvement

Given a problem instance without loss of generality let Q = [n1]P1 where n1 ≥ 0.

Q and its inverse −Q are equidistant from the centre of the interval so as Q gets

further away from the centre so does −Q.

Definition 4.2.1. • Let the walk starting at −Q be called the Wild Negative

or ‘WildN’ walk.

• Let the walk starting at Q be called the Wild Positive or ‘WildP’ walk.

• Let the starting point of the Tame walk be denoted Rt.

Definition 4.2.2. The different collisions between the walks will be defined as

follows: -

• A TWN collision is a collision resulting from a Tame and WildN walk

terminating at the same distinguished point.

• A TWP collision is a collision resulting from a Tame and WildP walk

terminating at the same distinguished point.

• A WNWP collision is a collision resulting from a WildN and WildP walk

terminating at the same distinguished point.

We will have two wild walks and a tame walk as given in Definition 4.2.1. In the

3 kangaroo case the collisions defined in Definition 4.2.2 are all useful in solving
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Figure 4.3: Choosing the starting point of the Tame walk

the DLP in an interval. Finally we need to decide the value of Rt. To reduce

the running time of the kangaroo algorithm the tame walk does not start in the

middle of the interval but, without loss of generality, at some point in the positive

half of the interval. Figure 4.3 shows the situation where Q is equidistant from

−Q and Rt. This is where a TWP and a WNWP collisions are equally likely.

The probability of a TWP collision should be equally likely when the problem

instance is the same distance x to the left and right of Rt i.e. Q = [Rt−x]P1 and

Q = [Rt +x]P1 = [N1]P1 as shown in Figure 4.3. Therefore we can solve equation

(4.6) in x to obtain x = 2N1/5 so Rt = [b3N1/5c]P1.

N1 = x/2 + x+ x. (4.6)

Theorem 4.2.3. Using Pollard’s improved 3 kangaroo algorithm in the serial case

to solve the DLP in an interval of size N and assuming the analogous Heuris-

tic 3.1.1 holds, if we optimise for the average case then the mean step size is

m =
√
N/10 and the average case running time is at most 1.9(1 + ε)

√
N group

operations (excluding the time taken to invert Q).

Proof. Effectively we can view the 3 kangaroo algorithm as the original algorithm

working on a smaller interval but running 3 kangaroos instead of 2. The tame

walk starts in the middle of this smaller interval. Therefore the size of the new
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smaller interval is 4N1/5 ≈ 2N/5. From part 2 of Theorem 3.1.2 the previous

mean step size in the average case was
√
N/2 so the new mean step size is given

by

m =
1

2
·
√

2N

5
=

√
N

10
.

Using a similar technique with the running time from part 2 of Theorem 3.1.2 we

obtain the following number of group operations in the average case

3

2
· 2(1 + ε)

√
2N

5
= 3

√
2(1 + ε)

√
N

5
≈ 1.9(1 + ε)

√
N.

The running time given in Theorem 4.2.3 is in fact pessimistic. The reason for this

is that the analysis for Pollard’s kangaroo algorithm does not take into account

the possibility of a third type of collision. For a problem instance where n1 is

close to 0 there is a possibility of a TWN collision as well. So when this algorithm

is put into practice we can expect to achieve an even faster running time than

those given above. It remains an open problem to give an exact analysis of

this algorithm. Nonetheless this running time is an improvement on the original

kangaroo algorithm and in the next section we will see Pollard’s 4 kangaroo

improvement.

4.2.2 The 4 kangaroo improvement

The 4 kangaroo algorithm improves upon the 3 kangaroo algorithm by altering

the pseudorandom walk and by having another tame walk. As Q and −Q are

equidistant from the centre of the interval of exponents n1 and −n1 take the
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same value modulo 2 and are always an even distance apart. Therefore if the

pseudorandom walks only takes even steps then the exponents of all footprints

will either be all even or all odd: but we do not know which. This effectively

reduces the size of the search space by half. However if n1 is odd the tame

walk will never collide with a wild walk. To resolve this Pollard used two tame

walks which start next to each other i.e. on elements with exponents b3N1/5c and

b3N1/5c+1. This ensures an equal number of even and odd footprints. Although

half of the tame steps are immediately wasted there is still an improvement as

detailed in the following theorem.

Theorem 4.2.4. Using Pollard’s improved 4 kangaroo algorithm to solve the

DLP in an interval of size N and assuming the analogous Heuristic 3.1.1 holds,

if we optimise for the average case then the mean step size is m =
√
N/10 and the

average case running time is at most 1.79(1 + ε)
√
N group operations (excluding

the time taken to invert Q).

Proof. Following on from Theorem 4.2.3 the mean step size will remain at
√
N/10

except that now all steps will be even. We can look at the search space as being

half its original size as we are either looking at all the even or odd exponents but

to counteract this we are now doing 4 walks instead of 3. Therefore using the

result from Theorem 4.2.3 the average expected running time is given by

4

3
· 1√

2
· 3
√

2(1 + ε)

√
N

5
= 1.79(1 + ε)

√
N,

group operations.
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4.2.3 The Distributed algorithm and Comparison

The method of van Oorschot and Wiener which was applied to the original kan-

garoo algorithm can also be easily applied to the improved kangaroo algorithm

i.e. there will be herds of tame, wildp and wildn walks and every time a walk

lands on a distinguished point it is stored on a server in an easily accessible data

structure. There is a linear speed up (by the number of processors) to the running

times in Theorems 4.2.3 and 4.2.4 and an additional term of 1/θ added on. As

we have explained above the running times given in Theorems 4.2.3 and 4.2.4

are pessimistic. Pollard carried out some simulations on the 3 and 4 kangaroo

variants which show that this is the case. The results of these are given in Section

4.4. Table 4.4 gives a breakdown of the running time (in group operations in the

serial case) of the current algorithms to solve the DLP in an interval of size N .

For simplicity we omit the 1/θ terms, take ε = 0, exclude the bad steps in the

Gaudry-Schost algorithms and also we assume that the time required to find the

inverse of Q is negligible compared to the overall running times.

Name of Algorithm Average Expected
Running time

Van Oorschot & Wiener optimised for the
average case

2
√
N

Van Oorschot & Wiener optimised for the
worst case

2.16
√
N

Original Gaudry-Schost 2.08
√
N

Improved Gaudry-Schost 2.05
√
N

Pollard 3 kangaroo ≤ 1.90
√
N

Pollard 4 kangaroo ≤ 1.79
√
N .

Table 4.4: Expected running time of algorithms solving the DLP in an interval
of size N (Update 1)
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An obvious question at this point is; Can we implement the techniques that

Pollard used to speed up his kangaroo algorithm to the original and/or improved

Gaudry-Schost algorithm? We answer this question in the next section.

4.3 Further improvements to the Gaudry-Schost

algorithm

In this section we will apply Pollard’s techniques to both the original and im-

proved Gaudry-Schost algorithms to obtain faster running times for these algo-

rithms.

4.3.1 The 3 set Gaudry-Schost algorithm

As before given a problem instance, without loss of generality, let Q = [n1]P1

where n1 ≥ 0. Using the calculations from Section 4.2.1, to improve the original

Gaudry-Schost algorithm, denoted the 3 set Gaudry-Schost algorithm, we redefine

the previous tame and wild sets as described below.

Definition 4.3.1. Given the DLP in an interval as in Definition 3.0.9 we define

the following sets below: -

Tame Set T = {a1 | a1 ∈ [N1/5, N1]},

WildN set WN = −n1 − 3N1/5 + T ,

WildP set WP = n1 − 3N1/5 + T .

We can picture these sets as shown in Figure 4.4. We apply the original Gaudry-

Schost algorithm in this new setting by splitting the number of processors, NP ,

81



Figure 4.4: The Tame, WildN and WildP Sets

equally between walking in the tame, wildn and wildp sets. As in the 3 kangaroo

algorithm either a TWP or WNWP collision is sufficient to solve the DLP in an

interval. Also as n1 approaches 0 there is also a nonzero probability of a TWN

collision which can also be used to solve the DLP in an interval. In order to

apply the Tame-Wild Birthday Paradox we ignore such collisions so just as in the

improved kangaroo algorithm the expected running time will be pessimistic. An

open problem is to include this in the analysis but this would need different tools

from probability.

As the density of walks in all sets will be the same we can treat the tame and

wildn sets as one set which overlaps with the wildp set.

Definition 4.3.2. Define A = (T ∪WN) ∩WP to be the total overlap between

the tame and wildp sets and the wildn and wildp sets. Let the cardinality of this

overlap be given by M = |A|.

Theorem 4.3.3. Assuming Heuristic 4.1.4 the expected number of group oper-

ations before we can solve for the DLP in an interval of size N using the 3 set

Gaudry-Schost algorithm (excluding the time taken to invert Q and the bad steps)

is at most

1.85
√
N +

1

θ
.

Proof. The first thing to note when solving the DLP in an interval is that both
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the kangaroo and the 3 set Gaudry-Schost algorithm solve for both the discrete

logarithm of Q and −Q at the same time. Therefore we only need to average over

problem instances where n1 ≥ 0 (without loss of generality). Let the problem

instance be written as Q = [xN1]P1 for 0 ≤ x ≤ 1. Looking at Figure 4.4 we can

calculate the expected number of group operations by taking the sum of averages

scaled over smaller ranges of x.

1. Firstly let us consider those problem instances where 3/5 < x ≤ 1. Here

|WN ∩WP | = 0 and |T ∩WN | = 0. Therefore M = (7/5 − x)N1 and the

expected number of walks before we step in A is given by

4
5
N1(

7
5
− x
)
N1

=
4

5

(
7

5
− x

)−1

.

So for a given problem instance in this range of x the expected number of

group operations before a TWP or WNWP collision is

4

5

(
7

5
− x

)−1/2√
πN1

So averaging out over this range of x we must multiply the number of steps

by 3/2 as one third of the steps are wasted in WN . Therefore over this

range of x the expected number of group operations is given by

3

2
· 4

5

√
πN1

∫ 1

x=3/5

(
7

5
− x

)−1/2

dx =
24− 12

√
2

5
√

5

√
πN1. (4.7)

2. For 2/5 < x ≤ 3/5 the overlap T ∩WP starts to decrease in size from the

maximum but we still have |T ∩WN | = |WN ∩WP | = 0 so the expected
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number of walks before we step in A is given by

4

5

(
1

5
+ x

)−1

.

Again we have to multiply the number of steps by 3/2 to take into account

the steps wasted in WN , so the expected number of group operations over

this range of x is

3

2
· 4

5

√
πN1

∫ 3/5

x=2/5

(
1

5
+ x

)−1/2

dx =
24− 12

√
3

5
√

5

√
πN1. (4.8)

3. For 1/5 < x ≤ 2/5 both T ∩WP and WN ∩WP are non empty. To continue

using the Tame-Wild Birthday Paradox to model this problem we treat

T ∪WN as one set. Although compared to WP there will be twice as many

walks in T ∪WN this set is also twice as large so the densities of footprints

in T ∪WN and WP is the same. Therefore the cardinality of A is given by

M = 2

(
2

5
− x

)
N1 +

(
1

5
+ x

)
N1 = (1− x)N1.

So the number of steps in WP before we expect a TWP or WNWP collision

is given by

4

5
(1− x)−1/2

√
πN1

2
.

Remember that for every 1 step in WP we are doing 2 steps T ∪WN . So the

number of steps in this union before we expect a TWP or WNWP collision

is given by

8

5
(1− x)−1/2

√
πN1

2
.
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Put these together and integrating over the range of x we obtain the fol-

lowing number of group operations

6

5

√
πN1

∫ 2/5

x=1/5

(1− x)−1/2 dx =
24− 12

√
3

5
√

5

√
πN1. (4.9)

4. Finally for 0 ≤ x ≤ 1/5 the overlap T ∩WN is nonempty as well so there is a

possibility of a TWN collision. In fact when looking at the set T∩WN we see

that there is a double density of walks when compared with WP . In order

to use the Tame-Wild Birthday Paradox we were not able to model this

(it remains an open problem to include different densities in the analysis).

Therefore we treat all problem instances in this range of x such that T ∩WN

is empty and that |T ∪WN | = 8N1/5. This means that in a similar way to

the improved Pollard kangaroo algorithm our result will be pessimistic. For

all problem instances in this range of x, A = WP so the number of steps in

WP before we expect a collision is

√
π4N1/5

2
=

√
πN1

5
.

The expected number of steps in T ∩WN is twice the above as we expect

to do 2 walks before we get a walk in A. So the expected number of group

operations on average scaled over this range of x is at most

1

5
·
3
√
π4N1/5

2
=

3
√
πN1

5
√

5
. (4.10)

Adding together the results from equations (4.7), (4.8), (4.9) and (4.10) gives the

expected number of group operations to solve the DLP in the interval of size N

85



which is

75− 12
√

2− 24
√

3

5
√

5

√
πN1 ≈ 1.85

√
N.

Once a collision has occurred it is only identified when both walks hit a distin-

guished point and the result follows.

4.3.2 The 4 set Gaudry-Schost algorithm

In the same way as the 4 kangaroo algorithm we can improve the 3 set Gaudry-

Schost algorithm by making the following changes to obtain a new algorithm

which we will call the 4 set Gaudry-Schost algorithm: -

1. Making the pseudorandom walk only take steps of even size,

2. Having twice as many tame walks as either wildn and wildp walks, half

searching over even exponents and half over odd exponents,

3. Starting all wildn walks with the form: y1 = −Q + [b1]P1 where b1 ≡ 0

mod 2,

4. Starting all wildp walks with the form: z1 = Q+[c1]P1 where c1 ≡ 0 mod 2.

Theorem 4.3.4. Assuming Heuristic 4.1.4 the expected number of group oper-

ations before we can solve for the DLP in an interval of size N using the 4 set

Gaudry-Schost algorithm (excluding the time taken to invert Q and the bad steps)

is at most

1.74
√
N +

1

θ
.

Proof. Taking the result from Theorem 4.3.3 the interval is now effectively halved

in size as we are only taking even steps but we have an additional set of tame
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walks which only have footprints with odd discrete logarithms in case n1 is odd.

Therefore the expected number of group operations for the 4 set Gaudry-Schost

algorithm to solve the DLP in an interval of size N is given by

4

3
· 1√

2
· 1.85

√
N +

1

θ
≈ 1.74

√
N +

1

θ
.

4.3.3 The improved 3 and 4 set Gaudry-Schost algorithm

Theorem 4.3.4 is an improvement on the 4 kangaroo algorithm but we can go

further. By employing Pollard’s 4 kangaroo technique on the improved Gaudry-

Schost algorithm we obtain an even faster algorithm which we call the improved

4 set Gaudry-Schost algorithm. This algorithm works in exactly the same way

as the 4 set Gaudry-Schost algorithm except that we search only the central two

thirds of the tame set and the same sized search area but split equally between

the extreme ends of the wildn and wildp sets. Figure 4.5 shows these new search

areas as shaded regions. The first diagram in Figure 4.5 shows a best case where

Q = [4N1/15]P1 and the second diagram shows the only worst case where Q =

[2N1/15]P1.

The new search areas are defined in Definition 4.3.5.

Definition 4.3.5. Given the DLP in an interval as in Definition 3.0.9 we define

the following sets below: -
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Figure 4.5: The new Tame, WildN and WildP Sets in a best and worst case
problem instance

New Tame Set T ′ = {a1 | a1 ∈ [N1/3, 13N1/15]},

New WildN set W ′
P = (n1 − 2N1/5 + S) ∪ (n1 + 2N1/15 + S),

New WildP set W ′
N = (−n1 − 2N1/5 + S) ∪ (−n1 + 2N1/15 + S).

where S = {a1 | a1 ∈ [0, 4N1/15]}

Definition 4.3.6. Define A′ = (T ′ ∪W ′
N) ∩W ′

P to be the total overlap between

the new tame and wildp sets and the new wildn and wildp sets. Let the cardinality

of this overlap be given by M ′ = |A′|.

Theorem 4.3.7. Assuming Heuristic 4.1.4 the expected number of group opera-

tions before we can solve for the DLP in an interval of size N using the improved

4 set Gaudry-Schost algorithm (excluding the time taken to invert Q and the bad

steps) is

1.72
√
N +

1

θ
.

Proof. We prove this lemma by first calculating the expected number of group

operations for the improved 3 set Gaudry-Schost algorithm to solve the DLP

in an interval of size N then consider the 4 set improvements. As before, the
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algorithm works on both Q and −Q at the same time we only need to average

over problem instances where n1 ≥ 0, without loss of generality. Therefore let the

problem instance be written as Q = [xN1]P1 for 0 ≤ x ≤ 1. Looking at Figure

4.5 we can calculate the expected number of group operations by taking the sum

of averages scaled over smaller ranges of x.

1. For 2/5 < x ≤ 1 we have seen in Section 4.1.5 that the overlap is A′ =

4N1/15. All walks in W ′
N are wasted and in T ′ and W ′

P we expect to do

two walks before we are walking in the overlap so the expected number of

group operations scaled over this range of x is given by

3

5
· 3

2
· 2
√
π

4N1

15
=

18

5
√

15

√
πN1. (4.11)

2. For 4/15 < x ≤ 2/5 the cardinality of A′ increases as W ′
N ∩ W ′

P is now

nonempty. So the overlap is given by

M ′ = 2

(
2

5
− x

)
N1 +

4N1

15
=

(
16

15
− 2x

)
N1.

As both T ′ ∩W ′
P and W ′

N ∩W ′
P are nonempty we model T ′ ∪W ′

N as one

set which although is twice as large as W ′
P there are twice as many walks

in it so the density of the walks is the same. This enables us to use the

Tame-Wild Birthday Paradox and so the expected number of steps in W ′
P

before a collision is given by

8

15

(
16

15
− 2x

)−1/2 √
πN1

2
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and the expected number of steps in T ′∪W ′
N before a collision is double this

so the expected number of group operations before a TWP or a WNWP

collision scaled over this range of x is

12

15

√
πN1

∫ 2/5

4/15

(
16

15
− 2x

)−1/2

dx =
8
√

2− 8

5
√

15

√
πN1. (4.12)

3. For 1/5 < x ≤ 4/15 the overlap decreases from the maximum of 8N1/15 to

2N1/5 but the right half of W ′
P is still contained in T . So the cardinality of

A′ is given by

M ′ =
8N1

15
− 2

(
4

15
− x

)
N1 = 2xN1.

Again we model T ′ ∪W ′
N as one set and so the expected number of steps

in W ′
P before a collision is given by

8

15
(2x)−1/2

√
πN1

2

and the expected number of steps in T ′∪W ′
N before a collision is double this

so the expected number of group operations before a TWP or a WNWP

collision scaled over this range of x is

12

15

√
πN1

∫ 4/15

1/5

(2x)−1/2 dx =
8
√

2− 4
√

6

5
√

15

√
πN1. (4.13)

4. For 2/15 < x ≤ 1/5 the cardinality of the overlap drops from 2N1/5 when

x = 1/5 to its minimum size across all problem instances. This is where
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W ′
P ∩W ′

N = φ. So the overlap is given by

M ′ =

(
x+

1

15

)
N1 + 2

(
x− 2

15

)
N1 =

(
3x− 1

5

)
N1.

Again we model T ′ ∪W ′
N as one set and so the expected number of steps

in W ′
P before a collision is given by

8

15

(
3x− 1

5

)−1/2 √
πN1

2

and the expected number of steps in T ′∪W ′
N before a collision is double this

so the expected number of group operations before a TWP or a WNWP

collision scaled over this range of x is

12

15

√
πN1

∫ 1/5

2/15

(
3x− 1

5

)−1/2

dx =
8
√

2− 8

15
√

5

√
πN1. (4.14)

5. For 1/15 < x ≤ 2/15 the size of the overlap increases as W ′
P ∩W ′

N becomes

nonempty again. The cardinality of A′ is given by

M ′ = 3

(
2

15
− x

)
N1 +

N1

5
=

(
3

5
− 3x

)
N1.

Again we model T ′ ∪W ′
N as one set and so the expected number of steps

in W ′
P before a collision is given by

8

15

(
3

5
− 3x

)−1/2 √
πN1

2

and the expected number of steps in T ′∪W ′
N before a collision is double this
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so the expected number of group operations before a TWP or a WNWP

collision scaled over this range of x is

12

15

√
πN1

∫ 2/15

1/15

(
3

5
− 3x

)−1/2

dx =
8
√

2− 8

15
√

5

√
πN1. (4.15)

6. Finally for 0 ≤ x ≤ 1/15 T ′∩W ′
N is non empty so we have a double density

of walks in this set which the Tame-Wild Birthday Paradox is not able to

model. So in the same way as Theorem 4.3.3 we have to be pessimistic and

pretend that this intersection is empty. So we treat the cardinality of this

set as |T ′|+ |W ′
N | = 16N1/15. In this case we have

M ′ =
2N1

5
+ 2

(
1

15
− x

)
N1 =

(
8

15
− 2x

)
N1.

The expected number of steps in W ′
P before a collision is given by

8

15

(
8

15
− 2x

)−1/2 √
πN1

2

and as we are modeling T ′ ∪W ′
N as one set such that |T ′ ∩W ′

N | = 0 the

expected number of steps in this set is double the above. Therefore the

expected number of group operations before a TWP or a WNWP collision

scaled over this range of x is

12

15

√
πN1

∫ 1/15

0

(
8

15
− 2x

)−1/2

dx =
8
√

2− 4
√

6

5
√

15

√
πN1. (4.16)

Adding together the results from equations (4.11), (4.12), (4.13), (4.14), (4.15)

and (4.16) gives the expected number of group operations to solve the DLP in
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the interval of size N using the improved 3 set Gaudry-Schost algorithm, which

is (
10 + 24

√
2− 8

√
6

5
√

15
+

16
√

2− 16

15
√

5

)√
πN1 ≈ 1.82

√
N.

Using the same technique as in Theorem 4.3.4, we employ a walk which only makes

steps of even size but we also have double the number of tame walks. Then the

the expected number of group operations to solve the DLP in the interval of size

N using the improved 4 set Gaudry-Schost algorithm is approximately

4

3
· 1√

2
· 1.82

√
N ≈ 1.72

√
N.

Once a collision has occurred it is only identified when both walks hit a distin-

guished point and the result follows.

4.4 Comparison and Experimental results

Table 4.5 gives the expected running times (with ε = 0, without counting bad

steps and omitting the 1/θ terms) of the different algorithms for solving the DLP

in an interval of size N . The improved 4 set Gaudry-Schost is currently the

fastest algorithm for solving this problem. However the difference in running

times between the Pollard 4 kangaroo, 4 set and improved 4 set Gaudry-Schost is

very small. There is only a difference of 0.07 between the constants. Therefore to

really compare them we have to consider experimental data. In Pollards personal

communication with us [36] his experiments produced an average running time

of 1.75
√
N and with some tweaks in the mean step size as low as 1.71

√
N so let

us see how the Gaudry-Schost algorithms fare.
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Name of Algorithm Expected Running
time

Van Oorschot & Wiener optimised for the
average case

2
√
N

Van Oorschot & Wiener optimised for the
worst case

2.16
√
N

Original Gaudry-Schost 2.08
√
N

Improved Gaudry-Schost 2.05
√
N

Pollard 3 kangaroo ≤ 1.90
√
N

Pollard 4 kangaroo ≤ 1.79
√
N

3 set Gaudry-Schost ≤ 1.85
√
N

4 set Gaudry-Schost ≤ 1.74
√
N

Improved 4 set Gaudry-Schost ≤ 1.72
√
N .

Table 4.5: Expected running times of algorithms solving the DLP in an interval
of size N (Update 2)

Using Magma we simulated a group and implemented the 3 set, 4 set and im-

proved 4 set Gaudry-Schost algorithms. Experiments were done on three separate

interval sizes which were approximately 234, 240 and 247 in size. The average run-

ning times for the different experiments and algorithms are given in Table 4.6.

Walks were not permitted to start m/θ from the edge of any of the sets. However

we found that the chance of a walk starting close to this new edge was very small.

In fact no walks stepped outside of the tame and wild sets. Therefore to achieve

a better coverage of these sets we reduced the size of the subsets where walks

were not allowed to start to approximately m/2θ.

In Experiment 1 all the algorithms produced a worse running time that those

given in Table 4.5. A possible reason for this is that the interval was too small for

the pseudorandom walk to be random enough to apply the Tame-Wild Birthday

Paradox accurately. However as the interval sizes increased in Experiment 2 and
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3, we attained running times even faster than those presented in the theoretical

results. This, we believe, is due to the fact that the theoretical results are pes-

simistic as they do not take in account the 3-set overlap T ∩ WN ∩ WP being

nonempty when problem instances approaches Q = [0]P1. In addition our exper-

imental results give further evidence that the 4 set Gaudry-Schost algorithm is

faster than the 3 set variant and the improved 4 set variant is faster still.

# of Experiments 3 set 4 set Improved 4 set

Experiment 1 1000 1.89
√
N 1.79

√
N 1.83

√
N

N ≈ 234

m/θ ≈ 215

Experiment 2 300 1.77
√
N 1.74

√
N 1.71

√
N

N ≈ 240

m/θ ≈ 220

Experiment 3 50 1.75
√
N 1.62

√
N 1.51

√
N

N ≈ 248

m/θ ≈ 224

Table 4.6: Average running times of Gaudry-Schost algorithms for solving the
DLP in an interval of different sizes of N
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Chapter 5

Computing Discrete Logarithms

in Intervals using Equivalence

Classes

Having already made improvements to the algorithms for solving the DLP in

an interval, in this chapter we go further in specific groups. Let us now consider

groups in which we have a fast inversion. What we mean by ‘fast’ is that the time

taken to compute inverses is negligible. An example of such a group is the set of

points on an elliptic curve. E.g. Consider the elliptic curve E : y2 = x3 +Ax+B

over a finite field Fq where q is an odd prime. If we let P = (xP , yP ) ∈ E(Fq)

then the inverse of P is simply −P = (xP ,−yP ).

We first present the equivalence class analogue of the original Gaudry-Schost algo-

rithm in Section 5.2 then present an improvement to the original Gaudry-Schost

algorithm in groups with fast inversion which utilises equivalence classes. This

96



improved Gaudry-Schost algorithm using equivalence classes is now the fastest

algorithm for solving the DLP in an interval in groups with fast inversion. Our

research paper on this topic [14] was accepted to the Indocrypt 2009 conference

in New Delhi, India but has since been withdrawn and resubmitted to the Public

Key Cryptography 2010 conference in Paris, France.
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5.1 Pseudorandom walks on Equivalence Classes

We improve the Gaudry-Schost algorithm by considering sets of equivalence

classes as opposed to just elements of the group. Following the work of Gal-

lant, Lambert and Vanstone [17] and Wiener and Zuccherato [50] it is natural

to consider a pseudorandom walk on a set of equivalence classes. For the DLP

in an interval this only makes sense when the equivalence class is a set of group

elements all of whose discrete logarithms lie in the interval. Groups with fast

inversion are good candidates for this.

Let the DLP in an interval be defined as in Definition 3.0.9. An equivalence

class consists of an element of the group together with its inverse. So given the

problem instance Q the analogous equivalence class problem instance is {Q,−Q}.

As the discrete logarithm of Q, n1, belongs to the interval [−N1, N1] so does −n1,

the discrete logarithm of −Q. It is necessary to be able to compute a unique

representative of the equivalence class so that one can define a deterministic

pseudorandom walk on the equivalence classes. A simple rule in the elliptic curve

case when q is prime is: treat the y-coordinate of P as an integer 0 ≤ yP < q and

let the unique representative be (xP ,min{yP , q − yP}). The pseudorandom walk

is then defined using the unique equivalence class representative.

If we denote elements of the group by their discrete logarithms and order those in

the interval [−N1, N1], then the two elements in an equivalence class are equidis-

tant from the centre of the interval. The standard Gaudry-Schost pseudorandom

walk (Pseudorandom walk 3), in this setting, consists of a set of different sized

jumps uniformly distributed in [0, 2m] where m is the mean step size. However

due to this symmetry, we effectively have a side-to-side walk in the set of equiv-
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alence classes which is taking steps in the interval [−2m, 2m]. As we will see in

Figures 5.1 and 5.2 diagramatically and equations (5.3) and (5.6), walks in the

equivalence classes are analogous to looking at walks on one side of the interval

of exponents as there are only 1 +N/2 equivalence classes.

Therefore we need a different method of determining the size of the subsets (one on

each side) of the tame and wild sets where walks will not start. As we effectively

have a side-to-side walk the size of the subsets where walks are not allowed to start

will be the expected maximum distance/excursion of the walk from its starting

point. We recall the result of Cofman, Flajolet, Flatto and Hofri [7].

Lemma 5.1.1. Let y0, y1, . . . , yk be a symmetric random walk that starts at the

origin (y0 = 0) and takes steps uniformly distributed in [−1,+1] then the expected

maximum excursion is

E(max {|yi| : 0 ≤ i ≤ k}) =

√
2k

3π
+O(1)

N.B. The mean absolute step size in this walk is 1
2
.

Again let m be the mean step size. Then the size of the subset where walks are

not allowed to start will be

2m

√
2

3πθ
. (5.1)

To get a rough idea of how big these subsets are in terms of N , in order to use

only constant storage we must take θ = c/
√
N (as shown in Section 4.1.6). Then

the expression in equation (6.10) becomes

2m

√
2
√
N

3πc
= O(N1/4). (5.2)
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This is very small in comparison to the size of the interval so in practice does not

effect the overall running time of the algorithm.

However an important issue is that there is a danger of small cycles in the walks.

This phenomena was noted by Gallant, Lambert and Vanstone [17] and Wiener

and Zuccherato [50]. This would cause the pseudorandom walks never to reach a

distinguished point. A method to get around this problem is called “collapsing

the cycle” which can be found in Gallant, Lambert and Vanstone [17, Section 6].

Briefly, collapsing the cycle is a method that a pseudorandom walk can use to

detect that it has entered into a cycle and at a specific element of the cycle the

walk takes a step of special size to get out of the cycle. In order for the walk

to remain deterministic both the method of the detecting cycles and stepping to

leave the cycle must be done in a deterministic way.

Example 5.1.2. A trivial way to detect that a walk has entered a cycle is as

follows: We can record a fixed number of previous footprints of the walk and at

each step update this list as well as checking whether the current footprint is in

the list. If it is, then a cycle has been found. There is a very small probability

of larger cycles occurring so we only need to store a small number of previous

footprints, say 10-30. However unless we store all the points in each walk there

will also be a possibility that a cycle will be missed. When a cycle has been found

we need to choose a unique element of the cycle. In the case of elliptic curves a

simple rule could be to choose a point in the cycle with the largest x-coordinate.

Then from that point the walk can take a step of a size specifically reserved for

collapsing the cycle and the walk is now outside of the cycle whilst it is still

deterministic.
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Whilst Example 5.1.2 describes a method for collapsing the cycle which is quite

inefficient the method described by Gallant, Lambert and Vanstone [17] has only

a negligible effect on the overall running time of the algorithm. Also the method

of Nivasch [32] for detecting small cycles in long sequences using a stack would

be a better approach.

Having addressed and resolved the standard issues on equivalence classes we can

apply the Gaudry-Schost algorithm on equivalence classes to solve the DLP in an

interval of size N .

5.2 The Original Gaudry-Schost algorithm on

Equivalence Classes

Recall from Definition 3.0.9 that we are trying to find the discrete logarithm n1

of an element Q of the group.

Definition 5.2.1. Let us redefine the tame set T and the wild set W as sets of

exponents of equivalence classes as follows

T = [{a,−a} | a ∈ [−N1, N1]] ,

W = [{n1 + a,−(n1 + a)} | a ∈ [−N1, N1]] .

We will first consider the case where we are searching all of the tame and wild

sets as given in Definition 5.2.1. Actually, as we will be using Pseudorandom
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Figure 5.1: Searching equivalence classes: Q in the middle and at the end of the
interval

walk 3, walks will start in the following subsets of T and W respectively

Subset of T =

{
{a,−a} | a ∈

[
−N1 + 2m

√
2

3πθ
,N1 − 2m

√
2

3πθ

]}
,

Subset of W =

{
{n1 + a,−(n1 + a)} | a ∈

[
−N1 + 2m

√
2

3πθ
,N1 − 2m

√
2

3πθ

]}
.

As discussed in the last section, due to symmetry, the number of equivalence

classes in the Tame set is 1 + N1 or 1 + N/2 but in the worst case problem

instance there are N equivalence classes in the wild set. To better understand

what we are searching it is useful to consider the search areas visually. T has a

1-to-1 correspondence with the set {a | a ∈ [0, N1]} and is labeled the ‘Tame set’

in Figure 5.1. W is slightly more complicated to visualise due to the symmetry

about the origin of the interval causing the set to change in size. Nevertheless W

has a 1-to-1 correspondence with the set {|n1|+ a | a ∈ [−N1, N1]} which in turn
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has a 1-to-1 correspondence with the following multiset

A ∪B = {|n1|+ a | a ∈ [−|n1|, N1]} ∪ {−(|n1|+ a) | a ∈ [−N1,−|n1|]}. (5.3)

In fact B ⊆ A and this is shown in Figure 5.1 by the cris-cross shading where we

have a ‘double density’ of walks. One could argue that in this region there will be

twice as many wild walks as there are tame walks. However this is not accurate

as the same number of wild walks, as tame, are being spread over a larger search

space. The Tame-Wild Birthday Paradox analysis does not take the different

densities of walks/steps into account so it may be beneficial to have a different

number of tame and wild walks.

Theorem 5.2.2. Assuming Heuristic 4.1.4, if the proportion of walks in T and

W is in the ratio 2 : 3 then the expected number of group operations to solve

the DLP in an interval of size N (without considering the bad steps) using the

original Gaudry-Schost algorithm on equivalence classes is at most

1.70
√
N +

1

θ

group operations.

Proof. Let Q = [xN ]P1 for −1/2 ≤ x ≤ 1/2. Without loss of generality we

can consider the cases where x is positive then normalise to obtain the average

expected running time. Firstly the intuition behind the ratio of pseudorandom

walks in T and W being 2 : 3 is the following. In the average case |W | = 3|T |/2 so

in order for the densities of walks in both sets to be equal in the average case the

ratio of walks in T and W must be 2 : 3. However in all problem instances, except
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when x = 1/4, there will be a double density of walks in a subset of W as shown

in Figure 5.1. We model this situation using the Tame-Wild Birthday Paradox so

we are unable to take the double density of walks into consideration. Hence, our

results are pessimistic and in practice we expect the algorithm to require fewer

steps than our results suggest. The overlap for all problem instances is given by

A = T ∩W = T . The cardinality of A is 1 +N1 = 1 +N/2 ≈ N/2.

1. For problem instances where 0 ≤ x ≤ 1/4 we will be doing more wild walks

than what is required by the Tame-Wild Birthday Paradox. The number of

steps in T before we expect a collision is
√
πN/2/2. Therefore, by the ratio

of walks, the expected number of group operations scaled over this range of

x is given by

1

4
·
5
√
πN/2

4
. (5.4)

2. For 1/4 < x ≤ 1/2 the density of the tame walks will now be higher than

that of the wild walks except in the region of the wild set which has double

density. Again we will pretend that the extra walks in the region of the

double density are wasted. The number of steps in W before we expect to

step in the overlap A is given by 1+2x, so the number of wild steps required

in the overlap before we expect a collision is (1+2x)
√
πN/2/2. The number

of tame steps will be 2/3 of this making the total number of tame and wild

steps 5(1 + 2x)
√
πN/2/6. We need to integrate this expression over the

range 1/4 < x ≤ 1/2 to obtain the expected number of group operations

scaled over this range of x which is at most

5
√
πN/2

6

∫ 1/2

x=1/4

(1 + 2x)dx =
2.1875

√
πN/2

6
. (5.5)
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Adding together the results from equations (5.4) and (5.5) and normalising the

expected number of group operations before a collision is at most

2

(
5
√
πN/2

16
+

2.1875
√
πN/2

6

)
≈ 1.35

√
πN/2 ≈ 1.70

√
N.

Once a collision has occurred it is only identified when both walks hit a distin-

guished point and the result follows.

This is a smaller expected running time when compared to the improved Pollard

kangaroo and the improved 4 set Gaudry-Schost algorithm. In the next section

we will improve on this running time by searching in a smaller region within the

wild set.

5.3 The Improved Gaudry-Schost algorithm on

Equivalence Classes

To improve on the original Gaudry-Schost algorithm on equivalence classes we

search only a subset of the wild set such that in the worst case we are searching

the same number of equivalence classes as in the tame set. To do this we only

search half of the wild set centred in the middle whilst still searching all of the

tame set. This subset of W is described below.

Definition 5.3.1. Let the ‘refined’ wild set be given by

W ′ = {{n1 + a,−(n1 + a)} | a ∈ [−N1/2, N1/2]} .
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Figure 5.2: Searching only half of the Wild Set

As in the original Gaudry-Schost case to better understand the new search area

we can consider it visually. W ′ has a 1-to-1 correspondence with {|n1| + a | a ∈

[−N1/2, N1/2]} for all possible n1 but for |n1| ≤ N1/2 the set W ′ also has a 1-to-1

correspondence with the following multiset

C∪D = {|n1|+a | a ∈ [−|n1|, N1/2]}∪{−(|n1|+a) | a ∈ [−N1/2,−|n1|]}. (5.6)

AgainD ⊆ C and this is shown in Figure 5.2, for the problem instancesQ1 = [0]P1

and Q2 = [N1/4]P1, by the cris-cross shading where we have a ‘double density’

of walks. As the problem instance moves towards Q3 = [N1/2]P1 the region of

double density of wild walks decreases in size until it disappears. In the case of

Q3 we are now searching exactly the same number of equivalence classes in the

tame and wild sets. Then as we move from Q3 to Q4 = [N1]P1 both T and W ′ are
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the same and the analysis follows that of the original Gaudry-Schost algorithm.

We define A′ = T ∩W ′ as the overlap between T and W ′ with cardinality M ′.

Theorem 5.3.2. Assuming Heuristic 4.1.4, the expected number of group opera-

tions to solve the DLP in an interval of size N (without considering the bad steps)

using the improved Gaudry-Schost algorithm on equivalence classes is at most

1.47
√
N +

1

θ

group operations.

Proof. Let Q = [xN ]P1 for −1/2 ≤ x ≤ 1/2. As in the proof of Theorem 5.2.2

we only need to look at the positive half of the interval of exponents as this is

analogous to the number of equivalence classes that we are searching.

1. For problem instances where 0 ≤ x ≤ 1/4, there will be a subset of W ′

with a double density of walks. As explained above in order to model this

situation using the Tame-Wild Birthday Paradox we treat these steps as

wasted. In practice we can expect to solve the DLP even quicker than

specified. The overlap A′ = W ′ has cardinality M ′ = (1/4 + x)N . So the

expected proportion of steps in the A′ is given by

1/4 + x

1/2
.

So the expected number of group operations before we expect a collision,
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scaled over this range of x, is at most

2

(
1

4
+ x

)√
π

(
1

4
+ x

)
N = 2

√
πN

∫ 1/4

x=0

(
1

4
+ x

)3/2

dx ≈ 0.207
√
πN.

(5.7)

2. For problem instances where 1/4 < x ≤ 1/2 there is no subset of W ′ with a

double density of walks. Both T and W ′ have the same cardinality and the

running times are the same as those above. In actual fact the running times

that we have integrated in the previous range of x went from the worst case

to the best case. So in this range of x the running times are the same but in

reverse order i.e. from the best case back down to the worst case. Therefore

the expected running time scaled over this range of x is exactly as given in

equation (5.7).

We multiply the result from equation (5.7) by 2 and then normalise. This gives

the number of group operations before we expect a collision which is at most

1.47
√
N . Once a collision has occurred it is only identified when both walks hit

a distinguished point and the result follows.

This is a significant improvement on the original Gaudry-Schost algorithm on

equivalence classes. As with all the Gaudry-Schost algorithms bad walks will

need to be taken into account when implementing the algorithms but nonethe-

less, for groups with fast inversion the improved Gaudry-Schost algorithm using

equivalence classes is a significant improvement on all previous algorithms. In

the next section we give a revised comparison of all the algorithms and some

experimental results of the improved Gaudry-Schost algorithm using equivalence

classes.
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5.4 Comparison and Experimental results

Table 5.1 gives the expected running times (with ε = 0, without counting bad

steps and omitting the 1/θ terms) of the different algorithms for solving the DLP

in an interval of size N . For groups with fast inversion the improved Gaudry-

Schost algorithm using equivalence classes is currently the fastest algorithm.

Name of Algorithm Expected Running
time

Van Oorschot & Wiener optimised for the
average case

2
√
N

Van Oorschot & Wiener optimised for the
worst case

2.16
√
N

Original Gaudry-Schost 2.08
√
N

Improved Gaudry-Schost 2.05
√
N

Pollard 3 kangaroo ≤ 1.90
√
N

Pollard 4 kangaroo ≤ 1.79
√
N

3 set Gaudry-Schost ≤ 1.85
√
N

4 set Gaudry-Schost ≤ 1.74
√
N

Improved 4 set Gaudry-Schost ≤ 1.72
√
N

Original Gaudry-Schost using equivalence
classes

≤ 1.70
√
N

Improved Gaudry-Schost using equivalence
classes

≤ 1.47
√
N .

Table 5.1: Expected running times of algorithms solving the DLP in an interval
of size N (Update 3)

We implemented the Improved Gaudry-Schost algorithm using equivalence classes

for solving the DLP in an interval using the software package Magma. The group

used was the group of points on the following elliptic curve

E : y2 ≡ x3 + 40x+ 1 over Fp
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where p := 3645540875029913. The group of points has cardinality #E(Fp) =

3645540854261153 > 251. We ran a number of experiments on the same interval

sizes as those given in Table 4.6. Walks were not permitted to start 2m
√

2/3πθ

from the edge of any of the sets. However we found that the chance of a walk

starting even close to this new edge was very low. In fact no walks stepped outside

of the tame and wild sets. Therefore to achieve a better coverage of the sets we

reduced the size of the subsets where walks were not allowed to start to half of

the above. The average running times for the different experiments are given in

Table 5.2.

# of Experiments Improved GS on equivalence classes

Experiment 1 1000 1.49
√
N

N ≈ 234

m/θ ≈ 214

Experiment 2 300 1.47
√
N

N ≈ 240

m/θ ≈ 219

Experiment 3 50 1.46
√
N

N ≈ 248

m/θ ≈ 222

Table 5.2: Average running times of the Improved Gaudry-Schost algorithm using
equivalence classes for solving the DLP in an interval of different sizes of N

To detect small cycles we stored the previous 30/35/45 footprints, in Experiment

1,2 and 3 respectively, and compare (as explained in Example 5.1.2); the cost

of this is not included in our experimental results. But what is included are

the wasted steps from walks which have cycles that were too big to be detected
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or walks which were ‘trapped’ between two cycles. We found that by keeping

T = 20/θ (the maximum number of steps in a walk), walks which were caught in

cycles that could not be detected resulted in too many steps being wasted. This in

turn caused the running times to increase. Therefore we instead took T = 5/θ and

on average the number of steps wasted in this way was approximately 4%, 7%, 15%

of the total number of steps in Experiment 1, 2 and 3 respectively. Even with this

many wasted steps the running times in Table 5.2 are very close to and, in the

case of Experiment 3, better than the theoretical result given in Theorem 5.3.2.

If we remove the wasted steps from the average running time in Experiment 3

we obtain an average running time of 1.24
√
N group operations. This suggests

a more efficient implementation with a different method of detecting cycles may

produce better results.

One could use the method of Gallant, Lambert and Vanstone [17, Section 6] for

detecting cycles, which would increase the number of group operations but could

reduce the number of wasted steps. Alternatively the method of Nivasch [32],

which utilises a stack, may lower the running time.
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Chapter 6

Multidimensional Discrete

Logarithm Problem

In this chapter we consider the multidimensional discrete logarithm problem. The

multidimensional DLP is a generalisation of the DLP in an interval. A point to

note here is that for all the algorithms in this chapter there is no requirement for

the group G to be cyclic.

Definition 6.0.1. Let G be a group of order r. Let P1, P2, . . . , Pd, Q ∈ G and

N1, N2, . . . , Nd ∈ N be given. Then the d-dimensional discrete logarithm problem

is to find integers ni ∈ [−Ni, Ni] for 1 ≤ i ≤ d such that

Q = [n1]P1 + [n2]P2 + . . .+ [nd]Pd. (6.1)
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In general we will let N be the size of the entire search space i.e.

N =
d∏

i=1

(2Ni + 1). (6.2)

Here we let d be the dimension of the problem. When d = 1 we have the problem

discussed in Chapters 3, 4 and 5 namely the DLP in an interval. In this chapter

it is referred to as the 1-dimensional DLP.

We have seen Shank’s BSGS algorithm in Section 2.2 for solving the standard

DLP where the interval of possible solutions is only restricted by the order of the

group. However we can extend the BSGS algorithm to the multidimensional DLP.

The number of group operations required to solve the DLP using this algorithm is

O(
√
N) but the main drawback of the algorithm is the storage requirement which

is also O(
√
N) group elements. As N gets large there is an obvious motivation

to use a low memory algorithm just as in the case of the standard DLP. We have

already discussed in depth the algorithms to solve the multidimensional DLP

when d = 1 so in this chapter we discuss the cases where d > 1. Although we

will mainly consider the multidimensional DLP for d ≤ 3 the generic algorithm

and the improvements extend to any dimension in theory.

First we motivate the multidimensional DLP in Section 6.1 by discussing various

applications where this problem appears. Then we present the standard mul-

tidimensional Gaudry-Schost algorithm in Section 6.2. As we encompass many

discrete logarithm problems within the umbrella of the multidimensional DLP, we

focus on the 2-dimensional problem in Section 6.3.1 then the d-dimensional DLP

for d ≥ 3 in Section 6.4. We present our improved multidimensional Gaudry-

Schost algorithm in Sections 6.3.1.2 and 6.4. Our research paper on this algo-
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rithm and its analysis [15] was published in the proceedings of the 12th IMA

International Conference on Cryptography and Coding in Cirencester, UK.
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6.1 Applications of the multidimensional Gaudry-

Schost algorithm

Computing the group order of the jacobian of curves can be formulated as a

multidimensional DLP. An instance of this is shown in Example 6.1.1.

Example 6.1.1. Let C be a genus 2 curve defined over Fq, a finite field of order

q where q is some prime power, then the group order of the jacobian of the curve

is given by

#JC(Fq) = q2 + 1 + n1(1 + q) + n2,

where |n1| ≤ 4
√
q and |n2| ≤ 6q (Weil [49]). If we raise this equation to some

generator P ∈ JC(Fq) then we have the following

[#JC(Fq)]P − [q2 + 1]P =[n1][1 + q]P + [n2]P

O +Q =[n1]P1 + [n2]P2.

We now have a 2-dimensional DLP where n1 and n2 are known to be in some

bounds.

Gaudry and Schost [19] consider the problem described in Example 6.1.1 on

hyperelliptic curves of genus 2 for which the characteristic polynomial of the

Frobenius endomorphism is known modulo some integer. In such a case the

bounds for n1 remain the same but the bounds for n2 become

2|n1|
√
q − 2q ≤ n2 ≤

n2
1

4
+ 2q.
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We will se an improvement on their algorithm for d > 1 in Sections 6.3.1.2 and

6.4 but also the extension of the algorithm to all dimensions which we can use

for computing the group order of the Jacobian of curves of any genus.

The Gallant, Lambert and Vanstone (GLV) method [18] speeds up elliptic curve

arithmetic by rewriting [n]P as [n1]P + [n2]ψ(P ) for some endomorphism ψ and

where |n1|, |n2| ≈
√
n. The integers n1, n2 are found by solving the closest vector

problem in a lattice. An alternative is to choose “smaller” n1, n2 ∈ Z directly,

rather than choosing a random integer n and rewriting it. Solving the DLP for

points generated by the GLV method can be phrased as a multidimensional DLP.

The methods of this paper imply that n1 and n2 cannot be chosen to be too small.

See Galbraith and Scott [16] and Galbraith, Lin and Scott [12] for examples of

the GLV method with d > 2.

Another approach to efficient elliptic curve cryptography is to use Koblitz curves

[28]. We rewrite [n]P as
L∑

i=0

niτ
i(P )

where ni = {−1, 0, 1} and τ(P ) = (x(P )2, y(P )2) is the 2-power Frobenius map.

Since
L∑

i=0

niτ
i ≡ a+ bτ in Z[τ ]/(τ 2 − tτ + 2)

where |a| < 3
√

2L and |b| < 2
√

2L as shown by Benits [2], solving the DLP can

again be phrased as a multidimensional DLP i.e. Q = [a]P + [b]τ(P ). It follows

that L cannot be chosen to be too small. The same ideas can be applied on genus

2 curves over F2 leading to a 4-dimensional DLP.
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6.2 The Multidimensional Gaudry-Schost algo-

rithm

In this section we present the Gaudry-Schost algorithm for the d-dimensional

DLP. First we will define the tame and wild sets in this case. From Definition

6.0.1 we know that

Q ∈ {[a1]P1 + [a2]P2 + . . .+ [ad]Pd | ai ∈ [−Ni, Ni] for 1 ≤ i ≤ d} .

As usual, rather than looking at sets of group elements, we consider sets of d-

tuples of exponents. We will also refer to the exponents as the Pi base represen-

tation.

Definition 6.2.1. Given the multidimensional DLP as in Definition 6.0.1 then

define the tame and wild sets below, respectively,

T = {(a1, a2, . . . , ad) | ai ∈ [−Ni, Ni] for 1 ≤ i ≤ d} ,

W = (n1, n2, . . . , nd) + T.

For the purposes of presenting the algorithm we assume there is a function

walk(xi, a1i, . . . , adi) which computes the next step in the random walk and returns

the tuple (xi+1, a1(i+1), . . . , ad(i+1)). Also we will store the distinguished points in

an easily searched structure such as a binary tree. So we will assume searching

and storing times are polynomial and therefore will omit these operations from

Algorithm 10.

We use the Tame-Wild Birthday Paradox to analyse the running time of the
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Algorithm 10 The Gaudry-Schost Algorithm: Server side

Input: d ∈ N, P1, P2, . . . , Pd, Q ∈ G
Output: Integer tuple (n1, n2, . . . nd) such that Q = [n1]P1+[a2]P2+ . . .+[nd]Pd

1: Choose the function walk uniformly at random
2: Let AT be a binary tree to store distinguished points from tame walks
3: Let AW be a binary tree to store distinguished points from wild walks
4: while multidimensional DLP not solved do
5: if received tuple from Tame Processor then
6: Construct tuple as zT := (R, a1, . . . , ad)
7: if (R, b1, . . . , bd) ∈ AW for some bj’s (1 ≤ j ≤ d) then
8: Send terminate signal to all clients
9: return (a1 − b1, a2 − b2, . . . , ad − bd)

10: else
11: Append AT with zT

12: end if
13: else
14: Construct tuple as zW := (R, b1, . . . , bd)
15: if (R, a1, . . . , ad) ∈ AT for some aj’s (1 ≤ j ≤ d) then
16: Send terminate signal to all clients
17: return (a1 − b1, a2 − b2, . . . , ad − bd)
18: else
19: Append AW with zW

20: end if
21: end if
22: end while

Gaudry-Schost algorithm for all dimensions. We can only apply the Tame-Wild

Birthday Paradox to the overlap, A = T ∩W , between the tame and wild sets. In

the next sections we focus on the 2-dimensional and 3-dimensional DLPs where

these sets can be visualised as rectangles and cuboids respectively. In addition

we will concentrate on the differences in the Gaudry-Schost algorithm between

the 1-dimensional case and when d > 1. The two main differences are the pseu-

dorandom walks and the counting of bad steps. More importantly an analogous

improvement to that described in Section 4.1.5 for the 1-dimensional case can be

applied to the multidimensional case. This is first presented in Section 6.3.1.2 for
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Algorithm 11 The Gaudry-Schost Algorithm: Tame Processor

Input: d,N1, N2, . . . Nd ∈ N, P1, P2, . . . , Pd, Q ∈ G, function walk
1: repeat
2: Choose random integers aj ∈ [−Nj, Nj] for 1 ≤ j ≤ d
3: x := [a1]P1 + [a2]P2 + . . .+ [ad]Pd, Counter:= 0
4: while x is not a distinguished point and Counter ≤ 20/θ do
5: Counter++
6: (x, a1, . . . , ad) := walk(x, a1, . . . , ad)
7: end while
8: Send (x, a1, . . . , ad) to the server.
9: until The server sends terminate signal

Algorithm 12 The Gaudry-Schost Algorithm: Wild Processor

Input: d,N1, N2, . . . Nd ∈ N, P1, P2, . . . , Pd, Q ∈ G, function walk
1: repeat
2: Choose random integers aj ∈ [−Nj, Nj] for 1 ≤ j ≤ d
3: y := Q+ [a1]P1 + [a2]P2 + . . .+ [ad]Pd, Counter:= 0
4: while y is not a distinguished point and Counter ≤ 20/θ do
5: Counter++
6: (y, a1, . . . , ad) := walk(y, a1, . . . , ad)
7: end while
8: Send (y, a1, . . . , ad) to the server.
9: until The server sends terminate signal

the 2-dimensional problem.

6.3 The 2-dimensional Discrete Logarithm Prob-

lem

6.3.1 The Original Gaudry-Schost algorithm

Gaudry and Schost [19] mainly considered the 2-dimensional DLP which was

motivated by counting the points on the Jacobian of genus 2 hyperelliptic curves.
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To recap given P1, P2, Q ∈ G where the group is G = E(Fq)[r] as before, the

2-dimensional DLP is to find integers n1 and n2 such that Q = [n1]P1 + [n2]P2.

We have some extra information that n1 ∈ [−N1, N1] and n2 ∈ [−N2, N2] where

N1 and N2 are less than the order of G. As in equation (6.2) let N = (2N1 +

1)(2N2 + 1) but also for ease of notation let Ñ1 = 2N1 + 1 and Ñ2 = 2N2 + 1.

The tame and wild sets in this case are,

T = {(a1, a2) | a1 ∈ [−N1, N1] and a2 ∈ [−N2, N2]} ,

W = {(n1, n2) + T} .

Unlike the 1-dimensional case we are no longer dealing with an interval of elements

but a ‘rectangle’ of possible solutions where we denote each element by its Pi base

representation. As before we define the intersection of the tame and wild sets

as A = T ∩W and its cardinality M = |A|. We use the Tame-Wild Birthday

Paradox analysis to obtain the expected running time (expected number of group

operations) before we have a TW collision. However there is still an issue of

selecting elements of T and W uniformly at random. Unlike the 1-dimensional

case there are now many more options for the walk. We will consider a number

of different walks in Section 6.3.2 but for now we will use the pseudorandom walk

used by Gaudry and Schost which is described below

Pseudorandom Walk - 2D 4. The Gaudry-Schost 2-dimensional pseudoran-

dom walk is as follows: We partition G into distinct sets Si for 0 ≤ i < ns as

before. The tame walk starts at x1 = [a1]P1 +[a2]P2 for some a1 ∈ [−N1, N1] and
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a2 ∈ [−N2, N2] and continues as follows

xi+1 = f(xi) = xi + [1]P1 + [zj]P2

where the steps zj for 0 ≤ j ≤ ns are uniformly distributed at random in the

interval [−2m2, 2m2] where m2 is the mean step size in the P2 component. The

wild walks start at y1 = Q+[a1]P1 +[a2]P2 with a1 and a2 as above and continue

as above.

6.3.1.1 Running time analysis

Gaudry and Schost use a Tame-Wild Birthday Paradox analysis on the overlap

A to obtain an expected running time. As before we will need to consider the

wasted or ‘bad’ steps of the algorithm. This is looked at in Section 6.3.3 after we

have observed any possible improvements to their algorithm in the 2-dimensional

case. If N is sufficiently large then we can make the following assumption,

Heuristic 6.3.1. If N is sufficiently large then the pseudorandom walk described

in Pseudorandom walk 4 is sufficiently random that the Tame-Wild Birthday

Paradox analysis applies to the set A in the 2-dimensional discrete logarithm

problem.

We will come back to Heuristic 6.3.1 in Section 6.3.4. In that section we will also

study what sorts of pseudorandom walks can arise when working in 2 dimensions.

As in the 1-dimensional case we take the number of processors NP to be 1. Unlike

the 1-dimensional algorithm the cardinality of the overlap can have the following

range N
4
≤M ≤ N .
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Gaudry and Schost [19, Section 4.1] outline the following result which we also

prove.

Theorem 6.3.2. Assuming Heuristic 6.3.1 the expected number of group opera-

tions to solve the 2-dimensional DLP of size N using the original Gaudry-Schost

algorithm (without considering the bad steps) is

2.43
√
N +

1

θ
. (6.3)

Proof. To find the average expected running time we have to average over all

possible n1 and n2. Without loss of generality let us consider problem instances

in one ‘corner’ of the search space so let Q = [−N1 + xÑ1]P1 + [−N2 + yÑ2]P2

for x, y ∈ [0, 1/2]. The size of the overlap A is then

(
1

2
+ x

)
Ñ1 ·

(
1

2
+ y

)
Ñ2 =

(
1

2
+ x

)(
1

2
+ y

)
N.

So the expected proportion of tame or wild walks in A is

((
1

2
+ x

)(
1

2
+ y

))−1

.

So the expected number of group operations before we have a TW-collision is
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given by

4

∫ 1/2

x=0

∫ 1/2

y=0

1(
1
2

+ x
) (

1
2

+ y
)√π

(
1

2
+ x

)(
1

2
+ y

)
N dy dx

= 4
√
πN

∫ 1/2

x=0

∫ 1/2

y=0

((
1

2
+ x

)(
1

2
+ y

))−1/2

dy dx

= 4
√
πN

(∫ 1/2

x=0

(
1

2
+ x

)−1/2

dx

)2

= 16
√
πN

(
1− (1/2)1/2

)2
≈ 2.43284

√
N.

Then the walk will need to continue to the distinguished point and we have the

result.

6.3.1.2 Improving the Gaudry-Schost Algorithm in the 2-dimensional

case

As in the 1-dimensional case in order that we have a constant running time we

would like to make the overlap between the tame and wild sets constant for all

problem instances. Using the analogous strategy from the 1-dimensional case we

will search in a ‘rectangle’ of size k2N , where 0 < k < 1, centred in the middle

of the tame set and we will search the same number of elements in the wild set

but split up into four disjoint sets at the ‘corners’ of W . The ‘New Tame’ set is

given below,

T ′ = {(a1, a2) | a1 ∈ [−kN1, kN1] and a2 ∈ [−kN2, kN2]} .
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Figure 6.1: Searching k2N of the Tame and Wild Sets

The ‘New Wild’ set can be written as the union of four disjoint sets, W ′ =

W ′
1 ∪W ′

2 ∪W ′
3 ∪W ′

4, which are given below,

W ′
1 = {(n1, n2) + (a1, a2) | a1 ∈ [−N1, (k − 1)N1] and a2 ∈ [(1− k)N2, N2]}

W ′
2 = {(n1, n2) + (a1, a2) | a1 ∈ [(1− k)N1, N1] and a2 ∈ [(1− k)N2, N2]}

W ′
3 = {(n1, n2) + (a1, a2) | a1 ∈ [−N1, (k − 1)N1] and a2 ∈ [−N2, (k − 1)N2]}

W ′
4 = {(n1, n2) + (a1, a2) | a1 ∈ [(1− k)N1, N1] and a2 ∈ [−N2, (k − 1)N2]} .

Figure 6.1 shows the new tame and wild sets diagrammatically. In the previous

best case Q lay in the middle of the ‘rectangle’, so the new overlap A′ = T ′ ∪W ′

in this instance has cardinality

M ′ = 4

(
Ñ1(2k − 1)

2

)(
Ñ2(2k − 1)

2

)
= (2k − 1)2Ñ1Ñ2 = (2k − 1)2N.
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In the previous worst case Q lay in a corner of the ‘rectangle’, so the new overlap

has cardinality,

M ′ =
k2N

4
.

Equating these different values of M gives the following quadratic

15k2 − 16k + 4 = 0,

which has solutions k = 2/5 or 2/3. We can eliminate the first as a solution as

the overlap would be empty in the extreme case. So we take k = 2/3.

Lemma 6.3.3. Using the notation above when k = 2/3 the cardinality of the

overlap between the new tame and wild sets T ′ and W ′ respectively is

|A′| = M ′ =
N

9

for all problem instances Q.

Proof. Without loss of generality let us deal with the problem instances where

n1, n2 ≥ 0. We know that when the problem instance is Q1 = [0]P1 + [0]P2

or Q2 = [N1]P1 + [N2]P2 the overlap is N/9. Let us start at Q1 and look at

the problem instance as it moves to Q2. As the problem instance moves in the

P1 component T ′ ∩W ′
2 and T ′ ∩W ′

3 increases at the same amount as T ′ ∩W ′
1

and T ′ ∩W ′
4 decreases. An analogous event occurs when we move the problem

instance in the P2 component (vertical movement in Figure 6.1). Therefore we

can see that M ′ will remain constant for all problem instances hence proving the

result.
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Theorem 6.3.4. Assuming Heuristic 6.3.1 the expected number of group opera-

tions to solve the 2-dimensional DLP of size N using the improved Gaudry-Schost

algorithm when k = 2/3 (without considering the bad steps) is

4
√
πN

3
+

1

θ
≈ 2.36

√
N +

1

θ
. (6.4)

Proof. From Lemma 6.3.3 we know that the overlap for all problem instances is

N/9. On average one quarter of steps will be in the overlap A′ just as in the

previous worst case. However the new overlap is smaller than in the original

algorithm and so the expected number of steps before we have a TW collision is

4

√
πN

9
=

4
√
πN

3
.

Then the walk will need to continue to the distinguished point and we have the

result.

We can see that this is an improvement on the original Gaudry-Schost algorithm

(Theorem 6.3.2) with the added bonus that this will be the running time for all

problem instances. Gaudry and Schost did not analyse any form of bound for

the expected number of bad steps in their paper [19]. We will cover that in the

Section 6.3.3. However, bounding bad steps depends on the type of walk we are

using so first we will consider a number of different walks.
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6.3.2 Pseudorandom walks in the 2-dimensional case

Now we consider a smattering of different pseudorandom walks which can be

implemented in the 2-dimensional case and then in Section 6.3.3 we will count

the bad steps for the different types of walks.

The tame walks start x1 = [a1]P1 + [a2]P2 for some a1 ∈ [−N1, N1] and a2 ∈

[−N2, N2] and continue as per the pseudorandom walks below. The wild walks

are very similar except that they start y1 = Q+ [a1]P1 + [a2]P2 with a1 and a2 as

above and continue as per the pseudorandom walks below. Note that for walks

of type ‘1-forward and to the right’ we assume N2 ≥ N1 and for the other types

of walks we assume the opposite, i.e. that N1 ≥ N2.

Definition 6.3.5. Let m1 and m2 be the mean step size in the P1 and P2 com-

ponents respectively. Where a walk has both positive and negative steps in a

particular component then the associated mi will be the mean absolute step size

which is calculated by taking the mean of the absolute values of the steps sizes.

Pseudorandom Walk - 2D Type (1-forward and to the right). The number

of partitions of G is ns and 0 ≤ S(xi) < ns.

xi+1 = f(xi) = xi + [1]P1 + [2S(xi)]P2.

Pseudorandom Walk - 2D Type (1-forward and side-to-side). The number

of partitions of G is ns, 0 ≤ S(xi) < ns and b is some base i.e. b = 2.

xi+1 = f(xi) =

 xi + [1]P1 + [bS(xi)/2]P2 if S(xi) ≡ 0 (mod 2)

xi + [1]P1 + [−b(S(xi)−1)/2]P2 if S(xi) ≡ 1 (mod 2).
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Pseudorandom Walk - 2D Type (1-forward and side-to-side uniformly). The

number of partitions of G is ns

xi+1 = f(xi) = xi + [1]P1 + [zj]P2

where the steps zj for 0 ≤ j ≤ ns are uniformly distributed at random in the

interval [−2m2, 2m2]. N.B. This is the pseudorandom walk used by Gaudry and

Schost [19]

In Section 6.3.4 we will run experiments on the different pseudorandom walks

above to compare which is closest to selecting elements uniformly at random.

However we need to consider the different types of walks before we look at the

bad steps as the bounds on the expected number of bad steps depends on the

type of pseudorandom walk. The three types above are: -

• ‘1-forward and to the right’: This pseudorandom walk has no ‘side-to-side‘

aspect and in that sense this walk works very much like the walk in the

1-dimensional case. We will bound the number of bad steps of this walk in

Section 6.3.3.1.

• ‘1-forward and side-to-side’: which are pseudorandom walks that step ‘side-

to-side’ in the P2 component in powers of some base b. We will consider

this walk and variations in Section 6.3.4. To stop the walks visiting an

element with the same exponents we always move in a positive direction

in a particular component namely P1 where the mean step size is 1 for all

the walks. We will bound the number of bad steps of this walk in Section

6.3.3.2.
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• ‘1-forward and side-to-side uniformly’: This pseudorandom walk is very

similar to the previous walk except the steps are not powers of a base but

are uniformly distributed in [−2m2, 2m2]. In every other way these walks

are the same as the ‘1-forward and side-to-side’ pseudorandom walks. We

will bound the number of bad steps of this walk in Section 6.3.3.2 as well.

6.3.3 Counting bad steps in the 2-dimensional case

In this section we give bounds on the number of wasted or ‘bad’ steps. As a

reminder the first type of bad step comes from a walk which never reaches a

distinguished point and the second type comes from walks which step outside

of the tame and wild sets and therefore cannot be added to the Tame-Wild

Birthday Paradox. Using Lemma 4.1.9 we can again bound the bad steps of type

1 as 5× 10−8 of the total number of steps. This will be true for all dimensions.

Definition 6.3.6. Let B1 and B2 denote the number of bad steps of type 2 in

the P1 and P2 components respectively.

6.3.3.1 ‘1-forward and to the right’ walks

For pseudorandom walks of type ‘1-forward and to the right’,

m2 =
2ns − 1

ns

,

The maximum step size in the P2 component is max2 = 2ns−1. In the case of the

tame walks, by Lemma 4.1.3, walks are not permitted to start cB = 1
θ

from the

right hand edge of the interval of a1 and dB = m2

θ
from the right hand edge of
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the interval of a2 as shown in Figure 6.2. So the subsets of T ′, W ′
1, W

′
2, W

′
3 and

W ′
4 where walks are permitted to start are given by the following respectively,

T ′ = {(a1, a2) | a1 ∈ [−2N1/3, 2N1/3− 1/θ] and a2 ∈ [−2N2/3, 2N2/3−m2/θ]} ,

W ′
1 = {(n1, n2) + (a1, a2) | a1 ∈ [−N1,−N1/3− 1/θ] and a2 ∈ [N2/3, N2 −m2/θ]} ,

W ′
2 = {(n1, n2) + (a1, a2) | a1 ∈ [(N1/3, N1 − 1/θ] and a2 ∈ [N2/3, N2 −m2/θ]} ,

W ′
3 = {(n1, n2) + (a1, a2) | a1 ∈ [−N1,−N1/3− 1/θ] and a2 ∈ [−N2,−N2/3−m2/θ]} ,

W ′
4 = {(n1, n2) + (a1, a2) | a1 ∈ [N1/3, N1 − 1/θ] and a2 ∈ [−N2,−N2/3−m2/θ]} .

In Figure 6.2 we can see these areas where walks are not permitted to start on

Figure 6.2: Shaded area represents the area where walks cannot start for pseu-
dorandom walks of type ‘1-forward and to the right’

the tame set and also how they correspond on the wild set. As W ′ is the union of

four disjoint sets the area where wild walks are not permitted to start is not the

same as in T ′. In fact just as in the 1-dimensional case our bound on the number
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of bad steps in the W ′ will be just over twice that of T . So we will concentrate

on the wild set and adjust at the end by bounding the tame set component as

half that of the wild set.

Lemma 6.3.7. Given that the algorithm has made K steps, then we can bound

the P1 component of the number of bad steps of type 2 in the 2-dimensional ‘1-

forward and to the right’ case as,

B1 <
4.365K

Ñ1θ/3− 1
. (6.5)

Proof. We will focus on the wild walks as we have seen that the number of bad

steps of type 2 from wild walks are just over twice as those in the tame walks.

Without loss of generality let us consider the set W ′
2. Let X denote the set of

all elements of W ′
2 such that if a pseudorandom walk starts at those elements

there is a nonzero probability that the walk will step outside of the search space

in its P1 component. Unlike the 1-dimensional case, we cannot be as crude as

saying that every walk that has a possibility of stepping outside W ′
2 will do so

with probability 1. We have to consider the set X in distinct bands of width 1
θ
.

Then in each band this probability will be different i.e. it will be smaller as we

go further into the search space. So we can write

X =
19⋃
i=1

Xi

where

Xi =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
N1 −

i+ 1

θ
,N1 −

i

θ

]
and a2 ∈

[
N2

3
, N2 −

m2

θ

]}
.
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Then an upper bound on B1 in band Xi can be given by the following calculation:

The probability that a wild walk starts in Xi given that it is already starting in

W ′
2 × a bound on the probability that a walk will step outside W ′

2 × the expected

number of wild walks in W ′
2 ×T . So the probability that a walk starts in Xi is

1
θ

(
Ñ2

3
− m2

θ

)
(

Ñ1

3
− 1

θ

)(
Ñ2

3
− m2

θ

) =
1

Ñ1θ/3− 1
.

Therefore we have an upper bound for the wild walk part in W ′
2 of the number

of bad steps of type 2 in the P1 component which is

[
19∑
i=1

1

Ñ1θ/3− 1
· (1− θ)

i
θ

]
· Kθ

16
· 20

θ
≤5

4
K

19∑
i=1

e−i

Ñ1θ/3− 1

≤ 0.727K

Ñ1θ/3− 1
.

Multiplying the total by 4 to take into account all disjoint parts of W ′ and then

multiplying by 3/2 to take into account both the tame and wild walks we have

the result.

Lemma 6.3.8. Given that the algorithm has made K steps, then we can bound

the P2 component of the number of bad steps of type 2 in the 2-dimensional ‘1-

forward and to the right’ case as,

B2 <
11.86 max2K

Ñ2θ/3−m2

. (6.6)

Proof. We will focus on the wild walks as we have seen that the number of bad

steps of type 2 from wild walks are just over twice as those in the tame walks.

Without loss of generality let us consider the set W ′
2. Let X denote the set of all
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elements of W ′
2 such that if a pseudorandom walk starts at those elements there

is a nonzero probability that the walk will step outside of the search space in its

P2 component. As in the case of B1, we have to consider X in distinct bands of

width max2

θ
. Then in each band this probability will be different i.e. it will be

smaller as we go further into the search space. However the first band will not

have the same width as the others. As the mean step size m2 is different from

the maximum step size max2, the first band will have width max2−m2

θ
whilst the

others will have width max2

θ
. So we can write

X =
19⋃
i=0

Xi,

where

X0 =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
N2 −

max2

θ
,N2 −

m2

θ

]}
Xi =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
N2 −

(i+ 1) max2

θ
,N2 −

imax2

θ

]}

for 1 ≤ i ≤ 19. Therefore we have an upper bound for the wild walk part of W ′
2

of the number of bad steps of type 2 in the P2 component which is

[(
max2−m2

Ñ2θ/3−m2

(1− θ)
max2 −m2

max2 θ

)
+

19∑
i=1

max2

Ñ2θ/3−m2

· (1− θ)
i
θ

]
· Kθ

16
· 20

θ

≤ 5

4
K

[
(max2−m2)e

−1+
m2

max2

Ñ2θ/3−m2

+
19∑
i=1

max2 e
−i

Ñ2θ/3−m2

]

≤ 1.977 max2K

Ñ2θ/3−m2

.

Multiplying the total by 4 to take into account all disjoint parts of W ′ and then
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multiplying by 3/2 to take into account both the tame and wild walks we have

the result.

We can see from Lemma 6.3.7 and 6.3.8 that the bounds on B1 and B2 depend

upon Ñ1 and Ñ2 (respectively), θ and ns or another way to look at it; if we want

to limit these bounds to a certain proportion of the total number of steps, i.e.

1%, then for specific Ñ1 and Ñ2 there may be limits to how large θ and ns can

be. Table 6.1 gives the minimum bounds for Ñ1 if we want to keep B1 as 0.5%

of the total number of steps for different values of θ. In this case the value of ns

is redundant as m1 for all ns is 1. Table 6.2 gives the minimum bounds for Ñ2 if

we want to keep B2 as 0.5% of the total number of steps for different values of θ

and ns.

θ = 2−8 θ = 2−16 θ = 2−32

220 228 244

Table 6.1: Minimum values of Ñ1 to have B1 < 0.5% of the total number of steps
for different θ

θ = 2−8 θ = 2−16 θ = 2−32

ns = 8 228 236 252

ns = 16 236 244 260

ns = 20 240 248 264

ns = 32 252 260 276

Table 6.2: Minimum values of Ñ2 to have B2 < 0.5% of the total number of steps
for different θ and ns for pseudorandom walks of type ‘1-forward and to the right’
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6.3.3.2 ‘1-forward and side-to-side’ walks

With the ‘1-forward and side-to-side’ and the ‘1-forward and side-to-side uni-

formly’ walks we have to look at the mean steps sizes differently. In the P2

component the mean step size of the side-to-side pseudorandom walks is 0 so we

now let m2 be the mean absolute step size which is calculated by taking the mean

of the absolute values of the step sizes. Our pseudorandom walks, as described in

Figure 6.3: Shaded area represents the area where walks cannot start for pseu-
dorandom walks of type ‘1-forward and side-to-side’

Section 6.3.2, have the same mean step size in the P1 component as the ‘1-forward

and to the right’ walks so the boundary where walks are not permitted to start in

the P1 component is of size cB = 1
θ
, as before. Therefore an upper bound on the

number of bad steps of type 2 in the P1 component, B1, also remains the same

and is given in Lemma 6.3.7. However in the P2 component we have ‘side-to-side’

walks and therefore calculate our bound B2 differently than in the ‘1-forward and

to the right’ walks. We again use the result of Cofman, Flajolet, Flatto and Hofri
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[7] (as described in Lemma 5.1.1) to give the expected maximum distance (or

expected maximum excursion) that our walks will go in the P2 component from

its starting position. This will become dB, as shown in Figure 6.3, which will be

on both extreme ends of the interval of the P2 component. The pseudorandom

walks of type ‘1-forward and side-to-side’ have step sizes in the P2 component

which are powers of a base b and therefore are not uniformly spread out between

the smallest and largest steps. However when defining dB we will treat these

walks in the same way as those of type ‘1-forward and side-to-side uniformly’.

Therefore we have the following Heuristic.

Heuristic 6.3.9. As the number of partitions of G increases a ‘side to side’ pseu-

dorandom walk, which takes steps uniformly at random in the interval [−2m2, 2m2],

will have expected maximum excursion

2m2

√
2n

3π

after n steps, as given in Lemma 5.1.1.

Heuristic 6.3.9 is a realistic assumption and in Section 6.3.4 we will compare

our pseudorandom walks to see if walks which are powers of a base b perform

any differently in practice to those which takes steps uniformly at random in the

interval [−2m2, 2m2].

Lemma 6.3.10. Assuming Heuristic 6.3.9 and that our ‘1-forward and side-to-

side’ pseudorandom walk takes steps uniformly at random in the interval [−2m2, 2m2],

then in the P2 component walks should not start less then dB from the righthand
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edge of the interval where

dB = m2

√
8

3πθ
.

Proof. Assuming Heuristic 6.3.9, from Theorem 3.2.1 the expected walk length is

1
θ

and our mean absolute step size is m2 = 2m2 × 1
2
. Therefore the result follows

directly from Lemma 5.1.1.

So the subsets of T ′, W ′
1, W

′
2, W

′
3 and W ′

4 where walks are permitted to start are

given by the following respectively,

T ′ =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
−2N1

3
,
2N1

3
− 1/θ

]
and a2 ∈

[
−2N2

3
+ dB,

2N2

3
− dB

]}
,

W ′
1 =

{
(n1, n2) + (a1, a2)

∣∣∣∣ a1 ∈
[
−N1,−

N1

3
− 1

θ

]
and a2 ∈

[
N2

3
+ dB, N2 − dB

]}
,

W ′
2 =

{
(n1, n2) + (a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
N2

3
+ dB, N2 − dB

]}
,

W ′
3 =

{
(n1, n2) + (a1, a2)

∣∣∣∣ a1 ∈
[
−N1,−

N1

3
− 1

θ

]
and a2 ∈

[
−N2 + dB,−

N2

3
− dB

]}
,

W ′
4 =

{
(n1, n2) + (a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
−N2 + dB,−

N2

3
− dB

]}
.

An important point to note here is that when we consider the side-to-side walks in

practice, it is possible that they can step out and then back into the search area.

Such walks are useful in practice but cannot be counted towards the Tame-Wild

Birthday Paradox analysis.

Lemma 6.3.11. Given that the algorithm has made K steps, then we can bound

the P2 component of the number of bad steps of type 2 in the 2-dimensional ‘1-
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forward and side-to-side’ case as,

B2 <
12.48 max2K

Ñ2θ/3− 2θdB

(6.7)

where max2 is the largest positive step size.

Proof. In the same way as the ‘1-forward and to the right’ walks the number of

bad steps of type 2 from the wild walks are just over twice as those in the tame

walks so we will focus on the wild walks and adjust our calculation at the end to

include all walks. Without loss of generality let us consider the set W ′
2. Let X

denote the set of all elements of W ′
2 such that if a pseudorandom walk starts at

those elements there is a nonzero probability that the walk will step outside of

the search space in its P2 component. Then X = XL ∪XR where

XL =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
N2

3
+ dB,

N2

3
+

20 max2

θ

]}
XR =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
N2 −

20 max2

θ
,N2 − dB

]}

Just as in the proof of Lemma 6.3.8 we have to consider each of these sets in

distinct bands of width max2

θ
. Then in each band the probability of stepping

outside of the search space will be smaller as we go further into the search space.

However, as before, the first band will have a different width, being max2

θ
− dB.

Let us consider XR. We can write

XR =
19⋃
i=0

XRi,

138



where

XR0 =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
N2 −

max2

θ
,N2 − dB

]}
XRi =

{
(a1, a2)

∣∣∣∣ a1 ∈
[
N1

3
, N1 −

1

θ

]
and a2 ∈

[
N2 −

(i+ 1) max2

θ
,N2 −

imax2

θ

]}

for 1 ≤ i ≤ 19. Then an upper bound on B2 in band XRi can be given by the

following calculation: The probability that a wild walk starts in XRi given that it

is in W ′
2 × a bound on the probability that a walk will step outside W ′

2 in its P2

component × the expected number of wild walks in W ′
2 ×T . In the first band,

XR0, a bound on the probability that a walk will step outside W ′
2 is 0.25 as we

expect half of the walks to walk beyond the expected maximum excursion and

we can expect half of those to be on the right of the starting point (outside the

search space) as opposed to the left. So the probability that a walk starts in XR0

is
max2

θ
− dB

Ñ2/3− 2dB

=
max2−θdB

Ñ2θ/3− 2θdB

Therefore we have an upper bound for the right hand wild walk part of W ′
2 of the

number of bad steps of type 2 in the P2 component which is

[(
max2−θdB

Ñ2θ/3− 2θdB

· 0.25

)
+

19∑
i=1

max2

Ñ2θ/3− 2θdB

· (1− θ)
i
θ

]
· Kθ

16
· 20

θ

≤ 5

4
K

[
0.25

max2−θdB

Ñ2θ/3− 2θdB

+
19∑
i=1

max2 e
−i

Ñ2θ/3− 2θdB

]

≤ 1.04 max2K

Ñ2θ/3− 2θdB

.

Doubling this gives us the W ′
2 component of B2. Then multiplying by 4 to take

into account all disjoint parts of W ′ and then multiplying by 3/2 to take into
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account both the tame and wild walks we have the result.

Table 6.1 again gives the minimum bounds for Ñ1 for the different values of θ and

Table 6.3 below gives us the minimum bounds for Ñ2 to have B2 as 0.5% of the

total number of steps. Due to Lemma 5.1.1 the bound B2 is dependent on the

mean absolute step size, m2, which is unrelated to ns in a general pseudorandom

walk. In Table 6.3 the mean absolute step sizes are similar to the mean step size

in Table 6.2.

θ = 2−8 θ = 2−16 θ = 2−32

m2 = 25 227 235 251

m2 = 212 234 242 258

m2 = 215 237 245 261

m2 = 227 249 257 273

Table 6.3: Minimum values of Ñ2 to have B2 < 0.5% of the total number of steps
for different θ and m2 for pseudorandom walks of type ‘1-forward and side-to-side’

6.3.4 Experiments in the 2-dimensional case

The experiments that we ran in the 2-dimensional case have two principle aims.

The first is to check Heuristic 6.3.1, namely that our pseudorandom walks behave

close enough to selecting elements at random from the tame and wild sets. The

second is to compare walks with steps that are powers of a base b (as used by

Pollard [34, 35]) to those walks whose steps are integers chosen at random once at

the start of the experiment (as used by Gaudry-Schost). For each pseudorandom

walk 1000 experiments were run on a search space approximately 243 in size.

We simulated a group and recorded the number of group operations that were
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made before a collision between 2 walks was found. To test our assumptions

we compared the expected number of group operations given by the Birthday

Paradox and the actual number of group operations. This gave us the following

ratio

The Actual Number of Group operations

The Expected number of Group Operations
.

The pseudorandom walks that we simulated are as follows

Pseudorandom Walk - 2D 5. The number of partitions of G are ns = 16.

m1 = 1 and m2 = 31.875.

xi+1 = f(xi) = xi + [1]P1 + [2S(xi)]P2.

Pseudorandom Walk - 2D 6. The number of partitions of G are ns = 8.

m1 = 1 and m2 = 3.75.

xi+1 = f(xi) =

 xi + [1]P1 + [2S(xi)/2]P2 if S(xi) ≡ 0 (mod 2)

xi + [1]P1 + [−2(S(xi)−1)/2]P2 if S(xi) ≡ 1 (mod 2).

Pseudorandom Walk - 2D 7. The number of partitions of G are ns = 16.

m1 = 1 and m2 = 31.875.

xi+1 = f(xi) =

 xi + [1]P1 + [2S(xi)/2]P2 if S(xi) ≡ 0 (mod 2)

xi + [1]P1 + [−2(S(xi)−1)/2]P2 if S(xi) ≡ 1 (mod 2).

Pseudorandom Walk - 2D 8. The number of partitions of G are ns = 8.
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m1 = 1 and m2 = 42.5.

xi+1 = f(xi) =

 xi + [1]P1 + [2S(xi)+1]P2 if S(xi) ≡ 0 (mod 2)

xi + [1]P1 + [−2S(xi)]P2 if S(xi) ≡ 1 (mod 2).

Pseudorandom Walk - 2D 9. The number of partitions of G are ns = 16.

m1 = 1 and m2 = 31.875.

xi+1 = f(xi) = xi + [1]P1 + [zj]P2

where the steps zj for 0 ≤ j ≤ 15 are uniformly distributed at random in the in-

terval [−2m2, 2m2]. For our experiment we used Magma to produce the following

the set of steps

{−58,−54,−46,−45,−26,−14,−5,−2, 1, 3, 11, 24, 38, 56, 58, 62} .

Pseudorandom Walk - 2D 10. The number of partitions of G are ns = 8.

m1 = 1 and m2 = 42.5.

xi+1 = f(xi) = xi + [1]P1 + [yj]P2

where the steps zj for 0 ≤ j ≤ 7 are uniformly distributed at random in the in-

terval [−2m2, 2m2]. For our experiment we used Magma to produce the following

the set of steps

{−73,−56,−27,−3, 7, 23, 69, 79} .
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Pseudorandom walks 6, 7 and 8 are of type ‘1-forward and side-to-side’. Pseudo-

random walks 9 and 10 are of type ‘1-forward and side-to-side uniformly’, with

pseudorandom walk 9 being the walk that Gaudry and Schost [19] use. The dif-

ferences between these walks are the mean absolute step size m2, the number

of partitions of G, ns, and the way in which the steps sizes are constructed i.e.

powers if a base b or predetermined random steps. To stop the walks visiting

an element with the same exponents we always move in a positive direction in a

particular component namely P1 where the mean step size is 1 for all the walks.

Pseudorandom walk 5 is a ‘1-forward and to the right’ walk. There is no side-

to-side aspect to this walk and in that sense this walk works very much like the

walk in the 1-dimensional case.

Pseudorandom walk 5 6 7 8 9 10
ns 8 8 16 8 16 8
Mean Step size in P2

component
31.875 3.75 31.875 42.5 31.875 42.5

x× expected number of
steps

1.16 1.69 1.10 1.20 1.09 1.16

Table 6.4: Average number of steps compared to the Birthday Paradox for the
different 2D walks

Table 6.4 gives the results after averaging out over all the experiments for a

particular walk. We can see that all the walks except pseudorandom walk 6,

terminate on average close to the expected number of steps. A possible reason

why pseudorandom walk 6, in particular, behaved worse on average than the

other walks is that the mean absolute step size was small and so the walks were

too localised. We can see that the walks of type ‘1-forward and side-to-side

uniformly’ (Pseudorandom walks 9 and 10) are marginally better than those of
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type ‘1-forward and side-to-side’ with the large mean step sizes (Pseudorandom

walks 7 and 8). Also we found that although the ‘1-forward and to the right’

walk was nearly as good as the side-to-side walks the area where walks could not

start was far larger so this walk is less useful in practice.

6.4 d-dimensional discrete logarithm problem for

d ≥ 3

We have seen the improved Gaudry-Schost algorithm being used to solve both

the 1-dimensional and 2-dimensional DLP. Now we consider solving the generic

multidimensional DLP using this approach. However to compare the original and

improved Gaudry-Schost algorithm when extended to d dimensions, it is easier

to consider them in an idealised model. In this model we have only 1 processor

and we pick elements from the tame and wild sets uniformly at random and store

all the elements that are selected. Of course, the BSGS algorithm will be faster

in this model but we are using this model to strictly compare the original and

improved Gaudry-Schost algorithm.

Theorem 6.4.1. Given the multidimensional discrete logarithm problem as de-

scribed in Definition 6.0.1 let N be the cardinality of the search space as given

by equation (6.2). Then the expected number of group operations (in the ide-

alised model) in the worst case before we can solve for the d-dimensional discrete

logarithm problem using the original Gaudry-Schost algorithm is

2d/2
√
πN, (6.8)
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and the average case expected number of group operations is

(4− 2
√

2)d
√
πN. (6.9)

Proof. In the worst case Q lies in a ‘corner’ of the search space and so the overlap

between the original tame and wild sets has cardinality

M =
N

2d
.

Therefore the expected number of steps before we expect to step in the overlap

between the tame and wild sets is

N

M
= 2d.

So the expected number of group operations in the worst case is given by

2d
√
πM = 2d/2

√
πN

which proves the result presented in equation (6.8). To find the average case

expected running time we have to average over all possible Q. At this point the

proof is analogous to the 2-dimensional proof of Lemma 6.3.2. Without loss of

generality let us consider problem instances in one ‘corner’ of the search space.

Let

Q = [−N1 + x1Ñ1]P1 + [−N2 + x2Ñ2]P2 + . . .+ [−Nd + xdÑd]Pd

for xi ∈ [0, 1/2]. The size of the overlap, A, between the original tame and wild
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sets is

M =

(
1

2
+ x1

)
Ñ1 ·

(
1

2
+ x2

)
Ñ2 · · ·

(
1

2
+ xd

)
Ñd = N

d∏
i=1

(
1

2
+ xi

)

So the expected number of steps a tame or wild walk need to take to step in A is

N

M
=

d∏
i=1

(
1

2
+ xi

)−1

So the average case expected running time is like

2d

∫ 1/2

x1=0

∫ 1/2

x2=0

· · ·
∫ 1/2

xd=0

d∏
i=1

(
1

2
+ xi

)−1/2√
πN dx1 dx2 . . . dxd

= 2d
√
πN

(∫ 1/2

x=0

(
1

2
+ x

)−1/2

dx

)d

= (4− 2
√

2)d
√
πN

which proves the result presented in equation (6.9).

In Sections 4.1.5 and 6.3.1.2 we improved upon the Gaudry-Schost algorithm in

the 1-dimensional and 2-dimensional cases respectively by making the overlap,

A, between the tame and wild sets constant. Therefore we will continue by doing

this for all dimensions.

Theorem 6.4.2. Given the multidimensional discrete logarithm problem as de-

scribed in Definition 6.0.1 let N be the cardinality of the search space as given by

equation (6.2). Then the expected number of group operations (in the idealised

model) before we can solve for the d-dimensional discrete logarithm problem using
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the improved Gaudry-Schost algorithm is

2d

3d/2

√
πN.

This is the expected running time in the best, worst and average cases.

Proof. Using the analogous strategy as that used in the previous dimensions we

search in a hypercube of size kdN centred in the middle of the tame set and we

search a space of the same size but split into 2d disjoint sets in the ‘corners’ of

the wild set. Each of these disjoint sets are of size

(
k

2

)d

N.

If we take k = 2/3 we can use the an analogous argument to that of Lemma

6.3.3 to show that the cardinality of the overlap, M ′, is constant for all problem

instances. Simply as each dimension is independent of the others we can reduce

back to the 1-dimensional case for each Pi component and therefore by taking

k = 2/3 we can see that for all problem instances the cardinality of A is

M ′ =
N

3d
,

and the new search space is given by

N ′ =
2dN

3d
.

Therefore the expected number of steps before we expect to step in the overlap
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between the tame and wild sets is

N ′

M ′ = 2d.

Using a Tame-Wild Birthday Paradox analysis, the number of group operations

before we expect a collision is

2d
√
πM ′ = 2d

√
π
N

3d
=

2d

3d/2

√
πN.

We can use Theorems 6.4.1 and 6.4.2 to compare the original and improved

Gaudry-Schost algorithm in both the worst and average cases. In the average

case the improved Gaudry-Schost is expected to terminate in 1.15d
√
πN group

operations as opposed to 1.17d
√
πN in the original algorithm. In the worst case

the improvement is even more significant with 1.15d
√
πN group operations in

the improvement algorithm as opposed to 1.41d
√
πN in the original algorithm.

The improved Gaudry-Schost is clearly the algorithm of choice when solving the

d-dimensional DLP for d > 1.

At this point all that remains to solve the multidimensional DLP is to pick a

pseudorandom walk for the particular dimension d. However there is an issue

that occurs with θ as d increases. The Gaudry-Schost algorithm expects to store

approximately Kθ distinguished points where K is the total number of steps.

Using the Tame-Wild Birthday Paradox we know that in the multidimensional

DLPK = O(
√
N), so to have only a constant storage requirement we have to take

θ = c√
N

where c > 1. Therefore we can expect to store close to c distinguished
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points before we can solve for the multidimensional DLP. This is not a problem

but what is an issue is that as we increase the dimension we have to consider the

expected lengths of walks. The expected walk length is m
θ

(Lemma 4.1.3), where

m is the mean step size in any particular dimension, which means that a walk is

of length m
√

N
c

. This is, again, not a problem in the 1-dimensional case but in

the 2-dimensional case if we say Ñ1 and Ñ2 are of the same order then each walk

could traverse across the entire interval of the P1 or P2 components. In practice

the constant c can be made fairly large (see Example 6.4.3) making this a non

issue in the 2-dimensional case.

Example 6.4.3. As storage space is now very cheap, let our server be a standard

PC with 1 terabyte or 243 bits of hard disk space. If the cardinality of the group

we are working in is |G| = 2256 then in the 3-dimensional case we will be storing a

4-tuple. Each 4-tuple will use upto 256 × 4 bits of storage or 210 bits. Therefore

the number of distinguished points we can store is

243

210
= 233.

Therefore in this case we could take θ = 233
√

N
.

However for d ≥ 3 using θ = c√
N

even for a large constant c can cause the

majority of walks to step outside of the search space. For example if we say that

Ñ1, Ñ2 and Ñ3 are of the same order then they are approximately 3
√
N . Walks

which have expected length m
√

N
c

will always walk outside of the search space so

the Tame-Wild Birthday Paradox analysis on the size of the search space does

not work. Relating this back to the pseudorandom walks, we cannot use walks

which are always stepping in a positive direction in any dimensions. We need
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to use walks which have a ‘side-side’ component in every dimension. Of course

if c is large enough compared to the search space then this is not an issue but

in general, as we want our algorithm to be low-memory we need to consider our

pseudorandom walks carefully.

By having a ‘side-to-side’ component in every dimension, the boundaries (where

walks are not permitted to start) from the edges will be defined using Lemma

5.1.1. In our setup the maximum excursion will be

√
2
√
N

3cπ
= O(N1/4). (6.10)

As the interval of possible solutions in each dimension is O(N1/3) these boundaries

will fit well in our search space.

When d = 4 the value of the constant c does matter because if we take Ñ1, Ñ2, Ñ3

and Ñ4 to be approximately the same then they are of size 4
√
N . Although

the boundary from the edges where walks are not permitted to start is of order

O(N1/4) as c can be fairly large as shown in the Example 6.4.3 these boundaries

will fit well in the search space.

For d ≥ 5 the issue of boundaries reappears and this time cannot be resolved. The

size of each dimension of the search space is smaller than the boundary given in

equation (6.10) and as a result the entire idea of pseudorandom walks that pause

at distinguished points fails if we have constant storage.
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6.5 Conclusion

In this thesis we have considered variants of the DLP in particular the DLP in

an interval and the multidimensional DLP. Whilst we have made some modest

improvements to the Gaudry-Schost algorithm for solving the multidimensional

DLP where d > 1 the most progress has been made in improving the Gaudry-

Schost algorithm for solving the DLP in an interval.

We have presented the improved Pollard kangaroo algorithm which has yet to

appear in the literature. Then by taking ideas from Pollard’s new algorithm we

have improved the Gaudry-Schost algorithm to make it the algorithm of choice for

solving the DLP in an interval in a generic group. For groups with fast inversion

we have made further improvements to the algorithm by using equivalence classes.

They are many avenues with possibilities of future research that arise from this

body of work. Below are some of the open problems.

• Can we model the 3 and 4 set Gaudry-Schost algorithm using a more ac-

curate form of analysis than the Tame-Wild Birthday Paradox which takes

into account a 3 set overlap, i.e. when T ∩WN ∩WP is nonempty?

• For the Improved 4-set Gaudry-Schost algorithm is there a better strategy

than searching only two thirds of the tame, wildn and wildp sets?

• Can we model the Gaudry-Schost algorithm using equivalence classes using

a more accurate form of analysis which takes into account a different density

of walks between the tame and wild sets?

• For the Improved Gaudry-Schost algorithm using equivalence classes is there
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a better strategy than searching only one half of the wild set?

• When solving the multidimensional DLP where the possible solutions do not

form a hypercube, is there a better approach than just to put a hypercube

around the set of possible solutions and implementing the standard Gaudry-

Schost algorithm?

• How do we overcome the boundary issues that arise in the multidimensional

DLP for d ≥ 5?

We hope that the algorithms presented in this work are of value to academics,

researchers and those in industry who work in cryptography and information

security.
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