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Abstract

In the modern world, the ubiquity of digital communication is driven by the
constantly evolving world of cryptography. Consequently one must efficiently
implement asymmetric cryptography in environments which have limited re-
sources at their disposal, such as smart–cards, ID cards, vehicular microchips
and many more. It is the primary purpose of this thesis to investigate methods
for reducing the bandwidth required by these devices.

Part I of this thesis considers compression techniques for elliptic curve cryp-
tography (ECC). We begin this by analysing how much data is actually re-
quired to establish domain parameters for ECC. Following the widely used
cryptographic standards (for example: SEC 1), we show that näıvely imple-
mented systems use extensively more data than
is actually required and suggest a flexible and
compact way to better implement these. This
is especially of use in a multi–curve environ-
ment. We then investigate methods for reducing
the inherent redundancy in the point represen-
tation of Koblitz systems; a by–product of the
best known Pollard–ρ based attacks by Wiener
& Zuccherato and Gallant, Lambert & Vanstone.
We present methods which allow such systems to
operate (with a high confidence) as efficiently as
generic ones whilst maintaining all of their com-
putational advantages. Figure 1: Royal Holloway

In Part II we investigate using disguised algebraic tori, LUC and XTR as
candidates for black–box groups. It is well known that the specific representa-
tion of groups affect their suitability to be used for cryptography. Black–box
group cryptography, where little or nothing is known about the underlying group
structure exploits this idea. Such group representations could potentially lead
to new applications. This work is motivated by the trapdoor DDH groups of
Dent & Galbraith based on earlier work by Frey. We detail specific attacks to
undisguise these groups and make comments on future directions in this area.
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Ya no la quiero, es cierto, pero tal vez la quiero.
Es tan corto el amor, y es tan largo el olvido.

Pablo Neruda (1904–1973) 1
Motivation

Elliptic Curve Cryptography: Kerckhoffs’ Law from 1883 states;

“The strength of a cipher should only depend on its key size”, [38].

NIST in [6] gives examples of key sizes for equivalent strengths between different
asymmetric cryptosystems and groups. These are provided for RSA, finite fields
Fq, and elliptic curves over finite fields; E/Fq. Let L be the bit size of the finite
field Fq or the RSA modulus. Then;

Bit length L
Bits of Security RSA Fq E/Fq

80 1024 1024 160 ≤ L < 224
112 2048 2048 224 ≤ L < 256
128 3072 3078 256 ≤ L < 384
192 7680 7680 384 ≤ L < 512
256 15360 15360 L ≥ 512

Thus if a system requires 80–bits of security, one would need to generate, trans-
mit and store elements of size 1024–bits for the RSA and finite field cases in
comparison to approximately 160–bits for the elliptic curve case. This profound
difference between equivalent security key–sizes only grows as the security re-
quirements of a system increase. A posteriori, RSA and finite field cryptosys-
tems are unhelpful from a bandwidth point–of–view.

Both bandwidth and the local storage associated with asymmetric cryptogra-
phy are important: Restricted devices such as smart–cards often have restricted
communication speed and internal memory. At the other extreme, servers work-
ing in multi–user environments may need to store millions of public–keys.

Cryptography, especially on constrained devices, needs efficient implementa-
tion which minimises computational time, memory requirements and communi-
cation bandwidth. This is the principal motivation for the deployment of elliptic
curve cryptography (ECC) which this thesis considers.

Compressing Elliptic Curve Elements: Part I of this thesis analyses the
bandwidth required for ECC. In the initialisation of elliptic curve based cryp-
tosystems one needs to generate, transmit and store system domain parameters.
These domain parameters, when implemented näıvely as given in standards such
as SEC [15], require approximately 5 1

2L–bits to represent.
In Chapter 5 we will explicitly detail the bandwidth required to represent

each domain parameter element under the SEC 1 standard. We then suggest
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methods to compress these, giving the best case for the communication band-
width of domain parameters without restricting what the model can represent.

The methods in Chapter 5 apply to general curves and finite fields. However,
in practice it is usually recommended to use special field representations and
curve equations to give improved performance. In Chapter 6 we propose meth-
ods to minimise the bandwidth for domain parameters when using special fields
and curve equations. This compact form is particularly bandwidth efficient and
thus suitable for multi–curve environments. These results can be applied to
many different applications, for example when using the Diffie–Hellman Key–
Agreement (DHKA), [20]

In Chapter 7 we consider the message bandwidth of Koblitz systems: Koblitz
curves are elliptic curves over F2 and one uses the group E(F2n) for ECC. It
is well known that Koblitz curves offer various implementational advantages.
Both Wiener & Zuccherato [87] and Gallant, Lambert & Vanstone [32] showed
that one can accelerate Pollard–ρ type attacks on Koblitz curves using group
automorphisms. This implies that when using Koblitz systems, one has a lower
security per bit than when using general elliptic curves defined over the same
field. Hence for a fixed k–bit security level, Koblitz systems require an increased
bandwidth. We present a method to reduce this bandwidth overhead. Subse-
quently we will show with a low probability of failure one can compress this
bandwidth to the expected number of bytes for a given security parameter k
when using an analogue of the DHKA.

Disguising Objects & Black–Boxes: The difficulty of a computational
problem depends on the specific group representation used. For example; the
discrete logarithm problem (DLP) generally requires exponential–time with
ECC and polynomial–time for the additive group of integers modulo a prime.

The notion of a black–box group (BBG) is designed to model a situation
where the representation of group elements and the internal structure of the
group operation, do not seem to help solve computational problems in the group.
The formal definition of a BBG has group elements represented by random
binary strings and allows only oracle access to the group operations. In other
words, given two binary strings (corresponding to some group elements g1 and
g2) the oracle outputs the binary string corresponding to g1 ⊕ g2. Shoup [73]
has proven that in a BBG certain computational problems (for example, the
DLP and the Diffie–Hellman problem) have exponential complexity. A natural
problem is to construct groups which resemble black–box groups, in the sense
that the representation of group elements and the formulæ for the group law
do not seem to have any structure which can be exploited by algorithms. Such
groups could have interesting cryptographic applications.

There has been limited research into finding group representations which
behave like BBGs, [19, 26, 28, 51]. One possible approach is to disguise a group
representation such that it is hard to recover a natural mathematical represen-
tation of the original group. Dent & Galbraith in [19] (building on the work
of Frey [26]) proposed disguising elliptic curves to get black–box DDH groups
with extra functionalities. It is natural to question the security of these systems.
As a first step, Galbraith in [28] considered disguised finite fields and tori. In
Part II of this thesis, we give cryptanalysis of disguised tori including those with
an alternative and novel disguise. We then continue to give a cryptanalysis of
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other candidate BBGs created from the trace–based methods of LUC and XTR.
We conclude that disguised tori, LUC and XTR are not secure and that

disguising things is general is not a sensible approach to strengthening security.

Original Contribution: This thesis presents backgound material and work
of other researchers intermingled with new results. To clarify the novel aspects
of this project we now list the main original contributions of the author.

In Chapter 5 we present modified traces and modified cofactors. These
enable us to define a curves trace and cofactor in fewer bits than previously
published. For general curves over finite fields, these are asymptotically equal
to a result by Smart. For subfield curves, these are better. When using point–
verification, we give an algorithm that computes the original trace of the full
curve using the absolute value of the subfield trace. This lowers the bandwidth
by an additional bit. Finally we give a thorough analysis of the exact worst–case
domain parameter sizes of SEC 1, which is used as motivation for defining a new
model of domain parameter representation.

In Chapter 6 we suggest a more efficient way of specifying domain param-
eters. We note that in a multi–curve environment, the bandwidth of domain
parameters is important and should be minimal. We propose that such a system
should be optimised for how it will be used: The range of security parameters
over which it will be deployed and how many systems it is required to spec-
ify. We analyse special forms of fields which are often used in ECC, and their
associated information rate. We use these to present a flexible and compact
description of cryptographically useful fields. We present and justify what one
requires from an elliptic curve in terms of its order, cofactor and field of defini-
tion for efficiency in terms of a security parameter k. We use these results to
define a method of generating cryptographically secure ordinary elliptic curves.
We show that one can then define a plentiful and suitable amount of such non–
special curves in a fraction of the bandwidth used by current propositions. Our
model defines domain parameters for prime fields in less than a fifth of the
bandwidth normally expected for a given security parameter k. When using
binary fields, one asymptotically expects a tenth of the bandwidth required by
SEC 1. These results are better than any we know of in the literature. We com-
ment that our generation method is particularly suitable for Edwards curves
which have been recently (re)discovered. This leads to parameters which are
bandwidth efficient and the best known for curve performance.

In Chapter 7 we present a method to reduce the additional bandwidth re-
quired by Koblitz systems for a fixed security parameter k over general ones.
Subsequently we show with a low probability of failure one can compress this
bandwidth to the expected number of bytes of a general system over the same
field. We propose an analogue of the DHKA directly using these compressed
points. We provide efficient algorithms for the compression and decompression
of such systems. These results are not known to have been published before.

In Chapter 9 we propose disguising certain algebraic objects to form candi-
date BBGs. We present a novel method of specifying a disguised group law on
T2 and give methods for LUC and XTR. We show that all of these are weak.
We discuss our results, and conclude that generally, disguising is not a good
idea.

3



Lots of people working in cryptography have
no deep concern with real application issues.
They are trying to discover things clever
enough to write papers about.

Whitfield Diffie (1944– ) 2
Cryptographic Background

We assume that the reader is familiar with the elementary concepts of cryp-
tography. This chapter presents fundamental definitions and standard notation
used throughout this thesis and may be safely skipped upon first reading.

For more detailed literature on the background of cryptography and its ap-
plications, the reader is recommended to consult the superb Handbook of Applied
Cryptography [53] or other similar works: [25, 69, 77].

2.1 Complexity Theory

Complexity theory provides mechanisms for classifying computational problems
according to the resources required to solve them, [53]. It is the goal of this
theory that a problem may be described in terms of its fundamental difficulty
and not one dependent on which computational model/machine one uses to
attempt to solve it. These computational resources usually indicate the time
(time–complexity) and storage space (storage–complexity) required for a solu-
tion.

To present this theory fully, one must describe problems in terms of Turing
machines or other equivalent abstracta. We simplify this however, and consider
complexity in terms of algorithms running on a modern computer. For the full
theory, one should consult the seminal [49] and [50].

2.1.1 Complexity Notation

In this thesis we will use the standard definitions and notation from [53]:

Definition 2.1.1. The input size is the total number of bits required to repre-
sent an instance of a problem.

Definition 2.1.2. The running time of an algorithm is the number of primitive
operations (similarly ‘steps’) executed. A step can be a bit–operation, modular
multiplication, curve addition et cetera.

One considers the input size to a problem as it allows us to see how the
running time of an algorithm is effected when the size of the problem is changed.
It is usually difficult to state or derive an exact running time for an algorithm.
So one often uses asymptotic run–times which give an approximation as the
input size increases.

4



Definition 2.1.3 (Order Notation). Let f and g be two functions f, g : R≥0 →
R≥0. Then:

• (Asymptotic Upper Bound) f(n) = O
(
g(n)

)
if there exists c ∈ R>0 such

that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 where n0 ∈ N.

• (Asymptotic Lower Bound) f(n) = Ω
(
g(n)

)
if there exists c ∈ R>0 such

that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0 where n0 ∈ N.

Thus one can think of asymptotic notation as giving the running time of
an algorithm with all constants removed. We will use both the asymptotic and
non–asymptotic notation where appropriate in this thesis.

2.1.2 Complexity Classes

Complexity classes classify how difficult a problem is asymptotically:

Definition 2.1.4. A constant–time algorithm is one with a worst–case running
time of O(1).

Definition 2.1.5. A linear–time algorithm is one with a worst–case running
time of O(n) where n is the input size.

Definition 2.1.6. A polynomial–time algorithm is one with a worst–case run-
ning time of O(nc) where n is the input size and c > 1 a real constant.

Definition 2.1.7. An exponential–time algorithm is one with a worst–case run-
ning time of O(cn) where n is the input size and c > 1 a real constant.

Definition 2.1.8. A subexponential–time algorithm is one whose worst–case
running time is a function lying between that of polynomial and exponential.

Clearly one has the relative growth rates of: O(1) < O(n) < O(nc) < O(cn).
We consider polynomial–time or faster algorithms as efficient and asymptoti-
cally slower algorithms as inefficient. However the degree of the polynomial in a
polynomial–time algorithm is important, for this distinction only holds asymp-
totically: For a small problem, such as factoring a small integer, exponential
methods such as trial–division will often prove faster than sub–exponential ones.

2.2 Asymmetric Cryptography

This thesis is concerned with asymmetric cryptography (equivalently public–key
cryptography). Asymmetric cryptography was first1 suggested in 1976 by Diffie
& Hellman [20] to overcome the key–distribution problem (see §2.5.1) and as a
method for authenticating an unknown party.

Its principal advantage is unlike symmetric cryptography, no pre–shared
key is required to be established. Instead, the system comprises of a private
and public–key pair which are mathematically linked under a one–way function
(equivalently a trapdoor function).

This quasi–invertible map is one such that computation one way is trivial
(encryption), but the inverse operation (decryption) is ‘hard’ without some ad-
ditional information; namely the private–key. This fundamental construction
forms the basis of all deployed asymmetric cryptosystems.

1It was later declassified that J. Ellis of GCHQ discovered an equivalent definition of
asymmetric cryptography in 1969 although this remained classified until the 1990’s.
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2.2.1 Computational Security and Hard Problems

We are interested in what constitutes a difficult computational problem in the
‘real world’ and as an example, we consider factoring large integers. Using the
special number field sieve (SNFS), Aoki et al. in 2007 announced the factorisa-
tion of the 1039th Mersenne prime 21039 − 1, [3, 4]. Here, a 22–bit factor was
already known and the remaining two factors were unbalanced (265 and 752–
bits respectively) so this was equivalent to factoring a general 700–bit integer.
In total the team spent 127.5 AMD Opteron 2.2GHz years (and 127.5× 4Gb of
space) to complete the computation. Näıvely this required between 268 and 270

bit operations, depending on the balance between 32 and 64–bit code size and
whether both processor cores were fully utilized.2 To date, this is the largest
computational problem known to have been solved.

In this thesis we will consider a computational problem as tractable if it can
be solved in less than 270 bit operations. Similarly a computational problem is
hard if it requires significantly more than this effort (e.g. 280 bit operations).

All known asymmetric systems are conjectured to be hard and their construc-
tion becomes a dynamic arms–race: Since the strength of a given cryptosystem
is dependent on the key–size employed, when an improved attack or a significant
computational advance is discovered, key–sizes must be increased accordingly.

2.3 The Discrete Logarithm Problem

The discrete logarithm problem or more commonly DLP, forms the corner–stone
of our research here and so is presented in detail. Formally:

Definition 2.3.1. Let (G,⊕) be a finite cyclic group of prime order ` and let
P be a generator of G. The (additive) map

ϕ : Z` → G

t 7→ [t]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
t−times

is an isomorphism between (Z`,+) and (G,⊕). The problem of computing
ϕ−1 is called the discrete logarithm problem to the base P . Specifically; given
P,Q ∈ 〈P 〉 determine the t ∈ N such that Q = [t]P , i.e: Find t = logP Q.

Up to isomorphism there is only one group (G,⊕), however it is well known
by cryptographers that different representations of (G,⊕) can give different
computational abilities to a cryptanalyst. For example, when (G,⊕) is the
additive group of integers modulo `, (Z`,+), the DLP is reduced to computing
a t ∈ N such that ta = b (mod `) for a given a, b ∈ Z`. This is trivial as it only
requires us to calculate a modular inverse which can be computed in O(lg2 `)
bit operations (polynomial–time) using the extended Euclidean algorithm [39].
Instead however; if we let (G,⊕) = E(Fq) be the group of rational points on an

2Since the computational complexity for the SNFS to factor an integer n is

O
`
e(

32
9 lnn)

1
3 (ln lnn)

2
3 ´

this was equivalent to approximately 68–bits of work, [44]. Hence this result is reasonable.
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elliptic curve defined over a finite field Fq, generically the best known algorithm
for solving this DLP is fully exponential in dlg qe [9].

It is thus clear that both the specific representation of (G,⊕) and the size
of this group affect its suitability to be used as a cryptographic primitive.

2.4 Attacks on the DLP: Pohlig–Hellman

Let (G,⊕) be a finite cyclic group of (not necessarily prime) order n > 1. That
is; G is generated by a single element a ∈ G such that 〈a〉 = G. Let e ∈ G be
the neutral element of G such that a + e = a for all a ∈ G. We say the order
of an element a ∈ G is the integer k ≥ 1 such that [k]a = e. The fundamental
theorem for cyclic groups (Propositions 4.1 and 4.2 of [42]) states:

Proposition 2.4.1. Let G be a finite cyclic group of order n > 1. Then for all
a 6= e ∈ G, the order of a divides n. Then every subgroup of G is also cyclic
and there exists at most one subgroup of order k ≤ n. If f is a homomorphism
of G, then the image of f is cyclic also.

Assume that the order of G is composite: n =
∏
pei
i . Then G is isomorphic

to
Θ : G −→ Cp1e1 × · · ·Cpt

et

where Cpe is the cyclic group of order pe, ([42], p95). The projection of Θ onto
a component Cpe is given by θp : G→ Cpe where

θp : a 7→ [n/pe]a.

Assume one has a DLP on G: Given an a, b ∈ 〈a〉 = G find an x ∈ N such that
b = [x]a. Since θp is a group homomorphism, one has θp(b) = θp([x]a), i.e:

[n/pe]b = [n/pe]([x]a)

in Cpe . Hence, if one could compute x modulo all the pei
i for all i, one could use

the Chinese Remainder Theorem to recover x, ([42], p94).
Thus the problem of computing the discrete logarithm is only as hard as

computing it in the largest prime order subgroup of G. This fact is attributed
to Pohlig–Hellman [61] and is the reason one assumes one works in this largest
prime order subgroup.

2.5 Cryptographic Schemes Based on the DLP

Here we present two cryptographic schemes based on the discrete logarithm
problem; the Diffie–Hellman key–agreement protocol [20] and the ElGamal cryp-
tosystem [22]. This presentation is made for an arbitrary finite abelian group
(G,⊕) where we assume we work in the maximal prime order subgroup 〈P 〉 of
order `.

2.5.1 DHKA–Protocol

The Diffie–Hellman key–agreement protocol (DHKA) was introduced to solve
the key distribution problem. Most encryption is done by symmetric cryptosys-
tems due to their inherent speed, however the shared symmetric key needs to be
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established before communication can commence. The DH–protocol is a way of
agreeing a key between two parties, here by convention denoted Alice and Bob.

Parameter Initialisation: Let P ∈ G have prime order `. The system
parameters (G,⊕, P ) are then published.

Message Exchange: Alice picks a random a ∈ [1, `− 1] ⊆ N and computes
the element A = [a]P . Alice sets her private–key to be a ∈ N and sends
the message A to Bob. Bob analogously picks a random b ∈ [1, ` − 1] ⊆ N,
computes B = [b]P , sets his private–key to be b ∈ N and sends B to Alice.

Key Derivation: Upon message exchange, Alice computes

RA = [a]B = [a]([b]P ) = [ab]P,

and Bob
RB = [b]A = [b]([a]P ) = [ba]P.

Since RA = RB , this element can be input into some key–derivation function
to create a shared key for symmetric cryptography between Alice and Bob.

Since we assume the DLP is hard in (G,⊕), an eavesdropper Eve cannot
recover the a from A = [a]P and so Alice and Bob have successfully agreed a
key over an insecure channel. Note that this scheme is susceptible to the man–
in–the–middle attack. This is where Eve intercepts the message A being sent to
Bob and replaces it with an E = [e]P known to Eve. Now Bob has unknowingly
computed a shared key with Eve and not Alice. Eve can now decipher any
ciphertext sent by Bob intended for Alice. This attack is easily overcome in
practice by using authentication methods such as PKI; see p361 & p492 of [53].

2.5.2 ElGamal–Protocol

ElGamal is a hybrid public–key cryptosystem based on the DHKA from §2.5.1,
[22]. Let ϕ : G→ {0, 1}n be some key–derivation function. Then;

Parameter Initialisation: Alice selects an element P ∈ G of order `. With
a random a ∈ [1, ` − 1] ⊆ N she then computes her public/private–key pair
(A = [a]P, a). The system parameters (G,+, ϕ, P,A) are then published.

Encryption: Bob wishes to send the message m ∈ {0, 1}n to Alice. He
picks a random b ∈ [1, `− 1] ⊆ N and computes B = [b]P and the ciphertext
C = m⊕ ϕ([b]A). He then sends (B,C) to Alice.

Decryption: Alice receives the pair (B,C) from Bob. She then computes

[a]B = [a]([b]P ) = [b]([a]P ) = [b]A

and uses this to evaluate
C 	 ϕ([b]A) = m.

The randomised ephemeral key (or nonce) b ∈ N means that ElGamal is an
example of randomised encryption.

8



Map from one potato to the other potato
. . . think about potatoes

Erdős Pál (1913–1996) 3
Mathematical Background: Finite Fields

Since the focus of this thesis is applications in cryptography, most of our work
requires finite fields. A good background to this material is the excellent In-
troduction to Finite Fields by H. Lidl & H. Niederreiter [48], S. Lang’s Algebra
[42] and Z. Wan’s Lectures on Finite Fields and Galois Rings [85].

3.1 The Structure of Finite Fields

Definition 3.1.1. A finite field or Galois field is a field K of finite cardinality.

Definition 3.1.2. In a field the order of the multiplicative neutral element e
in the additive subgroup is called the characteristic of the field. We denote this
via

char(Fq) = p.

It is well known that the characteristic of any field is either 0 or a prime
number p ([42], p90). If Fq were to have characteristic 0 it would contain Q and
be infinite, hence the characteristic of a finite field must be a prime p.

Definition 3.1.3. If p is a prime we denote by Fp the field Z/pZ of p elements.
We call this a prime field. If q = pd where d > 1 we denote the field of q elements
by Fq. We call this an extension field.

Theorem 3.1.4. ([85], p122) For any prime p and natural number d, there
exists a finite field Fpd which is unique up to isomorphism.

Lemma 3.1.5. Let Fqn be a finite field. Then there exists a proper subfield

Fqd ⊆ Fqn if and only if d|n

The smallest proper subfield of Fq is its prime field Fp where char(Fq) = p.

Definition 3.1.6. The group of units or multiplicative subgroup of Fq is denoted
via F∗q . Clearly since F∗q = Fq \ {0}, the order of this group is

#F∗q = q − 1.

Lemma 3.1.7. Let Fq be a finite field. Then the multiplicative subgroup F∗q is
cyclic; that is there exists an element γ ∈ F∗q which generates F∗q = 〈γ〉. Such
an element is called a primitive element of F∗q .
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From Definition 3.1.6 and Lemma 3.1.7 one has:

Corollary 3.1.8. For any finite field Fq there are ϕ(q − 1) primitive elements
where ϕ is the Euler Totient function

ϕ(N) = #{x : 1 ≤ x ≤ N, gcd(x,N) = 1}.

Moreover, if e|(q − 1) then there exist exactly ϕ(e) elements of order e in F∗q .

Hence the map f(x) = xe is a bijection if and only if gcd(e, q− 1) = 1. This
leads us to two important definitions:

Definition 3.1.9. There exists a unique up to isomorphism (infinite) algebraic
extension of Fq in which every polynomial m(X) ∈ Fq[X] splits completely; that
is m(X) factors to give the product of linear monomials

m(X) =
∏

(X − xi).

We call this field the algebraic closure of Fq and denote it by Fq.

Definition 3.1.10. The qth–power Frobenius automorphism is the map

σ : Fq → Fq
α 7→ αq.

Definition 3.1.11. The Galois group of L over K, denoted Gal(L/K) is the
group of K–automorphisms of L.

Theorem 3.1.12. Every finite extension Fqn/Fq is Galois and the group

Gal(Fqn/Fq) = 〈σ〉

is cyclic of degree n.

Using Lemma 3.1.5 and Definition 3.1.10, one has a simple membership test:

Lemma 3.1.13. For a given n ≥ 1, all proper subfields of Fqn correspond to
the divisors d|n. An element α ∈ Fqn belongs to a proper subfield Fqd of Fqn if
and only if σd(α) = α.

We now are able to define two important functions:

Definition 3.1.14. Let α ∈ Fqn and σ be the Frobenius map. Then

TrFqn/Fq
(α) =

n−1∑
i=0

σi(α) =
n−1∑
i=0

αq
i

(3.1.1)

is denoted the trace and

NFqn/Fq
(α) =

n−1∏
i=0

σi(α) =
n−1∏
i=0

αq
i

(3.1.2)

is the norm of α over Fq.
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When Fqn and Fq are clear from context, we just write Tr(α) and N(α) for
TrFqn/Fq

(α) and NFqn/Fq
(α) respectively with an α ∈ Fqn .

Theorem 3.1.15. For α, β ∈ Fqn and an a ∈ Fq one has

(i) Tr(α) ∈ Fq; (i’) N(α) ∈ Fq;
(ii) Tr(α+ β) = Tr(α) + Tr(β); (ii’) N(αβ) = N(α) N(β);
(iii) Tr(aα) = aTr(α) hence, (iii’) N(aα) = an N(α) hence,

in particular, Tr(a) = na; in particular, N(a) = an;
(iv) Tr(αq) = Tr(α); (iv’) N(αq) = N(α).

Here (ii) and (iii) show that the trace defines an Fqn–linear map.

Proof. See ([85], p149).

3.2 Representing Finite Fields

As indicated in Definition 3.1.3, we use the canonical set of representatives

{0, 1, 2, . . . , p− 1}

for prime fields, since Z/pZ ∼= Fp where all arithmetic is done modulo p.
For extension fields however there are many equivalent ways in which their

elements can be represented. Since Fqn is a vector space over Fq it is natural
to use a basis representation for Fqn . In this thesis we use both polynomial
and normal representations for finite extension fields. As there exist efficient
polynomial–time algorithms for the conversion of one representation to another,
this is in no way restrictive. Much of this follows [16] where further details may
be sought if needed:

3.2.1 Polynomial Representation

Denote by Fq[X] the ring of polynomials over Fq. If m(X) is a monic irreducible
polynomial, then 〈m(X)〉 is a maximal ideal of Fq[X] and hence Fq[X]/〈m(X)〉
is a field. If deg(m(X)) = n then Fq[X]/〈m(X)〉 has qn elements and must be
isomorphic to Fqn .

A vector space basis of Fqn over Fq is {1, X, . . . ,Xn−1}. This basis is called
a polynomial basis for Fqn with respect to Fq. Under this, all elements α ∈ Fqn

may be written as

α = αn−1X
n−1 + αn−2X

n−2 + · · ·+ α1X + α0

where all the αi ∈ Fq.
Addition, subtraction and multiplication are carried out modulo m(X) and

char(Fq) when using this representation. Inversion can be computed using the
extended Euclidean algorithm over Fq[X], for details see von zur Gathen &
Gerhard ([83], p46) or Knuth ([39], p342).

There are approximately qn/n monic irreducible polynomials of degree n
over Fq, thus such a representation is clearly non–unique: Given two irreducible
polynomials m(X) and g(Y ) of degree n one has

Fq[X]/〈m(X)〉 ∼= Fq[Y ]/〈g(Y )〉.
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A natural problem is to explicitly compute the isomorphism between them. This
can be done in polynomial–time and will be the subject of §3.3.

Any monic irreducible polynomial of suitable degree can be used to con-
struct Fqn , but in reality one often uses those with special properties which help
accelerate field arithmetic. Two properties one could look for are:

• The polynomial m(X) is primitive. That is one of its roots is a primitive
element, thus also a generator of the multiplicative subgroup F∗qn . There
are approximately ϕ(qn − 1)/n monic primitive polynomials of degree n
in Fq[X], hence these are plentiful in practice.

• The polynomial m(X) is sparse (that is it contains very few non–zero
coefficients). Such sparse polynomials allow for a faster reduction using
known algorithms and are often recommended in practice. See [84].

Occasionally, one can find a polynomial which is both sparse and primitive:
X167 +X6 + 1 is such an example over F2[X].

3.2.2 Normal Representation

Definition 3.2.1. [16] An element α ∈ Fqn is said to be normal over Fq if

α, σ(α), σ2(α), . . . , σn−1(α)

are linearly independent over Fq. In this case, one can construct a basis of the
vector space Fqn/Fq as

{α, αq, αq
2
, . . . , αq

n−1
}

which is denoted the normal basis of Fqn over Fq.

Hensel proved there always exists a normal basis for Fqn over Fq for all n,
and an element α is normal if and only if

gcd
( k−1∑
j=0

σk−1−j(α)Xj , Xk − 1
)

= 1.

For any β ∈ Fqn in this representation, the computation σ(β) = βq is very easy
since it is just a cyclic shift of the co–ordinates of β with respect to the fixed
basis {α, σ(α), σ2(α), . . . , σn−1(α)}. This is especially useful when representing
F2n since it becomes just a bit–shift which is especially cheap to do in hardware.

3.3 Computing Isomorphisms Between Finite Fields

For every prime power pn there exists a finite field Fpn which is unique up to
isomorphism. If f and g are two monic irreducible polynomials over Fp of de-
gree n, then the quotient rings Kf := Fp[X]/〈f(X)〉 and Kg := Fp[Y ]/〈g(Y )〉
represent isomorphic finite fields. Here Kf has elements expressed as polyno-
mials αn−1X

n−1 +αn−2X
n−2 + · · ·+α0 modulo (g(X), p) and likewise Kf has

elements βn−1Y
n−1 + βn−2Y

n−2 + · · ·+ β0 mod (f(Y ), p). The aim here is to
compute the explicit isomorphism which maps representations in Kf to that of
those in Kg.
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All methods for computing an isomorphism between finite fields rely on
finding a certain element in one field, and then decomposing its representation
in terms of the basis of the other. A map can then be constructed in terms of
these basis elements.

Pinch in [60] gave two algorithms for computing such an isomorphism. The
idea of these methods is work in some group Γ defined by algebraic operations
over Fp. Then to pick a γ ∈ Fpn of small order r and simultaneously represent γ
as an element αx ∈ Kf in the root x of f and as an element βy ∈ Kg in the root
y of g. If γ generates F∗pn/Fp and no other proper subgroup F∗pd of F∗pn , then
one can find a relation since both αx and βy represent an element of small order
r, and so one must have φ(αx) = βsy for some 1 ≤ s ≤ r and an isomorphism
φ. One can then use this to express the defining polynomial of Kf in terms of
y. This method was not efficient for large fields however since one may need to
test r cases for an isomorphism between φ(αx) = βsy.

Better polynomial–time methods do exist, and here we present this idea
using the simplest (but not efficient) algorithm:

Algorithm 3.3.1 (Polynomial–time algorithm for the computation
of a Finite Field Isomorphism). .
INPUT: Fields Fp[X]/〈f(X)〉 and Fp[Y ]/〈g(Y )〉 such that deg f = deg g;
OUTPUT: A rational map m such that f ◦m ≡ 0 (mod g).
1. Assume that f(X) is square–free (no repeated roots);
2. Repeatedly use Berlekamp’s/Cantor–Zassenhaus algorithm to factorise

f(Y ) ∈ Fp[Y ]/〈g(Y )〉 into irreducible factors;
3. Set the simplest root of f(Y ) as θ;
4. Now use this root to define the map

Fp[X]/〈f(X)〉 → Fp[Y ]/〈g(Y )〉,
X 7→ θ.

This algorithm is polynomial–time but far from optimal. Lenstra in [47] was
the first to show that polynomial–time algorithms do exist, but gave no explicit
algorithms for constructing a polynomial m ∈ Kg such that f ◦m ≡ 0 (mod g).
The first implementable polynomial–time method was given by Allombert in [1]
and the interested reader should consult this paper for details.
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Compression



Knowledge in youth is wisdom in age.

Anon (unknown) 4
Background

4.1 Elliptic Curves

Here we present the bare minimum of results required for our study of cryp-
tography. There have been hundreds of years of research on elliptic and higher
genus curves and this is reflected by the wealth of material that is available. For
the underlying theory our research references the excellent books by Silverman
[74, 75] and Washington [86]. For implementation issues of ECC, we utilise the
books by Hankerson, Menezes & Vanstone [37], Enge [23], The Handbook of El-
liptic and Hyperelliptic Curve Cryptography [16] and the excellent duo; Elliptic
Curves in Cryptography and Advances in Elliptic Curve Cryptography [9, 78].
We present the main results we require now:

Definition 4.1.1. An elliptic curve E defined over a finite field Fq is given by
the affine Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the ai ∈ Fq and E has a non–zero discriminant. For simplicity one usually
writes E/Fq when the curve E is defined over the field Fq.

When one is working over finite fields with characteristic coprime to 6, one
may define an elliptic curve via the simpler short–Weierstraß form:

Definition 4.1.2. Let E be an elliptic curve defined over a finite field whose
characteristic p is not 2 nor 3. Then one can define E via the short–Weierstraß
form

y2 = x3 + ax+ b

where a, b ∈ Fq and the discriminant 4a2 + 27b2 6≡ 0 (mod p).

Definition 4.1.3. The set of points on any elliptic curve E/Fq is denoted

E(Fq) := {(x, y) ∈ Fq × Fq : y2 = x3 + ax+ b} ∪ {O},

where the projective element O is called the point at infinity.

Theorem 4.1.4. The set E(Fq) forms an additive abelian group with identity
O under point addition, see §4.1.1.

Since Fq is finite, E(Fq) is necessarily a finite abelian group and may be
used for DL–based cryptosystems. This was first suggested simultaneously by
Koblitz [40] and Miller [55] in 1985.
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Definition 4.1.5. Let E/Fq. Then the qth–power Frobenius map is

ψ :


E(Fq) → E(Fq)
(x, y) 7→ (xq, yq),
O 7→ O.

The map ψ is a group endomorphism of E(Fqn) for any n ≥ 1 since it respects
the elliptic curve group–law; ψ(P +Q) = ψ(P ) + ψ(Q).

Definition 4.1.6. Let E/Fq. Then the quantity

t := q + 1−#E(Fq)

is called the trace of Frobenius at q.

Theorem 4.1.7. The map ψ satisfies the relation

ψ2 − [t]ψ + [q] = [0],

called the characteristic equation of ψ. That is, for any point P = (x, y) ∈ E(Fq)
one has

(xq
2
, yq

2
)− [t](xq, yq) + [q](x, y) = O.

To use the group E(Fq) in cryptography, we need to know its order. The
following theorem by Haße gives us a bound for the size of this group:

Theorem 4.1.8. Let E/Fq. Then the trace of Frobenius satisfies

|t| ≤ 2
√
q.

The set of integers {x ∈ N : q + 1 − 2
√
q ≤ x ≤ q + 1 + 2

√
q} is called the

Haße–Interval.

In the sequel we will need to be able to describe certain properties of elliptic
curves E. We give definitions for these now:

Definition 4.1.9. Let E/Fq and r ∈ N. Then

E[r] := {P ∈ E(Fq) : [r]P = O}

is the set of r–torsion points of E. That is the set of points of order r.

Theorem 4.1.10. Let E/Fq and char(Fq) = p. Then if r is coprime to p,

E[r] ∼= Z/nZ× Z/nZ.

Otherwise, r = ps and either

E[ps] = {O} or E[ps] ∼= Z/psZ

for all s ≥ 1.

Definition 4.1.11. Let E/Fq and char(Fq) = p. If E[ps] = {O} for all s ≥ 1,
then E is said to be supersingular. Otherwise it is called ordinary.

Finally, one defines the extraction functions required in the sequel:

Definition 4.1.12. Let x(P ) : E(Fq)→ Fq be the function which extracts the
abscissa and y(P ) : E(Fq)→ Fq be one which extracts the ordinal of P ∈ E(Fq).
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4.1.1 Addition Law for Curve Points

The points of E(Fq) are well known to form a group under elliptic curve point
addition, as Theorem 4.1.4 stated. In this thesis we require formulæ solely for
the binary fields case. We present such formulæ here. For the general case one
should consult [75].

For Curves over Binary Fields

For the elliptic curve E/F2n defined by the short–Weierstraß form

y2 + xy = x3 + ax2 + b

one has the following formulæ [9]:

For the points Pi = (xi, yi) ∈ E(F2n) and the neutral element O one has:

−Pi = (xi, xi + yi).

To compute P3 ← P1 + P2 do

A: if P2 = −P1 then:

– set P3 ← O.

– goto step C.

else if (x1 6= x2), set

λ← y2 + y1

x2 + x1
, µ← y1x2 + y2x1

x2 + x1
.

else if (x1 = x2 6= 0), set

λ← x2
1 + y1

x1
, µ← x2

1.

B: set P3 ← (x3, y3) where

x3 = λ2 + λ+ a+ x1 + x2,

y3 = (λ+ 1)x3 + µ

= (x1 + x3)λ+ x3 + y1.

C: return P3. halt.

Lemma 4.1.13. In an odd prime order subgroup ` of E(F2n), all points P =
(x2, y2) 6= O may be written as P = [2]R where R = (x1, y1) and

x2 = x2
1 + bx−2

1 .

Proof. If we are working in a prime order subgroup, for an R ∈ 〈P 〉 one has
∃b ∈ [1, `] such that P = [b]R. Since ` is odd, one can find an R ∈ 〈P 〉 such
that P = [2]R.
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Let P = (x2, y2) and R = (x1, y1). From the formulæ above one has that

x2 = λ(λ+ 1) + a, λ = (x2
1 + y1)x−1

1 .

Substituting in for λ gives

x4
1 + y2

1

x2
1

+
x2

1 + y1

x1
+
ax2

1

x2
1

=
x4

1 + x3
1 + a2x

2
1 + (y2

1 + x1y1)
x2

1

where with y2
1 + x1y1 = x3

1 + ax2
1 + b the result subsequently follows.

4.1.2 Point Compression

An elliptic curve point P = (x, y) ∈ E(Fq) where n = dlg qe näıvely requires 2n–
bits to store or transmit; n–bits for each Fq element. However, for each abscissa
x there exists at most two corresponding ordinals y and y′ corresponding to the
roots of the Weierstraß equation [9]. Hence one can send x and a bit b which
determines the choice of ordinal. The receiver can then uniquely reconstruct the
point by solving a quadratic equation. This method only requires (n + 1)–bits
to specify P and is denoted point compression. The methods for such are:

For curves over non–binary fields

For a curve E/Fq where Fq = Fpn = Fp(θ) one has −P = (x,−y) if P = (x, y),
with P = −P if and only if y = 0. Since −y = q − y and q is odd, the parity of
y and −y are opposite unless y = 0.

Thus one sends (x, b(y)) to represent P = (x, y) where b(y) is a bit equal to
zero when c0 in y =

∑n−1
i=0 ciθ

i is even, and 1 otherwise.
The point is recovered by computing from the Weierstraß form an ±y, with

it’s sign being determined by b(y).

For curves over binary fields

For a curve E/F2n : y2 + xy + x3 + ax2 + b = 0, one has −P = (x, x + y) if
P = (x, y), with P = −P if and only if y = 0. First let us consider the following:

Theorem 4.1.14. ([85], p156) Consider the quadratic equation

z2 + z + β = 0 (4.1.1)

over F2n where β ∈ F2n . This has valid solutions z, z+1 if and only if Tr(β) = 0.

Dividing the Weierstraß equation E : y2 + xy = x3 + ax2 + b by x2 and
setting z = y/x gives us

z2 + z + β = 0

where β = x + a + bx−2 which is known to have a valid solutions z, z + 1 if
and only if Tr(β) = 0 from Theorem 4.1.14. Hence, to send a point (x1, y1) one
computes z1 = (y1/x1) and sends (x1, c0), where c0 is the least significant bit
of (y1/x1) =

∑n−1
i=0 ci2

i. If y1 = 0 we set c0 = 0 and only one point P with an
x1 = 0 exists, hence the parity of y1 here is not required.

To recover y1 for a x1 6= 0, one recovers a solution z1 of

z2 + z = x1 + a+ bx−2.

If the least significant bit of z1 equals c0, we set y1 = x1z1. Otherwise one sets
y1 = x1(z1 + 1) and we are done.
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4.1.3 Seroussi’s Point Compression for Curves E/F2n

For any elliptic curve E/F2n , using Seroussi’s method from [71] will save one
bit in the representation of an abscissa of a point.

One knows from Theorem 3.1.15 that: Tr(α) ∈ Fq, Tr(α+β) = Tr(α)+Tr(β)
and Tr(αq) = Tr(α) for all α, β ∈ Fqn . Under this one has:

Lemma 4.1.15. Let E/F2n be defined by the Weierstraß equation

E : y2 + xy = x3 + ax2 + b

and 〈P 〉 ⊆ E(F2n) be of odd prime order `. Then for all points Q ∈ 〈P 〉 one has

Tr(x(P )) = Tr(a),

a binary constant.

Proof. From Theorem 4.1.14, dividing the Weierstraß equation E : y2 + xy =
x3 +ax2 +b by x2 and setting z = y/x gives us z2 +z+β = 0 where β = x+a2 +
bx−2. This has solutions z, z + 1 if and only if Tr(β) = 0. From Lemma 4.1.13,
in an odd prime order subgroup of E(F2n), all points R = (x2, y2) 6= O may be
written as R = [2]P where P = (x1, y1) and x2 = x2

1 + bx−2
1 . As P is a point

on the curve it must satisfy (4.1.1) with z = y/x. Thus one has

Tr
(
x1 + a+

b

x2
1

)
= 0.

Using rules for the trace, one has Tr(α2) = Tr(α) and with α = −α ∈ F2n this
gives

Tr
(
x2

1 + a+
b

x2
1

)
= 0⇐⇒ Tr(a) = Tr

(
x2

1 +
b

x2
1

)
= Tr(x2).

Hence, for all points P in this odd prime subgroup Tr(x(P )) = Tr(a) ∈ F2.

As the trace is a linear operator ([42], p119), it can be computed as an inner
product:

Theorem 4.1.16. Let x =
∑n−1
i=0 xiαi for some basis {α0, . . . , αn−1} of F2n/F2

and ti = Tr(αi). Then

Tr(x) = t · x =
n−1∑
i=0

tixi.

Let t be defined as above and let j be smallest index such that tj = 1. Now
when we specify the abscissa x(P ) = xn−1xn−2 · · · x1x0, we only transmit the
punctured binary string

x′ = xn−1xn−2 · · · xj+1xj−1 · · · x1x0

which is of length n− 1.
As we are working with the largest prime order subgroup, we have t · x =

Tr(a) and so

xj =
(

Tr(a) +
j−1∑
i=0

tixi +
n−1∑
i=j+1

tixi

)
(mod 2).

This allows one to recover the original abscissa x from the pair (x′, a2), since a
posteriori the representation of F2n is known, and thus so is t.
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Lemma 4.1.17. When using a polynomial basis of F2n/F2, for an odd n and
x ∈ F2n represented by the vector x = (xn−1, xn−2, . . . , x0) one has

Tr(x) = x0,

the least significant bit of x.

Lemma 4.1.18. When using a normal basis of F2n/F2, for an x ∈ F2n repre-
sented by the vector x = (xn−1, xn−2, . . . , x0) one has

Tr(x) =
n−1∑
i=0

xi.

Proof. For a given x = (xn−1, xn−2, . . . , x0) one has

x =
n−1∑
i=0

xiβ
2i

, σ(x) =
n−1∑
i=0

xiβ
2i+1

=
n−1∑
i=0

xi−1β
2i

, . . . , σj(x) =
n−1∑
i=0

xi−jβ
2i

as squaring in normal representation is merely a bit–shift. Hence

Tr(x) =
n−1∑
j=0

σj(x) =
n−1∑
i=0

( n−1∑
j=0

xi−j

)
β2i

= S

n−1∑
i=0

β2i

= S · Tr(β)

where the index (i − j) is modulo n and S =
∑n−1
j=0 xj . It is well known that

Tr(β) = 1 if β generates a normal basis. This result is equivalently shown by
the trace being basis independent. The result now follows.

4.2 Koblitz Curves

N. Koblitz in [41] demonstrated the performance benefits of using the group of
F2n–points of non–supersingular curves over F2. These are recommended for
use in the Elliptic Curve Digital Signature Standard (ECDSA) by NIST in [58].

Definition 4.2.1. [16] A Koblitz curve (equivalently an anomalous binary
curve) is an elliptic curve E/F2 given by the Weierstraß equation

y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1}. (4.2.1)

We consider the group of points E(F2n) for cryptography.

Koblitz curves have two key advantages over general ones: Primarily, dou-
blings can be replaced by computations involving the Frobenius automorphism
which are much more efficient. To see an example of this, consider the charac-
teristic equation of the Frobenius from Theorem 4.1.7:

ψ2 − µψ + 2

where µ = (−1)1−a2 . Thus for all P ∈ Ea2(F2n), one can replace doublings by

[2]P = [µ]ψ(P )− ψ2(P ).

Scalar multiplication by powers of two is now very fast as we have replaced a
point doubling by a point subtraction and evaluation of ψ(P ) from P .

More efficient methods for scalar multiplication using Frobenius expansions
exist and the interested reader should consult the work of Solinas in [81, 82].

Secondarily, one is able to evaluate the lifted order of #E(F2n) very effi-
ciently, using only arithmetic in Z. See §5.6.1 for further details.
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4.3 Edwards Curves

Rather excitingly in 2007, Edwards’ in [21] gave an alternative form other than
the Weierstraß equation to describe an elliptic curve. This was significant, as
one can give a strongly unified addition law on the curve. This is where one
formula describes point addition, point doubling and point inversion with no
exceptional points. Apart from simplicity, an additional advantage of having
a unified addition/doubling formula is resistance against side–channel attacks.
This is unlike the standard Weierstraß form commonly used, and makes Edwards
curves very interesting for cryptography.

Subsequently, Bernstein & Lange in [7, 8] showed that Edwards curves have
exceptionally efficient arithmetic, particularly when using small curve coeffi-
cients. We now briefly present Edwards curves, and refer the interested reader
to [21], and particularly [7] for more details.

Definition 4.3.1. Let K be a field not of characteristic 2. Fix a c, d ∈ K where
cd(1− dc4) 6= 0 and d ∈ K −{0, 1} is non–square. Then an Edwards curve over
K is one of the form

x2 + y2 = c2(1 + dx2y2).

Theorem 4.3.2. The set of points

{(x, y) ∈ K ×K : x2 + y2 = c2(1 + dx2y2)}

forms a commutative group with (x1, y1) + (x2, y2) = (x3, y3) defined by the
Edwards addition law

x3 =
x1y2 + y1x2

c(1 + dx1x2y1y2)
, y3 =

y1y2 + x1x2

c(1− dx1x2y1y2)

with neutral element (0, c) and −(x, y) = (−x, y).

Originally, Edwards set d = 1 and showed that over K, every Edwards curve
is birationally equivalent to an elliptic curve in Weierstraß form defined over
K. However, by extending the theory to allow more general d ∈ K − {0, 1},
Bernstein & Lange in [7] showed that just over a 1/4 of all curves over a finite
field of odd characteristic, can be transformed into Edwards form:

Theorem 4.3.3. ([7], p4) Let K be a finite field in which 2 6= 0. Let E/K
such that the group of points E(K) has an element of order 4 and a unique
element of order 2. Then there exists a non–square d ∈ K such that the curve
x2 + y2 = 1 + dx2y2 is birationally equivalent to E over K.

Every Edwards curve has a point of order 4, namely (c, 0). Hence when we
consider mappings between the forms, it is natural to use elliptic curves having
a point of order four.

In our work here we do not need to compute maps between Edwards and
Weierstraß forms. Instead using the work of Bernstein & Lange in [7], we
consider point addition being directly evaluated on the Edwards curve.
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4.4 Security Parameters

The security of ECDLP–based cryptosystems is based on the size of the largest
prime divisor ` of #E(Fq) and the complexity of the best known attacks. For
general curves, these are the exponential–time Pollard–ρ methods given by
Wiener & Zuccherato [87] and Gallant, Lambert & Vanstone [32]. These re-
sults hold for all except a few known weaker curves (see ([9], p79–99) and [16]),
which we shall assume are not admitted throughout the rest of our work here.
This leads us to the following definition which is an analogue of those often used
in literature:

Definition 4.4.1. Let the security parameter of a cryptographic system based
on the ECDLP be defined as

k :=
{
blg `c for general curves, E/Fq,
blg `− lg nc for Koblitz curves, E/F2n .

This implies the best known attack requires an expected

2k/2

steps to compute logarithms. One sets the value of k to be the floor of lg ` to
ensure that a system of order ` has at least a security parameter of k.
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If A equals success, then the formula is

A = X + Y + Z.

X is work. Y is play. Z is keep your mouth shut.

Albert Einstein (1879–1955) 5
Compression of Elliptic Curve Domain

Parameters

5.1 Motivation

The principal advantage of elliptic curve based cryptography is per–bit–security.
However in the initialisation of public–key cryptosystems, so called domain pa-
rameters need to be established/transmitted which when näıvely implemented,
require extensive bandwidth.

Typically for ECMQV, ECDSA [2, 13] and other standardised protocols the
domain parameters include: the field, the Weierstraß coefficients of the elliptic
curve, a point of prime order `, this order ` and the cofactor of the curve.

Some elliptic curve based systems use fixed domain parameters, however
this approach can be disadvantageous: It lacks flexibility to increase key–sizes
with computational and algorithmic advances, it inhibits curve performance as
one cannot tailor parameters to software or hardware, and more fundamentally
perhaps; who is to select the parameters and who will trust them not to specify a
(not publically known) weaker curve? Clearly for such a system, the parameters
are never communicated and are hardwired into implementations.

An alternative system is one which allows its users to specify their own
domain parameters. We will call the latter multi–curve environments. Here, we
assume these system parameters will need to be communicated.

The motivation for our research is to reduce this bandwidth: In multi–curve
environments this issue becomes more important as many parameters could be
stored in some database. These parameters may subsequently be transmitted
multiple times. Hence, a natural question to ask is: Can one reduce the size
of these parameters without effecting the security and relative efficiency of such
systems? This is the main problem that we consider here.

There are two approaches: In this chapter, we consider the general case by
analysing the bandwidth required by SEC 1 for transmitting domain parameters.
Subsequently we investigate whether this bandwidth can be reduced, without
restricting the systems representable under SEC 1.

The second approach is to use an alternative model which only defines re-
stricted families; of curves and fields. This will be the subject of Chapter 6.

There has been little research in this area: The only results we are aware of
for the general case are Smart given in §5.3, and for the restricted case Smart in
§6.2 and Brown, Myers & Solinas considered in §6.3. It is reasonable that non
experts may implement ECDLP–based systems explicitly on what is presented
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in such standards as [2, 13, 14]. We show that the descriptions in these standards
are not optimal.

Constrained environments such as smart–cards which have a restricted allo-
cation of memory benefit from this research. Methods which reduce the storage
requirements for domain parameters but greatly increase the computational ef-
fort are explicitly highlighted, since for computationally restricted devices they
will prove less beneficial.

5.2 Domain Parameters

Here we present a standard for specifying domain parameters when implement-
ing asymmetric ECC. For this we use the latest working draft (version 1.7,
November 2006) of the Standards for Efficient Cryptography (SEC 1): Elliptic
Curve Cryptography, [15]. Throughout the sequel, this will be used as a guide
with which to compare our results to.

SEC 1 explicitly describes how one should represent domain parameters for
transmission and storage including: finite field elements, natural numbers and
points on elliptic curves. This is principally done via octet strings, the details
of which is presented in Appendix A.

Throughout this chapter, we will be analysing and comparing the specific
bits required to store and transmit certain data types. For this we use the
following notation:

Definition 5.2.1. Let x be an element of arbitrary type (e.g. an octet–string, a
finite field element, an elliptic curve point, et cetera) stored digitally using some
data–type (e.g. an octet–string). Then the expected amount of bits required
to represent an arbitrary element using a specific data–type is denoted as its
bit–size, and will be expressed by

‖x‖ .

Usually when one defines domain parameters an additional value Q ∈ E(Fq)
is included, which is a user’s public–key. In general the best one can do is via
point–compression from §4.1.2. However for the Koblitz curve case over F2n one
can actually do better than previously published. Methods for this are discussed
later in Chapter 7.

5.2.1 SEC 1: Elliptic Curve Domain Parameters

As described in the introduction, in the initial phase of ECC certain domain
parameters need to be specified, stored or exchanged. SEC 1 details how this
should be done for systems working over the fields Fp and F2n :

SEC 1: Elliptic Curve Domain Parameters over Fp

Definition 5.2.2. Elliptic curve domain parameters over Fp are the sextuple:

V :=
(
p, a, b,G, `, c

)
(5.2.1)
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consisting of a prime p specifying the finite field Fp, two elements a, b ∈ Fp
specifying the elliptic curve E/Fp defined by its Weierstraß equation

y2 ≡ x3 + ax+ b,

a base point G on E(Fp), a prime ` which is the order of 〈G〉 and an integer c
which is the cofactor of the curve, c = #E(Fp)/`.

SEC 1: Elliptic Curve Domain Parameters over F2n

Definition 5.2.3. Elliptic curve domain parameters over F2n are the septuple:

V :=
(
n, f(X), a, b,G, `, c

)
(5.2.2)

consisting of an integer n and an irreducible binary polynomial f(X) of degree
n specifying the (polynomial) representation of F2n , two elements a, b ∈ F2n

specifying the elliptic curve E/F2n defined by its Weierstraß equation

y2 + xy ≡ x3 + ax2 + b,

a base point G on E(F2n), a prime ` which is the order of 〈G〉 and an integer c
which is the cofactor of the curve, c = #E(F2n)/`.

5.2.2 Näıve Representational Bit–Size for V in SEC 1

We are now in a position to calculate the required bandwidth to transmit the
domain parameters given in Definitions 5.2.2 & 5.2.3 for SEC 1. This will
be presented in respect to the security parameter k defined in §4.4 and the
methods required by the SEC 1 for representing elements as octet strings in
Definitions A.1.2, A.1.3 & A.1.4.

Lemma 5.2.4. The worst–case näıve bit-size ‖V‖ required to represent domain
parameters for prime fields Fp from SEC 1 for a fixed security parameter k is

32 d((17/16)k + 1)/8e+ 8 d(k + 1)/8e+ 8 dk/128e+ 8

bits with point–compression and

40 d((17/16)k + 1)/8e+ 8 d(k + 1)/8e+ 8 dk/128e

bits without point–compression.

Proof. We wish to compute the expected ‖V‖ for a specific security parameter
k = blg `c.

Assume that there exists a publically known standard for the transmission
of the domain parameters within V. Then by Definition 5.2.2:

‖V‖ = ‖p‖+ ‖a‖+ ‖b‖+ ‖G‖+ ‖`‖+ ‖c‖ .

Since a and b are just elements of Fp, one trivially has ‖p‖ + ‖a‖ + ‖b‖ =
3 ‖p‖. Similarly from Definition A.1.4, the generating point G can be uniquely
represented using 8 d(‖p‖+ 1)/8e or 16 d‖p‖ /8e bits respectively depending on
whether or not point–compression is being utilised.
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The cofactor c is bounded by SEC 1’s recommendations for parameter gen-
eration in §3.1.1.1 of [15]. Namely that

c ≤ 2s/8,

where 2s is the expected number of steps required to take logarithms. Hence
here k = 2s and we have c ≤ 2k/16. From Definition A.1.2 one has that ‖c‖ =
8 dk/128e bits.

The last parameter is `. Since (lg `) ≥ k one can safely assume that the
integer ` requires at most a (k + 1)–bit string to represent giving us

2k ≤ ` < 2k+1

for otherwise the system would be over specified. Hence ‖`‖ = 8 d(k + 1)/8e
bits to represent as an octet string in V.

Now we must relate the value of k to the size of p. The Haße–Weil Theorem
(Theorem 4.1.8) relates the number of rational points to the field size, that is:

#E(Fp) = p+ 1− t where |t| ≤ 2
√
p.

We want to ensure that the system has at least the security parameter k; that
is ` ≥ 2k. As one usually picks k first and then finds a suitable p, we follow the
same approach: Fixing k and searching for the largest possible p gives us the
case where the cofactor c is at a maximum and #E(Fp) is minimal giving us

` · c = #E(Fp) ≈ dp+ 1− 2
√
pe .

Since 2k+1 · 2k/16 > ` · c ≥ 2k · 1, by taking logarithms on both sides one has

k ≤ lg p < (17/16)k + 1.

Hence one needs to assume that max{lg p} = (17/16)k+ 1 to ensure one always
has a security parameter of k.

Hence one has ‖V‖ = 3 ‖p‖ + 8 d(‖p‖+ 1)/8e + (8 d(k + 1)/8e) + 8 dk/128e
bits for the compressed case. By Definition A.1.3 one has

‖p‖ = 8 d(lg p)/8e max= 8 d((17/16)k + 1)/8e

and so for the (worst–case) when using point–compression this gives us

‖V‖ = 24 d((17/16)k + 1)/8e+ 8 d(8 d((17/16)k + 1)/8e+ 1)/8e
+ 8 d(k + 1)/8e+ 8 dk/128e bits.

From the relation 8 d(8 d((17/16)k + 1)/8e+ 1)/8e = 8 d((17/16)k + 1)/8e + 8,
the result now follows. The uncompressed case is similarly computed.

Remark 5.2.5. In Lemma 5.2.4, we truly consider the pessimistic case that
one could have c ≈ 2k/16. In deployment it would be much more usual to have
a small c, which would make ` ≈ p. This Lemma however gives the accurate
worst–case assessment under SEC 1.

Example 5.2.6. To place these values into context, k is usually chosen from
the interval [160, 384] and for these cases with prime fields Fp one has:
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Bit Size of ‖V‖
With point Without point

k compression compression
160 896 1064
164 896 1064
165 928 1104
192 1056 1256
224 1216 1448
256 1408 1680
384 2088 2496

Table 5.1: SEC 1: Example Bit Sizes for V.

For the F2n values one simply adds 8–bits for the compressed case and 16–
bits for the other:

Lemma 5.2.7. The worst–case näıve bit-size ‖V‖ required to represent domain
parameters for binary fields F2n from SEC 1 for a given security parameter k is

‖V‖ = 24 d((17/16)k + 1)/8e+ 8 d((17/16)k + 2)/8e+ 8 d(k + 1)/8e+ 8 dk/128e+ 16

bits with point–compression and

‖V‖ = 40 d((17/16)k + 1)/8e+ 8 d(k + 1)/8e+ 8 dk/128e+ 16

bits without point–compression.

Proof. As before, assume that there exists a publically known standard for the
transmission of the domain parameters within V. Then by Definition 5.2.3:

‖V‖ = ‖n‖+ ‖f(X)‖+ ‖a‖+ ‖b‖+ ‖G‖+ ‖`‖+ ‖c‖ .

n is simply the degree of the polynomial f(X) and is an integer in the range
specified by SEC 1 in §3.1.2.1 of [15]:

n ∈ {163, 233, 239, 283, 409, 571}.

Hence dlg 571e = 10 and one can assume that the integer n will be encoded into
a double octet–string giving ‖n‖ = 16.

We shall assume the näıve (worst) case for transmitting the binary polyno-
mial f(X), whereby the n binary coefficients of f are stored in a leftmost padded
octet string. Hence, ‖f(X)‖ = 8 dn/8e bits. Similar to the Fp case, one has
that ‖a‖ + ‖b‖ = 2(8 dn/8e) and ‖G‖ = 8 d(n+ 1)/8e with point–compression
and 16 dn/8e bits without. The cofactor c here is similarly bounded by §3.1.2.1
of [15] to be c ≤ 2k/16. Hence from Definition A.1.2, ‖c‖ = 8 dk/128e bits.

We must now determine the last parameter `. Since (lg `) ≥ k one may safely
assume that the integer ` requires at most a (k+ 1)–bit string to represent it or
the system would be over specified. Thus ‖`‖ = 8 d(k + 1)/8e bits represented
as an octet–string in V. As before we relate the value of k to the size of n using
the Haße–Weil Theorem:

#E(F2n) = 2n + 1− t where |t| ≤ 2
n
2 +1.
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We again want to ensure that our system has at least the security parameter
k: Fixing k and searching for the largest possible n gives us the case where the
cofactor c is at a maximum and #E(F2n) is at a minimum giving us

` · c = #E(F2n) ≈
⌈
2n + 1− 2

n
2 +1
⌉
.

Since 2k+1 · 2k/16 > ` · c ≥ 2k · 1, by taking logarithms on both sides one has
k ≤ n < (17/16)k + 1. Thus one assumes that max{n} = (17/16)k + 1. Under
this one can then show when using point–compression one has

‖V‖ = 24 d((17/16)k + 1)/8e+ 8 d((17/16)k + 2)/8e+ 8 d(k + 1)/8e+ 8 dk/128e+ 16.

The uncompressed case is analogously computed and the result now follows.

To give an estimate for the size required to represent the maximal V from
SEC 1 for a given k, it is trivial to observe that:

Corollary 5.2.8. As k grows for both prime fields Fp and binary fields F2n ,
one requires

‖V‖ →
(

5 +
5
16

)
k

bits for the compressed case and

‖V‖ →
(

6 +
3
8

)
k

bits for the uncompressed case.

5.3 Previous Research: Smart

As noted in the Motivation this subject has received little attention. Efficient
domain parameter representation for a restricted model was considered by Smart
in [76]. We investigate this further in §6.2. However, Smart made the crucial
observation that to establish the order of the largest prime subgroup `, one only
need know the trace of the Frobenius of E(Fq). We place this idea under SEC 1:

Theorem 5.3.1. Let k be a fixed security parameter and the cofactor be bounded
by c ≤ 2k/16. Then using the triple {q, t, c} one can establish the order ` =
(q + 1− t)/c in only

‖t‖ = d((17/16)k + 1)/2e+ 2

bits with the trace of the Frobenius of E(Fq) instead of directly by `.

Proof. Recall the Haße–Weil theorem (Theorem 4.1.8) which relates the number
of rational points to the field size:

#E(Fq) = q + 1− t where |t| ≤ 2
√
q.

It is clear that the (signed) trace t and q completely determine the order #E(Fq).
Thus specifying the triple {q, t, c} determines the group order ` = (q+ 1− t)/c.

In the proofs of the Lemmata 5.2.4 and 5.2.7, we showed that for both prime
and binary fields, max{lg q} = (17/16)k + 1 bits when the cofactor is allowed
to be bound by c ≤ 2k/16, as when using SEC 1. Hence one can establish ` by
sending

‖t‖ = d((17/16)k + 1)/2e+ 2

bits including the sign–bit for t by using |t| ≤ 2
√
q.
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This is an important observation since for a given security parameter k, one
expects ` to require k+1 bits to represent whereas at most one actually requires
d((17/16)k + 1)/2e+ 2 with negligible extra computation.

5.4 Reducing Redundancy in the Definition of V
Here we present more efficient methods for establishing domain parameters than
was given in Definitions 5.2.2 & 5.2.3. Specifically we show how one can establish
the order ` and the cofactor c using analogous ‘modified’ versions in Sections
5.4.1 & 5.4.2 receptively. These modified versions can be used to define any
order and cofactor with no loss in flexibility for fewer bits.

5.4.1 Establishing the Order ` for General Finite Fields

In this section we present various methods to reduce the size required to specify
the domain parameter ` ∈ V.

Here we extend Smart’s result from Theorem 5.3.1 and define the modified
trace, denoted t̂. With this we prove that at least an extra bit can always be
saved for non–binary fields Fq and 1 or 2 fewer bits for the binary case:

Definition 5.4.1. Let the field be a power of an odd prime Fq = Fpd for
d ≥ 1, t be the trace of the Frobenius and c be the cofactor from V. Then the
Fq–modified trace t̂ is defined to be

t̂ =

{
t/2 when c ∈ 2Z
(t− 1)/2 when c ∈ 2Z + 1.

(5.4.1)

Lemma 5.4.2. Let k, c, t and Fq be defined as above. Then using the triple
{q, t̂, c} one can specify the order ` = (q + 1− t)/c in only∥∥t̂∥∥ = d((17/16)k + 1)/2e+ 1

bits using the Fq–modified trace instead of directly by `.

Proof. Again by Haße–Weil one has

c · ` = #E(Fq) = q + 1− t (5.4.2)

where |t| ≤ 2
√
q. Since p is odd, q = pd is odd for all d ≥ 1 and similarly `

is also. From equation (5.4.2), one can see that t and c always share the same
parity. Thus when c ∈ 2Z set t = 2t̂, otherwise set t = 2t̂+ 1.

Clearly, the modified trace t̂ is always one bit smaller than the trace of the
Frobenius of E(Fq). The result now follows.

One now defines the analogous case for binary fields: It is well known that
the Weierstraß form

E/F2n : y2 + xy = x3 + ax+ b (5.4.3)

with b 6= 0 represents every isomorphism class of ordinary elliptic curves over
F2n ([9], p37). With this, one recalls Lemma III.4 from ([9], p38) given here:
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Lemma 5.4.3. Consider an elliptic curve defined by equation (5.4.3) over F2n .
Then,

#E(F2n) ≡

{
0 (mod 4) if Tr2n|2(a) = 0,
2 (mod 4) if Tr2n|2(a) = 1.

(5.4.4)

One can now present the analogous results for binary fields:

Definition 5.4.4. Let the field be F2n where n ≥ 1, t be the trace of the
Frobenius and c be the cofactor from V. Then the modified trace t̂ is defined
by:

t̂ =

{
(t− 1)/2 when Tr2n|2(a) = 1,
(t− 1)/4 when Tr2n|2(a) = 0.

(5.4.5)

Lemma 5.4.5. Let k be a fixed security parameter, the cofactor be bounded by
c ≤ 2k/16 and the field be F2n . Then using the quadruple {n, a, t̂, c} one can
specify the order ` = (2n + 1− t)/c of the elliptic curve in equation (5.4.3) in∥∥t̂∥∥ = d((17/16)k + 1)/2e+ Tr2n|2(a)

bits using the modified trace instead of directly by `.

Proof. Again the Haße–Weil theorem gives us

c · ` = #E(Fq) = 2n + 1− t (5.4.6)

where |t| ≤ 2(n/2)+1. From Lemma 5.4.3 we have

#E(Fq) ≡ 2 · Tr2n|2(a) (mod 4).

Since ` is a large prime, ` 6≡ 0, 2 (mod 4) and so c ≥ 2 where c ≡ 22−Tr2n|2(a)

(mod 4) itself. Thus since the LHS of equation (5.4.6) contains a factor of
22−Tr2n|2(a) so must the RHS, which gives us that (t−1) ≡ 22−Tr2n|2(a) (mod 4).

Hence, define the signed integer t̂ to be the modified trace given by

t̂ = (t− 1) · 2Tr2n|2(a)−2.

This is what was given in Definition 5.4.4. Hence by using t̂ in lieu of t from
Theorem 5.3.1, the result now follows.

5.4.2 The Modified Cofactor

When the modified trace t̂ does not directly depend on the cofactor c to recover
the original trace t, one can save extra bits in the representation of V. We do
this by defining the modified cofactor, ĉ. This is marginally beneficial for general
binary fields here but especially useful when using subfield curves later in §5.6.4.

Definition 5.4.6. Let the field be F2n for n ≥ 1, t̂ the modified trace given in
Definition 5.4.4 and a and c as defined in V. Then the modified cofactor ĉ is

ĉ :=

{
c/2 when Tr2n|2(a) = 1,
c/4 when Tr2n|2(a) = 0.

(5.4.7)
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Lemma 5.4.7. The expected bit size to establish the cofactor c ∈ V is ‖c‖ =
8 dk/128e bits in SEC 1 (Lemmata 5.2.4). Using the modified cofactor which
requires negligible additional computation, one requires:

‖ĉ‖ =

{
8 d(k − 16)/128e when Tr2n|2(a) = 1,
8 d(k − 32)/128e when Tr2n|2(a) = 0

(5.4.8)

bits over F2n to establish c.

Proof. By direct computation from Definition 5.4.6.

5.5 Excluding Redundancy from V for SEC 1

Here we present the true cost of SEC 1 if it were to use the principles of modified
traces and cofactors. As this does not restrict SEC 1, this may be considered
the ‘best case’ we know of, and expect, using the standard outlined in [15]. It
also serves to highlight the redundancy present in this construction.

Corollary 5.5.1. The worst–case bit–size ‖V‖ required to represent domain
parameters for prime fields Fp from SEC 1 when using the modified trace, t̂, for
a given security parameter k is

32 d((17/16)k + 1)/8e+ 8 d(d((17/16)k + 1)/2e+ 1)/8e+ 8 dk/128e

bits with point–compression and

40 d((17/16)k + 1)/8e+ 8 d(d((17/16)k + 1)/2e+ 1)/8e+ 8 dk/128e

bits without.

Proof. One merely notes that we do not transmit ` at a cost of 8 d(k + 1)/8e
bits, but instead use t̂ which requires d((17/16)k + 1)/2e + 1 bits to represent
in all cases. This integer is subsequently padded as an octet–string as defined
by SEC 1.

Corollary 5.5.2. The worst–case bit–size ‖V‖ required to represent domain
parameters for binary fields F2n from SEC 1 when using the modified trace and
cofactor, for a given security parameter k is

‖V‖ = 32 d((17/16)k + 1)/8e+ 8 d(d((17/16)k + 1)/2e+ 1)/8e
+ 8

⌈
(k − 16(2− Tr2n|2(a)))/128

⌉
bits with point-compression and

‖V‖ = 40 d((17/16)k + 1)/8e+ 8 d(d((17/16)k + 1)/2e+ 1)/8e
+ 8

⌈
(k − 16(2− Tr2n|2(a)))/128

⌉
bits without.

Proof. Analogous to the proof of Corollary 5.5.1 but also by adding the binary
result for the modified cofactor given in Lemma 5.4.7.
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To give an estimate of the size required to represent V from SEC 1 with the
indicated modifications for a given k, it is trivial to observe that:

Corollary 5.5.3. As k →∞ for both prime and binary fields Fq we require

‖V‖ →
(

4 +
13
16

)
k

bits when using point–compression and

‖V‖ →
(

5 +
7
8

)
k

bits when not.

Corollary 5.5.4. For both prime and binary fields Fq under SEC 1 given in
[15], one can show that the redundancy in the definition of V approaches(

k

2

)
bits as k →∞

with or without point–compression.

5.6 Subfield Curves under SEC 1

In this section we consider a special type of elliptic curve which is often used
in cryptography; the subfield curve. A well known example of these are Koblitz
curves defined in §4.2. Koblitz curves are commonly implemented and subfield
curves over non–binary extension fields are increasingly used with smart–cards.
For these cases we present how modified traces and cofactors are particularly
efficient to represent. This will form a foundation for the research undertaken
in Chapter 6.

5.6.1 Establishing the Order ` when using Subfield Curves

Definition 5.6.1. Let Fq be a finite field of any characteristic. Let E be an
elliptic curve defined over Fq be lifted over an extension field Fqm for m > 1.
Then E/Fqm is denoted a subfield curve.

We now explain Weil’s method to compute the trace of the Frobenius of
E(Fqm) from the trace of E(Fq), ([75], p132). This can be computed efficiently
using only integer arithmetic and it will allow us to define the group order ` far
more compactly for these cases.

Theorem 5.6.2. Let the curve E(Fq) have order #E(Fq) = q + 1 − t where
t = α+ β is the trace of the qth–power Frobenius and

X2 − tX + q = (X − α)(X − β) (5.6.1)

is its characteristic polynomial with α = β∗ ∈ C.
Then the trace of the qm–th power Frobenius is given by tm = αm + βm and

the order of the lifted curve E(Fqm) is

#E(Fqm) = qm + 1− tm.

32



Proof. See ([75], p135).

An important observation is that αm + βm is an integer which can be com-
puted using solely arithmetic in Z:

Lemma 5.6.3. Let tn = αn + βn with t0 = 2, t1 = t. Then

tn+1 = t1tn − qtn−1

for all n ≥ 1.

Proof. Equation (5.6.1) gives us α2 − tα+ q = 0 which upon multiplication by
αn−1 gives

αn+1 = tαn − qαn−1.

Computing the analogous result for β and summing gives

αn+1 + βn+1 = t(αn + βn)− q(αn−1 + βn−1)

and we are done. For a more general proof, see Corollary 8.3.3 later.

As this calculation is fast, all one needs to send is the trace of the curve
E(Fq) to establish the order #E(Fqm). This requires approximately k

2m bits as
opposed to k + 1. We now present the details:

Over Odd Characteristic Fields

Definition 5.6.4. Let q be a power of an odd prime p. Let E/Fqm be a subfield
curve where E/Fq, m > 1 and t̂1 the modified trace of the Frobenius of E(Fq),
given in Definition 5.4.1. Then the modified trace t̂ of E/Fqm is defined to be

t̂ := t̂1. (5.6.2)

Lemma 5.6.5. Let Fqm be as defined above and k a fixed security parameter.
Then using the quadruple {q,m, t̂, c} one can establish the order ` = #E(Fqm)/c
in only ∥∥t̂∥∥ = d((17/16)k + 1)/2me+ 1

bits using the modified trace instead of directly representing by `.

Proof. It is clear from Theorem 5.6.2 and Lemma 5.6.3 that using the triple
{q,m, t1} one can compute the order of E(Fqm). Since c ∈ V one can establish
` with only computation in Z. Thus the method is well–defined.

We now need to establish
∥∥t̂∥∥. From Lemma 5.4.2 and |t̂1| ≤ 2

√
q one has

that ∥∥t̂1∥∥ = d((17/16)k + 1)/2me+ 1.
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Over Binary Fields

As before we send a modified trace which is the trace of the subfield curve
E/F2d . However due to characteristics of curves over binary fields, one can do
even better when establishing ` leading to fewer bits being required.

Definition 5.6.6. Define the field F2d for d ≥ 2 and its extension F2dm for an
m > 1. Let E/F2d and t̂1 be its modified trace given in Definition 5.4.4. Then
the modified trace t̂ of E/F2dm is defined to be

t̂ := t̂1.

Lemma 5.6.7. Let k be a fixed security parameter and E/F2d and F2dm be
defined as above. Then using the quadruple {q,m, t̂, a} one can establish the
order ` = #E(F2dm)/c in only∥∥t̂∥∥ = d((17/16)k + 1)/2me+ Tr2d|2(a) bits.

When d = 1, E/F2 is a Koblitz curve and here one does not require sending a
trace or modified trace at all to establish #E(F2m). Hence here

‖t‖ =
∥∥t̂∥∥ = 0.

Proof. This proof is analogous to the one of Lemma 5.6.5, but with the re-
alisation that the subfield curve E/F2d must also must have a factor of 2
or 4 in its group order by Lemma 5.4.3. Hence we use the modified trace
t̂1 = (t1− 1) · 2Tr2d|2(a)−2 of the curve over F2d rather than the modified version
of the full trace. With this one can use the recurrence formula to compute the full
trace and subsequently the order of the lifted curve as #E(F2dm) = 2dm+1−tdm
where

tdm+1 = (t̂1 · 22−Tr2d|2(a) + 1)tdm − qtdm−1.

In the case of Koblitz curves things are simpler: When one defines subfield curves
E over F2 and then lifts them to F2m , as b 6= 0 in the Weierstraß equation there
exists only two possible curves corresponding to a ∈ {0, 1} ' F2. When a = 0,
#E0(F2) = 4 and hence the trace of E0 is −1. Similarly; E1(F2) = 2 implies
t1(E1) = 1. Thus t1 = 2a − 1 and so nothing needs to be sent as the trace is
implicit from the Weierstraß form. The lifted trace can now be computed using
the recurrence relation detailed above.

5.6.2 Performance Considerations

Remark 5.6.8. The cofactor c by definition should be small, namely; c ≤
2k/16. Hence the computation required to compute the order ` = (q + 1 −
t)/c is generally inexpensive. When E/F2n and c is a power of two, then the
computation required to compute the order ` = (2n + 1− t)/c is negligible.

Remark 5.6.9. When working with the subfield modified trace, there is an
additional cost using Lemma 5.6.3 to compute the lifted group order.

However, this recurrence relation requires n steps each consisting of two
multiplications and two additions in Z. For a field Fqm of any characteristic,
set n = dlg(qm)e. Since one has max{|t|} ≤ 2

√
qm ⇒ ‖(|t|)‖ ≤ (n/2) + 1 bits.

Thus the recurrence relation requires

h
(
n · (2(n/2 + 1)2 + 2(n/2 + 1))

)
= O(n3)

steps for some h ∈ R>0, which is a polynomial–time algorithm.
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5.6.3 Modified Trace Unsigning when Using Verification

The sign bit of t̂ in all the above cases (Sections 5.4.1 & 5.6.1) may be dropped
for a negligible additional computational cost when a protocol insists on point–
verification: When a device receives the domain parameters V, it verifies that
the ephemeral base point G ∈ V is in fact of the correct order `, to avoid small
subgroup attacks like those detailed in ([16], p569).

When using point–verification, SEC 1 recommends testing that ` is a prime
(with some high confidence) and [`]G = O. This leads to the following results:

Definition 5.6.10. Let Pr(x) be the Miller–Rabin primality test for a given odd
integer x ≥ 3 with r trials, [63]. Pr(x) returns false when x is composite with
probability of 1. Pr(x) returns true when x is probably prime with confidence
of failure of 4−r.

Definition 5.6.11. Let Fq be a finite field, E/Fq an ordinary elliptic curve,

t = q + 1−#E(Fq) = q + 1− c` 6= 0

with cofactor c and ` the largest prime dividing #E(Fq). One then recovers the
original order ` using |t| by evaluating the following:

A: set α← q + 1− |t| and β ← q + 1 + |t|.

B: if c 6= 1, 2 then:

– if
(
α (mod c) 6= 0 and β (mod c) = 0

)
set `← β/c.

– else if
(
α (mod c) = 0 and β (mod c) 6= 0

)
set `← α/c.

– else if
(
α (mod c) = 0 and β (mod c) = 0

)
goto step C.

– else reject V. halt.

– if Pr(`) = false reject V. halt.

– goto step G.

C: else α ≡ β (mod c). set `← α/c.

D: if Pr(`) = true goto step G.

E: set `← β/c. if Pr(`) = true goto step G.

F: reject V. halt.

G: return probably prime.

As a final verification one can check whether or not [`]G = O. This however
could be computationally expensive, especially when c 6= 1 for odd characteristic
fields and when c (mod 2) 6≡ 0 for binary ones.

Lemma 5.6.12. The constructive method provided in Definition 5.6.11 allows
one to construct the order ` using the triple {q, |t|, c} to any confidence level
desired. Additionally it verifies that the order ` is in fact valid.
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Proof. Assume E is not supersingular and thus the trace is non–zero. α and β
are two possibilities for the order #E(Fq). If only one is divisible by c there is
no ambiguity. Else, with a high probability one of α/c or β/c is prime. Here
we select the smallest possible candidate ` = α/c. If Pr(`) = false one knows
α/c is composite and sets ` = β/c and retests Pr(`). If false again, we reject
V since neither α nor β is prime and we do not have a valid order.

Otherwise, we have arrived at step G and we have that our candidate ` is
composite with probability 1/4r, hence we assume ` is prime.

Remark 5.6.13. An expensive but often recommended final test would be to
test if [`]G = O for our computed `. Clearly both `α = α/c and `β = β/c cannot
simultaneously be prime divisors of #E(Fq) since `α`β � #E(Fq) because
c ≤ 2k/16. Hence with the same probability that ` is not a pseudoprime, one
has that ` is the correct prime order of G.

A natural question that arrises is: Do the methods presented for the signed
modified trace work for the unsigned variant? We now answer this question:

Lemma 5.6.14. For the Lucas sequence given in Lemma 5.6.3 one has

tn+m = tntm − qmtn−m (5.6.3)

for integers n > m > 0.

Proof. For any two numbers α and β and integers n > m > 0 one has

(αn + βn)(αm + βm) = (αn+m + βn+m) + αmβm(αn−m + βn−m).

Hence for the Lucas sequence above:

tn+m = (αn+m + βn+m) = tntm − (αβ)mtn−m = tntm − qmtn−m.

Theorem 5.6.15. Let |αn + βn| = |tn|, t0 = 2 and t1 = |t|. Then

tn+1 = t1tn − qtn−1 (5.6.4)

for all n ≥ 1.

Proof. We want to show that the Lucas sequence given in equation (5.6.4) is
equivalent up to sign to the one from Lemma 5.6.3, which we shall denote t′n.
Clearly this holds when t > 0 since t = |t|. Hence we consider t < 0 so that
t = −|t| here. Evaluating the two relations for the first three iterations gives:

n tn t′n
0 2 2 = t0
1 t |t| = −t = −t1
2 t2 − 2q |t|2 − 2q = t2
3 t(t2 − 3q) |t|(t2 − 3q) = −t3

Using equation (5.6.3) one has that

tn+2 = t2tn − q2tn−2
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which one can use to show that t′4 = t′2t
′
2 − q2t′0 = t4. For n = 4, 6, . . . one can

show by induction that for all n ∈ 2N one has that t′n = tn. Likewise for odd n
one has

t′5 = t′2t
′
3 − q2t′1 = t2(−t3)− q2(−t1) = −t5

which again by induction allows us to show that t′n = −tn when n is odd. Hence
|t′n| = |tn|. The result now follows.

Corollary 5.6.16. Given the absolute value of the modified trace |t̂| and the
cofactor c, one is able to construct the absolute value of the full trace, |t|.

Remark 5.6.17. We stress that this extra bit saved here is optional : If verifi-
cation is non–standard then you pay a computational penalty when accepting
V. For more on verification, see ([78], p18).

5.6.4 The Modified Cofactor for Subfield Curves

Analogous to §5.4.2, when the computation of the full trace from the modified
trace does not depend on c, one can save extra bits in the representation of V.

Definition 5.6.18. Let Fq be a finite field, E/Fq be a subfield curve and c ∈ V
be the cofactor of the lifted curve E(Fqm). Then the modified cofactor ĉ is
defined by

ĉ := c/(#E(Fq)).

Corollary 5.6.19. The expected bit–size to establish the cofactor c ∈ V is
‖c‖ = 8 dk/128e bits in SEC 1 (Lemmata 5.2.4 & 5.2.7). Using the modified
cofactor which requires negligible additional computation, one merely requires:

‖ĉ‖ =

{
8 d(k − 16 lg q)/128e when char(Fq) 6= 2,
8 d(k − 16d)/128e when q = 2d, d > 2

(5.6.5)

bits when using subfield curves to establish c.

Proof. From Lagrange one knows the group order of the subfield curve N1 =
#E(Fq) always divides that of the lifted curve Nm = c · ` = #E(Fqm). Since `
is prime, N1 | c. Thus we only require ĉ = c/N1 to establish c.

5.7 Discussions & Conclusions

SEC 1 is not the only standard in common use, however it is representative of
how domain parameters are often defined. In our work here, we analysed the
best case information rate for SEC 1: Without changing what was specifiable
by the model (the specific curves, fields et cetera) how many bits did one require
to represent these using compressed versions of domain parameter elements.

In §5.3 we presented Smart’s result that one could specify the group order
` by sending the curves trace t. This requires approximately half the bits than
sending ` directly. In §5.4.1 & 5.4.2 we gave definitions of the modified trace
and modified cofactor of the curve. These save a few bits over what has been
previously published to specify the trace and cofactor respectively. We presented
the worst–case bit–size of domain parameters for SEC 1 in §5.5. These results
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although lower than previously published are asymptotically the same as what
one gets by using Smart’s result: k/2 bits lower for a security parameter k.

Should one wish to do better, one needs to consider an improved model for
specifying domain parameters. §5.6.1 gave results on how one could establish the
order of subfield curves far more efficiently than previously published. Subfield
curves are indirectly representable by the SEC 1 model but not optimised for
it as our results show. This motivates us to search for an improved model,
especially since smart–cards and restricted devices often use such fields. It is
in these constrained environments where bandwidth is most important. We
consider this approach next in Chapter 6.
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The lunatic, the lover, and the poet,
Are of imagination all compact.

[Act V, Scene I, A Midsummer Night’s Dream]

William Shakespeare (1564–1616) 6
Compact Domain Parameters

6.1 Motivation

When using ECC one must specify domain parameters, namely

V := (Fq, E/Fq, `, c, P )

as defined in the prequel. For some applications these are fixed for all users,
hence are never communicated and are hardwired into the implementation.
Other applications are more general, since a fixed model is restrictive and often
undesirable as discussed in §5.1. This is what we consider here. We assume that
these parameters must be communicated and as such the bandwidth ought to
be minimal.

The fundamental question one asks oneself is: How general should a sys-
tem be? In Chapter 5 we investigated how one can reduce domain parameter
bandwidth, under a commonly used standard (SEC 1), without restricting the
families constructible.

The alternative is to restrict the families definable to popular choices, where
one uses certain fields and curves which allow faster group arithmetic. For
example; NIST in [57] recommends fixing a = −3 in the Weierstraß form for
curves over non–binary fields. This is because it accelerates the group arithmetic
when using Jacobian projective coordinates, ([16], p282). Similarly, since the
arithmetic performance of Fp depends on the underlying prime p, one is often
recommended to use primes of certain forms (viz. [5, 14, 36, 57, 76, 80, 88]).
Since we assume here that one cannot embed an ECDLP into an Fq–DLP,
improved SNFS attacks (e.g. the Frey–Rück attack [27]) are not relevant. Hence
there are no known weaknesses in using these forms. Since these parameters
are non–random, the key idea is that one may be able to transmit them more
efficiently, reducing bandwidth.

In this chapter, we present an efficient way to represent domain parameters
for certain restricted families, denoted compact domain parameters. These will
be particularly suitable for multi–curve environments. Moreover, we consider
efficient domain parameter representation at a higher level: If a multi–curve
environment required t curves all with a security parameter of k, which is the
most bandwidth efficient system to use?

This is an important observation which will allow us to compare the vari-
ous systems one can use, in terms of the amount of curves/fields available per
bits required to represent them, for a given security parameter. Thus in situa-
tions where domain parameter bandwidth is important (e.g. large multi–curve
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environments), one can choose a system that is fit–for–purpose and not over–
specified, giving the optimum systems–per–bit.

In our work here, we are not concerned with issues of whether some fields
may prove to be weaker in the future (e.g: Optimal Extension Fields given in
§6.5.5). We are only considering currently proposed systems (fields and curves),
and attempting to represent them more compactly.

6.2 Previous Research: Smart

Compressing domain parameters has received little attention: We are only aware
of the work by Smart in [76] précised here and that by Brown, Myers & Solinas
[11] given in §6.3.

Efficient domain parameter representation was considered by Smart in [76],
where methods were suggested for binary and prime fields of size [150, 255]
bits. Smart noted that for binary fields, one could use the minimal polynomial
trinomial

Xn +Xc + 1

where c would require 8–bits and the odd n only 7–bits to define. For prime
fields Fq, he restricted the choice to primes of the form

q = 2n + c

where 1 ≤ c ≤ n ≤ 255. Listing all such primes q he noted there were 174. Here
representing q also requires 15–bits since ‖n‖ = 8 and ‖c‖ = 7 since c must be
odd for q to be prime. Hence by using a single additional bit indicating the
parity of the characteristic, one is able to define the field with only 16–bits.

The elliptic curve in [76] is defined in exactly n+ 8 bits. This is done by re-
stricting the size of the coefficients chosen (or randomly generated by computing
isomorphisms) to define its Weierstraß form. Such a curve was only accepted if
it had what we coin, a minimal cofactor :

Definition 6.2.1. The minimal cofactor c of an elliptic curve E/Fq is defined
by

c :=

{
1 when char(Fp) 6= 2,
2(2− a) when q = 2n.

Thus in all cases, the minimal cofactor is simply the smallest cofactor possible.

The crucial observation of Smart was that to establish the order of the
largest prime subgroup `, one only need know the trace of the Frobenius of
E(Fq). This result was present earlier in Theorem 5.3.1 of §5.3. Using this one
requires ≈ n/2 + 2 bits as opposed to an expected n+ 1. Finally the generating
point was represented by a random 7–bit string which when padded with n− 7
zero–bits, represented an abscissa of an elliptic point of order `. This could be
padded into a single byte–string where the extra bit represented which ordinal
was being used in point decompression.

As a product of this, Smart was able to represent the domain parameters
for his restricted system using only

‖V‖ = ‖f‖+ ‖E/Fq‖+ ‖`‖+ ‖G‖ = 8 d(n+ 8)/8)e+ 8 d(n+ 4)/16e+ 24 bits.
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When n ∈ 8N, this form is particularly efficient requiring only 328 bits to define
a 192–bit system, approximately 1.7k bits.

Observations

The work by Smart in [76] in part motivates the work we have undertaken here.
Smart observed that one only needs send the trace of the Frobenius of E(Fq)
rather than the whole order `. This observation is clearly system independent
and requires negligible or no extra computation for a useful bandwidth saving.

Smart then suggested how one could define a restricted system for a multi–
curve environment: This system only allowed prime and binary fields and did not
include extension and optimal extension fields (OEFs) which are becoming more
popular. One could only define 174 prime fields, which may prove insufficient,
and the key–sizes are contained within a small fixed range which is unsuitable
for long–term usage.

6.3 Previous Research: Brown, Myers & Solinas

Brown, Myers & Solinas in [11] described a compact way of defining domain
parameters by using compact curves E/Fp. A Type–I compact curve is defined
by:

Definition 6.3.1. Let f ≡ 2 (mod 3) and g ≡ 3 (mod 6) be integers such that

p := f2 − fg + g2 and r := p+ 1− (2f − g)

are both prime. Then define the compact curve E and corresponding base point
P as:

E/Fp :=

{
y2 = x3 − 2, P = (3, 5) if p ≡ 7 (mod 8)
y2 = x3 + 2, P = (−1, 1) otherwise.

Finally, if p ≡ 1 (mod 8) we discard the computation and choose different pa-
rameters f and g.

Proposition 6.3.2. The compact curve E/Fp defined above has order r =
#E(Fp).

The analogous Type–II case may be found in [11], where this compact curve
has order 2q for some prime q. Since Type–I curves have prime orders, this
is the most interesting case for us here. Thus here we analyse the bandwidth
required for V for Type–I, which is work which is missing from [11]1.

For a security parameter k = 2k ∈ 2N, fix a value 0 < h ≤ 2k−4. The Type–I
elliptic curve may be constructed as follows:

Algorithm 6.3.1 (Computing type–I compact curve). INPUT:k, h ∈ N
1. compute a value ε ∈ {0, 1, 2} such that

f = 3 · 2k−2 + 4h+ ε ≡ 2 (mod 3);

1The bandwidth required by Type–II is approximately that of Type–I.
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2. evaluate the polynomial g(s) = 3(2s+1) for an s ∈ {0, 1, 2, . . .} until
the corresponding pair (p, r):

p := f2 − fg + g2, r := p+ 1− (2f − g)

are both prime and p 6≡ 1 (mod 8);
3. if (p ≡ 7 (mod 8)) {
4. E ← y2 = x3 − 2, P ← (3, 5);
5. }
6. else {
7. E ← y2 = x3 + 2, P ← (−1, 1);
8. }
9. OUTPUT:E,P;

In [11] this was placed in the ID–based setting by defining h to be the integer
representation of the output of a (k − 4)–bit cryptographic hash–function H.
However, the curve parameters should be public and tied to an ID, thus we do
not require H to be preimage resistant, only collision resistant. This allows us
to consider h = H(IDdom) merely as a integer that specifies the underlying field
and curve. Depending on the number of curves required, h is sized accordingly.

Trivially here g is expected to be small. So in lieu of sending (p, r) one could
send (k, h, s) since g = 3(2s+ 1) and ε is trivially computed. This gives us

‖f‖ =
∥∥k∥∥+ ‖h‖+ ‖s‖

bits. We must now estimate the size of s. When using Type–I, one increases
s until p = h1(f, g) and r = h2(f, g) are both prime and p 6≡ 1 (mod 8). We
require the following:

Theorem 6.3.3 (Legendre’s approximation). The number of primes π(x) less
than of equal to x is

π(x) ≈ x

lnx−B
=

rx

lg x− rB
where B = 1.08366 and r = lg e. This is asymptotically as good as Chebyshev’s
approximation of π(x) ≈ li(x), [65].

Corollary 6.3.4. The probability that a random k–bit integer q is prime is

Pk ≈
r

k − rB
.

Proof. The unsigned integer q is a k–bit number if and only if 2k−1 ≤ q ≤ 2k−1.
From Theorem 6.3.3 we expect the number of primes N which lie in the range

[x, y] = [2k−1, 2k − 1]

is

N = r
2k − 1

lg(2k − 1)− rB
− r 2k−1

lg 2k−1 − rB
≈ r2k−1

k − rB
.

Since there are T = 2k−1 − 1 integers in the range [x, y] one expects the prob-
ability that a random integer q ∈ [x, y] is prime is N/T and the result now
follows.
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The probability that an odd integer p 6≡ 1 (mod 8) is 3
4 . Since we require

both p and r to be prime, one expects P−2
k trials implying that

s ≤ 4
3
·
(
k − rB
r

)2

.

Hence one can assume that at most,

‖s‖ = 8
⌈

0.4150 + 2(lg(k − rB)− lg r)
8

⌉
≤ 8

⌈
2 lg k − 0.643

8

⌉
≤ 8 d(lg k)/4e

which is approximately twice the size of the logarithm of ‖r‖.
Thus one has compact domain parameters here of VBMS := (k, h, s). The

expected size for these parameters is

‖VBMS‖ = 8 d(lg k − 1)/8e+ 8 d(lg k)/4e+ (k − 4) bits.

For cryptographically interesting sized groups, for example k = 192, this would
require only 212 bits. Note that the curves produced are always ordinary when
p > 3, since the discriminant of E is 4(a2) + 27(b2) ≡ 108 (mod p).

Note that here we choose k = 2k ∈ 2N since this is optimal case for Brown
et al’s work. This analysis of the parameter sizes is not discussed in [11].

Observations

The main limitations of Brown et al’s approach are flexibility and the special
form of the resulting system: The system presented in [11] is very favorable in
terms of the size of VBMS. However, although there exists no known weakness
for compact curves, the fact that the field and group order are so strongly
bound makes both the Type–I and Type–II systems very specialised, something
which is often undesirable. Additionally there is no known analogue of Compact
Curves for binary fields, which are the fields used most often in practice.

The system presented above does have the advantage that one can tailor the
size of V, depending on how many curves a system is required to define, if one was
to redefine h. This is not considered in [11] and will be investigated further in the
sequel. An additional advantage with both compact curves, is by construction
they admit improved group operation performance through automorphisms from
Gallant, Lambert & Vanstone in [31].

The case for hyperelliptic and other non genus–one curves has been consid-
ered by Brown, Myers & Solinas [12]. This is an extension of [11] however, and
is not discussed as it contains no relevant results for us here.

6.4 Compact Domain Parameters V
In the sequel we propose a more efficient definition for publishing domain pa-
rameters than what is presented in SEC 1 from §5.2.1 and in other standards.
When deploying ECC two things are usually desirable, if not required: Efficient
computation of the group operation and minimal bandwidth. Whereas some of
these characteristics can be improved through protocol optimisation, optimal
gains can only be achieved by optimising the underlying primitives themselves.

We begin by considering how one could better represent essential components
of V such as the field (§6.5), curve (§6.6) and order ` (§6.6.1). Then we propose
a way to specify domain parameters which maintains efficiency and flexibility.
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6.5 Defining the Field, F ∈ V
The definition of V in SEC 1 does not include non–binary extension fields (e.g.
OEFs, which are particularly efficient for use with restricted devices) nor does
it take into consideration the special primes, that are often suggested and used
in practice. In the sequel, we give a representation for the field denoted F ∈ V
for large prime fields, extension fields and OEFs which are presented in §6.5.5.

When defining F , we will assume in all non–Koblitz cases that we are using
a byte–communication mode. For the Koblitz case, we assume a bit model for
reasons described later in §6.5.4.

6.5.1 Compactly Representing Special Primes; Hence Fp
Solinas in [80] listed seven families of k–bit prime numbers obtained by a direct
search which he coined generalised Mersenne numbers. Here we list six of these
families, a seventh from Smart [76] and an eighth and ninth, both of which will
be useful when considering OEFs later in §6.5.5;

Type Form
0 p = 2dw − 3 Crandall numbers. [80]
1 p = 2dw − 2cw − 1 0 < 2c ≤ d and gcd(c, d) = 1. [80]
2 p =

∑2d
i=0(−1)i2(2d−i)w d ∈ N and w 6≡ 2 (mod 4). [80]

3 p = 2dw − 2cw − 1 3d < 6c < 4d and gcd(c, d) = 1. [80]
4 p = 2dw − 2cw + 1 0 < 2c < d and gcd(c, d) = 1. [80]
5 p = 24w − 23w + 22w + 1 [80]
6 p = 2w + c 1 ≤ c ≤ w. [76]
7 p = 2w + c |c| ≤ 2bw/2c. [16]
8 p = 2w − c 1 ≤ c ≤ w.

Table 6.1: Special Prime Families.

Remark 6.5.1. Type–7 clearly includes Mersenne primes [65] and could repre-
sent some of the other types, albeit not as efficiently. As will be seen later, when
using OEFs one usually chooses w = 2s so that w divides the word–size of a
microprocessor for efficient arithmetic. For this reason we define Type–8 primes
which are analogous to Type–6, but they also fit inside a given word–size.

We need to evaluate how many primes are representable in the forms given
above, for a security level great enough to be suitable for the length of time of
deployment. For this we use Table 6.2 given by NIST in [6] which recommends
key–ranges depending on how much forward security a system requires.

Algorithmic Security Year
Lifetime (Anni) → 2010 2010→ 2030 2030→ ?

k 160 ≤ k < 224 224 ≤ k < 256 256 ≤ k ≤ 571

Table 6.2: NIST Key–Sizes.

Definition 4.4.1 gives k = blg `c for E/Fp. From the Haße–Weil Theorem 4.1.8
when using curves with a small cofactor, one has the approximation ` ≈ p, thus;
lg p ≈ k. In §6.5.5 later we will require small prime fields which fit into processor
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word–sizes for OEFs, hence we will require that ‖p‖ ∈ [4, 64]. Combining this
and Table 6.2 we present the directly computed number of primes of all forms
except Type–7 in our required ranges. For the exponentially sized Type–7 case,
we obtain a good approximation by using the result of Theorem 6.3.3:

Lemma 6.5.2. Let v0, vi ∈ N, r = lg e where e is the base of the Napierian
logarithm and B = 1.08366. Then there exists approximately

4r
v1−1∑
v=v0

2v
(

1
2v − rB

)
+

r2v1

2v1 − rB

Type–7 primes of k–bits in size where 2v0 ≤ k ≤ 2v1.

Proof. The Type–7 prime is defined by p = 2w + c for a |c| ≤ 2h and an
h = bw/2c. From Theorem 6.3.3 for a fixed w one expects the number of primes
Nw which lie in the range [x, y]w = [2w − 2h, 2w + 2h] is

Nw = r
2h(2w−h + 1)

lg y − rB
− r2h(2w−h − 1)

lg x− rB
≈ r2h+1

w − rB

since lg(2w ± 2h) = lg
(
2h(2w−h ± 1)

)
≈ h+ (w − h) = w. Assume k0, k1 ∈ 2N

and let ki = 2vi. Now one has that the total number of Type–7 primes in the
range [k0, k1] is ( k1∑

w=k0

Nw
)
−Ne

where Ne is the number of primes in the range [2k1 , 2k1 + 2h] since they have
bit–size of k1 + 1.

For a w in the range [k0, k1] = [2v0, 2v0 + 1, 2v0 + 2, . . . , 2v1] one has that
w = 2v + 1 when w is odd and w = 2v when even for a v ∈ [v0, v1]. Hence:

N2v+1 =
r2b(2v+1)/2c+1

2v + 1− rB
=

r2v+1

2v + 1− rB
, N2v =

r2b(2v)/2c+1

2v − rB
=

r2v+1

2v − rB
.

By splitting and then summing over the odd and even cases for w one gets

k1∑
w=k0

Nw =
k1∑

w=k0

r2bw/2c+1

w − rB
= r

v1−1∑
v=v0

(
2v+1

2v − rB
+

2v+1

2v + 1− rB

)
+

r2v1+1

2v1 − rB
.

Since Ne ≈ r2k1/2/(k1 − rB) = r2v1/(2v1 − rB) the result now follows.

Thus the number of primes for each type from Table 6.1 in a given range is:

Type 4 ≤ ‖p‖ ≤ 64 160 ≤ k ≤ 224 224 ≤ k ≤ 256 256 ≤ k ≤ 572
0 10 3 1 4
1 107 123 69 601
2 15 3 0 3
3 30 41 23 194
4 85 128 54 634
5 3 0 0 0
6 80 105 45 473
7 ≈ 228.97 ≈ 2107.07 ≈ 2122.88 ≈ 2279.70

8 82 104 50 470
π(k0, k1) ≈ 258.56 ≈ 2216.73 ≈ 2248.54 ≈ 2563.37
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Table 6.3: Prime Family Densities.

Here π(k0, k1) is the expected number of general primes in the range [k0, k1].

Remark 6.5.3. The density of Type–7 primes is as expected; that is they
encode just less than the square root of the expected total number of primes in
a given range.

We must now choose an encoding representation for the special primes. This
will allow us to measure the number of primes (hence fields) for a given type
per bit–size of representation. Clearly optimising a model for primes which
infrequently occur is inefficient, hence we do not consider Types 0, 2 and 5 here.
We now propose models for the remaining cases:

Types 1, 3 & 4

We wish to find an efficient way of encoding primes of the form

p := 2dw − 2cw ± 1 (6.5.1)

for a given bit range [k0, k1] as given in Table 6.2.

Lemma 6.5.4. Let p, w, d and c be as above. Then one has at least three
methods of specifying p by transmitting v where

v Bit–size for Types 1 & 4 Bit–size for Type–3
〈p〉 k1 k1

〈w, d, c〉 3 dlg k1e − 1 3 dlg k1e
〈wd,wc〉 2 dlg k1e − 1 2 dlg k1e

Proof. Trivially, sending a p in the bit range [k0, k1] requires at most k1–bits.
Sending v := 〈w, d, c〉 allows one to construct p and requires ‖v‖ = dlg k1e +
dlg k1e + dlg k1e = 3 dlg k1e–bits for Type–3 and ‖v‖ = (3 dlg k1e − 1)–bits for
Types 1 & 4 since 2c ≤ d here. Sending v := 〈wd,wc〉 however is even better
since 0 < cw < dw ≤ k1.

Definition 6.5.5. The encoding we use for a prime of the form given in equa-
tion (6.5.1) is

v := 〈w(d− c), wc− 1〉.
This is well defined since for Types 1, 3 & 4 one has 0 < wc < wd.

Using the encoding given in Definition 6.5.5 we compute the maximum bit–
sizes of v for our bit ranges. This is done exactly using the bit–size for each
component of v from the prime tables of Type 1, 3 & 4 given in Appendix B.1:

Bit–Size Range [k0, k1]
[4, 64] [160, 224] [224, 256] [256, 572]

‖w(d− c)‖ 6 8 8 10
Type–1 ‖w(d− 2c)‖ 6 8 8 10

‖wc− 1‖ 5 7 7 9
Type–3 ‖w(d− c)‖ 5 7 7 9

‖wc− 1‖ 6 8 8 9
‖w(d− c)‖ 6 8 8 10

Type–4 ‖w(d− 2c)‖ 6 8 8 10
‖wc− 1‖ 5 7 7 9
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Table 6.4: Computed Type–1, 3 & 4 Maximal Encoded Element Bit–Sizes.

The row computing ‖w(d− 2c)‖ has been included since for Types 1 & 4,
d ≥ 2c > 0, hence w(d − 2c) ≥ 0. However, at best this saves us a bit which
does not occur in our results, hence we use w(d− c) in the definition of v.

Types 6 & 8

We wish to find an efficient way of encoding primes of the form

p := 2w ± c (6.5.2)

for a given bit–size range [k0, k1] as given in Table 6.2.

Definition 6.5.6. The encoding we use for a prime of the form given in equa-
tion (6.5.2) is

v := 〈w − c, c− 1〉.

This is well defined since for Types 6 & 8 one has 1 ≤ c ≤ w.

One would expect ‖v‖ = 2 dk1e–bits. Analysing Type 6 & 8 primes computed
in Appendix B.1 shows this holds for our values here, as Table 6.5 demonstrates:

Bit–Size Range [k0, k1]
[4, 64] [160, 224] [224, 256] [256, 572]

Type–6 ‖w − c‖ 6 8 8 10
‖c− 1‖ 6 8 8 10

Type–8 ‖w − c‖ 6 8 8 10
‖c− 1‖ 6 8 8 10

Table 6.5: Computed Type–6 & 8 Maximal Encoded Element Bit–Sizes.

Type–7

We wish to find an efficient way of encoding primes of the form given equa-
tion 6.5.2 for Type–7 primes in a range [k0, k1] as given in Table 6.2.

The only condition here on c and w is |c| ≤ 2bw/2c. Hence, |c| ≥ 1 or p = 2w

and be composite. Similarly, we know that w ≥ k0 > 0, so one could transmit
w− k0 > 0 in lieu of w. However in the best case, both these conditions save at
most one bit which is insignificant compared to the size of c. Clearly, the most
‘efficient’ method for transmitting p is that given in the following:

Definition 6.5.7. The encoding we use for a Type–7 prime is

v := 〈w − k0, |c|, b〉

with w, c, k0 as before and b a bit signifying the sign of c.

Lemma 6.5.8. To encode a Type–7 prime in the bit–size range [k0, k1] requires

‖v‖ = dlg (k1 − k0)e+ bk1/2c+ 1 bits.

Proof. By inspection of Definition 6.5.7.
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Information Rate of Representation

Here we discuss the number of fields per bit of representation. We define this
is terms of an information rate, which is a measure of the average information
being carried per symbol in a given code:

Definition 6.5.9. [66] To send some information I, let n be the number of
digits used and r be the minimum necessary. Then the information rate (IR)
of an (n, r) code with w possible codewords is (lgw)/n.

When using binary, there are w = 2r possible codewords, hence; IR = r/n.

Definition 6.5.10. Let the information rate of our encodings of a field (v) be
denoted δ. Moreover;

δ := dlg #fieldse / ‖v‖ .

Table 6.6 below the information rate δ for a given prime type:

Bit–Size Range [k0.k1]
[4, 64] [160, 224] [224, 256] [256, 572]

‖v‖ 11 15 15 19
Type–1 #fields 107 123 69 601

δ 0.6364 0.4667 0.4667 0.5263
‖v‖ 11 15 15 18

Type–3 #fields 30 41 23 194
δ 0.4545 0.4000 0.3333 0.4444
‖v‖ 11 15 15 19

Type–4 #fields 85 128 54 634
δ 0.6364 0.4667 0.4000 0.5263
‖v‖ 12 16 16 20

Type–6 #fields 80 105 45 473
δ 0.5833 0.4375 0.3750 0.4500
‖v‖ 39 119 134 292

Type–7 #fields ≈ 228.97 ≈ 2107.07 ≈ 2122.88 ≈ 2279.70

δ 0.7436 0.9076 0.9179 0.9589
‖v‖ 12 16 16 20

Type–8 #fields 82 104 50 470
δ 0.5833 0.4375 0.3750 0.4500
‖v‖ 64 224 256 572

general #fields ≈ 258.56 ≈ 2216.73 ≈ 2248.54 ≈ 2563.37

δ 0.9219 0.9688 0.9727 0.9860

Table 6.6: Computed IR δ to 4d.p.

Remark 6.5.11. The result given above show how close encodings of p are
to the information theoretic rate of δ = 1. Clearly our encodings are far more
inefficient in terms of IR then the general case in Table 6.6; Sending an uncom-
pressed prime p, as an integer in the range [k0.k1].

Clearly Type–7 primes have the best number of curves per bit of special
representation. However, if a system only required a few fields or fields of a
certain type to aid arithmetic (such as Type–1), the other encodings provide far
more efficient representation than does Type–7.
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Representation of Fields: F

The information outlined in Table 6.6 allows us to decide which representation
to use, based on the number of fields definable per bit of representation, for a
given security parameter required.

We wish to use special forms of primes that accelerate EC group arithmetic.
We also assume that a system requires at most only a few hundred fields: When
a system requires more, it ought to use Type–7 primes. Since Type–1 & 4
primes have the greatest IR, we prefer these here when forming our definition
of F for differing ranges of bit–size:

Definition 6.5.12. For ranges of bit–size [k0, k1] ⊆ [160, 572], define the vector
F[k0,k1] by

F[160,224] := 〈b, w(d− c), wc− 1〉
F[224,256] := 〈b, w(d− c), wc− 1〉
F[256,572] := 〈τ, vτ 〉

where the bit b indicates the sign of the unit in p = 2dw − 2cw + (±1)b for Type
1 & 4 primes. For the range [256, 572], the 3–bit value τ indicates which Type
vτ represents: Type 1,3 & 4 as was defined in Definition 6.5.5 or Type 6 & 8 as
in Definition 6.5.6.

If many fields are required to be definable, one must use Type–7 primes and
define

F[k0.k1] := 〈w − k0, |c|, b〉

as in Definition 6.5.7.

Lemma 6.5.13. Using Definition 6.5.12 one can show:

F[k0,k1]

∥∥F[k0,k1]

∥∥ # of fields definable δ
[160, 224] 16 251 0.4982
[224, 256] 16 123 0.4339
[256, 572] 24 2372 0.4672

When for a given bit–size range [k0, k1] more fields are required than definable
above, one must use Type–7 primes. These require at most

dlg (k1 − k0)e+ bk1/2c+ 1

bits to represent and have an IR given in Table 6.6 above.

Proof. For F[160,224] and F[224,256] above, simply consult Lemma 6.5.4: b is a
bit, ‖w(d− c)‖ = 8–bits and ‖wc− 1‖ = 7–bits.

For F[256,572] we encode prime Types 1, 3, 4, 6 & 8. Using their respective
encodings one expects these to require no more than 10 + 10 bits. τ needs to
differentiate between these 5 cases, and so is of size 3–bits. In §6.5 we assumed
we are using a byte–string communication model. Thus a single leading zero
bit pads F[256,572] to be a 3–byte string.
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6.5.2 Representing Extension Fields

It is well known that an extension field can defined by Fpm := Fp[X]/〈f(X)〉
where f(X) ∈ Fp[X] is the irreducible monic degree m defining polynomial.
Thus one requires the pair {Fp, f(X)} to define any extension field as F ∈ V.

Lemma 6.5.14. Let Fp[X]/〈f(X)〉 and Fp[Y ]/〈g(Y )〉 be two different polyno-
mial representations of the same field Fq. Let E/Fq and assume an ECDLP on
E(Fq) cannot be efficiently mapped to a DLP over a finite field Fqn .

Then choosing a ‘special’ representation for Fq does not reduce curve security
and may improve group–law performance.

Proof. It follows from §3.2.1 that any two fields of the same cardinality are
isomorphic. Hence using polynomial–time algorithms (§3.3) one can compute a
map between representations Fp[X]/〈f(X)〉 ∼= Fp[Y ]/〈g(Y )〉.

We assume that we do not admit curves here where the ECDLP can be
effectively mapped to a DLP over a finite field. Hence the security of ECC
relies on the properties of the curve only and not those of the field. However, the
efficiency of field arithmetic does depend on which representation one uses.

Remark 6.5.15. Lemma 6.5.14 implies that a random polynomial (hence ran-
dom field representation) is in no way beneficial over choosing one with a desir-
able form.

We use the following Definition to aid our construction of such polynomials:

Definition 6.5.16. Let the weight of a polynomial W(f) be the number of
non–zero coefficients of f(X). If W(f) ≤ c for some small c ∈ N then we say f
is a low–weight polynomial.

When using low–weight polynomials, reduction modulo f(X) is very fast as
it is performed in time O(W(f) · n) [9]. This will suit us well here, as a low
weight polynomial can be specified more compactly than a random one.

6.5.3 Representing Extension Fields: Characteristic Two

To define a characteristic two field F2n := F2[X]/〈f(X)〉 one just needs to define
the polynomial f . We will use the following conjecture:

Conjecture 6.5.1. Every field extension of degree n can be represented by
F2[X]/〈f(X)〉 where

W(f) ≤ 5.

Although this is conjectural, Seroussi showed in [72] that up to n = 10000,
just over half the fields (5148) have defining polynomials of weight 3 and when
not, of weight 5. Hence for the range of security parameters given in Table 6.2,
we know that W(f) ≤ 5 can always be achieved.

Due to work by Frey, Galbraith, Gaudry, Heß & Smart in [29, 33] on using
Weil decent as an attack, one is recommended to choose only prime extensions
n (see [52]). Thus for prime n, Table 6.7 gives 60 low–weight polynomials (viz.
60 fields) contained within the cryptographically interesting range [160, 512] of
the form

f(X) = Xn +Xd + 1
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for W(f) = 3 and

f(X) = Xn +Xd2 +Xd1 +Xd0 + 1

with n > d2 > d1 > d0 > 0 when W(f) = 5.

(163,7,6,3) (167,6) (173,8,5,2) (179,4,2,1) (181,7,6,1)
(191,9) (193,15) (197,9,4,2) (199,34) (211,11,10,8)
(223,33) (227,10,9,4) (229,10,4,1) (233,74) (239,36)
(241,70) (251,7,4,2) (257,12) (263,93) (269,7,6,1)
(271,58) (277,12,6,3) (281,93) (283,12,7,5) (293,11,6,1)
(307,8,4,2) (311,7,5,3) (313,79) (317,7,4,2) (331,10,6,2)
(337,55) (347,11,10,3) (349,6,5,2) (353,69) (359,68)
(367,21) (373,8,7,2) (379,10,8,5) (383,90) (389,10,9,5)
(397,12,7,6) (401,152) (409,87) (419,15,5,4) (421,5,4,2)
(431,120) (433,33) (439,49) (443,10,6,1) (449,134)
(457,16) (461,7,6,1) (463,93) (467,11,6,1) (479,104)
(487,94) (491,11,6,3) (499,11,6,5) (503,3) (509,8,7,3)

Table 6.7: Values (n, d) and (n, d2, d1, d0) for Low–Weight Prime Order Poly-
nomials of Weight 3 and 5 respectively.

Using this specific polynomial representation we now have two options for
how one should represent F for F2n :

Compact Table Representation

If many different fields are likely to be used, then a natural solution is to store
Table 6.7. We now explain how to efficiently store this data:

Example 6.5.17. n ≥ 163 is prime and hence always odd, thus set an integer
n̂i = (n− 163)/2 > 0 which requires a maximum of ‖(509− 163)/2‖ = 8–bits.

Each entry of f(X) = Xn + Xd + 1 in the W(f) = 3 table can be encoded
by

〈n̂, d〉.
This information requires two adjacent bytes since ‖max{d}‖ = ‖152‖ ≤ 8.

Each entry of f(X) = Xn +Xd2 +Xd1 +Xd0 + 1 in the W(f) = 5 table is
encoded by

〈n̂, (d0 − 1), (d1 − d0), (d2 − d1)〉.
since n > d2 > d1 > d0 > 0. Here one has that

max ‖{n̂, d0 − 1, d1 − d0, d2 − d1}‖ = {8, 3, 3, 4}.

Hence, using padding this requires just three adjacent bytes to store an entry.
To store the table given above one requires 29(2) + 31(3) = 151–bytes in-

cluding padding. One then requires a table key, which we denote H(n̂). Thus
defining F := H(n̂) requires 6–bits and this is all what is needed to specify the
field F2n using this casual compact table implementation.

This example gives an order of magnitude required to store Table 6.7 and
we do not claim it is the most efficient. Using compact prime tables like those
defined in [65] one could easily do better, but this would be warranted only if k
varied across a large range which is beyond the scope of our work here.
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Compact Transmission

In many cases one will not want to store this table. Here we present a compact
representation for F . To define F we use the analysis given in Example 6.5.17:
Weight–three polynomials require 2 bytes and weight–five 3 bytes including
some redundancy. We define the following:

Definition 6.5.18. Consider the binary field F2n := F2[X]/〈f(X)〉. Then the
defining polynomial f is encoded by the three bytes {B0, B1, B2} as

00000000 ‖ d ‖ n̂ ,

000 ‖ (d2 − d1) ‖ (d1 − d0) ‖ (d0 − 1) ‖ 00 ‖ n̂

where B0 6= 0 when W(f) = 5 and values are padded where needed. Here we
define F := {B0, B1, B2} and trivially one has ‖F‖ = 24–bits.

Remark 6.5.19. With both the compact table and compact transmission
methods above, devices will require additional code to encode and decode fields
from and to their F representation. Typically this will not be much more than
a few bytes, but since this is dependent on language chosen and to some degree
the skill of the programmer, we do not consider this overhead here.

6.5.4 Representing Extension Fields; for Koblitz Curves

Koblitz curves will be a special case of encoding binary fields since not all degrees
n are interesting now. We wish to define the field F2n for use with Koblitz
systems from §4.2. From [16] the only suitable fields over a cryptographically
interesting range are:

a degree, n
0 233, 239, 277, 283, 349, 409, 571
1 163, 283, 311, 331, 347, 359

Table 6.8: Relevant Degrees of n for Koblitz Curves.

such that #E(F2n)/#E(F2) = ` is prime. Analogous to before, one has two
approaches to represent by F which field we are using. First let us provide a
definition for n̂:

Definition 6.5.20. Let

ni ∈ [163, 233, 239, 277, 283, 311, 331, 347, 349, 359, 409].

Then n̂ = (ni − 163)/2 and n̂ = 27 − 1 when n = 571.

Here, ‖max{n̂}‖ = 7–bits. The polynomial n = 571 is not given in Table 6.7,
thus one consults [72] to find f := (571, 10, 5, 2). We now define F :

Compact Table Representation & Transmission

Here one is only required to encode/store 12 polynomials, 4 of which are of
W(f) = 3. Here one also encodes the value of a in this representation. This
will be useful in §6.8.3 later.
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Definition 6.5.21. Consider the binary field F2n := F2[X]/〈f(X)〉. Then the
defining polynomial f is encoded by F in the two bytes {B0, B1} as

n̂ ‖ a ‖ (d− 36) ‖ 00 ,

n̂ ‖ a ‖ (d2 − d1) ‖ (d1 − d0) ‖ (d0 − 1) ,

where since d0 − 1 6= 0, the two LSBs of the second byte indicate the W(f).

Lemma 6.5.22. The encoding in Definition 6.5.21 defines (f, a) and hence
F2[X]/〈f(X)〉 for all values of n given in Table 6.5.4.

Proof. By definition, ‖n̂‖ = 7 here. Hence one can encode 〈n̂, a〉 into a sin-
gle byte. For W(f) = 3, f(X) = Xn + Xd + 1 is given by 〈d〉. Since
n ∈ {233, 239, 359, 409} here, one has 36 ≤ d ≤ 87. Thus ‖d− 36‖ ≤ ‖51‖ = 6–
bits.

Each W(f) = 5 polynomial f(X) = Xn +Xd2 +Xd1 +Xd0 + 1 is specified
by 〈(d2 − d1), (d1 − d0), (d0 − 1)〉 since n > d2 > d1 > d0 > 0. Hence one has

max ‖{d2 − d1, d1 − d0, d0 − 1}‖ = {3, 3, 2}

bits. Note that here 2 ≤ d0 ≤ 5, hence d0 − 1 6= 0.

Corollary 6.5.23. Definition 6.5.21 allows one to represent all binary fields
F2n which are interesting for Koblitz ECC of size k ∈ [163, 571] bits.

To store the encodings of F in a table requires 12(2) = 24–bytes. Let a table
key H(n̂) lead one to the correct byte address. Then F = H(n̂) requires 4–bits,
and this is all what is needed to specify the field F2n using compact tables.

If one did not want to use compact tables, one would send the encoding given
in Definition 6.5.21 which trivially requires two bytes of bandwidth.

6.5.5 Representing Extension Fields: Optimal Extension
Fields

Optimal Extension Fields (OEFs) have become increasingly important for com-
putationally restricted devices, such as smart–cards. In characteristic two fields,
multiplication is often slower than similarly sized primes fields. This is due to a
lack of single precision polynomial multiplication on microprocessors. However
in prime fields, inversions are normally expensive and especially so in hardware
[16]. OEFs were proposed by Bailey, Parr & Woodbury in [5, 88] to overcome
these limitations.

The fundamental idea is to choose an extension field Fpe := Fp[X]/〈f(X)〉
such that the characteristic p fits into a machine word. This allows fast reduction
modulo p and fast polynomial reduction via f(X). This led Bailey et al to form
the following definition:

Definition 6.5.24. An optimal extension field is a field

Fpe := Fp[X]/〈Xe − ω〉

where
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• p is a pseudo–Mersenne prime p = 2n + c where |c| ≤ 2bn/2c. That is a
Type–7 prime from Table 6.1.

• Xe − ω ∈ Fp[X] is an irreducible binomial.

If c = ±1 then the field is denoted a Type–I OEF. It is of Type–II when ω = 2.

The following corollary assists one in constructing OEFs:

Corollary 6.5.25. [16] If ω ∈ F∗p is a primitive element and e | (p − 1), then
the binomial Xe − ω is irreducible over Fp.

Using this, one has an efficient way of defining and searching for OEFs. After
selecting a suitable prime, by Corollary 6.5.25 one can test for when

ω(p−1)/e 6≡ 1 (mod p)

for candidate ω = 2, 3, . . .. When true we know Xe − ω is irreducible and can
be used to define the OEF Fpe .

The computation ω(p−1)/e (mod p) should be efficient using double–&–add
or addition chains ([39], p465) and the number of trials is expected to be small,
since there are φ(φ(p)) primitive roots modulo p.

For a restricted device, this computation is probably too laboursome and so
here, one must transmit ω in the definition of F . We can use a by–product of
the generalised Riemann Hypothesis [54] which states that there always exists
a primitive root ω such that

ω < 70(ln p)2 < 33.7(lg p)2 (6.5.3)

modulo a prime p. The details of this are beyond the scope of this thesis, but
the result for the (relatively small) values of p holds well, as demonstrated by
Tables 11.2 & 11.3 on pages 230 & 232 of [16] respectively. As one would expect,
the values of ω in practice are much smaller than this upper bound.

In Definition 6.5.24 only Type–7 primes were defined. However, any prime
may be used in the definition of an OEF as long as it fits inside a machine word.
Since 8 and 16–bit word sizes are common in smart–cards and at most 64–bits
for largest mainstream architectures, we considered primes of size [4, 64] bits in
Table 6.6.

It is reasonable to consider two encodings here; one for smart–cards using
prime fields in the bit range [4, 16] and one for general OEFs working with prime
fields in the range [4, 64] bits. This enables us to define the following:

Definition 6.5.26. For a given bit range [4, 16] or [4, 64] we represent an OEF
Fp[X]/〈Xe − ω〉 by

F := {Fp, e, ω}
where ω is the smallest primitive root such that e|(p − 1). Here Fp is the
representation of the field similar to that of Definition 6.5.12, that is:

Fp := 〈b, w(d− c), wc− 1〉

where the bit b indicates the sign of the unit in p = 2dw − 2cw + (±1)b for Type
1 & 4 primes. If many fields are required to be definable, one must use Type–7
primes and define

Fp := 〈w − k0, |c|, b〉
as in Definition 6.5.7.
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Remark 6.5.27. When using Type–7 primes with Definition 6.5.26, one can
represent any OEF.

Lemma 6.5.28. For OEFs defined by F , one requires

Prime–Field Bit–size ‖F‖
Range with Types 1 & 4 with Type–7
[4, 16] 28 34
[4, 64] 37 64

bits to represent OEFs of size [160, 512] bits.

Proof. To represent Fp for non Type–7 primes in a bit range [k0, k1] one requires
2 dlg k1e − 1 bits. For Type–7 primes, one requires dlg(k1 − k0)e + bk1/2c + 1
bits. Hence for the bit–range [4, 16], one requires 7 and 13 bits respectively.
Similarly in the range [4, 64] one requires 12 and 39 bits respectively.

Since k =
⌊
lg pd

⌋
+ 1 = bd · lg pc + 1, to encode fields up to 512–bits one

must allow dlg(511/k0)e–bits to represent d. That is 7–bits for both bit–ranges
[4, 16] and [4, 64]. Finally, from equation (6.5.3) one has

‖ω‖ < 6 + 2 lg lg p ≤ 6 + 2 dlg k1e

bits. Combining these results gives the quantities defined.

6.6 Specifying the Curve

Here we consider which curves will be representable in our definition of domain
parameters, V. We use standard curve equations, which have good features for
efficient implementation.

Curves over Non–Binary Fields: Weierstraß Form

In practice one is often recommended taking a = −3 in the short Weierstraß
form over large characteristic fields. This is because one can accelerate the group
operation for this case, if field modular inversion costs significantly more than
does multiplication [9]. If we are working over a field with a small characteristic
p 6= 2, then this restriction does not in any way reduce performance since E
would just be a generic curve.

This leads us to the following definition for E over non–binary fields:

Definition 6.6.1. Let the field Fq = Fpd be a power of an odd prime for d ≥ 1.
Then define the elliptic curve E to be in the short Weierstraß form

E/Fq : y2 = x3 − 3x+ b (6.6.1)

with b ∈ F∗q where 4a3 + 27b2 = 27(b2 − 4) 6≡ 0 (mod q).

Curves over Non–Binary Fields: Edwards Form

Here we consider Edwards curves presented in §4.3. In §4 of [7], Bernstein &
Lange suggest that for the majority of cases, taking c = 1 in the Edward form
accelerates group arithmetic. Once fixing c, having a small coefficient d further
aids group performance. Thus we define Edwards curves of the form:
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Definition 6.6.2. Let the field Fq = Fpe be a power of an odd prime for e ≥ 1.
Then define the curve E to be in Edwards form

E/Fq : x2 + y2 = 1 + dx2y2 (6.6.2)

with d ∈ F∗q \ {1} where d is non–square in Fq.

Curves over Binary Fields

For characteristic two fields we recall the form given in equation (5.4.3) where

E/F2n : y2 + xy = x3 + ax+ b

where b ∈ F∗2n and a ∈ {0, γ} with γ a fixed element of F2n of trace Tr2n|2(γ) = 1,
[9, 75]. In §6.5.3 we restricted all binary fields to have an extension degree of
prime order n > 160. Hence n is always odd and so one can take γ = 1 with no
loss in generality. Since equation (5.4.3) represents every isomorphism class of
ordinary elliptic curves over F2n ([9], p37), we can restrict ourselves to curves
with a ∈ {0, 1} which only requires a single bit. This leads us to the following
definition:

Definition 6.6.3. For the field F2n with prime n ≥ 160, define E to be of the
form

E/F2n : y2 + xy = x3 + ax+ b (6.6.3)

where a ∈ {0, 1} and b ∈ F∗2n .

We now discuss other criteria for the construction of suitable curves E/Fq.

6.6.1 The Orders of the Curve: #E and `

All known standards require that the order of the curve is divisible by a large
prime `. This is because ECDLP cryptography operates in the subgroup 〈G〉 ⊆
E(Fq) of order `. Since the security of a curve k is proportional to ` and not
directly to #E, curves with large cofactors c = #E/` are over–specified :

Definition 6.6.4. The minimal cofactor c = #E(Fq)/` of an elliptic curve
E/Fq is defined by

c :=


1 when char(Fp) 6= 2,
#E(Fp) when char(Fp) 6= 2 and E/Fp,
2(2− a) when q = 2n,
8 when using Edwards curves.

(6.6.4)

Thus in all cases, the minimal cofactor is simply the smallest cofactor possible.

Definition 6.6.5. Let k be a fixed security parameter of E/Fq, c the cofactor
of the curve and cm be the minimal cofactor from Definition 6.6.4. Then having
a cofactor c > cm increases bandwidth with no increase in security. Here we say
the curve E/Fq is over–specified by dlg ce − dlg cme bits.

Remark 6.6.6. When using subfield curves over OEFs, one has a point redun-
dancy of dlg #E(Fp)e bits which could be quite significant. For this reason, we
do not consider the use of subfield curves defined over OEFs in the sequel.
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Hence in many ways it is desirable to make the cofactor minimal, as no
additional security is gained by increasing c at the expense of both arithmetic
and storage efficiency. Thus we restrict all curves E to have a minimal cofactor.

Corollary 6.6.7. If one defines E/Fq to always have a minimal cofactor, then
one does not require c to be defined as a domain parameter, as its value is
implicit from the definition of the curve and field.

Hence, in our definition of domain parameters that follows in §6.6.5, we
construct V without explicitly defining c.

6.6.2 Choosing the Coefficient b for Weierstraß Forms

We wish to define elliptic curves in line with Definitions 6.6.1 & 6.6.3. Normally
when generating suitable curves, a system or user decides whether it needs to
be provably random. If this is the case, one fixes the coefficient a and uses a
seed and suitably sized hash function to generate a value

b = Hk(seed) (mod q).

One would then test if the resulting curve had the desired properties, and re-
peat the curve selection process if not. The coefficient b requires dlg qe–bits to
represent here, or, the output size of Hk which might be < dlg qe.

If a certificate is not required, one can do better: Instead of drawing random
values b ∈ F∗q , there is no known risk in restricting b to be a ‘small’ element of
F∗q . We now clarify this idea further.

Definition 6.6.8. For char(Fq) 6= 2, let r ∈ N such that r � dlg qe. Then
b ∈ F∗q is denoted an r–small element if

b ≤ 2r − 1

when recognised as an integer modulo q.

Definition 6.6.9. For F2n , let r ∈ N such that r � n. Then b ∈ F∗2n is denoted
an r–small element if

deg(b) ≤ r − 1.

Heuristic 6.6.10. Let E/Fq be an elliptic curve represented via the short
Weierstraß form. Then in general, an E constructed by an r–small coefficient
is no weaker than a curve constructed with a random element b ∈R F∗q .

In our definition of V we will generate curves with r–small coefficients: That
is, fix a as defined in Definitions 6.6.1 & 6.6.3 and generate r–small elements
b ∈ F∗q until one has curves with the desired properties. To find an empirical
bound for the size of b, we use the work of Galbraith & McKee from [30]:

6.6.3 Probability of Occurring Orders of #E

Galbraith & McKee in [30] investigate the probability that a random curve over
a finite field has prime or near prime order. They give the following conjectures:
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Conjecture 6.6.1 (Conjecture A, [30]). Let P1 be the probability that a number
within 2

√
p of p + 1 is prime. Then the expected probability that E/Fp has a

prime number of points is asymptotic to cpP1 as p→∞, where 0.44 ≤ cp ≤ 0.62
and P1 can be approximated by

1
4
√
p

∫ p+1+2
√
p

p+1−2
√
p

dt
ln t
≈ 1

ln p
=

lg e
lg p

.

Remarks

1. Note that the starting point for the construction of Conjecture A is the
Kronecker/Hurwitz class number: Given |t| < 2

√
p, the probability E/Fp

has exactly p+ 1− t points is

H(t2 − 4p)/2p.

This formula still holds when one has q = pm for some m > 1, where one
now has H(t2−4q)/2q. Thus we can use this result when looking for prime
order curves over extension fields Fq ∼= Fpm also.

2. As noted in [30], if all numbers of points in the range p + 1 − 2
√
p to

p+1+2
√
p where equally likely, one would have a cp = 1. The conjectured

result of 0.44 ≤ cp ≤ 0.62 indicates the phenomenon that prime orders of
E are disfavoured.

Conjecture 6.6.2. ([30], p12) Let t = 1 or 2, q = 2n and Pt be the probability
that an even number within 2

√
q of q+ 1 is 2t times a prime. Then the expected

probability that E/Fq has order 2t times a prime is asymptotic to cqPt as n→∞
where

cq =
∏
l>2

(
1− 1

(l − 1)2

) ∏
l|2n−1

(
1 +

1
(l + 1)(l − 2)

)
.

Remarks

1. Pt can be approximated via

1
4 · 2t−1√q

∫ (q+1+2
√
q)/2t

(q+1−2
√
q)/2t

dt
ln t
≈ 1

2t−1(ln q − ln 2t)
=

21−t lg e
n− t

.

2. The product ∏
l>2

(
1− 1

(l − 1)2

)
≈ 0.6601618158 . . .

is the well known Hardy–Littlewood twin–primes constant Π2 [89].

Not enough is known about primes in short intervals to say if these these
conjectures are correct. However empirical results hold with an astonishing
degree of accuracy as demonstrated in [30] and by our results in Examples 6.6.13
& 6.6.16. Since the order of E is essentially independent whether one varies a
or b, here we can fix a and vary b until we have a desired curve. This allows us
to form the following:
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For Prime–Order Curves over Fq

Theorem 6.6.11. Let E/Fq be non–binary whose coefficients are a = −3 and
b ∈ F∗q such that b is r–small. Then using Conjecture 6.6.1 one can define an
expected

0.63 · 2r · k−1

prime order curves E with security parameter k = blg qc.

Proof. For curves E/Fq with minimal cofactor c = 1, Conjecture 6.6.1 implies
for a fixed a ∈ Fp and random b ∈R F∗q , the probability Pq that E is of prime
order is bound by

0.44 · lg e
lg q
≤ Pq ≤ 0.62 · lg e

lg q
.

Taking b = 1, 2, 3, . . . where 4a3 + 27b2 6≡ 0 (mod q), one gets an upper bound
for the expected number of trials to find a prime order curve to be

b =
⌈
(min{P})−1

⌉
= d1.5753 · lg qe < 1.581k

for k ≥ 160.
Thus, if one selects only r–small b from F∗q , one can expect out of the 2r − 1

possible choices for b that

≈ 2r

1.581k
curves of prime order exist. The result now follows.

Corollary 6.6.12. Let Fq be non–binary and let a = −3 and b be r–small.
Then in order to define an expected 2h elliptic curves Ei : y2 = x3 − 3x+ b one
requires an

r ≥ lg(1.581 · 2h · k)

which implies
‖b‖h ≤ dh+ lg k + 0.661e .

We now present an example of this in action.

Example 6.6.13. Let p = 2192−264−1 and fix a = −3 in the short Weierstraß
form of Ei : y2 = x3 − 3x+ b. Then suitable b which yield a prime order curve
are:

h b trace: p+ 1−#E lg b ‖b‖h
0 446 136061485252480925449033158677 8.801 d8.246e
1 537 59802929316165084957215634253 9.069 d9.246e

lg 3 658 -60958393595616787102755480763 9.362 d9.831e
2 1013 13239429162803941121486014513 9.984 d10.246e

lg 5 1388 12168542991176887019335499309 10.439 d10.568e
lg 6 2111 -40255677575921460661737995251 11.044 d10.831e
lg 7 2366 -49015247589235182139725640813 11.208 d11.053e
3 2606 82545172752563107569454411387 11.348 d11.246e

lg 9 2838 127198273976897829156669950369 11.471 d11.412e
lg 10 3032 57195467430761463244394803949 11.566 d11.568e
lg 11 3511 22807430298097133927723529551 11.778 d11.705e
lg 12 3526 113050082147876309787512677429 11.784 d11.831e
lg 13 3664 53986358582377581168857068861 11.839 d11.946e

59



Here one can see the difference between the actual size of b and the expected size
of b holds very well and improves as h grows. This supports Corollary 6.6.12.

For Curves over F2n

In this section we consider non–Koblitz curves E/Fq, since b is fixed for these
cases. We follow an analogous approach as we did for curves over non–binary
fields here, however since we only consider fields of certain prime degree, one
can compute cq exactly. Following Table 6.7 and using Conjecture 6.6.2 where

cq = Π2 ·
∏

l|2n−1

(
1 +

1
(l + 1)(l − 2)

)
with Π2 being the Hardy–Littlewood twin-prime constant one has

Π2 ≤ cq ≤ 0.660167

as shown in Table B.21 in Appendix B.2. This tight bound is expected since
no known Mersenne number Mn = 2n − 1 for a prime n, has a square as a root
[35]. Thus the factors l of Mn are generally large. This yields the following:

Theorem 6.6.14. Let E/F2n with prime n > 160, coefficients a ∈ {0, 1} and
b ∈ F∗2n which is r–small. Then using Conjecture 6.6.2 one can define an
expected

0.89 · n−1 · 2a+r

curves E with minimal cofactor from Definition 6.6.4.

Proof. Following the proof of Lemma 6.6.11: Conjecture 6.6.2 and Table B.21
implies for a fixed a ∈ F2n and random b ∈ F∗2n the probability Pn that E is of
order 2t times a prime is lower bounded by

Π2 ·
21−t lg e
n− t

≤ Pn as n→∞.

Taking b = 1, z, 1 + z, . . . where f(z) = 0, the expected number of trials to find
a curve of the desired order is ≈ P−1

n . Hence, if one selects only r–small b from
F∗2n , one expects out of the 2r − 1 possible choices for b that approximately

(2r − 1) ·Π2 ·
21−t lg e
n− t

≈ 1.79 · 2r+1−t

n

curves of desired order exist. Noting that here t = (2 − Tr2n|2(a)) the result
now follows.

Corollary 6.6.15. For F2n with a prime n > 160, fix an a = {0, 1} and let b
be r–small. Then in order to define an expected 2h elliptic curves Ei : y2 +xy =
x3 + ax+ b one needs an

r ≥ lg(1.13 · 2h−a · n)

which implies
‖b‖h ≤ dh+ lg n+ 0.18− ae .

Example 6.6.16. Let n = 281 and let f(X) = X281 +X93 +1 as was defined in
Table 6.7. Canonically construct F2n := F2[X]/〈f(X)〉 and define Ei : y2+xy =
x3 + ax + b where a ∈ F2. Then suitable b for an f(z) = 0 which yield curves
or maximal order are:
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For a = 0:

h b deg(b) ‖b‖h
0 z9 + z4 + z2 + z + 1 10 d8.314e
1 z10 + z6 + z4 + z3 + z2 + z + 1 11 d9.314e

lg 3 z10 + z7 + z6 + z3 + z2 + 1 11 d9.899e
2 z10 + z9 + z7 + z6 + z5 + z2 + z + 1 11 d10.314e

lg 5 z11 + z9 + z5 + z3 + z + 1 12 d10.636e
lg 6 z11 + z9 + z8 + z6 + z4 + z3 + z + 1 12 d10.899e
lg 7 z11 + z10 + z7 + z6 + z5 + z4 + z3 + z2 + z + 1 12 d11.122e
3 z11 + z10 + z8 + z6 + z5 + z4 + z3 + z + 1 12 d11.314e
· · · · · · · · · · · ·
4 z12 + z10 + z + 1 13 d12.314e
5 z13 + z9 + z8 + z5 + z4 + z2 + 1 14 d13.314e
6 z14 + z11 + z9 + z8 + z7 + z3 + z2 + 1 15 d14.314e
7 z15 + z13 + z10 + z5 + z3 + z2 + 1 16 d15.314e

Table 6.9: Example Maximal Order Curves E/F2281 for a = 0.

For a = 1:

h b deg(b) ‖b‖h
0 z8 + z5 + z4 + z3 + z2 + z 9 d7.314e
1 z9 + z7 + z5 + z4 10 d8.314e
2 z10 + z7 + z6 + z4 + z + 1 11 d9.3144e
3 z11 + z7 + z5 + z3 + z2 12 d10.314e
4 z11 + z10 + z6 + z5 + z4 + z3 + z2 + 1 12 d11.314e
5 z12 + z10 + z9 + z6 + z3 + z + 1 13 d12.314e
6 z13 + z11 + z9 + z7 + z3 + z2 14 d13.314e
7 z14 + z11 + z9 + z5 + z4 + z 15 d14.312e

Table 6.10: Example Maximal Order Curves E/F2281 for a = 1.

Here one can see the difference between the actual and the expected size of
b holds very well, improving as h grows. This supports Corollary 6.6.15.

6.6.4 Choosing the Coefficient d for Edwards Forms

As mentioned in §6.6, one desires a Edwards curve

E/Fq : x2 + y2 = 1 + dx2y2 (6.6.5)

with a small non–square d ∈ F∗q \ {1} as it aids arithmetic. This suits us very
well here, and we give an overview of what one would do for this case:

Edwards curves over finite fields always contain a point of order two and
a point of order four; viz. Theorem 4.3.3. Hence their minimal cofactor is 8
as was given in Definition 6.6.4. We wish to search for Edwards curves E/Fq
of order 8` for some prime `. Point counting routines are not yet known for
Edwards curves, but computing the corresponding Weierstraß form (when it
exists) is essentially free, allowing us to use the polynomial–time ones of Schoof,
[70]. Hence one proceeds analogously to §6.6.2 to find suitable minimal Edwards
curves:
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Algorithm 6.6.1 (Constructing Minimal Edwards Curves). .
INPUT: Fq and a parameter s ∈ N;
OUTPUT:An expected 2s coefficients di defining minimal Edwards curves

or fail.
1. set an array d← null and j ← 0;
2. for (d = 2; d < q; i ++){
3. if IsNonSquare(d){
4. set E ← x2 + y2 = 1 + dx2y2;
5. if IsomorphismExistsToAWeirstraßForm(E){
6. construct isomorphism: φ : E/Fq → E′/Fqe;
7. compute Weierstraß form: E′ = φ(E);
8. if IsPrime(#E′(Fqe)/8){;
9. set d[j ++]← d;
10. if j ≥ 2s return d;
11. }
12. }
13. }
14. }
15. return fail;

For a given s we need to estimate the expected size of d. Clearly one expects
a Weierstraß curve to have order 8` to be asymptotic to cePe as q →∞ where
ce ∈ (0, 1) ⊂ R and Pe can be approximated by

1
4 · 22√q

∫ (q+1+2
√
q)/8

(q+1−2
√
q)/8

dt
ln t
≈ 1

22(ln q − ln 8)
=

lg e
8(lg q − 3)

.

We do not compute the specific ce here as was done by Galbraith & McKee in
Conjectures 6.6.1 & 6.6.1 for the Weierstraß form. We merely note that one
has a similar result to the Weierstraß form whereby one can define an r–small
d sufficiently big enough to contain 2s choices for V.

6.6.5 Summary

We now condense the preceding sections into our formal definition for E ∈ V:

Definition 6.6.17. Let Fq := Fpd be a power of an odd prime with d ≥ 1.
Then represent E/Fq : y2 = x3 − 3x+ b by

〈b, t̂〉

where b ∈ F∗q and t̂ is the modified trace of E/Fq as given in Definition 5.4.1
(equivalently for subfield curves, Definition 5.6.4). Implicitly the curve here has
minimal cofactor as given in Definition 6.6.4.

Corollary 6.6.18. For an expected 2h definable curves, one has∥∥〈b, t̂〉∥∥ = dh+ lg k + 0.661e+ d(k + 1)/2e+ 1.

Proof. From Corollary 6.6.12 one has that ‖b‖ ≤ dh+ lg k + 0.661e. From
Lemma 5.4.2 one has that

∥∥t̂∥∥ = d((17/16)k + 1)/2e + 1 however one does not
have 1 ≤ c ≤ 2k/16 but c = 1, hence

∥∥t̂∥∥ = d(k + 1)/2e+ 1 here. The result now
follows.
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Definition 6.6.19. Let F2n have prime n ≥ 160. Then represent E/F2n :
y2 + xy = x3 + ax+ b by

〈a, b, t̂〉

where a ∈ {0, 1}, b ∈ F∗2n and t̂ is the modified trace of E/F2n as given in
Definition 5.4.4. Implicitly the curve here has minimal cofactor as given in
Definition 6.6.4.

Corollary 6.6.20. For an expected 2h definable curves, one has∥∥〈a, b, t̂〉∥∥ = dh+ lg(k + 3− a) + 0.18e+ d(k + 1)/2e+ 1.

Proof. From Corollary 6.6.15 one has that ‖b‖ ≤ dh+ lg n+ 0.18− ae. From
Lemma 5.4.5 and Corollary 6.6.18 one has that

∥∥t̂∥∥ = d(k + 1)/2e+ Tr2n|2(a) =
d(k + 1)/2e + a here. Finally note that in the worst case k = (n − 1) − lg c =
n+ a− 3. The result now follows.

Definition 6.6.21. Let F2n have prime n ≥ 160. Then represent Koblitz curves
E/F2n : y2 + xy = x3 + ax+ 1 by

〈a〉

where a ∈ {0, 1}. Implicitly the curve here has cofactor c = 2(2 − a) and the
order is either known or trivial to compute as was given in Lemma 5.6.7.

Corollary 6.6.22. The value a is already included in the definition of the field
representation F : Definition 6.5.21.

6.7 Specifying Base Points

A generating point P of order ` is required to be defined in V, so that users may
construct their public/private key pairs (Q = [ϕ]P,ϕ). It is often recommended
that one chooses this base point at random by selecting an xi ∈R Fq and testing
whether or not x3

i +axi+b is a quadratic residue modulo p = char(Fq) [2, 9, 14].
A similar method is used for curves over F2n and both have a probability of
success in defining a valid curve point of a 1/2 for each trial. Once a valid point
P ∈ E(Fq) has been found, it is checked if it is of the correct order `; if not
the implementer decides whether they draw another random value/seed for xi,
or whether they indicate to the receiver by an additional bit that they need to
compute P ′ = [c]P , ensuring P ′ has the correct order `.

Here instead we restrict users to only define base points using r–small ab-
scissæ xi. If these points P ∈ E(Fq) are of the correct order `, and the order is
large enough to avoid pre–computation (which is implicit), they trivially admit
no weakness in an ECDLP. We present this now:

Lemma 6.7.1. Let xi ∈ Fq such that xi is r–small. Assume one needs to define
2s base points P = (xi, yi), where r > s−1, is of maximal order ` = #E/c with
minimal yi ≤ (q − 1)/2. Then one has a probability for success of

(1− 22−2r

)/c2s.
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Proof. Consider E/Fp: One successively tests whether xi = 1, 2, 3, . . . ≤ 2r−1 is
a quadratic residue modulo p which fails with the probability 1/2. The abscissæ
xi are successive, however one may view x3

i + axi + b as a quasi–random value
modulo p. This gives the probability of finding a pair of points of E(Fp) as
PP = 1− ( 1

2 )n for n trials. Thus one has a probability of

Ph = 2−h(1− 22−2r

)

for finding 2s such points since xi 6= 0, n ≤ 2r − 2.
Now that one has valid points, the probability that they are of order ` is

`/#E = c−1. Once points P = (xi,±yi) have been found, we choose the
smallest ordinal from ±yi since if −P is of order ` so is P since O = [`](−P ) =
[−1 · `]P ⇔ [`]P = O. An analogous argument exists for curves over binary
fields and the result now follows.

We wish to be able to define points with a high degree of confidence. For a
c = 1 and varying r, one finds that the probability for each trial of defining a
3–small P as 63/64, and a 4–small P as 16383/16384. This leads us to:

Corollary 6.7.2. If a system requires 2s base points Pi, then with an over-
whelming confidence of 0.9999 one can express such a point using r–small el-
ements where r = 4 + ds+ lg ce. Such elements clearly require only r–bits to
represent.

Corollary 6.7.3. Should only one base point P be sought, then with an over-
whelming confidence of 0.9999 one only requires an:

r :=


4 when char(Fp) 6= 2,
5 + dlg pe when char(Fp) 6= 2 and E/Fp,
5− a when q = 2n for the coefficient a of E.

(6.7.1)

Here one assumes the cofactor is minimal from Definition 6.6.4 and for the
binary cases, we are using Seroussi’s method from §4.1.3.

6.8 Definition and Generation of Multi–Curve CDPs

Here we combine the work undertaken in the previous sections, and present the
result.

6.8.1 For Prime Fields Fp
Here we present the formal definition for our domain parameters V, suitable for
ECC for multi–curve environments over prime fields:

Definition 6.8.1. For a given bit–size k ∈ [k0, k1], the domain parameters for
a 2h multi–curve environment where E/Fp are:

V := F ∪ (b, t̂, xP ).

Here one has:

• F describing the field as was given in Definition 6.5.12;
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• 〈b, t̂〉 is an r–small coefficient and the modified trace defining the curve
E/Fp as was given in Definition 6.6.17 such that an expected 2h curves
are definable;

• t̂ is the modified trace from Definition 5.4.1;

• and xP is an r–small element from Corollary 6.7.2 which defines the base
point P = (xP, yP ) for a yP ≤ (p− 1)/2.

Using this and the fact that E : y2 = x3 − 3x+ b has a minimal cofactor c = 1
as in Definition 6.6.4, one is able to define valid parameters for ECC.

Corollary 6.8.2. Once F is established, the specific security parameter k is
known. Hence for our V defined above one has∥∥b, t̂, xP∥∥ = dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 5,

where one requires 2s base points P .
Depending on how many fields a system needs to define, using Lemma 6.5.13

we have:

[k0, k1] # of fields ‖V‖
[160, 224] 251 dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 21
[160, 224] ≈ 2107.07 dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 124
[224, 256] 123 dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 21
[224, 256] ≈ 2122.88 dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 139
[256, 572] 2372 dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 29
[256, 572] ≈ 2279.70 dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 297

Moreover, by direct calculation for all k ∈ [k0, k1] one has that

[k0, k1] ‖V‖ for SEC 1 ‖Vm‖ ‖Vf‖
[160, 224] ≤ 5.393k ≤ 1.098k + δ ≤ 0.638k + δ
[224, 256] ≤ 5.469k ≤ 1.082k + δ ≤ 0.621k + δ
[256, 572] ≤ 5.385k ≤ 1.038k + δ ≤ 0.570k + δ

where Vf is when requiring few fields to be definable and Vm many. Here δ =
dhe+ dse.

We now present an example of this in action and compare it against SEC 1
domain parameters from Definition 5.2.2:

Example 6.8.3. Let E : y2 = x3 − 3x + b be as in Example 6.6.13 where
p = 2192 − 264 − 1. Assume as is usual that we only require one base point
P , hence s = 0. Set h = 8; then one can represent a V for an expected 256
multi–curve environment using Definition 6.8.1 in

dh+ lg k + 0.661e+ d(k + 1)/2e+ dse+ 21 = 127–bits.

From Lemma 5.2.4, one has the size for SEC 1 domain parameters to be

32 d((17/16)k + 1)/8e+ 8 d(k + 1)/8e+ 8 dk/128e = 1056–bits.

when using point compression.

Remark 6.8.4. For OEFs, one has the analogous result where one uses F from
Definition 6.5.26 to define our V. This results in a slightly larger ‖V‖ following
the result of Lemma 6.5.28.
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6.8.2 For Binary Fields F2n

Here we present the formal definition for our domain parameters V, suitable for
ECC for multi–curve environments over binary fields:

Definition 6.8.5. The domain parameters for a 2h multi–curve environment
where E/F2n are:

V := F ∪ (a, b, t̂, xP ).

Here one has:

• F describing the field as was given in Example 6.5.17 and Definition 6.5.18;

• 〈a, b, t̂〉 has a bit a, an r–small coefficient b and the modified trace defining
the curve E/F2n as was given in Definition 6.6.19 such that an expected
2h curves are definable;

• t̂ is the modified trace from Definition 5.4.4;

• xP is an r–small element from Corollary 6.7.2 which defines the base point
P = (xP, yP ) with yP := min{±yP} computed via the Weierstraß form.

Using the fact that E : y2 +xy = x3 +ax+b has a minimal cofactor c = 2(2−a)
as in Definition 6.6.4, one is now able to define valid parameters for ECC.

Corollary 6.8.6. Once F is established, the specific security parameter k is
known. Hence for our V defined above one has

‖V‖ = dh+ lg(k + 3− a) + 0.18e+ d(k + 1)/2e+ dse+ 15− a,

when using compact tables and

‖V‖ = dh+ lg(k + 3− a) + 0.18e+ d(k + 1)/2e+ dse+ 31− a,

without where one requires 2s base points P .
By direct calculation for all selected k ∈ [162, 510] one has that

‖V‖ for SEC 1 ‖V‖ ‖Vt‖
k ≤ 5.381k ≤ 0.583k + δ ≤ 0.551k + δ

where Vt is when using compact tables and V when not where δ = dhe+ dse.

6.8.3 For Koblitz Curves E/F2n

Here we present the formal definition for our domain parameters V, suitable for
ECC for multi–curve environments using Koblitz curves:

Definition 6.8.7. The domain parameters for a 2h multi–curve environment
where E/F2n is Koblitz are:

V := F ∪ (t̂, xP )

where sending the modified trace t̂ is optional, depending on whether it is to be
computed using Lemma 5.6.7. Here one has:

• F describing the field as was given in Definition 6.5.21;
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• a ∈ F is the curve coefficient from Definition 6.6.21;

• xP is an r–small element from Corollary 6.7.2 which defines the base point
P = (xP, yP ) with yP := min{±yP} computed via the Weierstraß form.

Using the fact that E : y2 +xy = x3 +ax+1 has a minimal cofactor c = 2(2−a)
as in Definition 6.6.4, one is now able to define valid parameters for ECC.

Corollary 6.8.8. Once F is established, the specific security parameter k is
known. Hence for our V defined above one has

‖V‖ = 10− a+ dse ,

when using compact tables and

‖V‖ = 22− a+ dse ,

without where one requires 2s base points P .
By direct calculation for all selected k ∈ [162, 570] one has that

‖V‖ for SEC 1 ‖V‖ ‖Vt‖
k ≤ 5.381k 22− a+ dse 10− a+ dse

where Vt is when using compact tables and V when not.

6.9 Discussions & Conclusions

If one wants to use a multi–curve model, then many parameter sets may be
tied to one system. We assume bandwidth should be minimal here. Using
current standards, one can define multi–curve systems but one has no degree of
flexibility to optimise a system for how it will be used: The range of security
parameters over which is will be deployed or how many systems it is required to
specify. In §6.8 we gave a system which overcame these limitations. We defined
models for domain parameter representation which represent non–special curves
over recommended fields. These systems were bandwidth efficient with respect
to how many fields, curves and base–points were required to be specifiable.
This gave a system which requires a fraction of the bandwidth used by current
propositions. Our model can define domain parameters for prime fields in at–
most a fifth of the bandwidth normally expected for a given security parameter
k. Better results were achieved when using binary fields.

We gave models for binary and prime fields separately. This is reasonable
as one often choose binary fields when deploying in hardware and prime fields
when using software. We discuss the advantages of this work for smart–cards
and gave methods for defining OEFs which are often used in this setting.

When using binary fields, it is our opinion that one should always use the
low–weight polynomials given in §6.5.3. Since there are few of them, and they
can be compactly represented in a table, we feel this method would often be
optimum.

As our work shows, one can define cryptographic domain parameters far
more efficiently than previously published. We do not consider the fixed curve
model of Solinas et al in §6.3 to be desirable since it is restrictive, only defined
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over prime fields and not as efficient as the non–fixed curve models we have
suggested.

Finally, our generation method is well suited for Edwards curves. This is
because one has faster arithmetic when the curve coefficients are c = 1 with d
small. We gave details on how one could implement an analogue of our minimal
systems here.
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A man’s work is nothing but this slow trek to
rediscover, through the detours of art, those two or
three great and simple images in whose presence his
heart first opened.

Albert Camus (1913–1960) 7
Point Compression for Koblitz Curves

7.1 Motivation

Let E be an elliptic curve over Fq. The Elliptic Curve Discrete Logarithm
Problem is defined as: Given a point P ∈ E(Fq) of large prime order ` and a
non–trivial point Q ∈ 〈P 〉, find the value a ∈ [1, `− 1] ⊆ N such that Q = [a]P .

Pollard gave Monte Carlo algorithms to solve the DLP in a generic group G
of prime order ` in an expected

√
π`/2 steps in [62]. For the ECDLP we say:

Definition 7.1.1. An E/Fq has a k–bit security level if the expected running
time required by Pollard’s methods is greater than 2k steps.

One has #E(Fq) ≈ ` ≈ q for cryptographically interesting cases. Hence one
expects to achieve a k–bit security parameter for an E/Fq when q ≈ 22k. Under
a bit or byte communication model, one has:

Lemma 7.1.2. For curves over binary fields, E/F2n , the transmission cost for
an affine point P = (x, y) ∈ F2n × F2n requires n ≈ 2k bits.

Proof. One uses the deterministic point compression methods from §4.1.2 and
Seroussi’s method from §4.1.3.

Wiener & Zuccherato [87] and Gallant, Lambert & Vanstone [32] showed
that one can accelerate Pollard–ρ methods using equivalence classes, defined
as the orbit of a point under the action of an efficiently computable group
automorphism of E(Fq). If these equivalence classes are not too large, then
one can define a random walk on the set of equivalence classes. Since the set of
equivalence classes is smaller than the group itself, one expects the Pollard–ρ
algorithm to terminate more quickly. For all elliptic curves E/Fq, they showed
that one can use the automorphism [−]P = −P to achieve a

√
2 improvement.

For applications the group law must be efficiently computable. Hence one
particular class of curves which are very attractive are Koblitz curves, given in
§4.2. However, here one can define equivalence classes of size 2n,

[P ] := {±ψ(P ) : 0 ≤ i < n},

using the Frobenius automorphism ψ(P ). This yields a further
√
n speed–up

when using Pollard–ρ; the greatest known for these attacks.
Thus when one uses Koblitz curve systems, one requires that q ≈ 22k+lgn to

achieve a k–bit security parameter. Hence we have a lower security per bit than

69



when using general curves over the same field. A natural question is to ask is
can one achieve a bandwidth for Koblitz systems of ≈ 2k bits.

We will answer this question here and present a method to reduce this band-
width. Subsequently we will show with a low probability of failure, one can
compress this bandwidth to the expected number of bytes for a given security
parameter k, when using an analogue of the Diffie–Hellman Key Agreement
from §2.5.1.

7.1.1 Overhead in Koblitz Systems

We present our communication models and define what we mean by overhead :

Definition 7.1.3. The three variants for our communication model is where
the receiver expects to get either:

• an m–bit string or,

• an m–byte string or,

• a variable length bit–string of size ≤ m where the receiver knows that the
string has ended by some end–of–transmission (EOT) symbol, transmis-
sion pause or transmission pulse.

Definition 7.1.4. The additional bandwidth required to send a point using
a Koblitz system, over a generic one for an equivalent security parameter k is
called overhead.

Obviously this overhead is dependent on which specific communication model
is being utilised.

Lemma 7.1.5. Let E/F2n be a Koblitz curve whose largest prime order ` sub-
group 〈P 〉 ⊆ E(F2n) has a k–bit security level. Then the bit–overhead in the
point representation of E is

rbit ≈ [lg n]. (7.1.1)

Equivalently the byte–overhead in the point representation of E is

rbyte ≈ dn/8e − d(n− [lg n])/8e . (7.1.2)

Here [x] is the function returning the nearest integer to x ∈ R. When it is
clear from context we will simply refer to these two quantities as bit and byte
redundancies.

Proof. Curves E/F2n always have a cofactor c ≥ 2. Here we assume a general
curve has the same cofactor as the Koblitz system; c ∈ {2, 4}.

For a fixed security parameter k one expects a Pollard–ρ attack on a general
curve to require

√
π`/4 > 2k steps. Thus one has 22k < ` ≤ 22k+1 ⇔ c · 22k <

#E(F2n) ≤ c · 22k+1 which implies one requires (2k + 1 + lg c) bits to represent
a point using point compression and Seroussi’s method.

The improved Pollard–ρ attack mentioned above implies that one requires√
π`/4n > 2k for Koblitz systems. Here 22k+lgn < ` ≤ 22k+1+lgn and one needs

(2k + 1 + lg n+ lg c) bits to transmit a point as above.
The difference is clearly lg n bits and we consider rbit ≈ [lg n]. The equivalent

argument for rbyte immediately follows.
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Using Lemma 7.1.5 one can compute a table of the bit and byte redundancies
when using recommended Koblitz curves from [14]:

Parameters n Security level rbit rbyte

k–bits
sect163k1 163 77 7 1
sect233k1 233 112 8 1
sect239k1 239 115 8 1
sect283k1 283 137 8 1
sect409k1 409 199 9 2
sect571k1 571 280 9 1

general curve n bn/2c 0 0

Table 7.1: Additional Bandwidth required for Koblitz Systems

It is our aim in the sequel to reduce the values of rbit and rbyte.

7.2 Reducing Bandwidth: Point Compression

We aim to reduce the values of rbit and rbyte from Table 7.1 by working directly
with the equivalence classes used in their Pollard–ρ based attacks. In order to
work with equivalence classes, one must define a canonical representative of each
class. Here we will construct such a representative with a short representation.
This will enable us to reduce bandwidth.

For the sequel we define the following: Assume F2n is in normal form with a
basis {β, β2, β22

, . . . , β2n−1} for F2n/F2 and let E/F2n be a Koblitz curve whose
largest prime order ` subgroup is 〈P 〉. A brief summery of the idea we will
present here is:

Extract the abscissa x of a point P = (x, y) and discard its ordinal y. Con-
struct a set of all bit–wise rotations of x. Perform Seroussi’s method on this
set to save a bit in the representation of the abscissæ. Select a certain repre-
sentative x from this set which has a short representation. Transmit x instead
of P to save bandwidth.

We now present algorithms for compression and decompression using the above
idea. Subsequently we detail the theory behind them and the expected theo-
retical results. Finally we present practical results which support our idea and
draw any conclusions required.

7.3 Compression & Decompression Algorithms

We give algorithms here using pseudo–code where x ∈ F2n is represented as a
vector x with respect to some normal basis.

We use the following notation: A binary string x = (xn−1, xn−2, . . . , x0) has
a substring x[j, i] = (xj , xj−1, . . . , xi) and a coefficient x[i] = xi. Here x � i is
the string x rotated by i places to the left.
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Let tmin ∈ N be the minimum length of a run of 1’s required in the binary
representation of an abscissa x = x(P ) and

tmin :=


8 · rbyte − 2 when using byte–strings;
rbit − 2 when using bit–strings;
1 when using variable length bit–strings,

for our communication model where we set tmin = 1 if tmin ≤ 0. Then;

Algorithm 7.3.1 (Compressing a Koblitz point Q ∈ E(F2n)[`]). .
INPUT:Q = [a]P such that a ∈R [1, `− 1];
OUTPUT:A compressed string x′ representing Q or fail.
1. set x← x(Q), x← null, n← #x, i0 ← 0 and t← tmin − 1;
2. for (i = 0; i < n; i++){
3. if

(
x[i] == 0 && x[i+ 1] == 1

)
{

4. set j ← 1;
5. for (; j ≤ n− 2; j++){
6. if

(
x[i+ j + 1 (mod n)] == 0

)
break;

7. }
8. if(j > t){
9. set t← j, i0 ← i+ 1;
10. set x←

(
x� (i− 1)

)
[n− 1, t+ 2];

11. }
12. }
13. }
14. if (x == null) reject Q, halt;
15. switch (communication model): //Pad the string x
16. (byte-strings):
17. (bit-strings):
18. set x′ ← x ‖ 0 ‖ (1)t−tmin;
20. (variable length bit-strings):
21. set x′ ← x;
22. return x′;

Remarks

• Lines 5 & 6 of the algorithm search for the longest sub–string of the form

0(1)t0

where (1)t is a run of 1’s of length t including wrap–arounds.

• Line 8 of the algorithm ensures that we choose the first occurring run of
length t, making the selection unique.

• Line 10:
set x←

(
x� (i− 1)

)
[n− 1, t+ 2];

is both Seroussi’s method for normal representations (see Lemma 4.1.18)
and the removal of the run 0(1)t0 of length (t+ 2).

72



• Line 18 pads the truncated string x to the length expected for a generic
system for a given security level. That is: we desire a string of length
m = n− (tmin + 2) and we have the string x′ ‖ 0 of length (n− t− 3) + 1
bits. The difference is (t− tmin) bits.

Algorithm 7.3.2 (Decompressing a Koblitz point Q ∈ E(F2n)[`]). .
INPUT:A compressed string x′ representing Q;
OUTPUT:The abscissa xQ corresponding to a point Q ∈ 〈P 〉.
1. set x← null, j ← 0, s← 0 and m← #x′;
2. for (i = 0; i < m; i++){
3. if

(
x[i] == 0

)
{

4. set j ← i;
5. break;
6. }
7. }
8. set x← x′[n− 1, j];
9. set x← x ‖ (1)n−m−1+j ‖ 0;
10. for (i = 0; i < n− 1; i++){
11. set s← (s+ x[i]) (mod 2);
12. }
13. if (s == a){
14. set x← x ‖ 0;
15. } else {
16. set x← x ‖ 1;
17. }
18. return x;

Remarks

• Lines 2–7 find the original truncated string. Line 9 adds the length t run
of 1’s and the trailing 0. One now has a n− 1 bit string.

• Lines 10–12 compute the trace of the truncated string using Lemma 4.1.18:

Tr(x) =
n−1∑
i=0

xi.

Since Tr(a) = Tr(x) here, lines 13–17 reconstruct the original LSB, giving
us the original uncompressed abscissa of Q.

7.4 Compressing Koblitz Abscissæ: Theory

In the following subsections we justify that the compression and decompression
algorithms given in §7.3 work with a low probability of failure.

7.4.1 Equivalence Classes

Here we present the equivalence classes used for the Pollard–ρ attack on Koblitz
systems given in [32, 87]. Let R be a representative of the equivalence class [R]:
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Definition 7.4.1. Let the relation ∼ on E(F2n) be defined by

R ∼ S if and only if R = ±ψj(S)

for some j ∈ [0, n− 1], R,S ∈ 〈P 〉 with the Frobenius automorphism ψ(x, y) =
(x2, y2).

Lemma 7.4.2. For all Q ∈ 〈P 〉 one has ψ(Q) ∈ 〈P 〉 if `2 - #E(F2n).

Corollary 7.4.3. Assume n is prime or P 6∈ E(F2m) for any m | n where
m < n. Then definition 7.4.1 trivially forms an equivalence relation on E(F2n).
Moreover from Lemma 7.4.2, ∼ partitions 〈P 〉 into equivalence classes

[R] = {±R,±ψ(R),±ψ2(R), . . . ,±ψn−1(R)}

of size 2n for R ∈ 〈P 〉 where R 6= O.

Lemma 7.4.4. Let Q ∈ 〈P 〉. Then for an a ∈ [1, `− 1] ⊆ N, one has

[a]
[
Q
]

=
[
[a]Q

]
.

Proof. Point negation [−] : Q→ −Q and the Frobenius are both E(F2n)–group
automorphisms: ±[a]ψ(Q) = ±ψ([a]Q) = ψ(±[a]Q). Thus

[a]
[
Q
]

= {±[a]Q,±[a]ψ(Q), . . . ,±[a]ψn−1(Q)}
= {±([a]Q),±ψ([a]Q), . . . ,±ψn−1([a]Q)} =

[
[a]Q

]
.

7.4.2 Compressing Koblitz Abscissæ up to Rotation

We now present our method to compress bit–strings up to rotation, which rep-
resent abscissæ of points Q ∈ E(F2n)[`] on a Koblitz curve.

First we discuss the bit patterns present in arbitrary binary strings. We then
show that one can create an equivalence class of rotated binary strings, using
Koblitz abscissæ and the Frobenius automorphism. Subsequently we show that
one can use this pattern, to specify a representative of this class. Finally we
detail how one could use this to form an analogue to the DHKA.

Definition 7.4.5. Let x = xn−1xn−2 · · · x1x0 represent a binary string with
xi ∈ {0, 1}. We say x contains a right padded length t run if and only if

x = xn−1 · · · xt+2011 · · · 110.

That is, the zeroth and the (t + 1)–th bit are 0 with the intermediate t bits
being 1. Clearly #x ≥ 3 for a run to exist.

Lemma 7.4.6. Up to shift only three strings of length ≥ 3 do not have a right
padded length t run. Namely;

11 · · · 11 = (1)n, 00 · · · 00 = (0)n and (1)n−1 ‖ 0.

Unless we are in the above three cases, if we find a maximal run of 1’s we
are guaranteed that these runs are left and right padded by 0’s. This result is
discussed later with respect to Koblitz abscissæ in Corollary 7.4.15.
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Definition 7.4.7. Let Sn(x) be defined as the set containing all possible bit–
rotations of the n–bit binary string x. That is:

Sn(x) := {x� i | i = 0, 1, 2, . . . , n− 1}.

Corollary 7.4.8. Let x(P ) be the function which extracts the abscissa of a point
P ∈ E(F2n). For the equivalence class [R] given in Corollary 7.4.3 one has

x
(
[R]
)

= x
(
{±R,±ψ(R),±ψ2(R), . . . ,±ψn−1(R)}

)
=
{
x� i | i = 0, 2, . . . , n− 1

}
= Sn(x).

Proof. The result follows from −(x, y) = (x, x + y) and for a normal basis the
Frobenius merely being a bit–shift in the representation of x.

Definition 7.4.9. Let the Seroussi function s : {0, 1}n → {0, 1}n−1 take the
n–bit abscissa of a point P and return the punctured (n − 1)–bit string using
Seroussi’s method. Clearly s−1(s(x)) = x, hence it is well–defined and invertible.

Since all of the strings in Sn(x) represent abscissæ from E(F2n), one may
use Seroussi’s method from §4.1.3 to create a set of n punctured binary strings
S′n(x) of length n− 1. We now define our representative function f :

Definition 7.4.10. The representative function f is defined by

f :
(
S ′n(x)

)
→ {0, 1}n−1

where the x = f
(
S ′n(x)

)
is the (n− 1)–bit string with the longest right padded

length t run in the set S′n(x). Ties are broken by choosing the smallest xi ∈ S ′n(x)
when considered as an integer.

Remark 7.4.11. f chooses the string with the longest right padded length
t run from the punctured set S ′n(x). If one were to choose this run from the
un–punctured set Sn(x), part of this run may be removed after Seroussi’s trick
is applied.

Definition 7.4.12. Let the cutting function g : {0, 1}n−1 → {0, 1}n−3−t take
a string x with a right padded length t run and return the string x′ such that

x′ ‖ 011 · · · 110 = x.

Clearly g−1(g(x)) = x, hence it is well–defined and invertible.

Definition 7.4.13. Let P ∈ 〈P 〉 and S =
(
〈P 〉/ ∼

)
. Compression is the map

C : S → {0, 1}n−3−t given by

g · f · s · x
(
[P ]
)

= x′. (7.4.1)

Decompression is the map D : {0, 1}n−3−t → S given by

[
x−1 · s−1 · g−1(x′)

]
= [P ]. (7.4.2)
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Corollary 7.4.14. Let C
(
[P ]
)

= x′. Then one has:

D
(
C
(
[P ]
))

= [P ] and C
(
D(x′)

)
= x′.

Proof. From the definitions of C and D and s
(
Sn(x)

)
= S ′n(x) one has

D
(
C
(
[P ]
))

= D
(
g · f · s · x

(
[P ]
))

= D
(
g · f

(
S ′n(x)

))
= I.

Assume f
(
S ′n(x)

)
picks a punctured abscissa x corresponding to some P ′ ∈ [P ];

I = D
(
x′
)

=
[
x−1 · s−1 · g−1(x′)

]
= [x−1 · x(P ′)] = [±P ′] = [P ].

For the reverse argument, one has: C
(
D(x′)

)
= C

([
x−1 · s−1 · g−1(x′)

])
and

hence = C
([

x−1 · x(P ′)
])

= C
(
[±P ′]

)
= C

(
[P ]
)

= x′.

Corollary 7.4.15. Let x represent the un–truncated n–bit binary string repre-
senting an abscissa x(Q) ∈ 〈P 〉. Then the forms x = (0)n and (1)n never occur.
Moreover, up to shift only the form (1)n−10 when a = 0 and (1)n−200 when
a = 1 do not contain any right padded length t run.

Proof. The un–truncated strings represent abscissæ of curves points Q ∈ 〈P 〉
of large prime order `. Hence (0)n represents a point in E(F2) which never
occurs. Similarly the string (1)n corresponds to the field element 1 ∈ F2 since
this string is fixed under the 2–power Frobenius. Thus this also represents a
point in E(F2) which never occurs.

The strings that are un–representable are those without a right padded
length t run after applying Seroussi’s method. From Lemma 7.4.6 these are:
(0)n−1, (1)n−1 and (1)n−20. Concatenating these with a possible original (punc-
tured) bit b ∈ {0, 1} gives us 6 strings here: (0)n−10 and (1)n−11 which never oc-
cur and (0)n−11 which contains a run of length 1. This leaves (1)n−10, (1)n−200
and finally (1)n−201 = (1)n−10. These latter 2 strings are un–representable us-
ing f . Noting that Tr(a) =

∑n−1
i=0 xi now gives the result.

7.5 DHKA using Compressed Points

We now will show that one can use the compression and decompression maps C
and D to construct a Diffie–Hellman Key Agreement protocol:

Initialisation: Let E(F2n) be a Koblitz curve and P ∈ E(F2n) a base–point
of maximal prime order `.

Key Exchange:

• Alice picks a random a ∈ [1, `− 1] ⊆ N and evaluates QA = [a]P .

• Sets a as her private–key and sends Bob her public–key

x′A = C
(
[QA]

)
.
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• Bob picks a random b ∈ [1, `− 1] ⊆ N and computes QB = [b]P .

• Sets b as his private–key and sends Alice his public–key

x′B = C
(
[QB ]

)
.

Key Derivation:

• Alice then computes
kA := C

(
[a]D(x′B)

)
with Bob computing

kB := C
(
[b]D(x′A)

)
.

Lemma 7.5.1.

kA = kB .

Proof. Alice has x′B = C
(
[QB ]

)
and a. Thus

kA = C
(
[a]D(x′B)

)
= C

(
[a]D

(
C
(
[QB ]

)))
,

which from Corollary 7.4.14 and Lemma 7.4.4 one has that this;

= C
(
[a]
[
QB
])

= C
([

[a]([b]P )
])

= C
([

[ab]P
])
.

Similarly, Bob with x′A = C
(
[QA]

)
and b has:

kB = C
(
[b]D(x′A)

)
= C

(
[b]D

(
C
(
[QA]

)))
= C

([
[b]QA

])
= C

([
[ba]P

])
.

Remarks

Remark 7.5.2. When using a normal Koblitz system, one specifies the point
Qi = [i]P ∈ 〈P 〉 in compressed representation (x(Qi), b) where b is the bit which
indicates which ordinal to use. Here however, one is not required to distinguish
a point from its negative since both belong to the same equivalence class.

Remark 7.5.3. In the DHKA protocol above, if Alice (respectively Bob) is
unlucky that f cannot find a minimal right padded length t run on her [Qa] =[
[a]G

]
, she simply chooses another random secret a ∈ [2, `− 1] and tries again.

7.6 Bandwidth Reduction: Theoretical Expectations

By construction, C selects a well–defined representative truncated punctured
abscissa from the points of an equivalence class [R]. The advantage here is
the function f has n choices for a representative compared with none with the
conventional Koblitz curve case: One must just send the point Qi.
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In our construction of the compression function, C selects such a represen-
tative binary string x′ such that some bits are predetermined (they contained a
right padded length t run). This truncated string x′ was now sent in lieu of P .

A natural question is: How many bits r = #x(P )−#x′ = n−#x′ can one
expect to save under an arbitrary compression function C? We now answer this
question:

Theorem 7.6.1. Let x be a finite binary string of fixed length n with Sn(x)
defined as above. Assume a function f selects an xi ∈ Sn(x) if and only if r–
bits of xi are pre–determined. Let the truncated string x′ be created by removing
these known bits. Then the longest expected truncation by f is

r → lg n

bits as n→∞.

Proof. Without loss of generality, assume the function f only selects strings xi
whose leftmost r–bits are fixed in some known form. Hence knowing f and the
(n− r)–bit truncated string x′ is enough to uniquely reconstruct x.

We are interested in how many n–bit strings are representable by this trun-
cated form: Consider the string

x = xn−1xn−2 · · · xr︸ ︷︷ ︸
x′

xr︷ ︸︸ ︷
xr−1 · · · x0 .

Trivially for a fixed function f and a fixed xr, only 2n−r binary strings are
representable by x. Thus for a random n–bit string x the probability that one
has a fixed xr is

P(x = x′ ‖ xr) =
(

2n−r

2n

)
= 2−r.

We want such a fixed xr to occur in at least one string xi from the n cyclic–shifts
of x, namely from Sn(x). We have

1 ≥
∑

xi∈Sn(x)

P(xi = x′i ‖ xr) ≈ n2−r.

Hence since r � n, one expects that r → lg n as n → ∞ is the best one can
achieve if one wants to be able to find a string of the form: x = x′ ‖ xr.

7.7 Bandwidth Reduction: Practical Results

The expected maximal bound for r only holds asymptotically, however one can
demonstrate that (t + 2 = r) → rbit for even modest (and cryptographically
useful) values of n.

Here we present practical results that the probability of a random n–bit
string has an encoding by f for integer values of t ∈ N across the range

1, 2, . . . , [lg n]− 2, . . . , B for some bound B ∈ N.

That is there exists a right padded length t run somewhere in all possible shifts
of (n− 1)–bit punctured strings of S ′n(x).
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Appropriate code in C# selected random strings of (cryptographically use-
ful) length n, then searched through their orbits and recorded the right padded
length t runs as r = t + 2. In total 100n random strings were tested for each
fixed n and the results appear in Table 7.2 below:

bit–size (n− 1)
r 162 232 238 282 408 570 2046
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 0.9974 1 1 1 1 1 1
7 0.9480 0.9862 0.9769 0.9915 0.9992 1 1
8 0.7372 0.8612 0.8647 0.9578 0.9655 0.9902 1
9 0.4795 0.6147 0.5887 0.6940 0.8085 0.8965 1
10 0.2778 0.3797 0.3588 0.4454 0.5589 0.6735 0.9847
11 0.1530 0.2164 0.1971 0.2525 0.3324 0.4230 0.8601
12 0.0780 0.1138 0.1050 0.1397 0.1826 0.2465 0.6114

Table 7.2

The black coloured cells indicate the value r = [lg n] and the grey of r =
blg nc when different. The case of n = 211 − 1 has been included purely for
theoretical interest to see what happens as n grows beyond what is currently
required.

Remark 7.7.1. The C# code here looked for runs of the form 0(1)t0 in an
(n − 1) bit string since we assume Seroussi’s method would always be applied
to an n–bit string. This explains the column names in Table 7.2.

Thus any confidence in the table is that of us being able to truncate an n–bit
string by (r + 1) bits.

7.8 Using a Variable Length Communication Model

In Definition 7.1.3 we defined a variable length communication model. This is
where one would send a bit–string of size ≤ n where the receiver knows that the
string has ended by some end–of–transmission (EOT) symbol, pause or pulse.

This model is particularly interesting when using our abscissæ compression
method: Here one would always send the x′ = C([P ]) with the longest right
padded length t run for optimum bandwidth efficiency. As the results of Ta-
ble 7.2 show, often one finds right padded length t run longer than required,
giving a bandwidth saving.

No known implementation of this model is currently used however, and this
result is included for completeness.

7.9 Discussion of Practical Results & Conclusions

The sample size of 100n random strings for each fixed n is small from the total
(2n−1 − 1) strings available. However Table 7.2 does present good empirical
evidence that the theoretical bound of r → lg n holds as n grows.

79



For most applications, we are interested in how one can use the confidences
presented in Table 7.2 to reduce the byte overhead rbyte to zero for the Koblitz
curves based systems from §7.5. From Table 7.1 we have:

n rbit rbyte r s.t. rbyte = 0 Pr
163 7 1 2 1
233 8 1 8 0.8612
239 8 1 6 1
283 8 1 2 1
409 9 2 8 0.9655
571 9 1 2 1

Table 7.3: Observed Probability for Koblitz Point Compression

Here Pr is the observed probability one can find a length r run from Table 7.2.
This implies one can truncate (r+ 1) bits from an n–bit string as was indicated
in Remark 7.7.1.

Corollary 7.9.1. Using the results of Table 7.3 and Definition 7.4.13 of C,
one can truncate with a strong confidence Koblitz abscissæ to the same size as
one would expect for non–subfield curves.

Remark 7.9.2. The results given here can be extended to hyperelliptic curves
to create analogous functions C and D for enabling point compression although
not as efficiently. These are not considered here.
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Part II

Disguising



Man cannot discover new oceans,
unless he has the courage to lose
sight of the shore.

André Gide (1869–1951) 8
Background

8.1 Subgroups and Algebraic Tori

In the sequel we will present cryptographic protocols which work in the sub-
group of a multiplicative field. Here we present the important definitions from
elementary algebra that we will later require:

Definition 8.1.1. [42] Let n ≥ 1. The n–th roots of unity over Fq are the roots
of the equation

xn − 1 ∈ Fq[x].

Over C one has the complete linear factorisation of xn − 1 as

xn − 1 =
n−1∏
i=0

(x− ζin) (8.1.1)

for an n–th root ζn ∈ C.

Theorem 8.1.2. Let G be any finite group, x ∈ G, ord(x) = n and t ∈ Z. Then
ord(xt) = n/ gcd(t, n).

Corollary 8.1.3. By Theorem 8.1.2, ord(ζin) = n/ gcd(i, n). Thus for ord(ζin) =
d > 0⇒ d|n.

Corollary 8.1.4. [42] If gcd(n, char(Fq)) = 1, then the n–th roots of unity of
F∗q are 〈ζn〉. A cyclic group of order n.

Definition 8.1.5. The d–th cyclotomic polynomial Φd(x) is

Φd(x) :=
∏

0≤i<d=ord(ζd)

(x− ζid). (8.1.2)

Lemma 8.1.6. Φd(x) ∈ Fq[x] and deg
(
Φd(x)

)
= φ(d).

Corollary 8.1.7. From equations (8.1.1) & (8.1.2), in Fq[x];

xn − 1 =
∏
d|n

Φd(x).

From Corollary 8.1.7 one has Φn(x)|(xn−1). Hence, there exists a subgroup
of Fqn of order Φn(q). Moreover when one has Φn(q) > n, Lenstra observed in
[43] that for a prime q this subgroup cannot be embedded in any other proper
subfield of Fqn . For cryptographically useful groups, this always happens and
motivates us to formally define this group:
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Definition 8.1.8. The primitive subgroup of F∗qn is the group of elements

Gn,q := {g ∈ F∗qn | gΦn(q) = 1} ⊆ F∗qn .

We now wish to define algebraic tori which will be required in the sequel:

Definition 8.1.9. Let k = Fq and L = Fqn . Then the algebraic torus Tn is
the intersection of the kernels of the norm maps NL/F for all proper subfields
k ⊂ F ( L,

Tn(k) :=
⋂

k⊂F(L
ker
[

NL/F

]
.

The following lemma provides some essential properties of algebraic tori

Lemma 8.1.10. [68]

1. Tn(Fq) ∼= Gn,q,

2. #Tn(Fq) = Φn(q),

3. If h ∈ Tn(Fq) is an element of prime order not dividing n, then h does
not lie in any proper subfield of Fqm/Fq.

We identify algebraic tori with subgroups of F∗qn and so write the group
operation as multiplication. It should be noted that the sum of two field elements
which lie in Gn,q does not necessarily lie in Gn,q, and so we cannot in general
add elements of algebraic tori.

We will only be presenting the one dimensional torus T2 in our research here
and not higher dimensional tori. Motivations for this are explained in §9.4.9.
Since we only require one model, we can be more explicit defining the torus T2.
First, let us fix some notation: Let Fq2 be some simple extension field defined
by Fq2 := Fq(α) where α ∈ Fq2 \Fq is an algebraic element of order 2. Let σ be
Frobenius and write α = σ(α) for the Galois conjugate.

8.2 Rubin & Silverberg’s Parameterisation of T2

Rubin & Silverberg presented a compact parameterisation for tori in [67, 68].
There are two parameterisations depending on whether one is working with
binary fields or otherwise. These are analogous, and for simplicity we present
only the non–binary case here.

Definition 8.2.1. From Definition 3.1.14 one has: NFq2/Fq
(x) = x ·σ(x). Then

the one dimensional algebraic torus T2(Fq) ⊂ F∗q2 is directly represented by

T2(Fq) := {x ∈ Fq2 | x · σ(x) = 1}. (8.2.1)

This is usually called the affine representation since one can describe the torus
in A2(Fq) using an affine equation; see Definitions 8.2.2 & 8.2.3 later. The
equivalent projective representation is:

T2(Fq) :=
{
a+ bα

a+ bα
| a, b ∈ Fq, (a, b) 6= (0, 0)

}
(8.2.2)

since there exists a mapping between P1 = {[a : b]} and T2 using equation (8.2.4).
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Let q be a power of an odd prime. Write Fq2m = Fqm(
√
d) for some non–

square d ∈ F∗qm and let σ ∈ Aut(Fq2m/Fqm) be the non–trivial isomorphism
σ(
√
d) = −

√
d. Under this one can see that for a, b ∈ Fq;

σ(a+ b
√
d) = (a+ b

√
d)q = (a− b

√
d).

Hence one can directly represent the affine torus from equation (8.2.1) by:

T2(Fqm) := {a+ b
√
d | a, b ∈ Fq with (a2 − db2) = 1} ⊂ F∗q2m (8.2.3)

as the norm is simply the product of the conjugates. One can now define two
maps between T2 and Fqm as follows:

Definition 8.2.2. The (decompression) map

ψ : A1(Fqm) \ {0} → T2(Fqm)

is defined by

ψ(a) =
(
a+
√
d

a−
√
d

)
=
a2 + d

a2 − d
+

2a
a2 − d

√
d. (8.2.4)

Definition 8.2.3. The (compression) map

ϕ : T2(Fqm) \ {±1} → A1(Fqm)

acts on an element β = β1 + β2

√
d ∈ T2(Fqm) where β1, β2 ∈ Fqm such that

ϕ(β) =
1 + β1

β2
. (8.2.5)

Here β 6= ±1 which implies that β2 6= 0 due to the norm condition. This ensures
the map ϕ is well–defined.

Under Definitions 8.2.2 & 8.2.3, we are able to show that these maps are
birational and invertible:

Lemma 8.2.4. The maps ψ and ϕ are birational and invertible;

ψ ◦ ϕ = id = ϕ ◦ ψ

between T2(Fqm) \ {±1} and F∗qm .

Proof. First, one can immediately identify A1(Fqm)\{0} with F∗qm . Let a ∈ Fqm ,
and hence from equation (8.2.4) we have that;

ϕ ◦ ψ(a) = ϕ

„
a2 + d

a2 − d +
2a

a2 − d
√
d

«
=

1 +
`
a2+d
a2−d

´`
2a

a2−d

´ = a.

Equivalently from equation (8.2.5) for a β = β1+β2

√
d ∈ T2(Fqm) with β 6= ±1;

ψ ◦ ϕ(β) = ψ

„
1 + β1

β2

«
=

`
1+β1
β2

´
+
√
d`

1+β1
β2

´
−
√
d

=
1 + (β1 + β2

√
d)

1 + (β1 − β2

√
d)

=
1 + β

1 + σ(β)
·
„
β

β

«
= β

since by definition β · σ(β) = 1. Thus ψ and ϕ define inverse birational maps
between T2(Fqm) \ {±1} and F∗qm .
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Using this we can represent all but two elements of the torus T2 with just
one element of Fqm . The following corollary shows that one can compute the
T2 group law directly on the compressed representatives:

Corollary 8.2.5. One can compute the torus group law defined in the subgroup
T2 ⊂ F∗q2m using solely finite field operations defined over F∗qm . The map ψ is
not even required. Moreover, one can express the torus group law over Fqm by:

a ? b =
ab+ d

a+ b
, (8.2.6)

a?2 =
a2 + d

2a
, (8.2.7)

a?−1 =
a− d
a− 1

, (8.2.8)

where ? represents the T2 group law acting on representatives of torus elements
a ∈ F∗qm such that ψ(a) ∈ T2(Fqm).

Proof. From the construction of ψ in Definition 8.2.2 with two elements a, b ∈
Fqm we have

ψ(a) · ψ(b) =

„
a+
√
d

a−
√
d

«„
b+
√
d

b−
√
d

«
=
ab+ d+ (a+ b)

√
d

ab+ d− (a+ b)
√
d

=

`
ab+d
a+b

´
+
√
d`

ab+d
a+b

´
−
√
d

= ψ
“ab+ d

a+ b

”
which yields equation (8.2.6). Substituting b = a into (8.2.6) yields (8.2.7).

Let a?−1 be the T2 group law inverse of a; that is a ? a?−1 = 1. Hence from
equation (8.2.6) one has

1 =
a · a?−1 + d

a+ a?−1
⇐⇒ a?−1(a− 1) = (a− d)

and equation (8.2.8) then immediately follows.

Thus the T2 group operation can be simply replaced by the map

? : Fqm × Fqm → F∗qm where ? (a, b) 7→ ab+ d

a+ b

which works with representatives of torus elements in F∗qm .

8.3 Trace Based Cryptosystems: LUC

LUC, proposed by Lennon & Smith in [79] is a trace based cryptosystem. We
will detail the important results for our exposition here, and refer the reader to
[64] & [79] for further details.

Rubin & Silverberg’s parameterisation from §8.2 uses rational maps into
affine space to represent elements of G2,q as elements of T2. The LUC cryptosys-
tem uses traces over the ground field instead. Consider the primitive subgroup;

G2,qm = {g ∈ F∗q2m |gq
m+1 = 1} ⊆ F∗q2m

and evaluate the Fq2m/Fqm trace of an element g ∈ G2,qm ,

T (g) := TrFq2m/Fqm (g) = g + σ(g) = g + g−1 ∈ Fqm . (8.3.1)
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The symmetric group S2 = {id, σ} is a group which acts on G2,q, and the
quotient G2,q/S2 is the set of orbits of the set G2,q under the group S2. This
gives us the map:

G2,q/S2 → Fqm under g 7→ T (g). (8.3.2)

In order to do any discrete logarithm based cryptography using these traces,
one needs to compute T (ga) from

(
T (g), a

)
since one can analogously define:

Definition 8.3.1. DLP–LUC: Given T (g), T (ga) ∈ Fqm , find a ∈ N.

To compute such traces one can use the following:

Lemma 8.3.2. The general form x2 − Px + Q = 0 with not necessarily real
roots α and β, satisfies the second order recurrence relation

tn = Ptn−1 −Qtn−2 (8.3.3)

where P = α+ β and Q = αβ are coprime, t0 = 2 and t1 = α+ β.

Proof. The sequence {αn + βn} has the property that

P (αr−1 + βr−1)−Q(αr−2 + βr−2) = αr−2(Pα−Q) + βr−2(Pβ −Q)

= αr−2(α2) + βr−2(β2)
= αr + βr

since from equation x2 − Px+Q = 0 one has α2 = Pα −Q. This satisfies the
second order recurrence relation

tn = Ptn−1 −Qtn−2 (8.3.4)

where P = α + β and Q = αβ are coprime, t0 = 2 and t1 = α + β. This is in
fact the well known Lucas sequence Vn(P,Q), (see [65]).

Corollary 8.3.3. Using the second–order Lucas recurrence relation

tn = t1 · tn−1 − tn−2 (mod qm) (8.3.5)

with t0 = 2, t1 = T (ga) one can compute T (gan) = tn from T (ga) and n.

Proof. Let us first consider computing T (ga) from a T (g) and a ∈ N: Let the
constant T (g) := T ∈ Fqm , then from equation (8.3.1) one has T = g + g−1.
This can be reformulated as;

T = x+ x−1 ⇔ x2 − Tx+ 1 = 0 (8.3.6)

where the roots are the conjugates g and g−1 in Fq2m .
From Lemma 8.3.2, in equation (8.3.6) one has P = T and Q = 1. We are

interested in computing T (ga) which by equation (8.3.1) is simply equivalent to
computing ga + g−a in Fqm . Hence one can define the sequence

tn = t1 · tn−1 − tn−2 (mod qm)

where t0 = 2 and t1 = T for which the a–th iteration of computes

ta = αa + βa = (g)a + (g−1)a = T (ga).

The result now follows by simply replacing t1 = T (ga) and considering the n–th
iteration of recurrence relation.
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Hence it is efficient to compute a T (gab) from (T (ga), b). This enables one
to use LUC for DL–based cryptography.

Remark 8.3.4. For a g, h ∈ Fqm one usually has T (gh) 6= T (gh−1).

Explanation. Let h 6= 1. Then from Theorem 3.1.15 one has

T (gh) = T (gh−1)⇔ T (gh)− T (gh−1) = 0⇔ T (g(h− h−1)) = 0 = T (k)

for a k = g(h− h−1) ∈ Fqm . This occurs for approximately qm−1 elements k of
Fqm for a fixed g. Hence this holds approximately 1/q of the time.

8.4 Trace Based Cryptosystems: XTR

Lenstra & Verheul in [45, 46] proposed a natural extension of the idea behind
LUC called Efficient Compact Subgroup Trace Representation which is more
commonly known at XTR1. XTR uses traces over Fp2 to represent elements of
the order p2 − p+ 1 subgroup of F∗p6 ; the primitive subgroup

G6,p := {g ∈ F∗p6 | gp
2−p+1 = 1} ⊆ F∗p6 .

Here, p ≡ 2 (mod 3) is a prime such that the cyclotomic polynomial Φ(p) =
p2−p+1 has a prime factor ` > 6. Choosing a g ∈ F∗p6 of order ` now guarantees
that this g does not lie in any proper subfield of Fp6 which is necessary for
the construction, (see [43]). As in §8.3 where we had G2,qm ∼= T2(Fqm) we
analogously consider the trace of elements of G6,p over Fp2 :

Lemma 8.4.1. The Fp6/Fp2 trace of an element h ∈ G6,p ⊂ F∗p6 is

T (h) := TrFp6/Fp2 (h) = h+ hp−1 + h−p ∈ Fp2 . (8.4.1)

Given T (h), one can compute the conjugates of h as roots in F∗p6 of the equation

X3 − cX2 + cpX − 1 ∈ Fp2 [X] (8.4.2)

with c = T (h).

Proof. Any element h ∈ G6,p has order dividing p2 − p + 1, thus p2 ≡ p − 1
(mod p2 − p+ 1) and p4 = p2p2 = (p− 1)(p− 1) ≡ p2 (mod p2 − p+ 1).

The conjugates of h ∈ F∗p6 are: h, hp
2

= hp−1 and hp
4

= h−p. By definition,
the trace of h is the sum of these conjugates and equation (8.4.1) now follows.

Consider the minimal polynomial m(X) of h ∈ G6,p

m(X) :=
(
X − h

)(
X − hp−1

)(
X − h−p

)
= X3 − cX2 + bX − a

where one has c = h+ hp−1 + h−p = T (h), a = hp+1−p−1 = 1 and

b = hhp−1 + hh−p + hp−1h−p

= hp + h1−p + h−1

= hp + h−p
2

+ hp
2−p

= cp

since 1− p ≡ −p2 (mod p2 − p+ 1). Equation (8.4.2) is now immediate.
1after its acronymic phonetic pronunciation.
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Analogous to LUC, one here represents elements of G6,p by their trace.
Similarly one loses the distinction between an element h and its conjugates
since: T (h) = T (hp−1) = T (h−p).

In order to do any discrete logarithm based cryptography using these traces,
one needs to compute T (ga) from

(
T (g), a

)
. We now present a method to

efficiently compute this after the following definition and lemmata:

Definition 8.4.2. For c ∈ Fp2 define

F (c,X) := X3 − cX2 + cpX − 1 ∈ Fp2 [X]

and define tn = τ(c, n) = αn + βn + γn for n ∈ Z, where α, β, γ are the (not
necessarily distinct) roots of F (c,X) in Fp6 .

Lemma 8.4.3. From [46]:

1. c = t1.

2. t−n = tnp = tpn.

3. tn ∈ Fp2 for all n ∈ Z.

4. F (tn, αn) = F (tn, βn) = F (tn, γn) = 0.

Using Lemma 8.4.3 and by immediately identifying the equation from Defi-
nition 8.4.2 with that of equation (8.4.2) one has

tn = αn + βn + γn = hn + (hp−1)n + (h−p)n = (hn)1 + (hn)p−1 + (hn)−p.

Thus here, tn = T (hn). All that remains is to evaluate {tn}:

Lemma 8.4.4. Let the third–order relation for all ti ∈ Fp2 be defined by

tu+v ≡ tu · tv − tpv · tu−v + tu−2v

for all u, v ∈ Z with the identities

(I) t2n ≡ t2n − 2tpn,
(II) tn+2 ≡ t1 · tn+1 − tp1 · tn + tn−1,

(III) t2n−1 ≡ tn−1 · tn − tp1 · tpn + tpn+1,

(IV) t2n+1 ≡ tn+1 · tn − t1 · tpn + tpn−1

and t0 ≡ 3, t1 ≡ T (h) and t2 ≡ t21− 2tp1. Using these and Lemma 8.4.3 one can
define an algorithm for computing tn for an arbitrary n ∈ Z.
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A man who as a physical being is always turned
toward the outside, thinking that his happiness lies
outside him, finally turns inward and discovers that
the source was actually within.

Søren Kierkegaard (1813–1855) 9
Disguising Objects & Black–Boxes

9.1 Introduction to Black–Box Groups

There has been limited research on whether or not it is possible to implement
effective black–box cryptography by utilising so–called black–box groups and
a disguised representation of their elements [10, 19, 26, 28, 51].

As a motivational example for this research, let us recall the definition of
the generic DLP from Definition 2.3.1 which is independent of the specific rep-
resentation of a group:

Definition. 2.3.1. Let (G,⊕) be a finite cyclic group of prime order ` and let
P be a generator of G. The (additive) map

ϕ : Z` → G

t 7→ [t]P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
t−times

is an isomorphism between (Z`,+) and (G,⊕). The problem of computing
ϕ−1 is called the discrete logarithm problem to the base P . Specifically; given
P,Q ∈ 〈P 〉 determine the t ∈ N such that Q = [t]P , i.e: Find t = logP Q.

As was discussed in §2.3, even though up to isomorphism there is only one
group (G,⊕), different representations of (G,⊕) give different computational
abilities to a cryptanalyst, and hence determine the suitability of (G,⊕) to be
used as a cryptographic primitive. For example, one can use sub–exponential
index–calculus attacks (see §9.2) on a DLP over a finite field (F∗q ,×).

It is this family of attacks among others that we wish to remove from a
cryptanalyst’s arsenal. We will attempt to do this via presenting a representa-
tion of a group which allows computation using the group law, but tries to not
provide any additional structure which may be exploited by a cryptanalyst.

It is not possible or meaningful to work with truly generic group represen-
tations, for reasons described in §9.1.1. However, in the sequel when we use
the group (G,⊕) we assume it is one where its element representation is not
publicly defined or useful to a cryptanalyst, as was presented in Definition 2.3.1.

9.1.1 Generic Algorithms

Shoup in [73] generalised earlier work by Nechaev [56] concerning generic algo-
rithms; that is an algorithm that does not exploit any property of an elements
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representation, other than it can be uniquely represented by a bit string. Shoup
clarified and developed these ideas by defining the following:

Definition 9.1.1. [73] Let Zn be the additive group of integers modulo n, and
let S = {0, 1}r be the set of bit strings of cardinality of at least n (i.e: 2r ≥ n).
An encoding function σ is then simply an injective map from Zn to S.

Definition 9.1.2. [73] A generic algorithm A for Zn on S is a probabilistic
algorithm that behaves as follows: A takes as input an encoding list

[σ(x1), σ(x2), . . . , σ(xk)]

where all xi ∈ Zn and σ is the encoding function of Zn to S defined above. As
the algorithm executes, it may consult an oracle O specifying two indices i and j
in the encoding list and a sign bit. The oracle then computes an encoding of the
Zn–group operation σ(xi±xj) according to the sign–bit. Then this encoding is
appended to the encoding list, which A always has access to.

Under these definitions, Shoup proved an important theorem which gives a
computational lower–bound for the complexity of a generic algorithm for both
the DLP and DHP. As an example of this, the DLP in a group G may be
rewritten using the notation above as: Given (σ(1), σ(t)), find t ∈ Zn. This
gave rise to the following:

Theorem 9.1.3. [16] Let ` be the largest prime factor of n ∈ N. Let S be
the set of binary strings of cardinality at least n. Let A be a generic algorithm
for Zn on S that makes m oracle queries to O, and suppose that the encoding
function σ : Zn → S has been chosen at random. The input to A is (σ(1), σ(t))
where t ∈ Zn is assumed to be random. The output of A is v ∈ Zn. Then the
probability that t = v is O(m2/`).

Clearly Definitions 9.1.1 & 9.1.2 and Theorem 9.1.3 can be extended to cover
any group (G,⊕) when there exists an encoding function σ.

Corollary 9.1.4. Let (G,⊕) be a group of order n > ` whose largest prime
subgroup has order ` | n. Then any algorithm AL for computing the discrete
logarithm in G requires at least Ω(`1/2) group operations.

Proof. In order for one to be assured a non–trivial probability of success of
finding the discrete logarithm, one would run A at least m = O(`1/2) times.

9.1.2 Black–Box Groups

Corollary 9.1.4 motivates one to find a representation of groups for which no
algorithms perform better than generic algorithms. If one could give such a
‘generic’ group description for DLP computation, then generic attacks are es-
sentially the best a cryptanalyst can mount, and these are all fully exponential.

Using §9.1.1 we are able to construct formal definitions of a black–box group,
black–box–trapdoor group (BBG) and other definitions that we use extensively
in the sequel:

Definition 9.1.5. Let (G,⊕) be a group of order n and S = {0, 1}r the set of
bit–strings of cardinality at least n ≥ 2r. Let ψ be an (usually specific) injective
encoding function

ψ : G→ S.
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Let A denote an algorithm that computes the group operation of G on repre-
sentations in S. That is; for a given x1, x2 ∈ Im(ψ) ⊆ S, A computes

ψ
(
ψ−1(x1)⊕ ψ−1(x2)

)
.

Then the resulting algebraic structure (S,A) is denoted a black–box group.

Hence a BBG is one with an algorithm for computing the group law which
makes limited use of the group description. This is in contrast to a generic
algorithm which does not attempt to use any additional structure of the group,
even if the specific representation makes such structure readily available. Thus
we now try and find BBG representations that are efficiently implementable on
a computer.

Motivation 9.1.6 (Natural Representation). It is difficult to define what a
natural representation is rigourously, so we describe it using examples. A group
(G,⊕) is said to be have natural representation if it is given using a “stan-
dard” mathematical representation, such as: Fq[x]/〈f(x)〉 for a finite field, the
Weierstraß equation for an elliptic curve E/Fq et cetera.

Thus a user who possesses the natural representation enjoys the ‘normal’
computational ability one would expect.

Trivially, a particular natural representation may not be unique. E.g. one
can usually find a polynomial g 6= f such that Fp[x]/〈f(x)〉 ∼= Fp[y]/〈g(y)〉.

Motivation 9.1.7 (Disguised Representation). We would like to take a natural
representation of a group and disguise it to get a new representation. Then some
structures/features which were evident when using the natural representation
are now lost. We will call this new representation a disguised representation of
the group.

Essentially a disguised representation along with a disguised rule for com-
puting the original group law will be the basis of our construction of a BBG.
It is the purpose of our research here to construct examples of such disguised
representations.

Definition 9.1.8 (Disguising). Disguising is any method which allows one to
construct a candidate BBG from a group’s natural representation.

Using these definitions we can construct an implementable model for a black–
box group. Any finite abelian algebraic group G can have both its elements and
group law described using polynomials. This description, which is efficiently
implementable on a computer, forms a natural representation of G.

We now construct a specific encoding function ψ : G → S. We need an
injection which maps polynomials to polynomials, and one which ensures a
polynomial–time algorithm exists for computing the group law on S (thus a
random map ψ would not suffice). Under this one can compute and publish the
set of polynomials which describe the G–group operation on S.

This gives rise to the following important definition:

Definition 9.1.9 (Black–Box Trapdoor Group). Let X = (G,⊕) be a naturally
represented abelian algebraic group of order n. Let S be some set with cardi-
nality greater than #G, not necessarily {0, 1}r. Let ψ be an injective encoding
function,

ψ : G→ S,
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called the disguising function on X. Both G and the trapdoor ψ form the system
private–key.

A public disguised representation of X is then computed as follows: Under
ψ, for all gi ∈ G there exists a ĝi ∈ S where ψ(gi) = ĝi. Using two algebraic
elements g1, g2 ∈ G an equivalent description of the G–group law ⊕ is calculated
for S by computing

?(ĝ1, ĝ2) = ?
(
ψ−1(g1), ψ−1(g2)

)
= ⊕(g1, g2).

The resulting algebraic structure Y = (S, ?) is denoted a black–box trapdoor
group.

Henceforth, when we refer to black–box groups (BBGs) we will always mean
the trapdoor variant given in Definition 9.1.9 above.

Remark 9.1.10. Note that as ψ is only injective, not all xi ∈ S may have a
valid relation xi = ψ−1(gi) for a gi ∈ G. That is, a random xi may not represent
a disguised element at all.

Remark 9.1.11. In practice, it will often be required that the inverse ψ−1 :
S 99K G must also be efficiently computable.

In the remainder of this chapter, we will use the notation ĝ to denote the
disguised representative of g under ψ similar to that used in Definition 9.1.9.

9.1.3 Security

It is the aim of researchers in this field to improve the operating security (the
lower bound of computational complexity for the best known attack) of a cryp-
tographic primitive or to gain new functionality by disguising its representation
as described above.

It is hoped here that the disguised representation Y , given in Definition 9.1.9
gives the cryptanalyst a very restricted arithmetic functionality unlike what he
would enjoy in a naturally represented X. Under this, working with Y would
essentially be equivalent to working with a generic group: From Corollary 9.1.4,
one would expect the best attack on a DLP using Y to be exponential regard-
less of whether sub–exponential attacks existed for X. Thus, one would have
the ‘optimum’ security for a given primitive. This is the key motivation for
considering BBGs.

In order for us to have this ideal situation, one requires that un–disguising
Y needs an infeasible amount of work by the cryptanalyst. Before defining this
infeasibility, we first need to define what would make a valid attack.

Remark 9.1.12. The group X is disguised in order to prevent the cryptanalyst
utilising a natural representation for an attack, such as index calculus. Hence, a
successful attack is one which gives an isomorphism from the BBG to a group in
natural representation. This does not have to be exactly the same representation
as used by the entity who set up the system, but it should be a representation
of the same type (i.e., polynomial representation for a finite field, Weierstraß
equation for an elliptic curve et cetera).

Therefore, the goal of an attacker is to compute an isomorphism from Y to
any natural representation X ′. This is called ‘looking inside the box’ and leads
us to the following formalisation:
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Definition 9.1.13. A valid attack for the disguised system

X = (G,⊕) −→
ψ

(S, ?) = Y

uncovers any natural representation for X ′ = (H,⊗), where one has the equiv-
alent level of arithmetical functionality as if given X itself.

This now enables us to define a securely disguised BBG representation:

Definition 9.1.14. Let X be a natural representation of a group and Y its
disguised form under

X = (G,⊕) −→
ψ

(S, ?) = Y.

Y is said to be securely disguised if given Y , it is hard (viz. §2.2.1) to recover
any natural representation X ′ of X without knowledge of the private–key ψ.

Example 9.1.15. Let the natural representation

X =
(
F∗q ∼= (Fp[x]/〈f(x)〉)∗,×

)
be disguised under ψ to give a Y = (S,⊗). Then without ψ, it should be hard
to recover any isomorphic representation (Fp[x]/〈g(x)〉)∗ to the field Fq.

9.1.4 Computing Maps Between Representations

If one is able to find a natural representation X ′ = (Fq[x]/〈g(x)〉,×) of the dis-
guised representation Y = (S, ?), one then needs to map the original disguised
problem to this natural representation. This is done is a similar way to com-
puting isomorphisms between finite fields given in §3.3: One simply decomposes
the elements of the public–basis of Y in terms of the new basis of X ′.

9.1.5 Previous Research

The original proposal of disguising elliptic curves was given by Frey [26]. Frey
suggested taking an elliptic curve E defined over some fixed extension field, and
then by using Weil decent describe this curve as an abelian variety. This set
of non–linear multivariate polynomials defined over the ground field now de-
scribed the original elliptic curve’s group operation. This algebraic group was
then disguised by applying an invertible transformation, which was essentially
just a linear change of variable. From this disguised model it is not necessar-
ily clear how to compute the (elliptic curve) group order or recover a natural
representation; a Weierstraß equation for E. As this specific example is not the
focus of our research here, further details can be found in [26].

Dent & Galbraith in [19] built on this idea to create a black–box group
by hiding pairings for (supersingular) elliptic curve groups. The authors noted
however that the parameters required to implement a secure system would be
of an impracticable size, due to work by Faugère & Perret at Eurocrypt 2006.
Here Faugère used his own F5 algorithm to attack the Polynomial Isomorphism
Problem with One Secret, (IP1S) in [24, 59]. These Gröbner based attacks are
not known to affect the general problem of a disguised elliptic group, but do
affect the hidden pairings problem which was presented in [19].
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9.1.6 Our Contribution

We attempt to further the research for suitable methods for implementing BBGs.
Section 9.1.5 gives some justification for the study of different algebraic struc-
tures to assess their suitability as BBGs: In §9.4.1 we present Galbraith’s pa-
rameterisation of T2. This describes the group law as a set of polynomials over
a finite field which gives a poorly disguised group. We further this analysis by
using some of the rich algebraic structure available for the torus in §9.4.6. We
do this by reformulating the disguised group law on T2 in terms of solving a
system of linear equations by using Rubin & Silverberg’s parameterisation of
the torus from §8.2. We show that such a disguise is still easily uncovered and
then advance to discuss how these results would affect disguising T6.

Finally we show how these methods extend to the trace based methods of
LUC given in §8.3 and XTR given in §8.4. We show how these fail to construct
suitable BBGs and draw conclusions on BBG–cryptography in general.

9.2 Disguising Finite Fields

Before we describe the disguising of more complex algebraic objects, we start
with the simplest case: Disguising a finite field. When a DLP is implemented
over a finite field, it is well known that sub–exponential attacks of complexity

O
[
Lq(1/3, c)

]
:= O

(
e(c+o(1))(ln q)

1
3 (ln ln q)

2
3
)

for some constant c ∈ R≥0 exist. These index–calculus methods use the Number
Field Sieve [18] where Coppersmith in [17] showed that theoretically one has a
c = 1

3 (92 + 26
√

13)1/3 ≈ 1.9. Index–calculus methods exploit element represen-
tations, thus the hope is a disguised representation will prevent such an attack,
making a DLP more secure. Much of what we now discuss follows [28].

Let K = Fqm be some finite field where q is a prime power. Let Am(Fq) ∼= Fmq
denote m–dimensional affine space over Fq where an element a ∈ Fqm is rep-
resented by the m–tuple a = (a0, a1, . . . , am−1)T with respect to some ordered
basis B = {ξ0, . . . , ξm−1} of Fmq (for example; a polynomial–basis). Here, we
denote that a field element a is represented in m–tuple form by underlining it;
a. Let B represent the m–dimensional basis–vector of B, then using this we
write a ∼ a when a = a · B where · denotes the usual matrix dot–product.

9.2.1 Construction

It is easy to explicitly describe the operation of multiplication in the field in
terms of m–tuples. One way is to construct m quadratic homogenous polyno-
mials

Mi(x0, x1, . . . xm−1, y0, . . . , ym−1)

over Fq for i = 0, 1, . . . ,m − 1 such that if a ∼ a = (a0, a1, . . . , am−1)T and
b ∼ b = (b0, b1, . . . , bm−1)T for a, b ∈ Fq, then c ∼ c = ab is given by

ci = Mi(a, b) ∈ Fq[x, y]. (9.2.1)

Thus, one can fully describe the group law on Fmq by the vector M of polynomials

c = M(a, b) =
(
M0(a, b), . . . ,Mm−1(a, b)

)
(9.2.2)

94



whose elements lie over Fq.
It is this natural representation X = (Fmq ,M) of Fqm that we wish to disguise.

To do this, we follow the idea of Frey in [26] and simply apply a change of basis
transformation onto the vector space Fmq .

Let the disguising function ψ : X → Y be defined by generating a random
invertible linear transformation U ∈ GLm(Fq) such that ψ(a) = Ua (= â). Here
GLm(K) is the group of m×m invertible matrices in K. Under this one has

U : X =
(
Fmq ,M

)
→
(
Am(Fq),N

)
= Y

where Y denotes the disguised representation. The disguised group law N is
then a system of m–polynomials which are computed from the set of equations
in (9.2.2) as follows:

N(â, b̂) = UM(U−1â,U−1b̂) (9.2.3)

where juxtaposition denotes normal matrix multiplication and ĉ = N(â, b̂).

Corollary 9.2.1. By construction, the algebraic structure Y = (Am(Fq),N)
which describes the finite field multiplication group law on generic elements is a
BBG under Definition 9.1.9.

To compute with Y = (Am(Fq),N), a public/BBG user would take two m–
tuples x̂, ŷ over Fq and use them to evaluate N(x̂, ŷ). Thus a public user is able
to compute the disguised group law of X (when x̂, ŷ represent valid disguised
elements) without directly using the natural representation; specifically the basis
B of Fmq ∈ X. Such computations are efficient since elements of N are simply
quadratic polynomials over Fq (as U is linear) and the addition of elements in
Y is trivial to compute.

9.2.2 Cryptanalysis of Disguised Finite Fields

The disguised group Y = (Am(Fq),N) above can be trivially un–disguised,
uncovering a natural representation for the finite field. As noted in Defini-
tion 9.1.13, a successful attack on a BBG does not need to recover the exact
natural representation of the original group. Thus here one only needs to con-
struct an isomorphic description of the original field Fqm ∈ X.

Before we present this attack, let us define some useful lemmata: Assume a
random m–tuple ŵ1 represents some unknown and undisguised element w1 ∈ X:

Lemma 9.2.2. Using w1 and N ∈ Y one can construct the set

∆ = {ŵ1, ŵ2, . . . , ˆwm+1} = {Uw1,Uw2
1,Uw

3
1, . . . ,Uw

m+1
1 }.

Proof. Let U−1ŵi = wi1 where wi1 signifies the vector representation of (w1·B)i ∈
Fqm . Then using the description of N one can construct

{ŵ1, ŵ2, . . . , ˆwm+1} = {Uw1,Uw2
1,Uw

3
1, . . . ,Uw

m+1
1 }

by iteratively evaluating ŵi = N( ˆwi−1, ŵ1), giving us a set ∆ of m + 1 vectors
in a dimension m vector space.

Lemma 9.2.3. A linear dependence on the elements of ∆ ⊆ Y invokes a linear
dependence on any natural representation of X.
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Proof. Given
∑m+1
j=1 ajŵj = 0 we have

0 = U−10 = U−1
m+1∑
j=1

ajŵj =
m+1∑
j=1

ajU−1ŵj =
m+1∑
j=1

ajw
j
1.

Since by construction all elements of ∆ represent valid disguised elements of the
natural representation, we are done.

Lemma 9.2.4. Using N ∈ Y and Lemma 9.2.3, one can construct the degree
m polynomial

g(x) =
m+1∑
j=1

ajx
j−1 (9.2.4)

over Fq[x] which has the undisguised w1 ∼ w1 as a root.

Proof. ∆ from Lemma 9.2.2 gives usm+1 vectors in a dimensionm vector space.
Thus the elements of ∆ must form a linear dependence. By linear algebra one
can compute the coefficients aj ∈ Fq of this dependence

m+1∑
j=1

ajŵj = 0

and using Lemma 9.2.3 one now has

0 =
m+1∑
j=1

ajŵj =
m+1∑
j=1

ajwj =
m+1∑
j=1

ajw
j
1.

Hence with respect to any basis B of Fmq and since (
∑
x) ·B =

∑
(x ·B) we have

m+1∑
j=1

aj(w
j
1 · B) =

m+1∑
j=1

ajw
j
1 = 0 ∈ Fqm .

After removing a trivial factor of w1, one can then define

g(x) =
m+1∑
j=1

ajx
j−1 ∈ Fq[x]

which by construction has the root w1 ∼ w1.

Lemma 9.2.5. Let α be an arbitrary element of Fqm , then:

1. The minimal polynomial of α over Fq exists and is unique; moreover it is
irreducible over Fq.

2. Let h(x) be the minimal polynomial for α over Fq. If f(x) ∈ Fq[x] and
f(α) = 0 then h(x) | f(x).

Proof. See [85].

Lemma 9.2.6. w1 does not lie in any proper subfield of Fqm if and only if g(x)
is irreducible and of degree m.
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Proof. (⇒) Assume w1 ∈ Fqm does not lie in any proper subfield Fq ⊆ F ⊂ Fqm

and let g(x) be the one constructed in Lemma 9.2.4. It is trivial to make g(x)
monic, so one has a degree m monic polynomial with w1 as a root.

By (2) of Lemma 9.2.5, there exists a minimal polynomial h(x) ∈ Fq[x] for
w1 such that h(x) | g(x) since g(w1) = 0 by construction. Due to the uniqueness
of minimal polynomials ((1) of Lemma 9.2.5), either we have h(x) = g(x) or
h(x) must be some non–trivial factor of g(x).

Assume the latter is true: That is one has n = deg(h) < deg(g) and using
this we can construct the field F1 := Fq[x]/〈h(x)〉 ∼= Fqn which has w1 ∈ F1.
This contradicts w1 not lying in any proper subfield of Fqm . Hence g(x) = h(x),
and so g(x) is trivially irreducible and of degree m as required.

(⇐) If g(x) is irreducible, by the removal of its leading coefficient one is able
to construct an irreducible monic degree m polynomial with w1 as a root. It
follows immediately from Lemma 9.2.5 that g(x) must be the unique minimal
polynomial for w1 and hence cannot lie in any subfield of order less than qm.

Using these lemmata we are now in a position to define an attack on these
‘disguised’ finite fields:

9.2.3 Attack Algorithm

An attack to uncover an equivalent natural representation of X from Y is:

Algorithm 9.2.1 (Attack of a Disguised Finite Field Fq).

1. Acquire the disguised system Y = (Am(Fq),N) and generate a random
m–tuple over Fq, ŵ1.

2. Using the disguised group operation N ∈ Y compute the set

∆ = {ŵ1, ŵ2, . . . , ˆwm+1} = {Uw1,Uw2
1,Uw

3
1, . . . ,Uw

m+1
1 }

by iteratively evaluating ŵi = N( ˆwi−1, ŵ1). Using Lemma 9.2.4 one can
now construct the degree m polynomial

g(x) =
m+1∑
j=1

ajx
j−1

over Fq from equation (9.2.4).

3. Test if g(x) is reducible. If TRUE then Lemma 9.2.6 implies that our w1 lies
in some proper subfield of the unknown Fqm and hence does not generate
a polynomial–basis for Fmq . Here we reject ŵ1 and return to STEP 1.

4. Else, Lemma 9.2.6 implies we now have the minimal polynomial (by triv-
ially removing g’s leading coefficient) of degree m over Fq which allows us
to construct the field extension

Fqm ∼= Fq[x]/〈g(x)〉

which is an isomorphic to the one contained in the undisguised X.
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5. One now has a natural representation X ′ = (Fq[x]/〈g(x)〉,×) and so enjoys
the same arithmetical ability that the holder of X does. All one needs to
do is to map the cryptographic problem from Y → X ′. To do this one
simply decomposes the elements of the public–basis in terms of the new
polynomial–basis which can be done easily using §9.1.4.

Hence the public system Y is now undisguised and has no additional security
than if the problem was directly given over X. This algorithm constructs a valid
attack as defined in Definition 9.1.13.

Remark 9.2.7. The probability of success of the algorithm is 1, because it
does not stop until it finds an irreducible polynomial in Step 3. However, the
algorithm may run forever if it keeps making poor choices for ŵ1.

Hence here we can only consider the expected running–time for this algo-
rithm: N(a, b) has m2 elements each of which are evaluated by a field multi-
plication and summation. Hence Step 2 requires us make m evaluations of N,
costing O(m3 lg2 q) operations in Fq. After trivially constructing g(x) from ∆,
one must test it for irreducibility. Using the Frobenius Iterated Distinct–Degree
factorisation algorithm from ([83], p390), one expects this to take Õ(m2+m lg q)
Fq–operations. At a maximum one expects m different subfields, hence one ex-
pects to run Steps 1–3 at most m/q times since any element has index 1/q in
the whole field. Overall the expected run–time of the algorithm is Õ(m3 lg2 q)
operations in Fq.

Remark 9.2.8. If this were to be implemented, for security reasons the exten-
sion field would not contain too many proper subfields. Thus one would expect
the algorithm to usually run for the expected time given in Remark 9.2.7.

Remark 9.2.9. The field considered here is a black–box group but not a true
black–box field as the linearity of U does not disguise field addition. Hence, this
attack does not contradict the results of Boneh & Lipton in [10].

Remark 9.2.10. The disguised system Y has two stationary points which relate
to the undisguised relations 0 · 0 = 0 and 1 · 1 = 1. Hence using N ∈ Y one
can mount an alternative attack by finding and storing fixed points generated
by solving the equations

Ni(x̂, x̂) = x̂

using Gröbner bases methods with the Ni ∈ N. Since the attack presented here
is far more trivial we do not go into detail.

One of the principal reasons that this attack is possible, is the attacker can
use the public group operation matrices in any way he chooses, not just as a
disguised multiplication oracle. This theme will appear again later in the sequel.

9.3 Disguising Using Affine Transformations U

Definition 9.3.1. An affine transformation U between two vector spaces is a
linear transformation followed by a translation, namely:

x 7→ Mx+ t.
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Trivially an affine transformation is invertible if and only if M is. Frey in
[26] originally proposed disguising elliptic curves by applying an affine invertible
transformation U(x) = Mx+ t for a secret change-of-basis matrix M and vector
t on the vector space Fmq .

However, Perret in [59] observed that Mx+ t was equivalent to M′(x′) where
x′ = (x, 1) and

M′ =
(

M t
0 1

)
.

Hence using affine transformations does not increase security at the cost of
increasing complexity, especially in an exposition. For these reasons, affine
maps are not considered in the sequel.

Perret’s method does not work for non–linear transformations of higher de-
grees, and such maps could make the disguised form more complex and hence
difficult to attack. However, when using such maps the group law would be
inefficient to compute with and to specify, due to the (expected) high–degree
polynomial equations which would be required describe it. When one wished
to invert a disguised representation, one must also deal with non–uniqueness of
undisguised elements. Neither of the latter would make such a system desirable
from an implementation aspect. These maps are similarly disregarded from our
work in the sequel.

9.4 Disguising Tori

It was shown in §9.2.2 that disguised finite fields do not make suitable algebraic
structures for disguised cryptography. In this section, we extend this research
by investigating whether algebraic tori make more suitable candidates for the
construction of a BBG. We first present the work by Galbraith from [28]. In
this he gave a method to disguise the one dimensional torus T2 by disguising a
set of polynomials over Fq. Galbraith showed this to be weak; we present his
argument in Section 9.4.4.

In §9.4.5 we suggest a novel way of disguising the same torus using the
rational parameterisations of Rubin & Silverberg from §8.2. Finally we discuss
why this does not securely disguise T2, and make comments about higher–degree
tori and their suitability for BBG cryptography.

9.4.1 Previous Research: Galbraith’s Disguise of T2

Galbraith in [28] described a method to disguise the simplest torus, T2(Fqm).
We present this now: Assume that q = 2s and that the extension degree m and
s are both odd. Let some simple extension field be defined by Fqm := Fq(α)
where α ∈ Fqm is an algebraic element of order m. Let α denote the Galois
conjugate of α and let σ be the Frobenius automorphism of Fqm that fixes Fq.
Then as usual one has α2 + α+ 1 = 0 and α = α+ 1.

For generic elements a+ bα, c+ dα ∈ F∗q2m one can define the group law for
a projectively represented torus as:

Definition 9.4.1. The torus

T2(Fqm) :=
{
a+ bα

a+ bα
: a, b ∈ Fqm , (a, b) 6= (0, 0)

}
⊂ F∗q2m
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forms a group under the operation

(a+ bα)(c+ dα) = ac+ bd+ (ad+ bc+ bd)α. (9.4.1)

Here only the numerator is defined as it is understood that the denominator is
simply its Galois conjugate.

We now use this projective representation of T2 to construct a BBG.

9.4.2 Construction

Using equation (9.4.1) one can describe the T2–group law in terms of m–tuples.
One way is to construct a set of 2m quadratic homogenous polynomials in 4m
variables

Mi(a, b, c, d) for i = 0, 1, . . . , 2m− 1

over Fq. If a ∼ a = (a0, a1, . . . , am−1)T and similarly for b, c, d ∈ Fq then the
group law e+ fα = ac+ bd+ (ad+ bc+ bd)α is given by;{

ei = Mi(a, b, c, d) for 0 ≤ i < m,

fi−m = Mi(a, b, c, d) for m ≤ i < 2m.
(9.4.2)

Hence one can describe the T2–group law on F2m
q by a vector M of polynomials(

e, f
)

= M
(
a, b, c, d

)
=
(
M0(a, b, c, d), . . . ,M2m−1(a, b, c, d)

)
(9.4.3)

whose elements lie over Fq. This is similar to the treatment given in §9.2 whereby
we now wish to disguise the natural representation X = (F2m

q ,M).
Let the disguising function ψ : X → Y be defined by generating a invert-

ible linear transformation U ∈ GL2m(Fq) in 2m–dimensional space such that
ψ(a, b) = U(a0, . . . , am−1, b0, . . . , bm−1)T (= (â, b̂)). Under this one has

U : X =
(
F2m
q ,M

)
→
(
A2m(Fq),N

)
= Y

where Y as usual denotes the disguised representation. The T2–group law is then
a system of 2m–polynomials N which are computed from the set of equations
(9.4.3) by

N
(
â, b̂, ĉ, d̂

)
= UM

(
U−1(â, b̂),U−1(ĉ, d̂)

)
(9.4.4)

where juxtaposition denotes normal matrix multiplication and N
(
â, b̂, ĉ, d̂

)
=(

ê, f̂
)
.

To compute with Y = (A2m(Fq),N), a BBG/public–user would simply gen-
erate four random m–tuples over Fq and use them to evaluate N. Thus the
user is able to compute the T2–group law of X (assuming the randomly chosen
elements represent valid disguised elements) without directly using the natural
representation of its elements; specifically the private basis {B, α} of F2m

q ∈ X.

Remark 9.4.2. Clearly both q and m must be public, and so the disguised
group order is known to be qm + 1.

Corollary 9.4.3. By construction, the algebraic structure Y = (A2m(Fq),N)
which describes the T2–group law on generic elements is a BBG under Definition
9.1.9.
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In fact, solely using Y it is not yet known whether one could compute inverses
or test the equality of projective representations. What is now of principal
interest however, is whether one can construct a method to un–disguise this
representation of Y , computing a natural representation equivalent to X.

9.4.3 DHKA using Galbraith’s Disguised T2

Here we present how one could implement the Diffie–Hellman key agreement
using Galbraith’s T2 BBG from Corollary 9.4.3 in §9.4.2:

Remark 9.4.4. Let (x̂, ŷ) = U(x, y) and P1 = (x̂, ŷ). To compute the disguised
representation of

[A](x, y) = U−1PA

one constructs the matrix Nd(Pr) := N(Pr, Pr) which represents squaring. When
r 6= s one has Pr+s := N(Pr, Ps). Now one uses double–&–add algorithms with
N, Nd and the binary representation of A ∈ N to evaluate PA.

Initialisation: We canonically represent torus elements here only by their
numerator. Fix a random torus element x + yα ∈ T2(Fqm) which has large
prime order `. Evaluate the 2m–tuple (x, y) ∼ (x, y) and use the secret linear
transformation U to compute the disguised 2m–tuple (x̂, ŷ) = U(x, y). Now
publish as the public parameters

V := {(x̂, ŷ), `, Y }

where Y = {q,m,N} is the disguised system.

Key Exchange:

1. Alice and Bob acquire V and then respectively choose random integers
A,B ∈ [1, `− 1] ⊆ N. These form their private–keys.

2. Using {N,Nd} Alice computes her public–key PA by the double–&–add
method given in Remark 9.4.4.

3. Bob analogously computes his public–key PB .

4. As usual, they then publish/exchange their 2m–tuple public keys, and
Alice computes PA+B from Bob’s public key PB and A.

5. Bob similarly evaluates a PB+A from PA and B.

Key Agreement: They now share a common secret 2m–tuple k = PA+B =
PB+A. One then applies a key derivation function to k to obtain a useful
cryptographic key.

9.4.4 Cryptanalysis of Galbraith’s Construction

The construction of a BBG from T2 in §9.4.2 allows us to describe the T2–
group law as a variety of 2m polynomials in 4m variables. This presentation
however utilises no additional structure of the torus, and can be simply viewed
as disguising a set of polynomials over a finite field.
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This was shown to be weak by Galbraith in [28] whereby using the de-
scription N ∈ Y of the disguised group law, one is able to recover a natural
representation of the underlying field Fqm . With this one can then recover a
natural representation for all 2m–tuples which represent elements of T2 in the
form a+ bα ∈ T2(Fqm). Hence, an isomorphic representation and the structure
of the original ‘disguised’ torus is recovered. We present this attack now:

Algorithm 9.4.1 (Attack of Galbraith’s Disguised T2).

1. Generate a random 2m–tuple (a, b). Due to Remark 9.4.2, the order qm+1
of T2 is known. Thus, one can compute a

ŵ = (x̂, ŷ) = (a, b)q
m+1

by using the group operation N and any square–and–multiply algorithm.

2. Now ŵ is one of the (possibly many) disguised representations for the
identity element of T2; that is an un–disguised element of the form

U−1ŵ = (x, 0) = w.

3. Hence using N ∈ Y one can now compute

N(ŵ, ŵ) = N(x̂, ŷ, x̂, ŷ) = U
(
(x2 + 0 · 0), (x · 0 + 0 · x+ 0 · 0)

)
= ŵ2.

Continuing iteratively one can construct the set of m+ 1 elements

∆ = {Uw,Uw2,Uw3, . . . ,Uwm+1}.

4. One now continues to find a defining polynomial for Fqm as we did in
§9.2.2. With a high probability we can find a polynomial–basis for Fqm .
When this is unsuccessful, we return to STEP 1.

5. One now applies a linear transformation U1 on the polynomials in N which
diagonalises the first m variables. This ensures that the first m compo-
nents correspond to Fqm with the polynomial–basis {1, w, . . . , wm−1}.

6. One now recovers the torus structure: Generate a random m–tuple y and
use this to construct the 2m–tuple

û = (0, y).

We do not have an especially useful form as we had in STEP 3, and so
this just corresponds to an arbitrary un–disguised element u = c+ dα for
c, d ∈ Fqm .

7. Hence one computes the set

Λ = {N(ŵi, û) | i = 1, . . . ,m} = {ŵ · û, . . . , ŵm · û}

where ŵi · û correspond to some element c′i + d′iα. If all of the elements
of Λ are of the form (0, y) we are done. Otherwise we compute a linear
transformation U2 such that all elements of Λ are in this form and then
we set û = U2û.
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8. Now û is a ‘purely quadratic’ element and so we set α ∼ û and by using
the basis of Fqm we computed in STEP 5 we compute this α. We now have
a complete basis for Fq2m and so a natural representation X ′ of the torus
T2 is recovered.

9. One now uses §9.1.4 to compute a map between Y → X ′ so that particular
cryptographic problem may be attacked using this method.

Remark 9.4.5. This attack works as in STEP 3 we are able to construct a
simple field multiplication algorithm from the T2–group description N, by es-
sentially computing different disguised representations of the trivial operation

1 · 1 = 1.

Since our ŵ was an identity element of the torus but not the field, this allowed
us to create a polynomial–basis for Fqm as we did in §9.2.2.

Thus our BBG operation became a black–box for field multiplication, and
this is why it failed in an analogous way to simply disguised finite fields. If one
wanted, one could now use a ‘nicer’ basis by computing a suitable isomorphism
with Lenstra’s method [47].

9.4.5 Disguising T2 — A New Approach

Galbraith’s disguise of T2 failed as one was able to create an algorithm for field
multiplication from the disguised T2 group law N ∈ Y .

We now describe an original and novel way of presenting a disguised group
law of T2 using Rubin & Silverberg’s parameterisation from §8.2. This is
achieved by publishing a set of matrices, whereby one computes the disguised
T2–group law by solving a system of linear equations rather than by direct sub-
stitution. Following this parameterisation we describe our new method in the
sequel.

9.4.6 Construction

We will attempt to indirectly construct a T2 BBG by disguising the partial group
law defined on A1(Fqm) given in §8.2. Here we detail this for a non–binary field
since the treatment for the binary case is completely analogous:

We need to disguise the partial T2 group law on A1 given by equation (8.2.6)

a ? b =
ab+ d

a+ b
.

The division on the right hand side is a problem for our methodology, since
it cannot be computed by evaluating a multivariate polynomial over Fq of low
degree. Thus, we set c = a ? b and reformulate this equation to give

(a+ b)c = ab+ d. (9.4.5)

We now can use this to describe the partial group law. One way is to construct
two matrices; an m×m matrix M whose entries are linear polynomials and an
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m × 1 vector N whose entries are quadratic polynomials, both of which are in
2m variables containing elements of the form

Mij(a, b)
Ni(a, b)

}
for i, j = 0, 1, . . . ,m− 1

over Fq. Under this the partial group law is given by

∼c(a+b)︷ ︸︸ ︷
M(a, b)c = N(a, b)︸ ︷︷ ︸

∼ab+d

(9.4.6)

where juxtaposition denotes normal matrix multiplication and

M :=
(
Mi,j(a, b)

)
0≤i,j≤m−1

, N :=
(
Ni(a, b)

)
0≤i≤m−1

Remark 9.4.6. In order to compute the group law (and hence c), one generates
two m–tuples a, b and uses these to evaluate the matrices M and N. One now
solves the linear algebra problem0B@ m0,0 · · · m0,m−1

...
. . .

...
mm−1,0 · · · mm−1,m−1

1CA
0B@ c0

...
cm−1

1CA =

0B@ n0

...
nm−1

1CA
where only the ci ∈ Fq are unknown with mi,j = Mi,j(a, b) and ni = Ni(a, b).

Upon computing the solution to this system of linear equations, c, one has
computed the group operation on m–tuples as required.

We wish to disguise this natural representation X =
(
Fmq , {M,N}

)
: Let the

disguising function ψ : X → Y be defined by generating a random invertible
linear transformation U ∈ GLm(Fq) in m–dimensional space and by defining
ψ(a) = U(a0, . . . , am−1)T = â. Under this one has

U : X =
(
Fmq , {M,N}

)
→
(
Am(Fq), {M′,N′}

)
= Y

where Y as usual denotes the disguised representation. The disguised partial
group law is then constructed from the matrices given in equation (9.4.6) as
follows:

UM(U−1â,U−1b̂)U−1ĉ = UN(U−1â,U−1b̂)⇐⇒

M′(â, b̂)ĉ = N′(â, b̂) (9.4.7)

with the two relations

M′(â, b̂) = UM(U−1â,U−1b̂)U−1,

N′(â, b̂) = UN(U−1â,U−1b̂).

These matrices which describe the disguised group law are then published. Fur-
thermore, it is immediate that using two disguised m–tuples x̂, ŷ, a public user
may compute the disguised partial group law using an analogous method of that
described in Remark 9.4.6. Thus we have now constructed a BBG with which
to compute with representatives of elements of T2(Fqm).

Corollary 9.4.7. Under Definition 9.1.9 one now has a candidate BBG in the
algebraic structure Y = (Am(Fq), {M′,N′}) which describes the partial group law
on A1(Fqm) representing the group law of T2(Fqm).
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9.4.7 Examples

For ease of exposition, we represent the disguised m–tuples via

â = Ua = U(a0, a1, . . . , am−1) = (x0, x1, . . . , xm−1),

b̂ = Ub = U(b0, b1, . . . , bm−1) = (y0, y1, . . . , ym−1),
ĉ = Uc = U(c0, c1, . . . , cm−1) = (z0, z1, . . . , zm−1).

Using this we now present an example of the creation of a disguised system and
an example of computing with one:

Example 9.4.8 (Creating a Disguised System). Let Fq = F17, m = 3 and w
be a root of the irreducible degree 3 polynomial x3 + x + 14 over Fq such that
Fqm := Fq(w).

Here d = 6w2 + 10w + 3 is a random non–square element of F∗qm , hence set
Fq2m := Fqm(

√
d) = Fq(

√
d)(w). The maps σ, ψ and ρ are all defined as in §8.2.

The private user now computes the two undisguised matrices M and N using
equation (9.4.6):

M =

0@ a0 + b0 a1 + b1 a2 + b2
3a2 + 3b2 a0 + 16a2 + b0 + 16b2 a1 + b1
3a1 + 3b1 16a1 + 3a2 + 16b1 + 3b2 a0 + 16a2 + b0 + 16b2

1A ,

N =

0@ a0b0 + 3a1b2 + 3a2b1 + d0
a0b1 + a1b0 + 16a1b2 + 16a2b1 + 3a2b2 + d1

a0b2 + a1b1 + a2b0 + 16a2b2 + d2

1A
and generates a random secret invertible linear transformation (the trapdoor)

U =

0@ 12 1 15
8 12 1
10 16 5

1A ∈ GL3(Fq).

Now one computes the two disguised matrices M′(â, b̂) = {M0,M1,M2} where

M0
T :=

0@ 12x0 + x1 + 15x2 + 12y0 + y1 + 15y2
5x0y0 + 2x0y1 + 10x0y2 + 5x0 + 2x1 + 10x2 + 5y0 + 2y1 + 10y2
10x0 + 4x1 + 16x2 + 10y0 + 4y1 + 16y2

1A
M1

T :=

0@ x0 + 3x1 + 10x2 + y0 + 3y1 + 10y2
2x0 + 13x1 + 9x2 + 2y0 + 13y1 + 9y2
4x0 + 10x1 + 3x2 + 4y0 + 10y1 + 3y2

1A
M2

T :=

0@ 15x0 + 10x1 + 15x2 + 15y0 + 10y1 + 15y2
10x0 + 9x1 + 6x2 + 10y0 + 9y1 + 6y2
16x0 + 3x1 + 4x2 + 16y0 + 3y1 + 4y2

1A
and an N′(â, b̂) given by0@ 12x0y0 + x0y1 + 15x0y2 + x1y0 + 3x1y1 + 10x1y2 + 15x2y0 + 10x2y1 + 15x2y2

5x0y0 + 2x0y1 + 10x0y2 + 2x1y0 + 13x1y1 + 9x1y2 + 10x2y0 + 9x2y1 + 6x2y2 + 1
10x0y0 + 4x0y1 + 16x0y2 + 4x1y0 + 10x1y1 + 3x1y2 + 16x2y0 + 3x2y1 + 4x2y2

1A .

Then Y = {q,m,M′,N′} is published and describes the BBG.

Using Example 9.4.8 we now demonstrate how one computes with disguised
representations.
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Example 9.4.9 (Computing With a Disguised System). The public user ac-
quires Y and using two disguised input values (here chosen at random) â =
(3, 1, 16)T and b̂ = (10, 14, 5)T evaluates M′,N′ to get

M′(â, b̂) =

 10 16 16
13 2 10
14 0 14

 and N′(â, b̂) =

 7
2
1

 .

Solving the linear equation

M′(â, b̂)ĉ = N′(â, b̂)

over Fq gives the unique solution ĉ = (5, 12, 4)T. Thus the public user has
computed the group law using only disguised elements.

This corresponds to the private user having elements

a = U−1â = (10, 11, 5)T ∼ 5w2 + 11w + 10,

b = U−1b̂ ∼ 16w2 + 13w + 10

and evaluating in Fqm = F(w)(
√
d)

c = (ab+ d)/(a+ b) = 16w2 + 8w + 15 ∼ U−1ĉ

and so it is well–defined.

9.4.8 Cryptanalysis of Our Disguised T2

Unfortunately, the BBG presented in §9.4.6 is easily un–disguised. The attack
utilises the fact that a cryptanalyst may use the published matrices to compute
other things than that they were intended for. We present this attack now:

Algorithm 9.4.2 (Attack of Our Disguised T2).

1. Eve acquires the public V and picks a random m–tuple ŵ which with a high
degree of probability corresponds to some un–disguised (and unknown to
the attacker) w

2. As M′(â, b̂) and N′(â, b̂) are just matrices, the attacker sets â = ŵ, b̂ = 0
and ĉ = ŵ and then computes (whilst ignoring equation (9.4.7))

M′(â, b̂)ĉ = M′(ŵ, 0)ŵ = (ŵ2) = U(w2)

which holds under the construction of equation (9.4.7).

3. Setting ĉ = (ŵ2) and continuing iteratively allows the attacker to compute
the m+ 1 blinded representations

∆ = {Uw,Uw2,Uw3, . . . ,Uwm+1}.

We can now continue to find a defining polynomial for Fqm as we did in
§9.2.2. With a high probability we can now find a polynomial basis for
Fqm .

106



4. To recover a non–square element, the attacker sets â = 0 and then trivially
has

N′(0, b̂) = d̂.

5. Using §9.1.4 one constructs an isomorphism to decompose the disguised
elements in terms of our new basis and that of d̂. Using this one can
compute with the original partial group law in equation (8.2.6) and we
are done.

9.4.9 Disguising Higher–Degree Tori

It is natural to consider higher dimensional tori for disguising such as T6 and
T30 and particularly those with rational parameterisations: birational maps
ρ : Tn → Aφ(n) defined over Fq. Let us consider the torus T6:

T6(Fqm) = {α ∈ Fq6m | NFq6m/Fq3m
(α) = 1,NFq6m/Fq2m

(α) = 1},

where T6 is of dimension 2 and #T6(Fqm) = Φ6(qm) = q2m − qm + 1 for the
cyclotomic polynomial Φd(x).

Rubin & Silverberg in [67] presented a cryptosystem based on the ratio-
nal parameterisation of the torus T6, called CEILIDH. This works similarly to
XTR and LUC, however what was important is they showed one could define a
rational parameterisation (a birational map)

ψ : A2(Fqm) 99K T6(Fqm).

We use 99K since not all points can be mapped, for details see ([67], p8).
As an example of this; setting qm ≡ 2, 5 (mod 9), x = ζ3 and y = ζ9 + ζ−1

9

they showed that when one defines Fq3m = Fqm [y] and Fq6m = Fq3m [x], one has

ψ(α1, α2) =
1 + α1y + α2(y2 − 2) + (1− α2

1 − α2
2 + α1α2)x

1 + α1y + α2(y2 − 2) + (1− α2
1 − α2

2 + α1α2)x2
. (9.4.8)

The details of this parameterisation is beyond the scope of this thesis, how-
ever Rubin & Silverberg introduced these maps to enable element compression.
Granger et al. in ([34], p10) considered efficient arithmetic on tori. They argued
that the best performance one could have using T6 was via mapping it ‘up’ to T2,
computing the group law there and then mapping the result back ‘down’ to T6.
This is made possible because |T6(Fq)| = (q2−q+1)|(q3 +1) = |T2(Fq3)|. Their
results show that disguising T6 is uninteresting from a practical point–of–view
since one has already discounted using T2. Similar arguments can be applied to
higher dimensional tori, and we do not consider them in our work here.

9.5 Disguising Trace–Based Methods: LUC

Our cryptanalysis has already shown that it is not secure or practical to disguise
finite fields and algebraic tori. We now turn our attention to whether the trace–
based methods of LUC and later in §8.4 XTR, make suitable BBG candidates.
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Motivation 9.5.1. We consider LUC as a possible object for disguising DL–
cryptography since it has less arithmetical structure than did our undisguised
torus in §9.4.5: Although exponentiation is well defined since T (ga) = T (g−a)
and from Corollary 8.3.3, easy to compute, multiplication is not since generally
T (gh) 6= T (gh−1) as was shown in Remark 8.3.4.

As §8.3 details, when we use LUC we actually work with traces over the
ground field which represent elements of the group G2,q, rather than the torus
elements themselves. Hence it is worth noting that this indirect relationship
does not natively form a BBG:

Corollary 9.5.2. Standard LUC given in §8.3 does not form a BBG.

Proof. We show that nothing is ‘disguised’ here: One can find a non–square
a ∈ Fqm and use this to define Fq2m = Fqm(

√
a). Given t1 and tn one wants

to compute g, h ∈ Fq2m such that Tr(g) = t1 and Tr(h) = tn. Noting that
(X − g)(X − σ(g)) = X2 − T (g) + 1, one can now solve and recover a g up to
conjugate. One can analogously compute h up to conjugate. Hence we trivially
have the non–black–box structure of the group.

9.5.1 Construction

We need to disguise the trace representation of LUC. The sequence {tn} defined
in Corollary 8.3.3 works solely in Fqm . Hence using equation (8.3.5) one can
describe the LUC group law in terms of m–tuples. One way is to construct a set
of m polynomials in 3m variables which describe the Lucas recursion formula
given in equation (8.3.5) as follows:

tn =

∼t1·tn−1︷ ︸︸ ︷
A(t1, tn−1) +tn−2 = M

(
t1, tn−1, tn−2

)
(9.5.1)

where A and M are vectors of dimension m with the polynomial elements

(tn)i := Mi

(
t1, tn−1, tn−2

)
defined over Fq. Here one has the corresponding initial conditions; t0 ∼ 2 and
t1 ∼ T (ga). It is this natural representation X =

(
Fmq , {M, I0}

)
which we wish

to disguise where I0 denotes the initial conditions {t0, t1}.
Let the disguising function ψ : X → Y be defined by generating a random

invertible U ∈ GLm(Fq) such that ψ(a) = Ua = â. Under this one has

U : X =
(
Fmq , {M, I0}

)
→
(
Am(Fq), {N, I}

)
= Y

where Y as usual denotes the disguised representation. Disguising in this way is
well–defined since the trace is trivially Fqm–linear since Tr(g+h) = Tr(g)+Tr(h)
and Tr(c · g) = c · Tr(g) for all c ∈ Fqm .

The disguised group law N = UM is then a system of m polynomials which
are computed from the set of equations in (9.5.1) by:

U−1t̂n = UM
(
U−1t̂1,U−1 ˆtn−1,U−1 ˆtn−2

)
⇔

t̂n = N
(
t̂1, ˆtn−1, ˆtn−2

)
(9.5.2)

for a public vector N of dimension m with polynomial elements over Fq. Simi-
larly now one computes the disguised initial conditions: I = {Ut0,Ut1}.

108



Corollary 9.5.3. Under Definition 9.1.9 one now has a candidate BBG in
the algebraic structure Y = (Am(Fq), {N, I}) which describes the LUC group
operation on disguised trace elements.

To compute with Y =
(
Am(Fq),N

)
, a public/BBG–user acquires Y and

using an integer a and an m–tuple x̂ over Fq iteratively evaluates

t̂2 = N
(
x̂, t̂1, t̂0

)
...

...

t̂a = N
(
x̂, ˆta−1, ˆta−2

)
Thus the user is able to compute the disguised group law of X without directly
using its natural representation; specifically the basis B of Fmq ∈ X.

Since U is linear, such computations are efficient as the elements of N are
quadratic polynomials over Fq.

Remark 9.5.4. Clearly if t1 (and hence t̂1) were fixed for all computations,
then one could publish a simplified disguised group law description

t̂n = N
(

ˆtn−1, ˆtn−2

)
.

9.5.2 Cryptanalysis of Disguised LUC

The BBG presented in §9.5.1 can be undisguised. The goal of the cryptanalyst
here is analogous to before: Given the disguised representation of LUC, obtain
a representation for the field Fqm . Then pull the disguised trace values t̂i back
to elements over our newly computed natural representation for Fqm .

Eve similar to before does not use N to compute the trace at all, but ma-
nipulates it to give her a finite field multiplication algorithm. We first present
a lemma which will aid in the attack:

Lemma 9.5.5. One can create a disguised field multiplication algorithm A for
Fqm from the disguised group description given in Y .

Proof. Set the multiplication algorithm A to be defined by

A
(
x̂, ŷ
)

:= N
(
x̂, ŷ, 0

)
for two arbitrary m–tuples x̂ and ŷ. Then clearly A is a disguised multiplication
algorithm for Fqm since from equation (9.5.1),

U−1A
(
x̂, ŷ
)

= M
(
U−1x̂,U−1ŷ,U−10

)
∼ xy ∈ Fqm .

Algorithm 9.5.1 (Attack of Disguised LUC).

1. Eve acquires Y and picks a random 2m–tuple ŵ which with a high degree
of probability corresponds to some undisguised (and unknown to the at-
tacker) w. Clearly, one could pick ŵ = t̂1 which is known to correspond
to the undisguised t1.
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2. Using Lemma 9.5.5 Eve constructs a disguised field multiplication algo-
rithm A and use this to recursively compute the set

∆ =
{
ŵ1, ŵ2, . . . , ˆwm+1

}
=
{

Uw,Uw2,Uw3, . . . ,Uwm+1
}

by iteratively evaluating ŵi = A
(

ˆwi−1, ŵ
)
.

3. One now has m+ 1 vectors in an m–dimensional vector space, so one can
continue to find a defining polynomial for Fqm as we did in §9.2.2. With
a high probability one can now find a polynomial basis for Fqm .

4. Now one proceeds as before and computes a map between the disguised
representation Y and our newly computed natural one X ′ using §9.1.4.

Remark 9.5.6. As previously mentioned, using traces one cannot distinguish
between an element and its conjugates. However, one could map this problem
into a standard DLP in group G2,q by finding the correct root of(

x− g
)(
x− σ(g)

)
= x2 − Tr(g)x+ 1 = 0.

This would then yield g and its conjugate from Tr(g). One would similarly
compute a pair of values for Tr(gn).

9.6 Disguising Trace–Based Methods: XTR

We wish to see if using XTR from §8.4 allows one to create a BBG under
disguising. XTR itself is a natural extension of LUC, although it has a more
complex presentation. Due to this similarity however, one expects it to fail in a
similar manner as did LUC. We now present the details.

9.6.1 Construction

We consider XTR as a possible object for disguising since it has less arithmetical
structure than did our undisguised torus given in §9.4.5. Explicitly; although ex-
ponentiation is well defined since T (ga) = T (ga(p−1)) = T (g−ap), multiplication
is not since generally by Remark 8.3.4,

T (gh) 6= T (gp−1h) 6= T (g−ph).

To describe XTR, one needs Fp2 , the initial conditions {t0, t1}, a description of
the third–order relation tu+v and its four identities from Lemma 8.4.4 which we
(respectively) name I, II, III & IV from which one can derive t2.

Setting Fqm = Fp, everything in §8.4 still holds, hence using Lemma 8.4.4
one can now describe the XTR group law in terms of 2m–tuples where the n < 0
case is dealt with by noting t−n = tq

m

n :
Consider Identity II from Lemma 8.4.4: Clearly one can rewrite tn+2 using

2m–tuples as

tn+2 =

∼t1·tn+1︷ ︸︸ ︷
M(t1, tn+1)−

∼tn(t1)qm︷ ︸︸ ︷
N(t1, tn) +tn−1

= RII

(
t1, tn−1, tn, tn+1

)
(9.6.1)
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where M,N and RII are dimension 2m vectors with the polynomial elements

(tn+2)i = Ri
(
t1, tn−1, tn, tn+1

)
defined over Fq. Analogously one then computes the following matrices

t2n = RI

(
tn
)
, t2n−1 = RIII

(
t1, tn−1, tn, tn+1

)
,

t2n+1 = RIV

(
t1, tn−1, tn, tn+1

)
, tu+v = R

(
tu−2v, tu−v, tu, tv

)
.

It is this natural representation X = (F2m
q , {V, I0}) which we wish to disguise

where I0 denotes the initial conditions {t0, t1} and V is the collection of rules
{R,RI,RII,RIII,RIV}.

Let the disguising function ψ : X → Y be defined by generating a random
invertible U ∈ GL2m(Fq) such that ψ(a) = Ua = â. Under this one has

U : X =
(
F2m
q , {V, I0}

)
→
(
A2m(Fq), {W, I}

)
= Y

where Y as usual denotes the disguised representation. Disguising in this way
is well defined since the trace is Fq2m–linear since: T (g+ h) = T (g) + T (h) and
T (α · h) = αT (h) for all α ∈ Fq and g, h ∈ F∗q6m .

The disguised group law is then a system W of five sets of 2m polynomials
which are computed from V. We explicitly detail how this is done for RII from
equation (9.6.1). The disguised description of RII is computed by:

U−1( ˆtn+2) = URII

(
U−1t̂1,U−1 ˆtn−1,U−1t̂n,U−1 ˆtn+1

)
⇔

ˆtn+2 = SII

(
t̂1, ˆtn−1, t̂n, ˆtn+1

)
(9.6.2)

for a public vector of dimension 2m with polynomial elements over Fq. Anal-
ogously one now computes the disguised initial conditions I = {Ut0,Ut1} and
the representations of the other components of V; W := {S,SI,SII,SIII,SIV}.

Corollary 9.6.1. Under Definition 9.1.9 one now has a candidate BBG in
the algebraic structure Y = (A2m(Fq), {W, I}) which describes the XTR group
operation on disguised trace elements.

To compute with Y = (A2m(Fq), {W, I}), a public/BBG–user acquires Y and
computes t̂2 from I and RI given in Y . Using an a ∈ Z one can now iteratively
evaluate t̂n using W ∈ Y . Thus a user is able to compute the disguised group
law of X without directly using the natural representation; specifically the basis
B of F2m

q ∈ X.

9.6.2 Cryptanalysis of Disguised XTR

XTR fails in a similar manner to LUC did in §9.5.2 as one would expect given
their structural similarity. This attack relies on the fact that a cryptanalyst
does not need to use the matrices which describe the disguised group operation
(W ∈ Y ) as they were intended. One in fact uses them to create a multiplication
algorithm for the undisguised field Fq2m :

Lemma 9.6.2. One can create a disguised field multiplication algorithm A for
Fq2m from the disguised group description given in Y .
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Proof. Set the multiplication algorithm A to be defined by

A
(
x̂, ŷ
)

:= SII

(
x̂, 0, 0, ŷ

)
for two arbitrary 2m–tuples x̂ and ŷ. Then trivially, A is a disguised multipli-
cation algorithm for Fq2m since by equations (9.6.1) and (9.6.2) one has

U−1SII

(
t̂1, ˆtn−1, t̂n, ˆtn+1

)
= tn+2 ∼

(
t1 · tn+1 − tn · (t1)q

m

+ tn−1

)
where SII ∈ Y and hence U−1A

(
x̂, ŷ
)
∼ xy ∈ Fq2m .

The attack now proceeds as follows:

Algorithm 9.6.1 (Attack of Disguised XTR).

1. Eve acquires Y and picks a random 2m–tuple ŵ which with a high degree
of probability corresponds to some undisguised (and unknown to the at-
tacker) w. Clearly, one could pick ŵ = t̂1 which is known to correspond
to the undisguised t1.

2. Using Lemma 9.6.2 Eve constructs a disguised field multiplication algo-
rithm A and uses this to recursively compute the set

∆ =
{
ŵ1, ŵ2, . . . , ˆw2m+1

}
=
{

Uw,Uw2,Uw3, . . . ,Uw2m+1
}

by iteratively evaluating ŵi = A
(

ˆwi−1, ŵ
)
.

3. One now has 2m + 1 vectors in an 2m–dimensional vector space, so one
can continue to find a defining polynomial for Fq2m as we did in §9.2.2.
With a high probability, one can now find a polynomial basis for Fq2m .

4. One now proceeds as before and computes a map between the disguised
representation Y and our newly computed natural one X ′ as in §9.1.4.

9.7 Discussions & Remarks

It is hoped that disguising groups will enable us to define black–box groups suit-
able for cryptography. Such groups theoretically give us the optimum security
for a given primitive and may lead to additional functionality.

However, as our work has shown generally disguising is a difficult thing to do.
This is because a cryptanalyst can use the public group description in anyway he
chooses, and not just to compute the disguised group law. As we presented, this
usually allows an attacker to construct a multiplication formula of the underlying
‘disguised’ field. With this, he can construct a natural representation X ′ of Y
equivalent to X. All that remains is for him to map the problem from Y → X ′

and he has undisguised the representation.
It was our hope that using a novel description of the torus T2 and later LUC

and XTR, that one could stop such a field multiplication oracle being formed.
We showed that this is not the case. However, the practice of ‘disguising’ groups
in a bid to construct BBGs has a more fundamental problem.

When attempting to create BBGs by disguising, one must perform additional
computation to construct a system. Additionally, such systems then require
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added bandwidth over a non–disguised primitive in order to describe the system.
Hence, using disguising as a method to increase security seems fruitless: If so
much work is required, both to construct and use such systems, why would this
be done in place of just increasing the primitives security coefficient? Hence
disguising general seems a poor way of trying to improve a primitives security.

This leads us to conclude that such systems are only useful if they give new
cryptographic functionality (for example: a trapdoor pairing as was given in
[19]) which is hard to get any other way.
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Part III

Appendices



A
Detailed Methods

A.1 SEC 1 Parameter Representation

There are several different types of domain parameter which need to be rep-
resented in the initialisation of ECC systems, including finite field elements,
natural numbers and points on elliptic curves. SEC 1 describes in detail how
one should represent these data types for transmission and storage, which is
done principally using octet strings and this is what we present in the sequel.

Methods for converting between one internal representation and another are
trivial, however we do not require most of these in our analysis here and so we
direct the interested reader to §2.3 of [15] for the details.

A.1.1 SEC 1: Bit–String–to–Octet–String conversion

Octet strings are created from bit–strings using the methods described in this
section where by convention, we will be using the most–significant–bit (MSB)
representation of binary strings.

Informally, one creates an octet string by padding a binary string with 0’s
on it left (MSB) hand–side to make its length a multiple of 8.

Definition A.1.1. [15] Formally, the conversion method from bit–strings to
octet–strings is as follows:

INPUT: A bit string B of length b bits.

OUTPUT: An octet string M of length m octets.

Method: Convert the bit–string B = B0B1 . . . Bb−1 to the octet–string M =
M0M1 . . . Mm−1 as follows:

1. INPUT: B,

2. for 0 < i ≤ m− 1 set

Mi := Bb−8−8(m−1−i)Bb−7−8(m−1−i) . . . Bb−1−8(m−1−i),

3. Let M0 have its leftmost 8(m)−b bits set to 0, and its rightmost 8−(8m−b)
bits set to B0B1 . . . B8−8m+b−1.

4. OUTPUT: M.

One can deduce from Definition 5.2.1 that the bits required to transmit and
store a general octet–string M here are ‖M‖ = 8 db/8e where trivially b = ‖B‖.
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A.1.2 SEC 1: Representing Integers

In SEC 1 [15] they describe a method to represent integers as octet–strings which
we will present here. Informally the idea is to represent an integer in binary,
and then convert the resulting bit–string to an octet–string as was described in
Definition A.1.1.

Definition A.1.2. [15] Formally, the conversion method from integer elements
to octet–strings is as follows:

INPUT: A non–negative integer x ∈ N.

OUTPUT: An octet–string M of length m octets.

Method: Have a fixed length m of sufficient size, or compute the m required
by noting that

28m > x

for a valid and unique representation to occur. It is trivial that m ≥ d(lg x)/8e.
Convert x = xm−128(m−1) + xm−128(m−2) + · · ·+ x128 + x0 represented in base
256 = 28 to an octet string as follows:

1. INPUT: An integer x,

2. for 0 ≤ i ≤ m− 1, set
Mi := xm−1−i,

3. OUTPUT: M.

Trivially, the bit–size required to represent these integers in this form is
‖x‖ = 8m ≥ 8 d(lg x)/8e.

A.1.3 SEC 1: Representing Finite Field elements

SEC 1 only considers how to represent elements of the two most common finite
field types, namely prime fields Fp and binary fields F2n . Here we closely follow
the approach given in [15].

Informally, the idea is to consider the finite field element of Fp as an integer
x < p. This integer is then converted into an octet–string using the method
outlined in Definition A.1.2. With an element of F2n , one views the coeffi-
cients of its polynomial representation as the bit–string, with the highest order
coefficients ordered to the leftmost part of this string.

Definition A.1.3. [15] Formally, the conversion method from finite field ele-
ments to octet–strings is as follows:

INPUT: An element of the field a ∈ Fq.

OUTPUT: An octet string M of length m = d(lg q)/8e octets.

Method: Convert a to an octet string M = M0M1 . . . Mm−1 as follows:

1. INPUT: a ∈ Fq,

2. if q = p is an odd prime, then a can be represented by an integer in the
interval [0, q−1]. Convert a to M using the method described in Definition
A.1.2.
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3. if q = 2n, then a = an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0 is a binary
polynomial. Convert a to an octet string M as follows:

(a) for 0 < i ≤ m− 1, set:

Mi := a7+8(m−1−i)a6+8(m−1−i) . . . a8(m−1−i),

(b) Let M0 have its leftmost 8m − n bits set to 0, and its rightmost
8− (8m− n) bits set to am−1am−2 . . . a8m−8.

4. OUTPUT: M.

The bit–size required to represent the finite field element a is trivially ‖a‖ =
8 d(lg q)/8e for both cases.

A.1.4 SEC 1: Representing Elliptic Curve Points

We present here the method outlined in SEC 1 for representing elliptic curve
points. If we assume point–compression is being used, the idea is that the
compressed ordinate (y–coordinate) is placed in the leftmost octet of the octet–
string along with an indication that point–compression is ‘on’. In this case, the
abscissa (x–coordinate) is placed in the remainder of the octet–string. If point–
compression is not being used, one places an indication of such in the leftmost
octet followed by the remainder of the string being made up by the abscissa and
ordinal.

Definition A.1.4. [15] Formally, the conversion method from elliptic curve
points to octet–strings is as follows:

INPUT: A point P ∈ E(Fq) of the an elliptic curve represented affinely as
(a, b).

OUTPUT: An octet–string M of length m octets where m = 1 if P = O,
m = d(lg q)/8e + 1 if P 6= O and point–compression is being used or m =
2 d(lg q)/8e+ 1 if P 6= O and point–compression is not being used.

Method: Convert P to an octet string M = M0M1 . . . Mm−1 as follows:

1. INPUT: P = (xp, yp) on E.

2. if P = O, OUTPUT: M = 0016.

3. if P = (xp, yp) 6= O and point–compression is being used:

(a) Convert the finite field element xp to an octet–string X of length
m = d(lg q)/8e using Definition A.1.3.

(b) Compute a single bit corresponding to which point is being repre-
sented, ỹp, from yp as follows:

i. if q = p is an odd prime, set ỹp = yp (mod 2),
ii. else if q = 2n, set ỹp = 0 if xp = 0, otherwise compute z =

zm−1x
m−1 + · · · + z1x + z0 such that z = ypx

−1
p and then set

ỹp = z0.

(c) Now, assign the value 0216 to the single octet Y if ỹp = 0 or the value
0316 if ỹp = 1.
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(d) OUTPUT: M = Y‖X.

4. if P = (xp, yp) 6= O and point–compression is not being used:

(a) Convert the finite field element xp to an octet–string X of length
m = d(lg q)/8e using Definition A.1.3.

(b) Convert the finite field element yp to an octet–string Y of length
m = d(lg q)/8e using Definition A.1.3.

(c) OUTPUT: M = 0416‖X‖Y.

Clearly here, the leftmost octet T of M indicates whether M represents the
point at infinity (T = 0016), or whether point–compression is being used (T =
0216 or T = 0316) or not (T = 0416).

The bit–sizes required to represent elliptic curve points is then

‖P‖ =


16 d(lg q)/8e+ 8 without point–compression,
8 d(lg q)/8e+ 8 with point–compression,
8 when P = O.

(A.1.1)
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B
Tables

B.1 Prime Tables

Type–1 Primes

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

4 (1,4,1) 4 (2,2,1) 5 (1,5,1) 6 (1,6,1) 6 (2,3,1)
8 (2,4,1) 8 (4,2,1) 9 (1,9,1) 9 (3,3,1) 10 (1,10,1)

10 (2,5,1) 10 (5,2,1) 11 (1,11,3) 12 (1,12,1) 12 (2,6,1)
12 (4,3,1) 14 (1,14,1) 14 (2,7,3) 16 (1,16,7) 16 (4,4,1)
17 (1,17,3) 18 (1,18,5) 18 (2,9,2) 18 (2,9,4) 18 (2,9,1)
18 (6,3,1) 18 (9,2,1) 20 (1,20,1) 20 (1,20,9) 20 (1,20,7)
20 (2,10,1) 20 (4,5,1) 20 (10,2,1) 21 (3,7,3) 21 (3,7,1)
21 (7,3,1) 22 (1,22,5) 22 (1,22,1) 22 (2,11,2) 22 (2,11,5)
24 (1,24,1) 24 (1,24,5) 24 (2,12,5) 24 (4,6,1) 26 (1,26,9)
26 (2,13,1) 29 (1,29,11) 29 (1,29,13) 29 (1,29,5) 29 (1,29,1)
30 (2,15,4) 30 (3,10,3) 32 (2,16,1) 32 (2,16,3) 32 (4,8,1)
33 (3,11,1) 33 (3,11,5) 36 (2,18,1) 36 (4,9,4) 36 (4,9,1)
36 (4,9,2) 36 (6,6,1) 36 (12,3,1) 36 (18,2,1) 38 (1,38,9)
38 (2,19,6) 38 (2,19,4) 40 (1,40,17) 40 (1,40,19) 40 (8,5,2)
42 (1,42,5) 42 (2,21,2) 42 (2,21,8) 42 (6,7,1) 44 (1,44,7)
44 (4,11,1) 44 (11,4,1) 45 (1,45,19) 45 (9,5,1) 46 (1,46,17)
46 (2,23,7) 48 (3,16,3) 48 (6,8,1) 48 (8,6,1) 48 (16,3,1)
49 (1,49,17) 51 (1,51,7) 52 (1,52,19) 54 (1,54,5) 54 (2,27,4)
56 (2,28,1) 56 (2,28,13) 56 (14,4,1) 57 (1,57,13) 57 (1,57,25)
59 (1,59,27) 60 (1,60,19) 60 (2,30,13) 60 (4,15,7) 60 (4,15,2)
60 (6,10,3) 61 (1,61,17) 61 (1,61,19) 62 (2,31,15) 64 (1,64,29)
64 (2,32,5) 64 (8,8,1)

Table B.1: Type–1 Primes p with 4 ≤ dlg pe ≤ 64.

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
160 (1,160,31) 160 (4,40,19) 161 (1,161,11) 161 (23,7,1) 162 (2,81,16)
162 (2,81,26) 162 (2,81,32) 162 (6,27,4) 162 (6,27,10) 164 (2,82,27)
164 (4,41,19) 165 (3,55,13) 165 (5,33,5) 166 (2,83,7) 166 (2,83,1)
166 (2,83,19) 166 (2,83,31) 168 (1,168,19) 168 (1,168,79) 168 (2,84,41)
168 (3,56,9) 168 (3,56,11) 168 (6,28,3) 168 (6,28,11) 168 (8,21,1)
168 (14,12,5) 168 (42,4,1) 170 (34,5,1) 174 (1,174,77) 174 (1,174,1)
174 (2,87,2) 174 (2,87,17) 174 (2,87,43) 177 (1,177,53) 180 (1,180,11)
180 (4,45,11) 180 (5,36,11) 180 (5,36,7) 182 (2,91,37) 182 (14,13,1)
184 (1,184,19) 184 (1,184,5) 184 (46,4,1) 185 (1,185,67) 185 (1,185,49)
185 (1,185,71) 186 (2,93,22) 188 (2,94,25) 188 (4,47,6) 188 (4,47,15)
189 (1,189,53) 189 (1,189,71) 189 (7,27,7) 190 (5,38,1) 192 (1,192,67)
192 (1,192,55) 192 (2,96,11) 192 (3,64,11) 192 (16,12,1) 192 (64,3,1)
194 (1,194,5) 196 (2,98,11) 197 (1,197,37) 197 (1,197,31) 197 (1,197,61)
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‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

198 (1,198,73) 198 (2,99,2) 198 (22,9,4) 200 (1,200,21) 200 (2,100,11)
200 (2,100,47) 200 (20,10,1) 201 (1,201,17) 201 (3,67,21) 202 (1,202,77)
205 (1,205,29) 205 (1,205,83) 206 (2,103,11) 206 (2,103,46) 206 (2,103,12)
206 (2,103,1) 208 (1,208,77) 209 (1,209,5) 209 (1,209,71) 209 (1,209,47)
209 (11,19,7) 210 (6,35,1) 210 (14,15,4) 210 (14,15,7) 212 (1,212,59)
212 (1,212,89) 212 (1,212,31) 212 (2,106,37) 212 (2,106,21) 213 (1,213,91)
213 (1,213,1) 213 (3,71,31) 213 (3,71,3) 214 (1,214,41) 214 (1,214,49)
214 (1,214,97) 214 (1,214,89) 214 (2,107,8) 216 (36,6,1) 216 (108,2,1)
217 (1,217,83) 218 (1,218,57) 218 (1,218,5) 218 (2,109,24) 218 (2,109,4)
219 (3,73,29) 220 (1,220,19) 220 (1,220,103) 220 (10,22,1) 221 (1,221,1)
222 (1,222,109) 222 (2,111,28) 222 (2,111,41) 222 (2,111,46) 224 (1,224,23)
224 (2,112,5) 224 (4,56,9) 224 (7,32,5)

Table B.2: Type–1 Primes p with 160 ≤ dlg pe ≤ 224.

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
224 (1,224,23) 224 (2,112,5) 224 (4,56,9) 224 (7,32,5) 225 (1,225,59)
225 (1,225,83) 225 (1,225,101) 225 (5,45,17) 226 (2,113,1) 226 (2,113,7)
227 (1,227,11) 228 (2,114,55) 229 (1,229,23) 229 (1,229,17) 230 (2,115,19)
232 (1,232,67) 232 (1,232,107) 232 (1,232,115) 232 (1,232,23) 233 (1,233,1)
234 (2,117,4) 234 (2,117,47) 234 (2,117,29) 234 (6,39,14) 234 (13,18,5)
235 (1,235,67) 236 (1,236,9) 237 (1,237,83) 237 (1,237,61) 237 (1,237,11)
237 (3,79,25) 237 (3,79,27) 238 (1,238,113) 238 (17,14,5) 240 (1,240,37)
240 (1,240,83) 240 (10,24,7) 240 (30,8,3) 242 (1,242,97) 242 (11,22,3)
243 (3,81,1) 244 (1,244,23) 245 (1,245,19) 245 (1,245,89) 246 (2,123,46)
246 (6,41,8) 248 (2,124,49) 248 (4,62,23) 248 (4,62,27) 248 (4,62,25)
248 (4,62,7) 248 (8,31,12) 249 (1,249,95) 250 (2,125,44) 250 (10,25,4)
250 (50,5,1) 251 (1,251,3) 252 (1,252,55) 252 (1,252,113) 252 (3,84,25)
252 (3,84,29) 252 (3,84,13) 252 (4,63,29) 252 (7,36,1) 252 (9,28,9)
252 (18,14,3) 254 (2,127,48) 254 (2,127,29) 256 (4,64,19)

Table B.3: Type–1 Primes p with 224 ≤ dlg pe ≤ 256.

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
256 (4,64,19) 257 (1,257,73) 257 (1,257,31) 258 (1,258,37) 258 (2,129,19)
258 (2,129,20) 258 (2,129,10) 259 (1,259,115) 260 (1,260,79) 260 (2,130,61)
260 (26,10,1) 261 (1,261,19) 262 (1,262,13) 262 (1,262,113) 262 (2,131,55)
264 (1,264,131) 264 (2,132,37) 264 (4,66,17) 264 (6,44,13) 264 (11,24,1)
265 (5,53,23) 266 (1,266,1) 266 (2,133,43) 268 (1,268,79) 270 (1,270,73)
270 (2,135,7) 270 (2,135,61) 270 (15,18,7) 272 (1,272,105) 272 (1,272,73)
272 (2,136,37) 272 (8,34,5) 273 (1,273,59) 274 (1,274,125) 275 (1,275,7)
276 (1,276,91) 276 (6,46,13) 276 (12,23,6) 277 (1,277,121) 277 (1,277,101)
278 (1,278,117) 278 (1,278,29) 278 (1,278,25) 278 (2,139,15) 280 (1,280,131)
280 (7,40,11) 280 (8,35,11) 281 (1,281,103) 281 (1,281,13) 282 (3,94,27)
282 (3,94,23) 282 (3,94,15) 283 (1,283,139) 283 (1,283,103) 284 (1,284,127)
284 (1,284,73) 285 (3,95,7) 285 (3,95,41) 285 (3,95,1) 285 (3,95,17)
285 (5,57,1) 288 (1,288,139) 288 (36,8,1) 289 (1,289,25) 290 (1,290,97)
290 (1,290,41) 290 (2,145,28) 291 (1,291,31) 291 (3,97,13) 292 (2,146,35)
293 (1,293,39) 293 (1,293,75) 294 (1,294,101) 294 (1,294,37) 296 (1,296,19)
297 (3,99,47) 298 (2,149,61) 299 (1,299,83) 299 (1,299,99) 300 (1,300,137)
300 (2,150,17) 300 (4,75,19) 300 (15,20,9) 301 (1,301,101) 301 (1,301,143)
301 (1,301,47) 304 (1,304,71) 304 (1,304,107) 305 (5,61,3) 306 (1,306,89)
306 (2,153,28) 307 (1,307,131) 308 (2,154,5) 308 (2,154,57) 308 (14,22,9)
308 (22,14,1) 309 (1,309,43) 309 (3,103,27) 310 (2,155,38) 311 (1,311,39)
312 (1,312,71) 312 (2,156,11) 312 (8,39,7) 312 (12,26,11) 312 (12,26,7)
314 (1,314,65) 314 (1,314,85) 314 (2,157,78) 314 (2,157,12) 315 (1,315,139)
317 (1,317,145) 317 (1,317,5) 318 (2,159,40) 318 (2,159,44) 320 (1,320,129)
320 (4,80,37) 320 (5,64,21) 321 (1,321,91) 321 (3,107,1) 322 (1,322,121)
322 (1,322,101) 322 (2,161,47) 322 (7,46,7) 322 (161,2,1) 323 (1,323,55)
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‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

324 (1,324,23) 324 (2,162,77) 324 (6,54,5) 325 (25,13,5) 326 (2,163,76)
329 (1,329,89) 330 (2,165,19) 330 (2,165,62) 330 (5,66,29) 330 (10,33,8)
331 (1,331,43) 332 (1,332,71) 332 (1,332,145) 332 (1,332,163) 332 (2,166,65)
332 (2,166,53) 332 (4,83,9) 333 (3,111,5) 334 (2,167,80) 336 (1,336,41)
336 (1,336,1) 336 (4,84,1) 336 (6,56,11) 336 (8,42,17) 338 (2,169,57)
339 (1,339,79) 340 (1,340,11) 340 (4,85,19) 341 (11,31,7) 342 (2,171,16)
342 (6,57,1) 342 (18,19,4) 344 (1,344,65) 344 (2,172,25) 344 (2,172,69)
344 (2,172,13) 344 (2,172,73) 344 (8,43,15) 345 (1,345,137) 345 (5,69,31)
346 (1,346,49) 347 (1,347,151) 348 (4,87,2) 348 (6,58,17) 348 (6,58,23)
350 (1,350,9) 350 (1,350,173) 350 (1,350,29) 350 (2,175,53) 350 (2,175,12)
350 (5,70,13) 350 (14,25,11) 350 (25,14,5) 352 (1,352,103) 352 (1,352,115)
352 (1,352,167) 352 (1,352,71) 352 (4,88,35) 354 (2,177,47) 354 (2,177,82)
354 (2,177,17) 354 (6,59,6) 355 (1,355,167) 356 (1,356,161) 356 (1,356,169)
357 (3,119,25) 358 (1,358,113) 359 (1,359,15) 360 (1,360,151) 360 (2,180,31)
360 (2,180,73) 360 (8,45,13) 360 (9,40,19) 360 (10,36,11) 362 (1,362,149)
362 (2,181,66) 364 (7,52,5) 364 (7,52,23) 364 (14,26,7) 365 (1,365,149)
365 (5,73,31) 366 (2,183,47) 366 (6,61,22) 369 (3,123,7) 372 (2,186,65)
372 (3,124,27) 372 (4,93,34) 374 (2,187,3) 374 (2,187,19) 377 (1,377,157)
377 (1,377,71) 380 (2,190,3) 380 (2,190,27) 380 (2,190,17) 380 (10,38,3)
381 (1,381,143) 384 (1,384,185) 384 (1,384,125) 384 (6,64,31) 385 (1,385,169)
385 (7,55,13) 386 (1,386,81) 386 (1,386,89) 386 (2,193,89) 388 (4,97,25)
389 (1,389,119) 390 (2,195,43) 390 (2,195,32) 390 (10,39,11) 390 (30,13,5)
391 (1,391,167) 391 (1,391,151) 392 (2,196,87) 392 (14,28,13) 393 (1,393,95)
394 (1,394,121) 394 (1,394,109) 394 (1,394,185) 395 (1,395,139) 397 (1,397,91)
398 (1,398,77) 398 (1,398,89) 398 (1,398,189) 398 (2,199,64) 399 (3,133,37)
400 (1,400,41) 400 (10,40,17) 401 (1,401,31) 402 (1,402,193) 402 (1,402,13)
402 (2,201,26) 402 (3,134,35) 403 (1,403,179) 404 (2,202,99) 404 (2,202,57)
404 (4,101,2) 405 (1,405,167) 405 (1,405,23) 405 (1,405,83) 405 (15,27,5)
405 (45,9,1) 407 (1,407,71) 408 (1,408,109) 408 (1,408,103) 408 (3,136,39)
408 (8,51,16) 409 (1,409,89) 410 (1,410,133) 410 (2,205,77) 411 (1,411,91)
412 (1,412,115) 414 (1,414,89) 414 (1,414,121) 414 (2,207,97) 414 (2,207,2)
416 (2,208,49) 416 (4,104,37) 416 (8,52,7) 416 (208,2,1) 418 (1,418,49)
418 (2,209,56) 418 (38,11,5) 419 (1,419,203) 419 (1,419,27) 419 (1,419,39)
419 (1,419,103) 420 (3,140,59) 420 (4,105,11) 420 (4,105,34) 421 (1,421,11)
422 (1,422,197) 422 (1,422,41) 422 (1,422,205) 422 (2,211,75) 423 (3,141,13)
424 (1,424,29) 424 (1,424,19) 424 (1,424,131) 425 (1,425,107) 425 (1,425,77)
426 (2,213,58) 427 (1,427,115) 428 (2,214,3) 428 (2,214,41) 428 (4,107,6)
428 (4,107,9) 429 (1,429,29) 429 (1,429,41) 430 (1,430,161) 430 (5,86,29)
432 (1,432,203) 432 (3,144,5) 432 (3,144,71) 434 (1,434,41) 434 (2,217,83)
434 (2,217,108) 434 (7,62,27) 436 (2,218,41) 437 (1,437,167) 438 (1,438,109)
438 (1,438,149) 438 (2,219,10) 438 (2,219,26) 438 (2,219,41) 440 (1,440,43)
440 (1,440,109) 440 (1,440,47) 440 (5,88,1) 440 (20,22,3) 440 (55,8,1)
441 (1,441,53) 441 (1,441,169) 442 (1,442,205) 442 (2,221,95) 442 (2,221,97)
443 (1,443,35) 444 (1,444,155) 444 (3,148,21) 444 (4,111,1) 444 (6,74,35)
444 (6,74,33) 446 (1,446,209) 446 (1,446,181) 446 (2,223,94) 448 (2,224,5)
448 (224,2,1) 449 (1,449,149) 449 (1,449,167) 450 (10,45,16) 450 (18,25,12)
450 (225,2,1) 451 (1,451,47) 452 (1,452,1) 452 (2,226,15) 452 (4,113,15)
453 (1,453,143) 453 (1,453,71) 453 (1,453,101) 453 (3,151,61) 453 (3,151,37)
454 (2,227,37) 454 (2,227,19) 456 (2,228,67) 456 (6,76,23) 457 (1,457,101)
458 (1,458,113) 458 (1,458,105) 458 (2,229,46) 459 (9,51,19) 460 (1,460,227)
462 (3,154,3) 464 (1,464,79) 464 (1,464,101) 464 (2,232,23) 464 (2,232,85)
464 (8,58,13) 465 (1,465,43) 465 (5,93,41) 465 (15,31,13) 466 (1,466,101)
466 (2,233,97) 468 (4,117,1) 468 (4,117,23) 468 (12,39,8) 469 (1,469,137)
469 (1,469,37) 470 (1,470,181) 470 (2,235,48) 470 (2,235,78) 470 (10,47,18)
470 (10,47,1) 471 (1,471,31) 472 (1,472,215) 472 (1,472,187) 472 (1,472,127)
472 (2,236,71) 472 (2,236,95) 473 (1,473,139) 474 (2,237,74) 475 (1,475,7)
475 (1,475,11) 476 (4,119,48) 477 (1,477,131) 478 (2,239,109) 480 (2,240,103)
480 (3,160,43) 480 (5,96,37) 480 (24,20,7) 480 (240,2,1) 482 (1,482,41)
482 (1,482,25) 482 (2,241,55) 482 (2,241,101) 484 (4,121,31) 485 (1,485,47)
485 (5,97,3) 486 (2,243,94) 486 (2,243,86) 486 (2,243,74) 486 (2,243,31)
488 (4,122,1) 489 (1,489,175) 489 (1,489,241) 489 (1,489,83) 489 (3,163,49)
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‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

490 (1,490,89) 490 (2,245,122) 490 (2,245,109) 491 (1,491,59) 492 (1,492,7)
492 (3,164,45) 492 (6,82,21) 494 (1,494,205) 494 (2,247,88) 496 (8,62,1)
498 (2,249,121) 498 (2,249,8) 499 (1,499,95) 500 (4,125,51) 500 (10,50,13)
501 (1,501,19) 501 (3,167,27) 502 (2,251,125) 503 (1,503,159) 504 (1,504,145)
504 (2,252,83) 504 (3,168,61) 504 (21,24,11) 506 (2,253,61) 506 (2,253,21)
506 (2,253,109) 506 (2,253,36) 507 (1,507,103) 508 (1,508,113) 508 (4,127,55)
509 (1,509,211) 509 (1,509,53) 509 (1,509,241) 509 (1,509,221) 510 (1,510,77)
510 (2,255,58) 510 (3,170,27) 510 (3,170,79) 510 (30,17,2) 512 (1,512,127)
512 (2,256,95) 512 (32,16,1) 513 (1,513,191) 513 (1,513,35) 513 (1,513,101)
513 (19,27,7) 514 (1,514,149) 515 (1,515,239) 516 (3,172,17) 516 (4,129,29)
518 (1,518,97) 518 (2,259,23) 518 (2,259,108) 518 (14,37,6) 518 (14,37,13)
520 (1,520,17) 520 (2,260,79) 520 (2,260,61) 520 (10,52,19) 521 (1,521,253)
521 (1,521,181) 522 (2,261,77) 522 (2,261,53) 522 (2,261,11) 522 (2,261,20)
522 (6,87,19) 524 (1,524,145) 524 (2,262,85) 524 (2,262,63) 525 (1,525,19)
525 (1,525,73) 525 (3,175,9) 525 (15,35,11) 526 (1,526,149) 526 (2,263,13)
528 (2,264,103) 528 (6,88,1) 528 (16,33,5) 529 (1,529,101) 530 (1,530,29)
530 (1,530,113) 530 (2,265,41) 530 (2,265,108) 530 (2,265,83) 530 (2,265,131)
530 (2,265,12) 530 (10,53,8) 530 (53,10,1) 531 (3,177,17) 531 (9,59,3)
532 (2,266,125) 532 (2,266,23) 532 (7,76,23) 533 (1,533,29) 533 (1,533,243)
534 (2,267,112) 535 (5,107,43) 536 (2,268,31) 536 (2,268,79) 536 (4,134,51)
537 (1,537,211) 537 (1,537,215) 537 (3,179,27) 537 (3,179,1) 538 (2,269,128)
538 (2,269,85) 539 (1,539,103) 540 (2,270,19) 541 (1,541,197) 542 (2,271,130)
544 (1,544,251) 545 (1,545,1) 545 (5,109,25) 546 (2,273,58) 546 (7,78,23)
548 (1,548,79) 548 (1,548,105) 548 (1,548,239) 548 (2,274,103) 548 (4,137,66)
549 (1,549,53) 549 (1,549,73) 550 (1,550,233) 550 (2,275,1) 550 (2,275,53)
552 (1,552,275) 552 (1,552,235) 552 (4,138,61) 554 (1,554,193) 554 (1,554,117)
554 (1,554,269) 555 (3,185,9) 556 (1,556,107) 556 (1,556,179) 556 (1,556,19)
556 (4,139,46) 558 (18,31,11) 560 (1,560,173) 560 (1,560,151) 560 (4,140,57)
560 (7,80,27) 560 (16,35,12) 561 (1,561,137) 561 (1,561,59) 561 (1,561,251)
561 (1,561,37) 563 (1,563,59) 563 (1,563,3) 564 (1,564,121) 564 (1,564,25)
564 (1,564,143) 564 (3,188,51) 564 (3,188,53) 565 (1,565,151) 566 (1,566,257)
566 (1,566,101) 566 (2,283,136) 566 (2,283,27) 566 (2,283,24) 568 (1,568,125)
568 (8,71,29) 569 (1,569,219) 569 (1,569,157) 570 (1,570,73) 570 (2,285,41)
570 (2,285,16) 570 (6,95,8) 572 (1,572,129) 572 (1,572,31) 572 (4,143,36)
572 (143,4,1)

Table B.4: Type–1 Primes p with 256 ≤ dlg pe ≤ 572.

Type–3 Primes

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

5 (1,5,3) 8 (1,8,5) 9 (1,9,5) 12 (1,12,7) 14 (2,7,4)
17 (1,17,11) 19 (1,19,11) 20 (1,20,11) 20 (4,5,3) 24 (1,24,13)
24 (3,8,5) 25 (1,25,13) 29 (1,29,17) 30 (2,15,8) 30 (6,5,3)
33 (1,33,19) 33 (3,11,7) 36 (1,36,19) 38 (2,19,10) 40 (1,40,23)
42 (2,21,11) 45 (1,45,29) 47 (1,47,31) 48 (1,48,29) 49 (1,49,31)
50 (2,25,13) 54 (2,27,14) 60 (3,20,11) 60 (3,20,13) 62 (1,62,41)

Table B.5: Type–3 Primes p with 4 ≤ dlg pe ≤ 64.
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‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

160 (1,160,91) 160 (2,80,43) 163 (1,163,103) 164 (4,41,21) 165 (1,165,101)
168 (3,56,29) 170 (1,170,97) 170 (2,85,54) 171 (3,57,37) 174 (3,58,31)
180 (1,180,119) 180 (5,36,19) 181 (1,181,107) 181 (1,181,103) 184 (1,184,107)
185 (1,185,113) 188 (1,188,103) 189 (1,189,113) 192 (1,192,127) 192 (3,64,35)
194 (2,97,58) 194 (2,97,63) 198 (2,99,59) 200 (1,200,109) 201 (1,201,101)
201 (3,67,37) 202 (2,101,56) 204 (12,17,9) 209 (1,209,135) 209 (1,209,127)
210 (2,105,61) 213 (1,213,131) 213 (1,213,115) 218 (1,218,117) 220 (1,220,113)
220 (4,55,31) 222 (1,222,145) 222 (6,37,21) 224 (1,224,149) 224 (2,112,59)
224 (2,112,65)

Table B.6: Type–3 Primes p with 160 ≤ dlg pe ≤ 224.

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
224 (1,224,149) 224 (2,112,65) 224 (2,112,59) 226 (2,113,59) 227 (1,227,143)
227 (1,227,147) 228 (1,228,137) 230 (2,115,64) 230 (5,46,29) 234 (1,234,133)
235 (1,235,127) 236 (4,59,32) 238 (1,238,125) 241 (1,241,133) 244 (1,244,143)
248 (1,248,163) 248 (2,124,67) 248 (4,62,37) 250 (10,25,13) 252 (1,252,151)
252 (3,84,43) 252 (4,63,40) 253 (1,253,149)

Table B.7: Type–3 Primes p with 224 ≤ dlg pe ≤ 256.

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

258 (2,129,65) 260 (2,130,73) 261 (1,261,131) 264 (1,264,133) 264 (1,264,173)
266 (14,19,12) 269 (1,269,169) 269 (1,269,163) 270 (2,135,79) 270 (3,90,47)
270 (54,5,3) 274 (1,274,149) 274 (2,137,73) 276 (4,69,37) 278 (2,139,71)
278 (2,139,82) 278 (2,139,75) 280 (2,140,71) 283 (1,283,143) 284 (2,142,93)
285 (3,95,49) 288 (2,144,85) 289 (1,289,191) 289 (1,289,167) 290 (1,290,177)
291 (3,97,49) 294 (2,147,82) 296 (2,148,83) 296 (4,74,43) 297 (1,297,151)
300 (1,300,163) 300 (3,100,51) 301 (1,301,151) 303 (3,101,53) 306 (2,153,98)
311 (1,311,183) 314 (2,157,90) 318 (2,159,95) 318 (2,159,80) 320 (1,320,169)
320 (1,320,201) 320 (4,80,53) 321 (1,321,193) 321 (1,321,203) 322 (2,161,97)
324 (1,324,193) 324 (1,324,175) 325 (1,325,197) 326 (2,163,84) 328 (8,41,23)
331 (1,331,199) 332 (4,83,51) 333 (1,333,193) 333 (1,333,181) 336 (1,336,211)
342 (2,171,86) 342 (2,171,103) 342 (2,171,101) 342 (9,38,21) 343 (1,343,191)
344 (4,86,55) 346 (2,173,104) 348 (4,87,55) 349 (1,349,211) 350 (2,175,88)
350 (2,175,113) 353 (1,353,199) 356 (4,89,54) 357 (1,357,235) 358 (1,358,209)
358 (2,179,115) 360 (1,360,203) 360 (20,18,11) 361 (1,361,223) 361 (19,19,11)
363 (1,363,199) 368 (4,92,47) 369 (1,369,227) 371 (1,371,227) 372 (1,372,191)
372 (1,372,199) 372 (1,372,239) 372 (3,124,75) 372 (4,93,59) 374 (2,187,103)
377 (1,377,193) 378 (2,189,122) 379 (1,379,239) 380 (1,380,199) 380 (4,95,56)
382 (2,191,97) 384 (2,192,127) 385 (1,385,247) 385 (1,385,211) 386 (2,193,124)
387 (3,129,85) 390 (2,195,121) 391 (1,391,239) 393 (3,131,73) 393 (3,131,67)
394 (2,197,107) 396 (2,198,107) 396 (2,198,113) 398 (2,199,102) 400 (16,25,16)
400 (16,25,13) 404 (1,404,223) 405 (1,405,233) 407 (1,407,263) 408 (2,204,109)
408 (4,102,67) 409 (1,409,241) 410 (1,410,213) 410 (2,205,129) 410 (5,82,45)
412 (1,412,227) 416 (1,416,259) 419 (1,419,243) 420 (2,210,131) 420 (12,35,23)
420 (15,28,15) 422 (2,211,107) 425 (1,425,251) 425 (1,425,229) 426 (1,426,229)
428 (2,214,127) 428 (4,107,69) 429 (1,429,281) 430 (10,43,25) 432 (2,216,125)
432 (54,8,5) 437 (1,437,281) 437 (1,437,277) 438 (2,219,119) 438 (2,219,139)
438 (3,146,75) 444 (4,111,61) 448 (14,32,19) 450 (2,225,137) 459 (1,459,295)
462 (2,231,125) 462 (2,231,148) 462 (2,231,128) 464 (1,464,247) 464 (1,464,293)
464 (8,58,33) 466 (2,233,137) 468 (3,156,101) 470 (1,470,261) 472 (1,472,311)
473 (1,473,291) 474 (3,158,91) 475 (1,475,299) 475 (19,25,13) 476 (1,476,271)
478 (2,239,122) 480 (6,80,43) 486 (1,486,277) 488 (2,244,131) 489 (3,163,97)
492 (6,82,47) 494 (2,247,137) 498 (3,166,99) 504 (9,56,37) 506 (2,253,144)
506 (22,23,12) 512 (1,512,269) 513 (3,171,113) 514 (2,257,143) 515 (1,515,279)
520 (1,520,317) 520 (2,260,139) 524 (2,262,169) 528 (1,528,299) 528 (2,264,163)
534 (2,267,163) 536 (1,536,301) 536 (4,134,89) 540 (6,90,47) 542 (1,542,345)
546 (26,21,11) 549 (1,549,311) 550 (1,550,349) 550 (22,25,13) 554 (1,554,321)
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‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

556 (4,139,82) 557 (1,557,355) 558 (1,558,289) 564 (2,282,175) 566 (2,283,163)
566 (2,283,159) 567 (27,21,13) 570 (6,95,48) 572 (1,572,329)

Table B.8: Type–3 Primes p with 256 ≤ dlg pe ≤ 572.

Type–4 Primes

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
5 (1,5,2) 5 (1,5,1) 6 (2,3,1) 7 (1,7,1) 9 (1,9,2)

10 (2,5,2) 10 (2,5,1) 11 (1,11,5) 12 (2,6,1) 13 (1,13,5)
13 (1,13,1) 14 (2,7,2) 14 (2,7,1) 16 (4,4,1) 17 (1,17,8)
17 (1,17,6) 17 (1,17,5) 17 (1,17,1) 19 (1,19,9) 19 (1,19,5)
19 (1,19,1) 20 (2,10,1) 22 (2,11,1) 23 (1,23,4) 24 (2,12,1)
24 (6,4,1) 24 (8,3,1) 25 (1,25,12) 26 (2,13,6) 27 (1,27,11)
29 (1,29,6) 29 (1,29,9) 29 (1,29,2) 29 (1,29,8) 31 (1,31,9)
31 (1,31,1) 35 (5,7,1) 37 (1,37,5) 37 (1,37,17) 37 (1,37,18)
38 (2,19,5) 39 (3,13,1) 39 (3,13,4) 41 (1,41,5) 41 (1,41,6)
41 (1,41,10) 41 (1,41,16) 41 (1,41,12) 43 (1,43,8) 44 (2,22,7)
45 (9,5,1) 46 (2,23,3) 47 (1,47,7) 47 (1,47,20) 48 (2,24,7)
48 (4,12,5) 50 (2,25,7) 51 (3,17,3) 51 (17,3,1) 52 (4,13,3)
52 (4,13,5) 53 (1,53,9) 54 (2,27,4) 54 (6,9,4) 55 (1,55,9)
55 (1,55,7) 56 (4,14,5) 56 (8,7,3) 57 (3,19,6) 58 (2,29,3)
59 (1,59,11) 59 (1,59,28) 59 (1,59,12) 59 (1,59,13) 60 (2,30,7)
60 (6,10,3) 61 (1,61,5) 61 (1,61,1) 61 (1,61,26) 61 (1,61,24)
61 (1,61,21) 62 (2,31,8) 64 (2,32,5) 64 (4,16,3) 64 (8,8,3)

Table B.9: Type–4 Primes p with 4 ≤ dlg pe ≤ 64.

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
161 (1,161,60) 161 (1,161,72) 162 (2,81,28) 162 (6,27,13) 163 (1,163,61)
164 (2,82,13) 164 (2,82,3) 164 (2,82,39) 165 (1,165,38) 165 (3,55,3)
166 (2,83,27) 170 (2,85,4) 170 (10,17,3) 170 (34,5,1) 171 (3,57,17)
172 (2,86,35) 173 (1,173,33) 173 (1,173,14) 173 (1,173,53) 173 (1,173,81)
173 (1,173,9) 173 (1,173,25) 174 (2,87,1) 174 (2,87,10) 174 (2,87,40)
175 (1,175,67) 176 (2,88,37) 176 (4,44,5) 176 (16,11,5) 176 (16,11,3)
177 (1,177,68) 177 (3,59,19) 178 (2,89,42) 179 (1,179,29) 179 (1,179,85)
180 (4,45,8) 180 (6,30,13) 181 (1,181,77) 181 (1,181,14) 181 (1,181,22)
181 (1,181,9) 182 (2,91,15) 182 (2,91,45) 183 (3,61,19) 183 (3,61,7)
184 (2,92,9) 184 (2,92,21) 184 (2,92,27) 185 (1,185,14) 185 (1,185,28)
185 (1,185,58) 185 (5,37,10) 186 (6,31,2) 187 (1,187,24) 187 (1,187,9)
187 (1,187,16) 187 (11,17,8) 188 (4,47,5) 188 (4,47,4) 189 (9,21,8)
190 (2,95,39) 190 (2,95,7) 190 (10,19,3) 191 (1,191,31) 191 (1,191,24)
191 (1,191,64) 192 (2,96,13) 193 (1,193,5) 193 (1,193,30) 193 (1,193,41)
193 (1,193,18) 193 (1,193,82) 193 (1,193,50) 193 (1,193,21) 194 (2,97,32)
194 (2,97,36) 194 (2,97,9) 195 (1,195,17) 195 (1,195,89) 196 (4,49,1)
196 (4,49,3) 196 (28,7,2) 197 (1,197,64) 197 (1,197,80) 199 (1,199,89)
199 (1,199,25) 199 (1,199,83) 199 (1,199,55) 199 (1,199,11) 200 (4,50,3)
201 (3,67,12) 202 (2,101,38) 203 (1,203,81) 203 (7,29,7) 204 (68,3,1)
205 (5,41,17) 206 (2,103,17) 206 (2,103,15) 206 (2,103,48) 206 (2,103,3)
207 (3,69,25) 207 (9,23,9) 208 (8,26,3) 209 (1,209,98) 209 (1,209,90)
210 (2,105,52) 211 (1,211,12) 211 (1,211,61) 211 (1,211,24) 212 (4,53,17)
212 (4,53,8) 213 (1,213,2) 213 (3,71,19) 213 (3,71,6) 214 (2,107,53)
214 (2,107,4) 215 (1,215,59) 215 (1,215,23) 216 (72,3,1) 221 (1,221,42)
221 (1,221,2) 223 (1,223,61) 223 (1,223,67) 223 (1,223,31) 223 (1,223,105)
224 (2,112,3) 224 (4,56,5) 224 (32,7,3)

Table B.10: Type–4 Primes p with 160 ≤ dlg pe ≤ 224.
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‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
223 (1,223,105) 223 (1,223,67) 223 (1,223,31) 223 (1,223,61) 224 (2,112,3)
224 (4,56,5) 224 (32,7,3) 225 (3,75,28) 226 (2,113,35) 226 (2,113,13)
227 (1,227,89) 229 (1,229,90) 229 (1,229,73) 230 (2,115,37) 232 (2,116,33)
233 (1,233,2) 233 (1,233,20) 233 (1,233,9) 234 (18,13,6) 235 (1,235,4)
235 (1,235,113) 235 (1,235,112) 235 (5,47,21) 236 (2,118,19) 236 (4,59,5)
237 (3,79,32) 238 (2,119,55) 239 (1,239,84) 239 (1,239,29) 239 (1,239,44)
241 (1,241,30) 241 (1,241,77) 241 (1,241,92) 242 (2,121,3) 243 (1,243,65)
243 (1,243,5) 245 (1,245,88) 246 (6,41,9) 246 (6,41,6) 246 (6,41,16)
247 (1,247,17) 248 (2,124,15) 250 (10,25,6) 250 (10,25,3) 251 (1,251,72)
251 (1,251,93) 252 (4,63,17) 252 (4,63,20) 254 (2,127,32) 254 (2,127,61)
254 (2,127,27) 255 (3,85,13) 255 (5,51,1) 255 (15,17,7)

Table B.11: Type–4 Primes p with 224 ≤ dlg pe ≤ 256.

‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)
255 (3,85,13) 255 (5,51,1) 255 (15,17,7) 257 (1,257,45) 257 (1,257,60)
257 (1,257,108) 258 (6,43,10) 258 (6,43,18) 259 (1,259,124) 259 (1,259,76)
260 (2,130,27) 260 (10,26,5) 261 (3,87,22) 262 (2,131,44) 262 (2,131,59)
262 (2,131,28) 262 (2,131,46) 262 (2,131,61) 262 (2,131,34) 263 (1,263,45)
263 (1,263,28) 264 (6,44,15) 265 (1,265,109) 265 (5,53,18) 266 (2,133,1)
266 (2,133,17) 266 (14,19,9) 268 (2,134,63) 269 (1,269,53) 269 (1,269,13)
270 (6,45,14) 271 (1,271,120) 271 (1,271,116) 274 (2,137,8) 274 (2,137,25)
276 (6,46,15) 276 (6,46,7) 277 (1,277,102) 277 (1,277,24) 278 (2,139,14)
278 (2,139,29) 278 (2,139,32) 278 (2,139,12) 278 (2,139,58) 279 (1,279,89)
279 (3,93,16) 280 (4,70,31) 280 (20,14,3) 281 (1,281,81) 281 (1,281,140)
281 (1,281,122) 281 (1,281,49) 282 (2,141,10) 283 (1,283,91) 283 (1,283,48)
283 (1,283,28) 284 (2,142,43) 284 (2,142,9) 285 (15,19,6) 285 (15,19,3)
287 (1,287,20) 287 (1,287,65) 287 (1,287,121) 289 (1,289,114) 289 (1,289,33)
289 (1,289,116) 289 (1,289,12) 290 (2,145,57) 290 (2,145,12) 290 (2,145,41)
291 (1,291,17) 291 (3,97,27) 292 (2,146,39) 294 (2,147,19) 294 (2,147,64)
294 (6,49,11) 294 (6,49,3) 294 (42,7,1) 295 (1,295,9) 295 (5,59,23)
296 (4,74,15) 296 (8,37,10) 297 (9,33,13) 298 (2,149,44) 299 (1,299,128)
300 (50,6,1) 301 (1,301,30) 301 (1,301,97) 302 (2,151,15) 303 (1,303,17)
304 (2,152,59) 304 (4,76,7) 305 (1,305,28) 305 (1,305,137) 305 (5,61,30)
306 (6,51,25) 307 (1,307,8) 307 (1,307,19) 307 (1,307,57) 307 (1,307,132)
307 (1,307,76) 307 (1,307,115) 307 (1,307,9) 307 (1,307,124) 307 (1,307,136)
307 (1,307,17) 308 (2,154,43) 308 (28,11,5) 310 (2,155,4) 313 (1,313,74)
313 (1,313,140) 313 (1,313,97) 313 (1,313,73) 314 (2,157,14) 314 (2,157,7)
314 (2,157,59) 314 (2,157,46) 315 (3,105,8) 315 (105,3,1) 316 (2,158,53)
316 (4,79,5) 316 (4,79,36) 316 (4,79,29) 317 (1,317,149) 318 (2,159,43)
318 (2,159,49) 319 (1,319,115) 319 (11,29,5) 320 (4,80,23) 321 (1,321,86)
321 (1,321,20) 321 (3,107,42) 322 (2,161,71) 323 (1,323,13) 324 (2,162,61)
324 (2,162,13) 324 (6,54,25) 324 (12,27,5) 325 (5,65,6) 325 (13,25,8)
326 (2,163,16) 326 (2,163,19) 327 (1,327,131) 329 (1,329,138) 330 (2,165,4)
330 (2,165,19) 330 (6,55,4) 331 (1,331,43) 332 (2,166,43) 332 (2,166,9)
333 (1,333,158) 333 (3,111,55) 333 (9,37,18) 334 (2,167,53) 335 (1,335,9)
335 (5,67,25) 335 (5,67,13) 336 (2,168,1) 337 (1,337,149) 337 (1,337,18)
338 (2,169,24) 338 (2,169,2) 338 (2,169,55) 340 (4,85,22) 340 (10,34,13)
342 (2,171,64) 342 (6,57,8) 343 (1,343,131) 343 (1,343,72) 343 (1,343,51)
343 (1,343,117) 343 (7,49,4) 343 (7,49,17) 345 (5,69,28) 345 (15,23,10)
345 (23,15,4) 347 (1,347,60) 347 (1,347,164) 347 (1,347,16) 347 (1,347,120)
347 (1,347,101) 348 (4,87,5) 349 (1,349,133) 349 (1,349,54) 351 (1,351,149)
351 (1,351,23) 352 (2,176,69) 352 (2,176,35) 352 (2,176,21) 352 (8,44,15)
353 (1,353,124) 353 (1,353,101) 353 (1,353,73) 353 (1,353,168) 353 (1,353,125)
354 (6,59,19) 355 (1,355,169) 355 (5,71,17) 356 (4,89,21) 357 (1,357,122)
358 (2,179,28) 359 (1,359,36) 359 (1,359,113) 359 (1,359,160) 359 (1,359,96)
360 (6,60,17) 360 (12,30,1) 361 (1,361,137) 361 (1,361,21) 361 (1,361,101)
362 (2,181,58) 362 (2,181,84) 362 (2,181,18) 363 (1,363,59) 363 (1,363,107)
363 (3,121,49) 363 (3,121,43) 363 (3,121,16) 363 (3,121,36) 365 (1,365,168)
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‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

365 (5,73,6) 366 (2,183,10) 366 (2,183,34) 366 (6,61,28) 367 (1,367,121)
367 (1,367,32) 367 (1,367,181) 368 (4,92,45) 369 (1,369,38) 370 (2,185,89)
370 (2,185,51) 372 (62,6,1) 373 (1,373,98) 373 (1,373,48) 373 (1,373,33)
373 (1,373,102) 373 (1,373,109) 373 (1,373,94) 373 (1,373,114) 374 (2,187,53)
374 (2,187,92) 374 (2,187,27) 375 (3,125,13) 376 (4,94,37) 377 (1,377,9)
377 (1,377,122) 378 (18,21,10) 379 (1,379,53) 379 (1,379,101) 379 (1,379,112)
379 (1,379,188) 379 (1,379,61) 380 (2,190,51) 380 (4,95,3) 381 (1,381,182)
381 (3,127,50) 381 (3,127,31) 381 (3,127,10) 382 (2,191,76) 382 (2,191,71)
383 (1,383,13) 383 (1,383,33) 383 (1,383,5) 383 (1,383,68) 384 (12,32,5)
384 (16,24,5) 386 (2,193,84) 386 (2,193,24) 387 (9,43,16) 387 (9,43,5)
388 (2,194,5) 388 (2,194,3) 389 (1,389,26) 389 (1,389,81) 389 (1,389,136)
389 (1,389,146) 390 (30,13,5) 391 (1,391,177) 391 (1,391,19) 391 (1,391,7)
391 (1,391,67) 391 (1,391,80) 391 (23,17,5) 392 (4,98,3) 393 (1,393,164)
394 (2,197,54) 394 (2,197,74) 394 (2,197,44) 394 (2,197,94) 395 (1,395,19)
395 (5,79,28) 396 (2,198,91) 396 (4,99,35) 397 (1,397,29) 397 (1,397,97)
399 (3,133,37) 400 (2,200,27) 400 (2,200,17) 400 (80,5,2) 401 (1,401,5)
401 (1,401,137) 401 (1,401,86) 401 (1,401,84) 402 (2,201,100) 402 (2,201,64)
403 (1,403,188) 403 (1,403,28) 404 (2,202,75) 404 (4,101,3) 406 (58,7,3)
407 (1,407,91) 407 (1,407,21) 407 (1,407,115) 408 (2,204,19) 408 (2,204,25)
409 (1,409,45) 410 (10,41,19) 411 (3,137,67) 412 (2,206,69) 412 (2,206,45)
412 (2,206,99) 412 (2,206,83) 413 (1,413,73) 413 (1,413,88) 413 (7,59,27)
414 (6,69,14) 415 (1,415,143) 415 (5,83,19) 415 (5,83,4) 416 (2,208,25)
417 (3,139,55) 418 (22,19,9) 419 (1,419,45) 419 (1,419,204) 419 (1,419,139)
421 (1,421,165) 421 (1,421,57) 423 (1,423,119) 423 (141,3,1) 425 (1,425,42)
426 (6,71,21) 427 (1,427,11) 427 (1,427,40) 427 (1,427,125) 428 (2,214,103)
429 (3,143,71) 430 (10,43,11) 430 (10,43,17) 430 (10,43,1) 431 (1,431,200)
431 (1,431,155) 432 (6,72,35) 433 (1,433,129) 433 (1,433,168) 433 (1,433,97)
433 (1,433,73) 433 (1,433,102) 433 (1,433,72) 434 (2,217,24) 434 (2,217,86)
434 (2,217,15) 435 (3,145,11) 435 (15,29,13) 436 (2,218,53) 436 (2,218,63)
436 (4,109,31) 436 (4,109,21) 437 (1,437,40) 437 (1,437,197) 438 (2,219,79)
438 (6,73,35) 439 (1,439,200) 440 (8,55,14) 441 (21,21,10) 442 (2,221,79)
442 (26,17,1) 442 (26,17,5) 444 (2,222,31) 444 (4,111,17) 444 (4,111,50)
444 (12,37,10) 445 (1,445,69) 446 (2,223,103) 446 (2,223,25) 447 (1,447,161)
447 (3,149,5) 447 (3,149,13) 448 (4,112,55) 449 (1,449,21) 449 (1,449,13)
449 (1,449,29) 449 (1,449,116) 450 (2,225,16) 450 (10,45,14) 451 (11,41,12)
451 (41,11,3) 452 (2,226,1) 453 (3,151,8) 454 (2,227,64) 454 (2,227,40)
454 (2,227,69) 454 (2,227,94) 454 (2,227,3) 455 (1,455,193) 455 (13,35,4)
456 (4,114,29) 456 (6,76,27) 456 (12,38,3) 458 (2,229,53) 458 (2,229,83)
458 (2,229,85) 459 (9,51,11) 459 (51,9,1) 460 (20,23,1) 461 (1,461,221)
466 (2,233,83) 466 (2,233,22) 467 (1,467,187) 467 (1,467,208) 467 (1,467,9)
467 (1,467,65) 467 (1,467,91) 468 (2,234,115) 468 (4,117,5) 468 (4,117,20)
468 (4,117,17) 469 (1,469,65) 469 (1,469,72) 469 (1,469,128) 469 (1,469,216)
470 (10,47,17) 471 (1,471,11) 471 (1,471,65) 471 (3,157,60) 472 (2,236,33)
472 (2,236,21) 475 (1,475,64) 475 (1,475,67) 477 (1,477,218) 478 (2,239,104)
479 (1,479,52) 479 (1,479,181) 479 (1,479,129) 479 (1,479,116) 479 (1,479,204)
480 (20,24,7) 481 (1,481,213) 481 (1,481,165) 482 (2,241,85) 482 (2,241,59)
483 (3,161,57) 484 (4,121,19) 484 (4,121,49) 485 (1,485,62) 487 (1,487,25)
488 (2,244,115) 488 (8,61,30) 489 (3,163,28) 489 (3,163,26) 489 (3,163,11)
489 (3,163,23) 489 (3,163,15) 490 (10,49,9) 491 (1,491,120) 491 (1,491,44)
491 (1,491,84) 492 (6,82,27) 493 (1,493,33) 493 (1,493,240) 493 (1,493,49)
493 (1,493,214) 494 (2,247,112) 495 (1,495,107) 495 (5,99,1) 496 (2,248,111)
496 (62,8,3) 497 (1,497,108) 497 (7,71,14) 499 (1,499,99) 499 (1,499,64)
501 (1,501,110) 501 (3,167,47) 502 (2,251,45) 502 (2,251,123) 502 (2,251,85)
503 (1,503,107) 504 (24,21,8) 504 (168,3,1) 505 (1,505,109) 505 (1,505,222)
505 (5,101,6) 506 (46,11,5) 507 (3,169,57) 507 (3,169,28) 507 (3,169,75)
509 (1,509,146) 509 (1,509,162) 509 (1,509,73) 509 (1,509,160) 509 (1,509,246)
509 (1,509,248) 510 (10,51,23) 511 (1,511,145) 511 (1,511,81) 511 (7,73,32)
512 (32,16,1) 514 (2,257,128) 514 (2,257,57) 516 (86,6,1) 517 (1,517,114)
517 (1,517,41) 517 (1,517,216) 517 (1,517,18) 517 (1,517,230) 517 (11,47,7)
518 (2,259,108) 518 (14,37,5) 518 (14,37,6) 521 (1,521,112) 521 (1,521,1)
521 (1,521,97) 521 (1,521,114) 521 (1,521,153) 522 (2,261,85) 522 (2,261,16)
522 (6,87,28) 522 (6,87,32) 522 (18,29,7) 522 (18,29,10) 523 (1,523,91)

126



‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c) ‖p‖ (w, d, c)

523 (1,523,184) 523 (1,523,181) 523 (1,523,244) 523 (1,523,53) 524 (2,262,21)
524 (2,262,81) 525 (3,175,48) 526 (2,263,103) 527 (1,527,88) 529 (1,529,168)
529 (1,529,5) 529 (1,529,89) 529 (1,529,188) 529 (1,529,262) 529 (1,529,242)
530 (2,265,46) 530 (2,265,31) 530 (2,265,7) 530 (10,53,4) 531 (1,531,65)
531 (3,177,68) 532 (4,133,60) 532 (28,19,6) 533 (1,533,122) 533 (1,533,160)
534 (6,89,22) 534 (6,89,6) 535 (1,535,157) 536 (2,268,117) 536 (4,134,5)
536 (8,67,7) 537 (3,179,82) 538 (2,269,63) 538 (2,269,84) 538 (2,269,69)
538 (2,269,8) 538 (2,269,54) 540 (4,135,8) 541 (1,541,270) 542 (2,271,111)
543 (3,181,51) 544 (8,68,23) 544 (32,17,3) 544 (32,17,1) 545 (1,545,108)
545 (1,545,268) 545 (1,545,154) 545 (1,545,2) 545 (1,545,248) 546 (2,273,76)
546 (2,273,10) 546 (14,39,19) 547 (1,547,185) 547 (1,547,248) 547 (1,547,120)
548 (4,137,26) 549 (3,183,82) 549 (3,183,11) 550 (2,275,47) 550 (2,275,21)
550 (10,55,2) 551 (1,551,35) 551 (1,551,92) 551 (1,551,131) 553 (1,553,209)
553 (1,553,205) 553 (1,553,101) 553 (1,553,18) 553 (1,553,12) 554 (2,277,97)
554 (2,277,69) 554 (2,277,65) 554 (2,277,106) 554 (2,277,10) 554 (2,277,90)
554 (2,277,51) 555 (15,37,3) 556 (2,278,27) 556 (4,139,23) 559 (1,559,236)
559 (1,559,189) 559 (1,559,163) 559 (1,559,164) 560 (2,280,129) 560 (112,5,1)
562 (2,281,94) 563 (1,563,64) 565 (1,565,152) 565 (1,565,9) 565 (1,565,42)
566 (2,283,11) 566 (2,283,14) 566 (2,283,75) 566 (2,283,10) 567 (21,27,7)
567 (63,9,4) 568 (2,284,5) 568 (4,142,21) 569 (1,569,64) 569 (1,569,53)
570 (6,95,39) 571 (1,571,97) 571 (1,571,96) 572 (2,286,133)

Table B.12: Type–4 Primes p with 256 ≤ dlg pe ≤ 572.

Type–6 Primes

(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)
(3,3) (4,1) (4,3) (5,5) (6,3) (7,3) (8,1) (8,7) (9,9)

(10,7) (10,9) (11,5) (12,3) (15,3) (15,11) (15,15) (16,1) (16,3)
(16,7) (16,15) (18,3) (18,7) (18,9) (20,7) (20,13) (21,17) (22,15)
(23,9) (23,11) (23,15) (26,15) (28,3) (28,7) (29,11) (30,3) (30,7)
(30,9) (30,15) (30,19) (31,11) (32,15) (33,17) (33,29) (34,25) (36,31)
(37,9) (37,29) (38,7) (38,13) (39,23) (39,39) (40,15) (40,27) (41,27)

(42,15) (43,29) (43,39) (44,7) (44,21) (44,27) (46,15) (47,5) (47,9)
(47,41) (48,21) (51,21) (52,21) (52,37) (53,5) (53,41) (55,3) (55,11)
(55,51) (57,9) (57,35) (60,33) (61,15) (61,21) (61,57) (63,29)

Table B.13: Type–6 Primes p with 4 ≤ dlg pe ≤ 64.

(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)
(160,7) (161,107) (162,19) (162,49) (163,21) (163,45) (163,141)

(164,117) (164,135) (164,151) (165,141) (165,147) (166,85) (167,83)
(168,87) (168,117) (169,147) (170,49) (170,55) (170,79) (170,85)
(170,97) (170,133) (170,135) (171,129) (172,105) (173,77) (173,165)
(174,7) (174,37) (174,73) (174,129) (175,9) (175,65) (177,75)

(177,105) (177,107) (178,87) (178,99) (180,15) (180,115) (181,165)
(182,49) (184,27) (184,63) (185,159) (185,179) (188,57) (188,123)

(188,153) (189,35) (189,59) (189,131) (189,135) (190,129) (191,5)
(191,95) (192,133) (193,65) (193,71) (193,129) (193,137) (194,27)
(194,67) (194,103) (195,35) (195,53) (195,75) (195,119) (196,21)

(197,107) (197,117) (197,119) (198,15) (198,49) (198,169) (199,101)
(199,123) (202,67) (202,189) (203,15) (204,7) (204,157) (206,33)
(206,75) (206,169) (207,203) (209,47) (210,33) (210,177) (211,71)
(212,57) (213,75) (214,7) (217,129) (218,163) (219,185) (220,217)
(221,81) (222,49) (222,57) (222,109) (222,127) (222,163) (223,189)

Table B.14: Type–6 Primes p with 160 ≤ dlg pe ≤ 224.
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(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)

(223,189) (225,119) (225,141) (228,3) (230,67) (230,163) (230,183)
(231,105) (231,171) (234,43) (234,225) (235,81) (235,95) (236,25)
(236,97) (236,193) (238,67) (238,189) (238,199) (239,29) (239,131)

(240,115) (242,69) (243,59) (243,203) (244,133) (244,235) (247,63)
(248,81) (249,119) (250,25) (251,65) (251,69) (251,89) (251,105)

(251,233) (253,39) (253,51) (254,79) (254,153) (254,163) (254,207)
(254,247) (255,95) (255,141)

Table B.15: Type–6 Primes p with 224 ≤ dlg pe ≤ 256.

(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)
(255,95) (255,141) (257,155) (258,73) (260,223) (261,105) (261,137)
(262,79) (263,9) (263,35) (263,83) (264,175) (265,77) (265,137)

(266,133) (266,135) (266,193) (268,43) (268,111) (268,121) (269,245)
(270,127) (270,133) (272,57) (272,81) (272,163) (272,223) (273,5)
(273,35) (274,63) (274,67) (274,177) (276,157) (277,101) (277,179)

(277,267) (278,117) (279,89) (280,45) (281,197) (282,159) (282,189)
(285,17) (286,43) (287,35) (287,65) (287,273) (288,127) (289,101)
(291,71) (292,13) (292,91) (293,239) (294,67) (294,169) (294,205)

(294,249) (295,9) (295,143) (295,291) (296,61) (296,163) (296,247)
(297,11) (297,17) (297,215) (297,227) (297,245) (297,249) (300,157)
(301,27) (301,165) (301,261) (303,101) (304,37) (305,131) (305,285)
(306,45) (306,73) (306,117) (307,135) (308,27) (308,81) (310,15)

(310,189) (310,265) (310,283) (311,111) (311,303) (312,91) (313,125)
(313,279) (313,305) (314,93) (314,277) (314,307) (315,81) (315,203)
(315,219) (316,87) (317,9) (317,317) (319,9) (319,101) (319,123)
(319,281) (319,293) (320,27) (320,261) (321,165) (322,219) (322,297)
(323,273) (325,137) (325,315) (326,249) (327,9) (327,233) (328,15)
(329,39) (329,239) (330,93) (330,295) (331,203) (333,285) (335,173)

(335,183) (335,239) (336,241) (337,71) (337,105) (337,177) (338,97)
(338,99) (339,185) (339,275) (339,303) (340,291) (341,5) (341,77)
(342,15) (342,85) (343,225) (343,269) (344,231) (344,343) (345,107)

(348,241) (351,143) (351,345) (352,55) (352,81) (352,223) (353,141)
(353,329) (353,335) (355,141) (357,231) (357,347) (359,23) (359,141)
(360,105) (360,313) (361,281) (363,309) (365,239) (366,309) (367,69)
(368,127) (368,265) (369,65) (370,69) (370,349) (371,329) (372,147)
(374,289) (375,81) (375,171) (376,115) (376,301) (376,331) (378,25)
(379,99) (380,127) (382,255) (383,369) (384,231) (384,331) (385,189)

(386,235) (386,267) (386,357) (388,133) (389,89) (390,3) (390,133)
(392,207) (392,351) (393,77) (393,101) (393,249) (393,291) (393,327)
(393,371) (394,97) (394,169) (394,267) (395,29) (396,231) (396,253)
(396,261) (397,387) (398,127) (399,51) (400,181) (403,293) (404,55)
(404,63) (404,265) (406,129) (406,169) (406,405) (407,309) (408,37)

(408,231) (408,247) (408,267) (408,325) (408,385) (409,29) (409,125)
(409,381) (409,399) (410,33) (410,375) (411,63) (411,333) (411,345)
(412,67) (412,115) (412,385) (413,221) (413,317) (413,411) (414,315)

(415,323) (416,235) (417,245) (418,163) (419,299) (420,45) (421,105)
(421,261) (422,163) (422,273) (423,309) (424,163) (424,423) (425,57)
(425,329) (425,387) (426,423) (427,69) (427,183) (428,345) (429,131)
(430,73) (431,173) (433,335) (434,103) (436,295) (436,303) (436,337)

(437,117) (437,249) (437,425) (438,25) (438,213) (439,101) (440,187)
(441,227) (441,257) (442,189) (443,53) (444,267) (445,41) (445,95)
(445,227) (445,269) (446,33) (446,435) (447,99) (448,211) (450,213)
(450,225) (450,289) (451,23) (451,165) (452,37) (452,261) (452,301)
(453,89) (453,165) (453,221) (454,375) (454,433) (455,105) (455,393)
(456,21) (456,243) (456,375) (458,127) (459,101) (459,285) (459,371)

(461,321) (461,369) (463,81) (465,29) (466,423) (467,329) (470,99)
(470,375) (472,445) (473,149) (473,327) (474,309) (476,223) (476,397)
(477,315) (479,221) (480,165) (480,345) (481,65) (481,237) (482,475)
(483,329) (484,333) (485,165) (486,207) (486,345) (487,443) (489,179)
(489,345) (492,21) (492,247) (494,375) (495,51) (495,443) (497,159)
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(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)

(497,245) (498,375) (498,409) (499,161) (500,55) (500,135) (500,321)
(502,49) (502,135) (502,339) (502,343) (503,165) (503,309) (504,133)
(505,51) (505,179) (505,227) (505,377) (505,461) (507,351) (507,359)
(508,15) (509,35) (509,167) (509,179) (509,207) (509,281) (510,15)
(510,37) (510,325) (511,111) (512,75) (512,145) (512,285) (513,159)

(513,261) (513,431) (514,169) (514,255) (515,15) (516,121) (516,303)
(517,357) (517,405) (518,37) (518,57) (518,99) (519,393) (520,513)
(522,345) (523,375) (524,117) (524,427) (527,249) (527,509) (528,381)
(529,69) (530,189) (531,375) (531,411) (532,123) (532,331) (533,279)
(535,83) (536,37) (536,261) (536,403) (538,87) (538,213) (538,345)

(538,465) (538,499) (539,119) (539,243) (539,393) (540,31) (540,91)
(540,183) (540,421) (540,457) (542,93) (542,175) (542,439) (544,163)
(544,477) (546,15) (546,393) (546,399) (548,453) (549,261) (549,435)
(549,537) (551,335) (552,81) (552,487) (553,549) (554,417) (555,345)
(556,63) (557,357) (557,377) (557,467) (557,531) (558,33) (558,39)
(558,99) (559,153) (559,231) (559,273) (559,503) (559,519) (560,211)
(562,45) (562,147) (562,153) (562,415) (563,459) (564,115) (564,253)

(564,351) (566,427) (566,445) (568,51) (569,369) (570,25) (571,71)
(571,183) (571,221) (571,261) (572,57) (572,525) (572,555)

Table B.16: Type–6 Primes p with 256 ≤ dlg pe ≤ 572.

Type–8 Primes

(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)
(4,3) (5,1) (5,3) (6,3) (6,5) (7,1) (8,5) (9,3)
(9,9) (10,3) (10,5) (11,9) (12,3) (12,5) (13,1) (13,13)

(14,3) (16,15) (17,1) (17,9) (17,13) (18,5) (18,11) (18,17)
(19,1) (19,19) (20,3) (20,5) (20,17) (21,9) (21,19) (21,21)
(22,3) (22,17) (23,15) (23,21) (24,3) (24,17) (26,5) (29,3)
(31,1) (31,19) (32,5) (32,17) (33,9) (33,25) (35,31) (36,5)

(36,17) (36,23) (37,25) (37,31) (39,7) (39,19) (41,21) (41,31)
(42,11) (42,17) (42,33) (44,17) (46,21) (50,27) (50,35) (52,47)
(54,33) (54,53) (55,55) (56,5) (56,27) (56,47) (57,13) (57,25)
(57,49) (58,27) (58,57) (59,55) (61,1) (61,31) (61,45) (62,57)
(63,25) (64,59)

Table B.17: Type–8 Primes p with 4 ≤ dlg pe ≤ 64.

(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)

(160,47) (160,57) (160,75) (161,159) (162,101) (163,55) (163,69)
(164,63) (164,155) (165,25) (165,61) (165,115) (166,5) (167,135)

(170,143) (170,153) (171,19) (172,95) (172,155) (173,55) (173,103)
(174,3) (174,17) (174,143) (174,153) (174,161) (178,41) (179,49)

(179,159) (180,47) (180,107) (181,165) (182,161) (183,147) (184,33)
(184,59) (187,85) (187,105) (188,125) (188,143) (188,167) (188,173)
(189,25) (190,11) (190,33) (190,95) (191,19) (191,51) (191,69)

(191,139) (193,31) (193,123) (194,33) (194,75) (195,135) (196,15)
(196,47) (197,75) (197,111) (197,169) (198,17) (198,45) (199,49)

(199,189) (200,75) (200,117) (201,55) (201,111) (202,183) (202,195)
(203,159) (203,187) (204,167) (205,81) (206,5) (206,63) (207,91)
(207,157) (209,33) (210,47) (210,65) (210,165) (210,171) (210,203)
(211,175) (212,23) (212,29) (212,99) (212,149) (213,3) (213,61)
(213,123) (214,185) (215,157) (217,61) (218,33) (218,117) (219,121)
(220,77) (220,167) (221,3) (221,133) (222,117) (224,63)

Table B.18: Type–8 Primes p with 160 ≤ dlg pe ≤ 224.
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(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)

(224,63) (225,49) (225,81) (225,103) (226,5) (226,77) (226,155)
(226,203) (226,215) (228,93) (228,149) (228,185) (229,91) (230,27)
(230,77) (231,165) (231,217) (233,3) (233,159) (234,83) (235,15)

(235,151) (235,181) (236,209) (237,181) (238,161) (238,215) (239,87)
(239,199) (241,39) (242,63) (243,9) (243,31) (243,199) (244,189)
(245,163) (246,107) (246,171) (246,243) (247,81) (248,237) (249,75)
(250,207) (251,9) (252,129) (252,143) (254,245) (255,19) (255,31)
(256,189)

Table B.19: Type–8 Primes p with 224 ≤ dlg pe ≤ 256.

(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)
(255,19) (255,31) (256,189) (257,93) (258,87) (260,149) (261,223)

(261,261) (262,71) (265,49) (265,115) (265,139) (265,211) (266,3)
(266,213) (267,265) (268,77) (269,241) (270,53) (271,169) (272,237)
(273,205) (275,129) (275,199) (275,205) (276,89) (277,103) (277,181)
(278,93) (279,69) (279,231) (280,47) (280,105) (280,195) (281,139)

(281,259) (282,83) (282,93) (282,237) (282,245) (283,45) (284,173)
(285,9) (285,33) (286,165) (287,115) (288,167) (290,47) (290,83)

(291,19) (292,167) (292,197) (292,207) (294,35) (294,135) (294,177)
(294,245) (295,171) (296,285) (297,123) (297,171) (297,285) (299,69)
(300,153) (300,185) (301,265) (302,267) (302,293) (303,121) (303,207)
(303,241) (303,249) (304,75) (305,103) (307,99) (307,147) (307,187)
(307,255) (308,159) (308,189) (310,77) (310,255) (311,45) (311,75)
(311,181) (311,199) (311,271) (311,297) (312,203) (313,139) (314,113)
(316,57) (316,243) (316,267) (316,293) (317,33) (318,165) (318,275)

(320,197) (321,9) (321,45) (322,11) (322,185) (323,141) (323,247)
(323,309) (324,23) (324,177) (326,101) (326,117) (326,215) (328,155)
(329,139) (329,243) (329,273) (330,255) (331,61) (334,243) (335,321)

(336,3) (336,17) (336,303) (337,75) (338,15) (338,275) (338,315)
(339,147) (340,293) (340,299) (341,229) (342,65) (342,237) (342,263)
(342,317) (343,199) (343,291) (344,119) (344,219) (346,45) (346,57)
(346,197) (347,211) (348,117) (348,143) (348,257) (349,285) (350,113)
(350,131) (351,61) (351,135) (351,291) (353,139) (354,153) (354,251)
(355,49) (356,173) (356,227) (357,243) (363,75) (363,97) (363,105)

(363,111) (365,169) (365,261) (365,295) (365,325) (366,167) (368,315)
(369,25) (369,195) (372,177) (372,207) (373,333) (374,65) (374,153)

(374,371) (376,57) (377,259) (377,321) (379,19) (379,99) (379,319)
(379,355) (380,65) (381,313) (382,105) (382,227) (383,31) (383,187)
(383,367) (384,317) (385,265) (386,231) (388,45) (388,63) (388,269)
(388,347) (389,21) (389,51) (389,103) (389,313) (390,137) (390,293)
(390,383) (391,105) (391,127) (392,107) (392,299) (393,93) (393,331)
(394,377) (397,81) (398,131) (398,231) (399,91) (399,219) (401,31)
(401,261) (402,53) (403,379) (404,257) (404,309) (404,395) (405,235)
(405,331) (407,157) (407,171) (407,225) (407,321) (409,103) (410,51)
(411,205) (411,339) (411,355) (412,183) (412,243) (412,335) (413,21)
(414,17) (414,35) (415,45) (415,55) (415,267) (415,361) (415,391)

(418,147) (418,297) (419,69) (419,219) (420,317) (420,335) (421,271)
(422,101) (422,233) (422,377) (423,91) (424,389) (424,417) (425,301)
(425,379) (425,391) (426,321) (428,65) (428,387) (428,413) (429,55)
(431,201) (431,225) (431,325) (432,299) (432,335) (434,183) (434,201)
(434,287) (434,323) (435,97) (435,349) (435,387) (436,87) (436,117)
(436,249) (437,93) (438,417) (439,151) (439,169) (440,33) (440,173)
(441,361) (444,17) (444,173) (445,195) (446,77) (446,393) (447,325)
(447,441) (448,203) (448,207) (449,241) (449,373) (452,3) (452,183)
(453,285) (454,57) (454,63) (454,155) (455,217) (457,273) (457,349)
(458,57) (458,185) (460,77) (460,113) (460,147) (462,195) (463,157)

(463,405) (463,441) (464,437) (468,17) (468,167) (469,283) (470,35)
(470,51) (470,215) (471,147) (472,209) (474,135) (475,129) (475,379)

(476,153) (476,155) (476,315) (477,123) (477,313) (478,95) (478,341)
(480,47) (480,423) (481,273) (481,349) (481,411) (482,275) (483,301)
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(w, c) (w, c) (w, c) (w, c) (w, c) (w, c) (w, c)

(483,345) (483,381) (484,39) (484,117) (484,389) (484,465) (486,143)
(487,57) (487,339) (488,17) (488,345) (489,21) (489,115) (489,195)

(489,279) (489,345) (489,375) (489,403) (489,405) (491,75) (491,97)
(491,369) (492,129) (492,173) (492,189) (493,433) (493,439) (493,469)
(494,125) (495,31) (496,257) (499,151) (501,45) (501,91) (503,91)
(504,503) (505,91) (505,103) (505,139) (506,45) (506,243) (506,455)
(507,265) (507,417) (508,243) (510,75) (510,357) (510,443) (511,187)
(511,339) (511,481) (513,445) (515,225) (517,489) (517,493) (519,91)
(519,387) (520,383) (521,1) (521,115) (521,271) (521,489) (522,117)
(524,465) (525,363) (526,363) (526,497) (528,65) (528,189) (528,303)
(529,31) (529,309) (531,315) (531,525) (532,335) (533,153) (533,159)

(533,453) (534,521) (535,367) (535,405) (535,447) (536,149) (537,9)
(538,53) (538,71) (540,335) (541,81) (541,169) (541,339) (543,157)

(543,427) (543,487) (545,3) (546,11) (546,227) (547,537) (550,5)
(550,77) (550,227) (550,333) (551,231) (552,503) (553,441) (557,339)

(557,483) (558,261) (558,485) (559,411) (561,153) (563,9) (563,55)
(563,87) (563,439) (564,95) (564,345) (564,455) (565,45) (565,403)

(565,475) (565,511) (566,113) (566,243) (567,297) (569,199) (569,535)
(570,261) (570,453) (570,555) (571,369) (572,275)

Table B.20: Type–8 Primes p with 256 ≤ dlg pe ≤ 572.

B.2 Miscellaneous Tables

163 0.6601618000305602 229 0.6601618000002933
293 0.6601618000000000 373 0.6601618000000010
443 0.6601626400287576 167 0.6601618000001196
233 0.6601621375781488 307 0.6601618000000032
379 0.6601618000000000 449 0.6601618000004183
173 0.6601618000015275 239 0.6601648838772995
311 0.6601618000000231 383 0.6601618000003180
457 0.6601618000000000 179 0.6601672583567503
241 0.6601618000000014 313 0.6601618000000055
389 0.6601618000000002 461 0.6601618862559711
181 0.6601618003503314 251 0.6601644146853504
317 0.6601618072986696 397 0.6601619331669182
463 0.6601618053460310 191 0.6601663122607721
257 0.6601618000000000 331 0.6601618000000000
401 0.6601618000000000 467 0.6601618000000000
193 0.6601618000000035 263 0.6601618011782448
337 0.6601618019934138 409 0.6601618000000000
479 0.6601618000000006 197 0.6601618117785750
269 0.6601618000000035 347 0.6601618000000000
419 0.6601627389568755 487 0.6601618278293675
199 0.6601618000000000 271 0.6601618000000000
349 0.6601618000000000 421 0.6601618000000000
491 0.6601624838900602 211 0.6601618028601703
277 0.6601618000005250 353 0.6601618000007601
431 0.6601627429412305 499 0.6601618015028997
223 0.6601618019916406 281 0.6601618001007970
359 0.6601630787894492 433 0.6601618000000000
503 0.6601618000000000 227 0.6601618000000000
283 0.6601618071297543 367 0.6601618042396075
439 0.6601618000000001 509 0.6601618000000041

Table B.21: Values of cq for q = 2n, n Prime.
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