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History

I The first papers on pairings in cryptography
(Sakai-Ohgishi-Kasahara, Mitsunari-Sakai-Kasahara, Joux,
Verheul, Boneh-Franklin) all used pairings on supersingular
elliptic curves.

I I suggested using supersingular hyperelliptic curves, to get
larger embedding degrees.

I We can ask: Was this a good suggestion?

I After 6 years of research, the answer is: Yes and No.

I Yes: Generated lots of interesting research and open problems.

I No: Hyperelliptic curves usually less practical for pairings than
elliptic curves.
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Executive summary

With current knowledge on pairing implementation, I recommend
using elliptic curves for pairing-based cryptography.



Plan of talk

Joint work with Florian Hess and Frederik Vercauteren

I Brief introduction to hyperelliptic curves.

I Ate pairings and pairing implementation.

I Comparison between elliptic and hyperelliptic curves.

I Rubin-Silverberg compression.

I Torsion structure.

I Conclusions and open problems.

I If time: Pairing inversion.



Hyperelliptic curves

A hyperelliptic curve over a field Fq is the curve associated with
a non-singular equation of the form

C : y2 + h(x)y = f (x)

where h(x), f (x) ∈ Fq[x ].

Usually: deg(f (x)) = 2g + 1 and deg(h(x)) ≤ g in which case
there is a single point ∞ and the curve has genus g .

If the genus is 1 then we call the curve elliptic.

Example: y2 = x5 + 1 has genus 2.



Elliptic curve group law
For elliptic curves there is a group law on points given by a
geometric procedure.
The rule is that P + Q + R = 0 if P, Q and R are the points of
intersection (counting multiplicities) of the curve with a line.



Hyperelliptic group law

For genus g ≥ 2 there is not a group law on points, but one can
obtain a geometric group law on sets of points.

Let D1,D2,D3 be (multi-)sets of points.

Then D1 + D2 + D3 = 0 if there is curve F such that the
intersection of C and F (counting multiplicities) is exactly the
(multi-)set D1 ∪ D2 ∪ D3.



Hyperelliptic group law
{P,Q}+ {R,S}+ {T ,U} = 0



Divisor class group of a curve

The precise definitions use the language of divisors. See the
Handbook of Elliptic and Hyperelliptic Cryptography for
background.

Get divisor class group Pic0
Fq

(C ).

In the case of genus 1, Pic0
Fq

(E ) = E (Fq).



Mumford representation for divisors

Each divisor class has a reduced representative

E − d(∞)

where d ≤ g and E = (P1) + (P2) + · · ·+ (Pd) where
Pi = (xi , yi ) ∈ C (Fq) and Pi 6= −Pj for i 6= j .

Such a divisor is represented as a pair uE (x), vE (x) ∈ Fq[x ] where

uE (x) =
d∏

i=1

(x − xi ),

vE (xi ) = yi

and
vE (x)2 + h(x)vE (x)− f (x) ≡ 0 (mod uE (x)).



Addition of divisors

Cantor’s algorithm gives addition and reduction of divisors in
Mumford representation.

See Algorithm 1 in the paper.

It is straightforward to obtain the functions needed for Miller’s
algorithm.

For fast implementations use optimised explicit formulae (Harley,
Lange,...).



Group sizes

Theorem: If C is a curve of genus g then the divisor class group
has order

(
√

q − 1)2g ≤ #Pic0
Fq

(C ) ≤ (
√

q + 1)2g .

If q is large compared with g then this is ≈ qg .



Advantages of hyperelliptic over elliptic

I Security of the DLP depends on the size of the largest prime
divisor of the order of the group.
So for elliptic curves over Fq need q > 2160.
For genus 2 can have q ≈ 280 and for genus 3 can have
q ≈ 254.
In other words, have a more complicated group law but over a
smaller field.

I Use special curve equations to simplify explicit formulae for
the group law (see Lange and Lange-Stevens).

I Use degenerate divisors (P)− (∞) rather than
(P1) + (P2) + · · ·+ (Pg )− g(∞)
(Katagi-Akishita-Kitamura-Takagi).
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Pairings on hyperelliptic curves

I T. Okamoto and K. Sakurai, CRYPTO 1991.

I G. Frey and H.-G. Rück, Math. Comp. 1994.



Pairings

I assume that everyone here knows something about pairings.

Let C be a curve over Fq.

Let r | #Pic0
Fq

(C ).

Let k be smallest positive integer such that r | (qk − 1).
We call k the embedding degree.

Let P,Q ∈ Pic0
F

qk
(C ) have order r .

Let G1 = 〈P〉 and G2 = 〈Q〉.
Let GT = µr = {z ∈ Fqk : z r = 1}.

For security need, say, r > 2160 and qk > 21024 (or 22048?)



Tate-Lichtenbaum pairing

There is a function fr ,P which has a zero of multiplicity r at P and
pole of multiplicity r at ∞ and which is normalised appropriately
at ∞.

The reduced Tate-Lichtenbaum pairing is

e(P,Q) = fr ,P(Q)(q
k−1)/r .

Lemma: If r | N | (qk − 1) then

e(P,Q) = fN,P(Q)(q
k−1)/N .



Developments in pairing implementation

I Duursma and Lee were the first to exploit values N which are
not multiples of r .
These ideas were extended by Barreto, Galbraith,
O hÉigeartaigh and Scott (eta pairing) and Hess, Smart,
Vercauteren (ate pairing).

I One of the key ideas is to use values N which are smaller than
the order of P.
This is called loop shortening.

I One gets fast pairing computation on certain curves.
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Elliptic ate pairing

Allows loop shortening depending on the size of the trace of
Frobenius t.

Suitable curves maybe generated using the Brezing-Weng method.

Other talks, such as Mike Scott’s, will present examples of this.



Hyperelliptic ate pairing

G1 = Pic0
Fq

(C )[r ] (1-eigenspace of π := q-power Frobenius)

G2 = Pic0
F

qk
(C )[r ] ∩ ker(π − q) (q-eigenspace of π)

Theorem: (Granger, Hess, Oyono, Thériault, Vercauteren)
Let D1 = E1 − d1(∞) ∈ G1 and D2 = E2 − d2(∞) ∈ G2 be
reduced divisors. (Assume supports of E1 and E2 are disjoint).
Let [q]D2 be the reduced divisor equivalent to qD2. Denote by
fq,D2 the function with divisor qD2 − [q]D2 with leading coefficient
1 with respect to an Fq-rational uniformizer at ∞.
Then

a(D2,D1) = fq,D2(E1)

defines a non-degenerate bilinear pairing

a : G2 × G1 → µr .



Hyperelliptic ate pairing

I Note: No final exponentiation!

I But only if all denominators computed.
In practice, it is better to avoid computing denominators and
use a final exponentiation.

I Hence, there seems to be no practical advantage to not
needing the final exponentiation!

I Worse: lack of final exponentiation may make pairing
inversion easier.
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Implementation of the ate pairing

I As usual, one uses Miller’s algorithm with various standard
implementation tricks.

I Have to evaluate functions at divisor E = (uE (x), y − vE (x)).
This can be done using resultants.

I A good trick is to replace y by vE (x) (so all polynomials
depend on x only) and reduce modulo uE (x) (so all
polynomials are of degree ≤ g .
Then do a single resultant at the end.

I There is a connection with norms in function fields.

I See the paper for more details.
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Example (Barreto, G., Ó hÉigeartaigh, Scott)

(Using eta pairing)

Consider

C : y2 + y = x5 + x3 + d d ∈ {0, 1}

over F2m with gcd(m, 6) = 1.

Genus 2, embedding degree k = 12.

Pairing degenerate divisors using the eta pairing over F2103 gives
the fastest pairing computation time in software.



Example (Barreto, G., Ó hÉigeartaigh, Scott)

But:

I The implementation exploits 128-bit architecture.

I Degenerate divisors not necessarily secure for these
parameters.
(e.g., if using H(ID) = (P)− (∞) then probability of hash
collision only about 1/252.)
Using non-degenerate divisors slower than elliptic case.



Comparing elliptic and hyperelliptic pairings

Consider
e : G1 × G2 → GT .

Many criteria for comparison:

I Computation time for G1,G2,GT and pairing computation.

I Size of representation for G1,G2,GT .

I Flexibility and efficiency of parameter generation.

I Any other special properties.

See paper for full details.



Comparing elliptic and hyperelliptic pairings

Recall that one of the main advantages of hyperelliptic curves is
that q can be smaller (i.e., have a more complicated group law but
over a smaller field).

However, for pairings applications the field Fqk has to be large
independent of the genus.

Hence, at least one of G1,G2, have a more complicated group law
but over the same sized field.

Similarly, in Miller’s algorithm, evaluating more complicated
functions at more complicated divisors over the same sized field.
Hence, intuitively, pairings on curves of genus g ≥ 2 cannot be
faster than elliptic curves.



Comparison of loop shortening methods

In genus g the loop shortening is by a factor 1/g .

For elliptic curves the loop shortening can be by a factor ϕ(k).
(Note: also need k quite large, maximising ϕ(k) alone is not
desirable.)

Hence, one can usually match the loop shortening in the
hyperelliptic case by using elliptic curves.



Embedding degrees

I The original motivation for hyperelliptic curves was larger k.

I Since group size is qg and embedding is into (a subfield of)
F∗

qk the right measure of security expansion is k/g .

I There are some nice supersingular examples.
But supersingular curves have k/g ≤ 7.5 for small genus g .

I Future security needs larger k/g , so use ordinary curves.

I In the elliptic case there has been great success with ordinary
pairing-friendly curves (e.g., Cocks-Pinch, Barreto-Lynn-Scott,
Brezing-Weng, Barreto-Naehrig, Freeman-Scott-Teske).

I Much less success for hyperelliptic curves (Freeman).
Indeed, no good non-supersingular example known, which is a
pity.
Improving these methods is an interesting research problem.
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Rubin-Silverberg compression

I Rubin and Silverberg proposed an alternative way to view
pairings on abelian varieties.

I They observe that many supersingular abelian varieties can be
identified with subvarieties of Weil restrictions of supersingular
elliptic curves.

I An alternative way to view their method is as a form of point
compression for elliptic curves.

I Their method has the effect of making an elliptic curve look
like it has larger embedding degree.

I Their method works for all elliptic curves, not only
supersingular curves.

I For details see the paper.



Rubin-Silverberg compression

For example, the supersingular genus 2 curve over F2m with k = 12
has group order 22m ± 2(3m+1)/2 + 2m ± 2(m+1)/2 + 1.

A subgroup of the same order can be obtained using a
supersingular elliptic curve over F23m with k = 4.

The Rubin-Silverberg compression means that group elements
require the same storage.

Hence one gets more-or-less the same functionality using elliptic
curves with k = 4 as with the genus 2 curve with k = 12.



Torsion structures

I Some protocols in pairing-based cryptography (or even
non-pairing cryptography, e.g., vector decomposition problem)
use fact that elliptic curves give non-cyclic groups.

I Subgroup membership can be tested using the Weil pairing as,
for P,Q 6= ∞ of prime order r we have

er (P,Q) = 1 iff Q ∈ 〈P〉.

I In genus g ≥ 2 then the torsion structures are even more rich.
Are there new applications for this?



Torsion structures

Lemma: Let A be a supersingular abelian surface over Fq with
characteristic polynomial of Frobenius T 4 + aT 2 + q2.
Let r‖#A(Fq)
Then the eigenvalues of Frobenius on A[r ] are 1,−1, q,−q.
Let D1,D2,D3,D4 be an ordered eigenbasis for A[r ].
Let e be a Galois invariant non-degenerate pairing.
Then

e(Di ,Dj) = 1

unless (i , j) = (1, 3), (3, 1), (2, 4), (4, 2).



Conclusions

I For non-pairing cryptography there are potential advantages
of using hyperelliptic curves of genus g ≥ 2.
It is thus natural to consider hyperelliptic curves for
pairing-based cryptography.

I Our analysis indicates that, in practice, hyperelliptic curves are
not more efficient than elliptic curves for general pairing
applications.

I The only potentially significant advantage seems to be the
speed of operations in G1.
Hence, hyperelliptic curves may be preferable for protocols
with few pairing computations but many operations in G1.

I But, hyperelliptic pairings still a good research area!



Open problems

I Can further loop shortening be performed for the hyperelliptic
ate pairing?

I Give methods to construct non-supersingular pairing friendly
curves of genus g ≥ 2 and k in the range, say, 6g ≤ k ≤ 30g .
Ideally, these curves would have a single point at infinity and
would have useful twists.

I Work in progress of my student Dave Mireles gives fast
methods to compute pairings on hyperelliptic curves with two
points at infinity.

I Can also consider implementation of pairings for
non-hyperelliptic curves, although security is less good due to
Diem’s index calculus method.

I Consider whether efficient and secure pairing-based
cryptosystems can be developed for curves of genus g > 3, in
spite of the index calculus attacks on curves in this case.



Open problems

I Exploit the richer torsion structure available for abelian
varieties.
In particular, find cryptographic applications of pairings on
groups which require 3 or more generators.
A related problem is to give efficient methods to choose
divisors in the particular subgroups.

I Improve the efficiency of the Rubin-Silverberg elliptic curve
point decompression method.

I Generalise the Rubin-Silverberg method to divisor class groups
of curves of genus g ≥ 2.

I Recall in the Rubin-Silverberg construction one can identify
certain abelian varieties with subvarieties of the Weil
restriction of supersingular curves.
In the case where the abelian variety is a Jacobian, is there a
way to compute explicit homomorphisms between the elliptic
curve representation and the Jacobian representation?



Pairing inversion

Pairing-based cryptography relies on new computational problems.

It is important that these problems are studied, to give assurance
that pairing-based cryptography is secure.

See “Aspects of pairing inversion” cryptography eprint 2007/256.

Also see talk by Satoh.



Pairing inversion problems

Let G1, G2 and µr be cyclic groups of prime order r .

Consider any non-degenerate bilinear pairing

e : G1 × G2 −→ µr .

Fixed Argument Pairing Inversion 1 (FAPI-1): Given P ∈ G1

and z ∈ µr , compute Q ∈ G2 such that e(P,Q) = z .

Fixed Argument Pairing Inversion 2 (FAPI-2): Given Q ∈ G2

and z ∈ µr , compute P ∈ G1 such that e(P,Q) = z .



Evidence that these are hard problems

I Verheul considered the problem of computing a group
homomorphism from µr to E (Fq)[r ] and showed a number of
striking consequences.
We generalise his result.

I Theorem: Let E be an elliptic curve with a pairing as above.
Suppose one can solve FAPI-1 and FAPI-2 in polynomial time.
Then the Diffie-Hellman problem in µr and the Diffie-Hellman
problem in E (Fq)[r ] may be solved in polynomial time.
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Connection to bilinear Diffie-Hellman

Bilinear-Diffie-Hellman problem (BDH-1) is: given
P, aP, bP ∈ G1 and Q ∈ G2 to compute e(P,Q)ab.

Theorem: Suppose one can solve FAPI-1 in polynomial time, then
one can solve BDH-1 in polynomial time.

Note: It is sufficient to be able to invert one pairing on G1 × G2

to break BDH-1 for all pairings on G1 × G2.



Example

The curve E : y2 = x3 + 4 over Fp with
p = 41761713112311845269 has t = −1, r = 715827883, k = 31
and D = −3.

Now T = −2 and the ate pairing is

e(Q,P) =
(
yP − (3x2

Q)/(2yQ)xP − (−x3
Q + 8)/(2yQ)

)(qk−1)/(3r)

Pairing inversion for fixed (Q, z) is to find x , y ∈ Fp such that

(y − λx − ν)d = z

for d = (qk − 1)/(3r) and λ, ν ∈ Fpk as above.



Example

Problem is that there are too many d-th roots of z to try.

Is it possible to efficiently determine a d-th root of z of the correct
form?

Seems that the final exponentiation gives the security in this case.



Duursma-Lee example

Consider the Duursma-Lee curves

C : y2 = xp − x + b where b = ±1

over Fp with p ≡ 3 (mod 4).

Have genus g = (p − 1)/2 and embedding degree k = 2p

Take p = 83.

Then #Pic0
F83

(C ) ≈ 2262 and k = 2p = 166 so F83k ≈ 21058.



Duursma-Lee example

Let P,Q ∈ C (F83).

The Duursma-Lee/eta pairing of P with ψ(Q) for usual distortion
map ψ is

z = (gP(ψ(Q))/(xψ(Q) − xp2

P − 2b))2.

To solve FAPI-1 for this pairing: For each square root z1/2:

Compute f (x , y) = gP(x , y)− z1/2(x − xp2

P − 2b).
Take resultant with y2 = xp − x + b to get a polynomial in x of
degree p + 1.
Find roots in Fp, recover y and check solution.



Duursma-Lee example

So pairing inversion to a single point is easy.

Problem is that expect the pre-image to be a general divisor.

Solving for a general divisor involves solving a large system of
polynomial equations and seems to be hard.



Conclusions

So far we have not found a single example of a pairing which can
be efficiently inverted.

Hence our research supports the claim that pairing-based
cryptography is secure.


	Pairings
	Pairing Inversion

