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Abstract. Gaudry and Schost gave a low-memory algorithm for solving the 2-dimensional discrete
logarithm problem. We present an improvement to their algorithm and extend this improvement to
the general multidimensional DLP. An important component of the algorithm is a multidimensional
pseudorandom walk which we analyse thoroughly in the 1 and 2 dimensional cases as well as giving
some discussion for higher dimensions.
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1 Introduction

The discrete logarithm problem (DLP) is: Given a cyclic group G (in additive notation) of order r and
P,Q ∈ G where P is a generator of the group, find a positive integer n such that Q = [n]P . This is an
important computational problem due to applications in public key cryptography. In a generic group there
are standard algorithms for solving the DLP such as Baby-Step Giant-Step (BSGS) [18] (see, for example,
[19]) and Pollard rho [14]. Van Oorschot and Wiener [21, 22] give a version of Pollard Rho, suitable for
distributed computing, based on the idea of distinguished points. For further works on Pollard rho see [3,
20]. BSGS solves the DLP in O(

√
r) group operations but also requires O(

√
r) group elements of storage.

Pollard rho and van Oorschot-Wiener also solve the DLP in heuristic expected O(
√
r) group operations but

require only constant storage. We also refer to [10] for a rigorous analysis of the Pollard rho algorithm.
A higher dimensional version of the DLP arises in a number of applications (see Section 6). We now give

a precise definition of it.

Definition 1 (Multidimensional DLP). Let G be an abelian group and let P1, P2, . . . , Pd, Q ∈ G and
N1, . . . Nd ∈ N be given. The d-dimensional discrete logarithm problem is to find (if they exist) integers
ni ∈ [−Ni, Ni], for 1 ≤ i ≤ d, such that

Q = [n1]P1 + [n2]P2 + . . .+ [nd]Pd. (1)

We call (n1, . . . , nd) the exponent vector of Q. We write Ñi = 2Ni + 1 and

N =
d∏
i=1

Ñi. (2)

Note that G may or may not be cyclic. In the case of a cyclic group of prime order and Ñi = #G this
computational problem is the representation problem introduced by Brands [2] in 1993.

It is easy to adapt the BSGS algorithm to the multidimensional case, as shown by Matsuo et. al. [12], and
this algorithm requires O(

√
N) group operations and O(

√
N) group elements of storage. Pollard describes
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his kangaroo method in [14, 15] to solve the 1-dimensional case (i.e., d = 1) also in expected O(
√
N) group

operations but requiring only constant storage. Van Oorschot and Wiener [21, 22] also give a version of the
kangaroo method which is suitable for distributed computing. It seems unlikely that the kangaroo algorithm
can be adapted to the case of dimension d ≥ 2.

Gaudry and Schost [9] present an algorithm to solve the 2-dimensional case using random walks and
distinguished points. Unlike the kangaroo method, their algorithm is analysed using a variant of the Birthday
Paradox. They also analyse their algorithm in the 1-dimensional case. We give brief details of their algorithm
in Section 2 as well as extending their approach to any dimension. Theorem 2 generalises the result of Gaudry
and Schost. Note that the analysis of the Gaudry-Schost algorithm is only heuristic; to be able to easily state
theorems we consider an idealised model.

In Section 3 we present a simple idea which improves the Gaudry-Schost algorithm in all dimensions. In
Section 4 we give more details about how to put the improved algorithm into practice by correctly choosing
parameters. In Section 5 we discuss the implementation issues in higher dimensions and then look at some
applications of solving the multidimensional DLP in Section 6.

2 The Gaudry-Schost Algorithm

We first recall the Pollard kangaroo algorithm for the 1-dimensional DLP. In other words, we have Q = [n1]P1

with −N1 ≤ n ≤ N1 (and N = 2N1 + 1 ≈ 2N1). The algorithm finds two integers a, b ∈ N such that
[a]P1 = Q+ [b]P1 and hence solves the DLP.

The crucial idea is to use a “deterministic pseudorandom walk”. More precisely, a selection function
S : G → {1, . . . , nS} is chosen, which can be interpreted as partitioning the group into nS sets of roughly
equal size. Suitable integers z1, . . . , znS

are chosen (e.g., uniformly chosen from [0, c1
√
N ] for some constant

c1) and, given x1 ∈ G, the deterministic pseudorandom walk x1, x2, · · · ∈ G proceeds as

xi+1 = xi + [zS(xi)]P1.

Pollard uses a tame walk which starts at x1 = [N1]P and takes n = O(
√
N) steps before stopping at xn.

Pollard also uses a wild walk which starts at y1 = Q and also takes O(
√
N) steps. If the wild walk lands on

a footprint of the tame walk then the wild walk follows the path of the tame walk and eventually we find
ym = xn. By storing not just the values xn and ym but also the corresponding integers a and b such that
xn = [a]P1 and ym = Q+ [b]P1 we can solve for the DLP.

Van Oorschot and Wiener [21, 22] give a version of this algorithm which is not only distributed but has
better expected running time. The idea is to use distinguished points, so instead of just storing a single
end-point (xn, a) one stores a moderate number of intermediate values. Indeed, van Oorschot and Wiener
showed that the expected running time is heuristically 2

√
N + 1/θ group operations for storage requirement

approximately 2θ
√
N group elements (throughout the paper, θ denotes the probability that a group element

is a distinguished point).
The Gaudry and Schost algorithm is motivated by the above ideas but the analysis is very different.

Before we describe the Gaudry-Schost algorithm we must first define the following sets of exponents.

Definition 2. Let notation be as in Definition 1 and suppose Q = [n1]P1 + · · · + [nd]Pd for some integers
ni ∈ [−Ni, Ni]. Define the Tame set T and the Wild set W , which are subsets of Zd, by

T =
{

(a1, a2, . . . , ad) ∈ Zd : ai ∈ [−Ni, Ni] for all 1 ≤ i ≤ d
}
,

W = (n1, n2, . . . , nd) + T = {(n1 + a1, . . . , nd + ad) : (a1, . . . , ad) ∈ T}.

The exponent vector of Q lies somewhere in the tame set T . The wild set W is a translation of T which
is centred on the exponent vector of Q. The sets T and W are orthotopes in Zd (i.e., d-dimensional products
of intervals).

The basic idea of the Gaudry-Schost algorithm [9] is the same as the kangaroo algorithm of Pollard in
the van Oorschot and Wiener formulation. Let the multidimensional DLP problem instance of dimension d
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be given as in Definition 1. We run a large number of pseudorandom walks (possibly distributed over a large
number of processors). Half the walks are “tame walks”, which means that every element in the walk is of
the form [a1]P1 + [a2]P2 + . . . + [ad]Pd where the integer tuple (a1, a2, . . . , ad) ∈ T (though note that with
very small probability some walks will go outside T ). The other half are “wild walks”, which means that
every element is of the form Q + [b1]P1 + [b2]P2 + . . . + [bd]Pd where the integer tuple (b1, b2, . . . , bd) ∈ T .
Each walk proceeds until a distinguished point is hit. This distinguished point is then stored in an easily
searched structure (e.g., a binary tree), together with the corresponding d-tuple of exponents. We maintain
two such structures: one to store the points found by tame walks and one for the wild walks. When the same
distinguished point is visited by two different types of walk we have the collision [a1]P1+[a2]P2+. . .+[ad]Pd =
Q+ [b1]P1 + [b2]P2 + . . .+ [bd]Pd and one solves the multidimensional DLP as follows

Q = [a1 − b1]P1 + [a2 − b2]P2 + . . .+ [ad − bd]Pd.

A significant difference between the Gaudry-Schost algorithm and the kangaroo algorithm is that when a
distinguished point is hit, Gaudry and Schost restart the walk from a random starting point in the appropriate
set, whereas the kangaroos keep on running. The theoretical analysis is different too: Gaudry and Schost use
a variant of the birthday paradox whereas Pollard and van Oorschot and Wiener use a different probabilistic
argument (based on the mean step size).

We now present the theoretical analysis of the Gaudry-Schost algorithm. Our main result in this section
is Theorem 2 which generalises the results of Section 3.1 and 4.1 of [9]. We first recall a tool from probability
theory which we will need (this result was also used by Gaudry and Schost) and which we call the Tame-Wild
Birthday Paradox.

Theorem 1. When sampling uniformly at random from a set of size N , with replacement, and alternately
recording the selected elements in two different lists, then the expected number of selections that need to be
made in total before we have a coincidence between the lists is

√
πN +O(1).

Proof. See Nishimura and Sibuya [13] or [17]. �

Since tame walks lie in T (with high probability) and wild walks lie in W , a collision between tame and
wild walks can only occur in T ∩W . We call this set the overlap and denote its size by M . We will therefore
apply Theorem 1 in T ∩W only. To get a rough idea of the running time of the Gaudry-Schost algorithm
we consider an idealised version of it which includes two simplifying assumptions. First, we assume that the
points in T and W are chosen uniformly at random, rather than using a pseudorandom walk. Second, we
assume that all points are stored (in other words, all points are distinguished) so that a tame-wild collision
is detected immediately.

Theorem 2. Given the multidimensional discrete logarithm problem as described in Definition 1 with N the
cardinality of the search space as given by equation (2). Then the expected number of group operations (in
the idealised model) in the worst case of the original Gaudry-Schost algorithm is

2d/2
√
πN, (3)

and the average case expected number of group operations is

((4− 2
√

2)d + o(1))
√
πN. (4)

When d = 1 the worst and average case running times are approximately 2.51
√
N and 2.08

√
N group

operations. When d = 2 the worst and average case running times are approximately 3.54
√
N and 2.43

√
N .

Proof. In the worst case Q lies in a ‘corner’ of the search space and so the overlap between the original tame
and wild sets has cardinality M = N

2d . Therefore we expect only about 1/2d of the points sampled to be in
T ∩W . The running time is therefore 2d times the expected number of of elements sampled in T ∩W to
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get a collision. Using the Tame-Wild Birthday Paradox given in Theorem 1, the expected number of group
operations in the worst case is therefore given by

2d
√
πM = 2d/2

√
πN

which proves the result presented in equation (3). To find the average case expected running time we have
to average over all possible Q. Without loss of generality let us consider one of the 2d possible orthonts (i.e.,
sub-orthotopes corresponding to one corner of the search space). In other words, suppose that

Q = [x1Ñ1]P1 + [x2Ñ2]P2 + . . .+ [xdÑd]Pd

with xi ∈ [0, 1/2]. The cardinality of the overlap between T and W is

M =
(

1
2

+ x1

)
Ñ1 ·

(
1
2

+ x2

)
Ñ2 · · ·

(
1
2

+ xd

)
Ñd =

(
d∏
i=1

(
1
2

+ xi

))
N.

Therefore we expect only about

M/N =
d∏
i=1

(
1
2

+ xi

)
of the walks to be in T ∩W . So the average case expected running time is approximately

2d
∫ 1/2

x1=0

∫ 1/2

x2=0

· · ·
∫ 1/2

xd=0

d∏
i=1

(
1
2

+ xi

)−1/2√
πN dx1 dx2 . . . dxd

= 2d
√
πN

(∫ 1/2

x=0

(
1
2

+ x

)−1/2

dx

)d
= (4− 2

√
2)d
√
πN

which proves the result presented in equation (4). �

3 The Improved Gaudry-Schost Algorithm

We now give the main result of the paper, which is a version of the Gaudry-Schost algorithm which has a
faster running time. The key observation is that the running time of the Gaudry-Schost algorithm depends
on the size of the overlap between the tame and wild sets. If it is possible to make the size of this overlap
constant for all possible Q then the expected running time will be constant for all problem instances. We
achieve this by choosing walks which only cover certain subsets of T and W .

Precisely, instead of using the sets T and W of the previous section we use an orthotope T ′ of size
(2/3)dN centered in T and a space W ′ of the same size but split into 2d disjoint sets in the ‘corners’ of W .
In the 1-dimensional case we have T ′ = [−2N1/3, 2N1/3] ∩ Z ⊆ T and W ′ = ([n1 −N1, n1 −N1/3] ∪ [n1 +
N1/3, n1 +N1]) ∩ Z ⊆W (see Figure 1). The algorithm proceeds in exactly the same way as before.

For the theoretical analysis we again use the idealised model where we ignore the issue of pseudorandom
walks and assume that we are storing every element visited.

Theorem 3. Given the multidimensional discrete logarithm problem as described in Definition 1 with N the
cardinality of the search space as given by equation (2). Then the expected number of group operations (in
the idealised model) for the improved Gaudry-Schost algorithm is(

2d

3d/2
+ o(1)

)√
πN.

This is the expected running time in the best, worst and average cases. When d = 1 and d = 2 this is
approximately 2.05

√
N and 2.36

√
N group operations respectively.
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Fig. 1. Depiction of T, W, T ′ and W ′ for two extreme cases of Q. The thin horizontal lines denote T and W while
the fatter shaded rectangles denote T ′ and W ′.

Proof. We search in an orthotope of size kdN centred in the middle of the tame set and we search a space of
the same size but split into 2d disjoint sets in the ‘corners’ of the wild set. Each of these disjoint sets of size
((k/2)d + o(1))N . We now compute the volume of the overlap T ′ ∩W ′ which is a union of orthotopes. Since
the volume of an orthotope is the product of the lengths of its sides our problem reduces to the 1-dimensional
case.

It can be easily shown that to make the overlap constant for all problem instances one must take k = 2/3
(see Figure 1). Then for all problem instances the cardinality of the overlap is M ′ = N

3d and the size of the
new search space is given by N ′ = 2dN

3d . Therefore the proportion of steps in T ′ ∩W ′ is approximately

M ′

N ′
=

1
2d
.

Using the Tame-Wild Birthday Paradox analysis, the expected number of group operations before a collision
is approximately

2d
√
πM ′ = 2d

√
π
N

3d
=

2d

3d/2
√
πN.

This completes the proof. �

Theorem 3 is an improvement on the average and the worst case expected running time of the Gaudry-
Schost algorithm in all dimensions. In the 2-dimensional case the expected running time falls from 2.43

√
N

group operations in the original Gaudry-Schost to 2.36
√
N group operations in the improved Gaudry-Schost.

In the worst case the improvement is even bigger from 3.54
√
N to 2.36

√
N . The benefit of this new approach

increases with d.
In the 1-dimensional case the original Gaudry-Schost algorithm was not competitive with the van Oorschot

and Wiener variant of the Pollard kangaroo method. Our improvement is also not competitive.

4 Pseudorandom Walks and Counting Bad Points

In this section we consider some problems which arise in practice and the techniques used by Gaudry
and Schost to combat them. Firstly we do not want to store every point visited, which is where the idea
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of distinguished points comes into play. Denote by θ the probability that an element of the group is a
distinguished point. In practice the value of θ is chosen as a tradeoff between the work of each client required
to find a distinguished point (approximately 1/θ group operations) and the total storage on the server
(proportional to θ

√
N group elements). To have an algorithm whose expected number of group elements of

storage is constant one would set θ = c/
√
N for some constant c.

The more serious assumption in the idealised model is that elements are selected from the tame and
wild sets uniformly at random. The Gaudry-Schost algorithm uses a deterministic pseudorandom walk. Our
experiments suggest one can choose walks which behave “close enough” (in the sense that the Tame-Wild
Birthday Paradox seems to hold) to selecting uniformly at random. In practice, it seems to be impossible
to design pseudorandom walks which cover T or W uniformly but which do not sometimes overstep the
boundaries. Steps outside the regions of interest cannot be included in our probabilistic analysis and so
such steps are “wasted”. We call these “type 2” bad points. Another assumption of the idealised model is
that tame-wild collisions are always detected. In principle it can happen that a walk takes an exceptionally
long time to hit a distinguished point (i.e., that a large number of consecutive steps happen to not be
distinguished; this phenomena can also be caused by cycles, but that is not our concern in this section).
In the parallelised setting we should assume that individual processors may be relatively slow and so, in
principle, it could happen that some processor never finds a distinguished point. Such steps are therefore
also wasted and we call them “type 1” bad points.

To guard against bad steps of type 1 van Oorschot and Wiener [22] set a maximum number of steps in
a walk. If a processor takes this many steps without hitting a distinguished point then it restarts on a new
random starting point. They choose this maximum to be 20/θ steps and show that the proportion of bad
points of type 1 is at most 5× 10−8. This result applies in all dimensions.

We now consider bad points of type 2. This depends on both the pseudorandom walk and the dimension.
The main idea is to start walks in proper subsets of T ′ and W ′ and to set up these regions so that there is
good chance to cover all of T ′ and W ′ but also so that the probability that a walk goes outside T ′ and W ′

is relatively small.

4.1 1-Dimensional Case

In the 1-dimensional case we use a standard pseudorandom walk as used by Pollard [15] and van Oorschot
and Wiener [22] i.e., small positive jumps in the exponent. The average distance in the exponent traveled
by a walk is m/θ, where m is the mean step size and θ is the probability that a point is distinguished. For
example, one may have m = c1

√
N and θ = c2/

√
N for some constants 0 < c1 < 1 and 1 < c2. Therefore, to

reduce the number of bad steps of type 2 we do not start walks within this distance of the right hand end
of the interval. In other words, we do not start walks in the following subset of T ′.[

2N1

3
− m

θ
,

2N1

3

]
∩ Z (5)

The analogous omitted subsets for W are the following[
n1 −

N1

3
− m

θ
, n1 −

N1

3

]
∩ Z and

[
n1 +N1 −

m

θ
, n1 +N1

]
∩ Z. (6)

Lemma 1. Let m be the mean step size and max the maximum step size. Let the subsets where walks will
not start be given by equations (5) and (6). The probability that a walk has bad points of type 2 is at most

p =
20 max−m
2N1θ/3−m

. (7)

Proof. Let T ′′ = [−2N1/3, 2N1/3−m/θ]∩Z be the set of possible starting points of tame walks and let W ′′

be the set of possible starts points of wild walks. One expects there to be at least twice as many wild walks
with bad points of type 2 as tame walks. Hence it is sufficient to consider the probability for wild walks only.

6



Let
X = [n1 +N1/3, n1 +N1 −m/θ]

be one of the components of W ′′. Note that #X = 2N1/3 − m/θ. Since walks travel distance at most
20 max /θ the only walks which can possibly have bad points of type 2 are ones which start in [n1 + N1 −
20 max /θ, n1 +N1 −m/θ]. Hence the probability that a walk starting in X has bad points of type 2 is

20 max /θ −m/θ
#X

.

The result follows. �

For the values m = c1
√
N1, max = 2m and θ = c2/

√
N1 the value of p in equation (7) is 39c1/(2c2/3−

c1) which can be made arbitrarily small by taking c2 sufficiently large (i.e., by storing sufficiently many
distinguished points). Hence, even making the over-cautious assumption that all points are wasted if a walk
contains some bad points of type 2, the expected number of walks in the improved Gaudry-Schost algorithm
can be made arbitrarily close to the desired value when N is large. In practice it is reasonable to store at
least 230 distinguished points, which is quite sufficient to minimise the number of bad points of type 2.

We stress that the choices of m, max and θ are not completely arbitrary. Indeed, if one wants to bound
the number of bad points of type 2 as a certain proportion of the total number of steps (e.g., 1%) then for
a specific N there may be limits to how large θ and max can be. For smaller N we cannot have too small a
probability of an element being distinguished or too large a mean step size.

4.2 2-Dimensional Case

In the 2-dimensional case, Gaudry and Schost [9] use a walk which goes forwards with respect to one axis and
side-to-side in the other. In other words, each step of the walk adds a group element of the form [a]P1 +[b]P2

where 0 ≤ a is typically very small (possibly zero sometimes) and b ∈ Z. Our experience suggests that it is
sufficient in practice to use walks of the following form (at least, when N1 ≈ N2 and N1 > N2).

Definition 3. Let S : G → {1, . . . , nS} partition G. Let m2 be a parameter (the mean absolute step size).
Let z1, . . . , znS

∈ Z be chosen uniformly at random in the interval [−2m2, 2m2]. The pseudorandom walk
from a given value xi ∈ G is

xi+1 = xi + [1]P1 + [zS(xi)]P2

In the P1 component, as every step is of size 1, the size of the subsets of exponents where walks do
not start will be the expected walk length, 1

θ , from the right hand edge of the interval of exponents. Since
m = max = 1 in this case, one can apply Lemma 1 directly.

Lemma 2. Let notation be as above. The probability that a walk has bad points of type 2 in the P1 component
is at most

19
2N1θ/3− 1

.

If N1 ≈ N2 then θ = c/N1 and this probability is 19/(2c/3− 1) which can be made arbitrarily small by
choosing c to be large (i.e., storing many distinguished points).

The analysis of the bad points of type 2 in the P2 component is different. We use the following result by
Cofman, Flajolet, Flatto and Hofri [4] to address this problem (Gaudry and Schost [9] use a similar result
in their analysis).

Lemma 3. Let y0, y1, . . . , yn be a symmetric random walk that starts at the origin (y0 = 0) and takes steps
uniformly distributed in [−1,+1] then the expected value of max {|yi| : 0 ≤ i ≤ n} is√

2n
3π

+O(1).

Note that the mean absolute step size in this walk is 1
2 .
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We prohibit walks from starting in intervals of length

δ = 2m2

√
2

3πθ
. (8)

at each edge (in the P2 direction) of the tame and wild regions. To be precise, the region in which tame
walks are permitted to start is

T ′′ = ([−2N1/3, 2N1/3− 1/θ]× [−2N2/3 + δ, 2N2/3− δ]) ∩ Z2.

Note that #T ′′ = (4N1/3− 1/θ)(4N2/3− 2δ).

Lemma 4. Suppose a pseudorandom walk as in Definition 3 is being used. Let m2 be the mean absolute
step size in the P2 component, and max2 the maximum absolute step size. Let δ be as in equation (8). The
probability that a walk has bad steps of type 2 in the P2 component is at most

40 max2

(2N2/3− 2δ)θ
. (9)

A sharper version of this result, with a more complicated proof, is given in Lemma 5.2.11 of [17].

Proof. As with the earlier results, it suffices to deal with wild walks. Consider the projection of one component
of the wild set W ′′ onto the P2 axis, for example

X = [N2/3 + δ,N2 − δ] ∩ Z.

Note that #X = 2N2/3−2δ. Since the maximum distance travelled by a walk is, in absolute value, 20 max2 /θ,
bad points of type 2 can only arise from walks which start within this distance of the edge (on either side).
Hence, the probability that a walk starting in X has bad points of type 2 is at most

2
20 max2 /θ − δ

#X
≤ 2

20 max2

θ#X
.

This gives the result. �

Suppose N1 ≈ N2 and θ = c/N2. Then δ is small compared with N2 as long as m2 is o(
√
N2). Hence the

denominator in equation (9) is essentially constant (which can be made arbitrarily large by taking c to be
large). However, if m2 grows at all with N2 then so does max2 and the value in equation (9) can become
large. Hence, in practice, it is necessary that m2 and max2 be (rather small) constants. The random walk
therefore covers a distance O(

√
N2) in the P2 component.

Again, even making the over-cautious assumption that all steps in walks which contain bad points of
type 2 are wasted, by choosing θ to be sufficiently large one can ensure that only a very small proportion of
walks can have bad points of type 2 (at least, this is true when N1 ≈ N2). Hence one may assume that, say,
1% of the walks are wasted (and hence the algorithm runs in about 1.01 times the theoretical prediction of
the time).

We now tabulate the complexity statements we have obtained. We give the total number of group opera-
tions, but note that the algorithm can be easily parallelised giving linear speedup in the number of processors.
The factor 1+ε here is not the same as 1+o(1): As mentioned above, there can be a non-negligible proportion
of bad points of types 1 and 2 (even asymptotically as N tends to infinity). There is also the fact that one
never expects a pseudorandom walk of the type considered in this paper to have exactly the behaviour of a
random walk (and so there is a small correction factor to include in the birthday paradox). This latter issue
is discussed at length by Teske [20]; for example her Table 3 suggests that if nS = 16 then the expected
number of trials before finding a collision is 1.01 times more than that predicted by the birthday paradox
for a random map. Hence, the actual values for ε in practice might be between 0.02 and 0.04.
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Conjecture 1. The following table gives the expected total number of group operations for the original and
improved Gaudry-Schost algorithms to solve the 2-dimensional DLP in the average and worst cases. Here
ε > 0 denotes a small constant (not necessarily the same value in all places).

Name of Algorithm Average Case Worst Case
Original Gaudry-Schost 2.45(1 + ε)

√
N + 1

θ 3.58(1 + ε)
√
N + 1

θ

Improved Gaudry-Schost 2.38(1 + ε)
√
N + 1

θ 2.38(1 + ε)
√
N + 1

θ

5 Higher Dimensions

It is clear that the algorithm can be used to solve the multidimensional DLP in any dimension. The main
task is to choose a suitable pseudorandom walk. Indeed, there is an important issue that occurs with θ as d
increases.

Recall that the Gaudry-Schost algorithm expects to store approximately θ(2d/3d/2)
√
πN distinguished

points. Hence, it is usual to assume that θ = c/
√
N for some large constant c. If using a pseudorandom walk

which moves only forwards in some component then the walk will cover a distance O(1/θ) = O(
√
N) steps.

When d ≥ 3, if N1 ≈ N2 ≈ N3, then this distance is longer than the sides of the orthotope in question.
Hence, walks would go outside the region in which the tame-wild birthday paradox is being applied and the
complexity of the algorithm would deteriorate. Even when d = 2, as we have seen, it is necessary to ensure
that θ is sufficiently large to have an algorithm which performs well.

As a result, when d ≥ 3 it is necessary to use pseudorandom walks with ‘side-to-side’ steps (i.e., with
both positive and negative steps and with average zero) in every component. If the mean absolute step size
is constant then, by Lemma 3, the expected distance travelled in any component after O(N1/2) steps is
O(N1/4), which is OK when d = 3 and N1 ≈ N2 ≈ N3. When d = 4 and N1 ≈ N2 ≈ N3 ≈ N4 then the walks
are still OK, as long as θ is sufficiently large (i.e., as long as one can store sufficiently many distinguished
points).

However for d ≥ 5 the issue of walks stepping outside the region of interest re-appears and it cannot be
resolved by using ‘side-to-side’ walks. Pollard [16] has suggested a solution to this problem which we describe
in the appendix.

6 Applications

The 2-dimensional DLP arises in algorithms for computing the number of points on genus 2 curves over finite
fields [12]. One uses a Schoof-type algorithm to get information about the coefficients of the characteristic
polynomial of the Frobenius modulo some integer, and then uses a baby-step-giant-step algorithm to complete
the calculation. Gaudry and Schost [9] developed their low-memory algorithm precisely for this application.
These ideas have also be used by Weng [23]. Our results will therefore give an improvement to algorithms of
this type.

This approach can be used to count points on curves of any genus (though for curves of sufficiently large
genus one might also exploit subexponential algorithms). Depending on the amount of information obtained
from the Schoof part of the algorithm, the remaining computation could be a d-dimensional DLP with d ≥ 3.
Our methods would also give an improvement here.

The multidimensional discrete logarithm problem also arises explicitly in the work of Brands [2] and in
Section 4 of Cramer, Gennaro and Schoenmakers [5]. The latter paper notes that the problem can be solved
using a baby-step-giant-step algorithm but does not mention the possibility of a low-memory or parallelisable
algorithm.

The Gallant, Lambert and Vanstone (GLV) method [8] speeds up elliptic curve arithmetic by rewriting
[n]P as [n1]P + [n2]ψ(P ) for some endomorphism ψ and where |n1|, |n2| ≈

√
n. The integers n1, n2 are found

by solving the closest vector problem in a lattice. An alternative is to choose “smaller” n1, n2 ∈ Z directly,
rather than choosing a random integer n and rewriting it. Solving the DLP for points generated by the GLV
method can be phrased as a multidimensional DLP. The methods of this paper imply that n1 and n2 cannot
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be chosen to be too small. See Galbraith and Scott [7] and Galbraith, Lin and Scott [6] for examples of the
GLV method with d > 2.

Another approach to efficient elliptic curve cryptography is to use Koblitz curves [11] (i.e., ordinary
elliptic curves E over F2, considering the group E(F2m)). We rewrite [n]P as

L∑
i=0

niτ
i(P )

where ni = {−1, 0, 1} and τ(P ) = (x(P )2, y(P )2) is the 2-power Frobenius map. Since

L∑
i=0

niτ
i ≡ a+ bτ in Z[τ ]/(τ2 ± τ + 2)

where |a| < 3
√

2L and |b| < 2
√

2L as shown by Benits [1], solving the DLP can again be phrased as a
multidimensional DLP i.e., Q = [a]P +[b]τ(P ). It follows that L cannot be chosen to be too small. The same
ideas can be applied on genus 2 curves over F2 leading to a 4-dimensional DLP.

7 Conclusion

We have presented an improvement to the algorithm given by Gaudry and Schost for solving the 2-dimensional
DLP as well as extending the algorithm to the multidimensional DLP. We have also given further depth to
the analysis given by Gaudry and Schost [9] specifically for the cases where d > 2. In Section 6 we have
seen just a smattering of applications of this low-memory algorithm. An open problem is to investigate how
best to exploit the algorithm when the search space is not an orthotope but a multidimensional ‘arrowhead’
which arises in the case of point counting on curves of genus 2 and higher.
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A Pollard’s Method for Large Dimensions

As mentioned in Section 5, when d ≥ 5 walks of O(
√
N) steps will usually move outside the tame and wild

regions. This is a major problem for the Gaudry-Schost algorithm. Pollard [16] has suggested a way to deal
with this problem, and we briefly sketch it here.

We describe a parallel algorithm for the case d = 1. Clearly the algorithm can be serial or parallel, and
applies to all d.

Let G be the group in question and let N1, . . . , Nd be the interval sizes in the d-dimensional DLP with
N1 ≤ N2 ≤ · · · ≤ Nd. Let N =

∏d
i=1(2Ni + 1) as usual. It is necessary to define two sets D ⊂ S ⊂ G,

namely distinguished points and special points. As usual, the probability that a uniformly chosen x ∈ G is
distinguished should be θ = c/

√
N for some constant c. The probability p that a uniformly chosen x ∈ G

is special should be much higher, certainly p > 1/N2
1 . If this holds then one expects to find a special point

after fewer than N2
1 trials and a side-to-side random walk will cover distance O(N1) in that many steps and

so still has a chance to be inside the region of interest.
We define a mapping F : G→ G as follows. Let x be a point of G.

1. When x is a non-special point, as usual we have F (x) = x+ [r]P where r is small, and [r]P is taken from
a small table.

2. When x is a special point, we start a new walk from a new random point [s]P or Q+ [s]P where s (and
the choice tame/wild) are made determinstically and depending only on x (for example using a hash
function). It is necessary that there are a large range of possible values for s.
The computation of [s]P can be done by exponentiation or by multiplying elements from k ≥ 3 tables
of size N1/k. The second method does not have constant storage, but we can make the storage as small
as we wish.

3. When x is a distinguished point we store x together with: a link to the last distinguished point on this
processor, and the distance (number of steps) between the current and last points.
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When a distinguished point is repeated, two sequences have met at some point y. If we find y, we have
two representations of the same group element as [a]P or Q+[b]P . With probability 1/2, we have one of each
type and can solve for the discrete logarithm. Otherwise we continue until a tame-wild collision is found.

We can easily find y by a small storage process. We know the two preceding distinguished points x1 and
x2, on the two processors, and the distances travelled to the endpoint x. Suppose the distance from x1 to
x is longer than from x2 to x. Advance the point x1 to a point x′1 of the same distance to x as x2. Now
advance the points x′1 and x2 together until they meet at y.

The final part of the algorithm requires an expected 1/θ = O(
√
N) steps and cannot be parallelised.
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