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Abstract. We survey recent research on pairings on hyperelliptic curves
and present a comparison of the performance characteristics of pairings
on elliptic curves and hyperelliptic curves. Our analysis indicates that
hyperelliptic curves are not more efficient than elliptic curves for general
pairing applications.

1 Introduction

The original work on pairing-based cryptography [46, 47, 27, 6] used pairings on
elliptic curves. It was then natural to suggest using higher genus curves for
pairing applications [18]. The motivation given in [18] for considering higher
genus curves was to have a wider choice of possible embedding degrees k. This
motivation was supported by [42, 45] who showed that, for supersingular abelian
varieties, one can always get larger security parameter in dimension 4 than using
elliptic curves.

Koblitz [30] was the first to propose using divisor class groups of hyperelliptic
curves for cryptosystems based on the discrete logarithm problem. Since that
time there has been much research on comparing the speed of elliptic curves
and hyperelliptic curves for cryptography. The current state of the art (see [7,
34] for a survey) suggests that in some situations genus 2 curves can be faster
than elliptic curves. This gives further motivation for considering pairings on
hyperelliptic curves.

Duursma and Lee [11] were the first to give fast algorithms for computing
pairings on curves of genus ≥ 2. Their loop shortening idea was generalised in
[5, 26, 23]. Some other papers on hyperelliptic pairings are [10, 12, 35, 40].
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It is therefore natural to explore whether pairings on hyperelliptic curves can
be competitive/faster than pairings on elliptic curves, or whether there are any
other advantages. This paper surveys the current state of knowledge on pairings
on curves. We discuss possible advantages and disadvantages of using curves of
genus g > 1 and we present a number of open problems for future research.

The plan of the paper is as follows. We recall some background on hyper-
elliptic curves, divisor class groups, and representation of divisor classes. We
discuss the supposed advantages of hyperelliptic vs. elliptic curves in standard
cryptography (throughout the paper we use the phrase ‘non-pairing cryptogra-
phy’ to denote the other applications of elliptic and hyperelliptic curves). We
then recall the Tate-Lichtenbaum and ate pairings and present some implemen-
tation details for pairings on hyperelliptic curves, including a discussion of the
critical computational task of evaluating a function at a divisor. We discuss the
use of degenerate divisors for pairings, give some results on distortion maps for
supersingular genus 2 curves and recall the Rubin-Silverberg point compression
method. Finally, we give a thorough comparison of the performance character-
istics of elliptic and hyperelliptic curves.

Our conclusion is that, for most applications, elliptic curves provide more
efficient solutions than hyperelliptic curves. Nevertheless, there are many inter-
esting open questions relating to pairings on hyperelliptic curves. In order to
encourage research on this important topic we provide a list of problems for
further study.

2 Background on curves

A good reference is [1]. An affine elliptic curve E over a finite field Fq is given
by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a3, a2, a4, a6 ∈ Fq are such that E is non-singular. An elliptic curve
E over Fq is the associated projective curve of an affine elliptic curve E. It is
a non-singular projective curve of genus one and has, in addition to the points
of E, one extra point (called the point at infinity and denoted ∞), which is Fq-
rational. The set of points E(Fq) forms a group, where ∞ is the identity element
and the group operation is given by the chord-and-tangent rule.

We define an affine hyperelliptic curve over Fq to be a non-singular affine
curve of the form

C : y2 +H(x)y = F (x)

where H(x), F (x) ∈ Fq[x]. We denote by g the genus of C, in which case we may
assume that deg(H(x)) ≤ g + 1 and deg(F (x)) ≤ 2g + 2. There is a single point
at infinity on the associated projective curve C0, but it is now singular and there
may be one Fq-rational or two, not necessarily Fq-rational points above this on
the normalisation C (i.e., desingularisation) of C0. We call C a hyperelliptic curve
over Fq of genus g. For any extension field K of Fq we denote by C(K) the set
of points on C with coordinates in K.
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2.1 The divisor class group

The points of C no longer form a group, if g ≥ 2. Instead, one works with the
divisor class group of the curve.

The divisor group is defined as

Div(C) =

 ∑
P∈C(Fq)

nP (P ) : nP ∈ Z and all but finitely many nP = 0

 ,

where the sum is a formal sum over symbols (P ), and addition is carried out
coefficientwise. For D ∈ Div(C), define deg(D) =

∑
P∈C(Fq) nP ∈ Z and vP (D) =

nP , so we can write D =
∑

P∈C(Fq) vP (D)P . Let Div0(C) = {D ∈ Div(C) :
deg(D) = 0} which is a subgroup of Div(C). The support of a divisor D, denoted
supp(D), is the set {P ∈ C(Fq) : vP (D) 6= 0}. A divisor D is called effective if
vP (D) ≥ 0 for all P .

For any algebraic extension field K of Fq a K-rational function on C is a
function f : C(Fq) → Fq ∪ {∞} that can be represented by a fraction g/h of
homogeneous polynomials of the same degree defined over K. This means that
for all P ∈ C(Fq) we have either f(P ) = g(P )/h(P ) (evaluation of g, h at the
coordinates of P ) or g(P ) = h(P ) = 0, and the latter happens for at most finitely
many P . It can be shown that for P ∈ C(Fq) with g(P ) = h(P ) = 0 one can
choose an alternative representation g̃/h̃ of f such that g̃(P ) 6= 0 or h̃(P ) 6= 0,
hence f(P ) = g̃(P )/h̃(P ).

The K-rational functions form a field K(C), which is called the function field
of C over K. The function evaluation f(P ) for f ∈ K(C) can be either zero, a
non-zero value from Fq, or ∞. It is possible to associate a multiplicity vP (f) ∈ Z
of zero (or pole), which satisfies the expected properties known from Laurent
series. Equivalently, the function vP is the valuation of the algebraic function
field K(C) at the place P .

If f ∈ Fq(C) then one can define the divisor

div(f) =
∑

P∈C(Fq)

vP (f)(P ).

It is a standard result that deg(div(f)) = 0, since C is projective. The degree of
f is defined as deg(f) =

∑
vP (f)>0 vP (f) = −

∑
vP (f)<0 vP (f).

The group of principal divisors is

Prin(C) = {div(f) : f ∈ Fq(C)}

which is a subgroup of Div0(C). The divisor class group is defined to be the
quotient group

Pic0(C) = Div0(C)/Prin(C).

Some authors write D1 ∼ D2 or D1 ≡ D2 to represent equivalence of divisors
in the quotient, in other words that there exists a function f such that D1 =
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D2 +div(f). The equivalence class containing a divisor D is called a divisor class
and is denoted D.

To obtain a finite group, we must consider divisor classes over Fq, not Fq. A
divisor D is said to be K-rational if Dσ = D for all σ ∈ Gal(Fq/K). We define

Div0
K(C) = {D ∈ Div0(C) : Dσ = D ∀σ ∈ Gal(Fq/K)}.

We define PrinK(C) = {div(f) : f ∈ K(C)} and then

Pic0
K(C) = Div0

K(C)/PrinK(C)

and one can prove that this is isomorphic to the subgroup of Pic0(C) which is
invariant under Gal(Fq/K). For r ∈ N we define

Pic0
K(C)[r] = {D ∈ Pic0

K(C) : rD = 0}.

The Riemann hypothesis for function fields (proved by Weil) implies that
#Pic0

Fq
(C) ≈ qg for q large and g small. This is the primary motivation for

considering hyperelliptic curves for cryptography: for a k-bit group size one can
work over a finite field of about k/g bits.

The Jacobian of a curve C is the abelian variety Jac(C) that contains C and
has the property that, for every extension field K of Fq, the groups Jac(C)(K)
and Pic0

K(C) are isomorphic.

2.2 Mumford representation

In this section we assume C is a hyperelliptic curve of genus g over K with
a single K-rational point ∞ at infinity. To be able to explicitly compute with
elements of Pic0

K(C) we have to choose a compact representation of the elements.
To this end we introduce the following notion.

Definition 1. A divisor D ∈ Div0
K(C) on a hyperelliptic curve C of genus g is

called semi-reduced if it can be written as D = E − d(∞) with E effective and
for P = (x, y) with 2y +H(x) = 0 one has vP (E) ∈ {0, 1}, and for P = (x, y)
and P ′ = (x,−y − H(x)) with P 6= P ′ (equivalently 2y + H(x) 6= 0) one has
vP (E)vP ′(E) = 0. If moreover deg(E) ≤ g then D is called reduced.

Every divisor class in Pic0
K(C) contains exactly one reduced divisor. A re-

duced divisor D = E − d(∞) is represented in Mumford representation as a
pair [u(x), v(x)] of polynomials in K[x] such that: u(x) is monic, u(x) divides
F (x) − H(x)v(x) − v(x)2, deg(v(x)) < deg(u(x)) ≤ g. Subject to these con-
ditions, the relation between E =

∑d
i=1(xi, yi) and [u(x), v(x)] is as follows:

u(x) =
∏d

i=1(x− xi) and v(xi) = yi. This yields a 1–1 correspondence between
reduced divisors and their Mumford representation.
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Algorithm 1 Cantor Addition
Input: Divisors D1 = [u1, v1] and D2 = [u2, v2]
Output: A reduced divisor D representing the sum D1 + D2 in Pic0

K(C).
1: d1 ← gcd(u1, u2) = e1u1 + e2u2

2: d← gcd(d1, v1 + v2 + H) = c1d1 + c2(v1 + v2 + H)
3: s1 ← c1e1, s2 ← c1e2, s3 ← c2

4: u← (u1u2)/d2, v ← (s1u1v2 + s2u2v1 + s3(v1v2 + F ))/d mod u
5: while deg(u) > g do
6: u′ ← Monic((F − vH − v2)/u), v′ ← (−H − v) mod u′

7: u← u′, v ← v′

8: end while
9: return D = [u′, v′].

2.3 Cantor’s algorithm

We continue to assume that C is a hyperelliptic curve over K with a single
K-rational point at infinity. An algorithm for adding general divisor classes in
this case was developed by Cantor [9] for the case that H(x) = 0 and the
characteristic of K is not 2. The general case was worked out by Koblitz in [30].

Cantor’s algorithm is given in Algorithm 1, but as presented here, the addi-
tion algorithm is not very efficient, since it requires an extended Euclidean gcd
computation in Steps 1 and 2. However if one fixes the genus g, one can work
out specific algorithms dedicated to the various possible values of deg(u1) and
deg(u2) [25, 32, 33]. This way one can formulate algorithms that are much more
efficient, and that avoid high-level operations like Euclidean algorithms.

The relation with divisor equivalence is as follows: in Step 4 we obtain a
semi-reduced divisor D represented by [u(x), v(x)] that satisfies

D = D1 +D2 − div(d(x)) . (1)

The divisor D is then further reduced in the loop in Step 5 to a divisor D′

represented by [u′(x), v′(x)] which satisfies

D′ = D − div((y − v(x))/u′(x)) . (2)

3 Elliptic versus hyperelliptic curves

The primary motivation for considering curves of genus g > 1 for cryptography
is the fact that the group size grows as qg. In other words, with genus 2 one can
get a given group size by working over a field Fq where q has half the bit length
needed if working with elliptic curves.

There has been much discussion about whether or not genus 2 curves can
be faster for non-pairing cryptography than elliptic curves. To get comparable
timings it is crucial to replace Cantor’s algorithm with some optimised formu-
lae [25, 32, 33]. Nevertheless, it seems that fully general implementations of genus
2 curves are slower than general implementations of elliptic curves.
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However, there are several special tricks available for genus 2 curves, which
have no counterpart for elliptic curves. We will briefly mention two such tricks
here.

The first is to use curves (in characteristic 2) of the special form

y2 + xy = x5 + F3x
3 + F2x

2 + F0.

For these curves, the optimised group law formulae require one inversion, 6
squarings and 5 multiplications [33, 34], which is very competitive compared
with elliptic curves. For pairings using supersingular curves in characteristic 2
one has curves which are even more special, and thus faster, than this. One can
avoid inversions if some form of projective coordinates is used.

A second trick is to utilise special divisors. Recall that a general reduced
divisor D on a genus 2 curve has support consisting of two affine points (i.e.,
D = (P1) + (P2) − 2(∞)). Following [28, 29] one can exploit the benefits of
using degenerate divisors of the form D = (P )− (∞). (Note that the definition
of degenerate divisors in [28, 29] is that they have less than g points in their
support, whereas our definition is more restrictive when g > 2 in that we insist
on having exactly one affine point in the support.) The addition operations are
faster when adding a general divisor to a degenerate divisor, than when adding
two general divisors.

To summarise, hyperelliptic curves can be competitive with elliptic curves
(sometimes, even faster) due to the smaller field size, as long as one exploits
optimised addition formulae for special curves and one uses special divisors.

4 A world of pairings

4.1 Weil and Tate-Lichtenbaum pairings

Let C be a non-singular projective curve of genus g over Fq. Let r be coprime
to q. It is typical for cryptographic applications to take r to be a (large) prime
divisor of #Pic0

Fq
(C). It is often the case that r ≈ qg, but in some situations it is

necessary to take r smaller. The embedding degree is defined to be the smallest
positive integer k such that r | (qk − 1). Note that the embedding degree is a
function of q and r. The subgroup of r-th roots of unity of F×

qk is denoted by
µr = {z ∈ F×

qk : zr = 1}.
The Weil pairing [52, 39] is defined to be a non-degenerate bilinear map

Pic0
Fq

(C)[r]× Pic0
Fq

(C)[r] −→ µr

which is denoted er(D1, D2).
The Tate-Lichtenbaum pairing [49, 36, 16] is defined to be a non-degenerate

bilinear map

Pic0
F

qk
(C)[r]× Pic0

F
qk

(C)/rPic0
F

qk
(C) −→ F×

qk/(F×qk)r
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which is denoted 〈D1, D2〉r.
The domain and range of the Weil pairing are better suited for cryptographic

applications, since the pairing arguments and values are given by points and finite
field elements instead of equivalence classes. For many cryptographic applications
it is necessary to work with unique representatives (e.g., Alice and Bob may
perform different calculations but must obtain the same element). To achieve this
for the Tate-Lichtenbaum pairing, two simplifications are usually made. First, if
we assume that Pic0

F
qk

(C) contains no elements of order r2 then we may identify

Pic0
F

qk
(C)[r] with Pic0

F
qk

(C)/rPic0
F

qk
(C), via the map D2 7→ D2 + rPic0

F
qk

(C).

Second, we can map into the subgroup µr by raising to the power (qk−1)/r. This
is called the final exponentiation. Hence, we consider the reduced (or modified)
Tate-Lichtenbaum pairing

t(D1, D2) = 〈D1, D2〉(q
k−1)/r

r .

The mathematical definition of the Tate-Lichtenbaum pairing is as follows.
The argument on the left hand side of the Tate-Lichtenbaum pairing is repre-
sented by an Fqk -rational divisor D1 of degree zero. Since D1 is a divisor class
of order r, there is a function fr,D1 with divisor

div(fr,D1) = rD1.

The argument of the right hand side of the Tate-Lichtenbaum pairing can be
represented by an Fqk -rational divisor D2 of degree zero such that the supports
of D1 and D2 are disjoint. Then the Tate-Lichtenbaum pairing is defined to be

〈D1, D2 + rPic0
F

qk
(C)〉r = fr,D1(D2) =

∏
P

fr,D1(P )vP (D2).

The Weil pairing usually offers inferior efficiency and flexibility in compar-
ison with the reduced Tate-Lichtenbaum pairing (see for example [24] or [1,
Section 16.1.5]). In the remainder of the paper we will therefore consider the
reduced Tate pairing only. More information about the Weil pairing and its
efficient computation can be found in [38].

Finally, we note that fr,D with div(fr,D) = rD is only defined up to scalar
multiples from F×q . It is possible to find fr,D which is defined over the field of
definition of D and we assume this in the following. We will need to impose some
additional normalisation conditions on fr,D later.

4.2 Ate pairings

For cryptographic purposes one applies one further simplification to the reduced
Tate-Lichtenbaum pairing by restricting the pairing to certain cyclic subgroups
G1 andG2 of Pic0

F
qk

(C)[r] that are Frobenius eigenspaces. Write π for the q-power

Frobenius map on C and the Frobenius endomorphism on Pic0
F

qk
(C). Then we

define
G1 = Pic0

Fq
(C)[r],
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for which the eigenvalue of π is 1. We also define

G2 = Pic0
F

qk
(C)[r] ∩ ker(π − q).

The Weil and Tate-Lichtenbaum pairings are the two known, essentially dif-
ferent pairings available for curves. The elliptic and hyperelliptic ate pairings
can be regarded as special, low degree variants of the Tate-Lichtenbaum pairing.
Note that while the Weil and Tate-Lichtenbaum pairings are named after their
inventors and are already quite classical, the ate pairing is much more recent
and carries an artificial name.

Ate pairings on elliptic curves Let E be an ordinary elliptic curve over Fq.
Let t be the trace of the q-power Frobenius endomorphism π of E , such that
#E(Fq) = q − t+ 1. We assume that r ≥ 5 is a sufficiently large prime factor of
#E(Fq) and that k is minimal such that r‖(qk − 1).

If P ∈ E(Fq) has order r, then (P ) − (∞) is a divisor of degree zero rep-
resenting a divisor class of order r. We define fr,P = fr,(P )−(∞). Recall our
assumption that the field of definition of fr,P be that of P . In addition to this,
we need to normalise fr,P as follows. Let z ∈ Fq(E) be a local uniformizer at
∞, that is z satisfies v∞(z) = 1. Then we define lc∞(fr,P ) = (zrfr,P )(∞) and
fnorm

r,P = fr,P /lc∞(fr,P ). The function fnorm
r,P is defined over the field of defini-

tion K of P and is uniquely determined by r and P up to non-zero rth-power
multiples from K.

The following theorem is from [26], using a slightly more general formulation
given in [37].

Theorem 1. Let S be an integer with S ≡ q mod r. Define N = gcd(Sk−1, qk−
1) and L = (Sk − 1)/N . Let cS =

∑k−1
i=0 S

k−1−iqi mod N . Then

aS : G2 ×G1 → µr, (Q,P ) 7→ fnorm
S,Q (P )cS(qk−1)/N

defines a bilinear pairing, called the elliptic ate pairing. If k | #Aut(E) then

atwist
S : G1 ×G2 → µr, (P,Q) 7→ fS,P (Q)cS(qk−1)/N

also defines a bilinear pairing, called the twisted ate pairing. Both pairings aS

and atwist
S are non-degenerate if and only if r - L.

The relation with the reduced Tate-Lichtenbaum pairing is

aS(Q,P ) = t(Q,P )L and atwist
S (P,Q) = t(P,Q)L.

We remark that the condition k | #Aut(E) holds true if and only if E admits
a twist of degree k. We say that E admits a twist of degree d if there is an elliptic
curve E ′ defined over Fq and an isomorphism ψ : E ′ → E defined over Fqd , and d
is minimal with this property. If k | #Aut(E) does not hold one may still apply
the theorem for a divisor e of k using a base extension of degree k/e.
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One can take S = q in Theorem 1, but the usual choice is S = t − 1, which
has half the bit length of #E(Fq) and thus yields half the loop length of the
standard reduced Tate-Lichtenbaum pairing, if r ≈ q. In certain cases it may
be possible to choose S strictly smaller than t − 1, which yields an even more
efficient computation [37].

The Duursma-Lee pairing [11] and the ηT -pairing from [5] can be regarded
as a special form of the twisted ate pairing on supersingular elliptic curves.

Ate pairings on hyperelliptic curves For hyperelliptic curves the situation
is somewhat different. Indeed, if C is a hyperelliptic curve then r | #Pic0

Fq
(C) =

qg + a1(qg−1 + 1) + a2(qg−2 + 1) + · · ·+ ag. If r ≈ #Pic0
Fq

(C) then the bit length
of q is already g times shorter than the bit length of r, so we may try to mimic
Theorem 1 with S = q (this idea, in a special case, first appears in [11]).

In order to formulate the main results from [23], we fix some notation. Let C
be a hyperelliptic curve with a single point ∞ at infinity. For any divisor class D
we denote by ρ(D) the unique reduced divisor in D and by ε(D) the effective part
of ρ(D) so that we have ρ(D) = ε(D)− d(∞). We apply the same normalisation
to the function fr,D as above, namely fnorm

r,D = fr,D/(lc∞(fr,D)) for lc∞(fr,P ) =
(zrfr,P )(∞) and z ∈ Fq(C) a local uniformizer at ∞ over Fq. A curve is called
superspecial if its Jacobian is isomorphic to Eg with E a supersingular elliptic
curve. The Jacobian of superspecial curves is hence also supersingular, and in
particular has p-rank zero.

Theorem 2. ([23]) With the above notation and assumptions,

a : G2 ×G1 → µr : (D2, D1) 7→ fnorm
q,ρ(D2)

(ε(D1))

defines a non-degenerate, bilinear pairing called the hyperelliptic ate pairing. If
C is superspecial and d = gcd(k, qk − 1) then

â : G1 ×G2 → µr : (D1, D2) 7→ fnorm
q,ρ(D1)

(ε(D2))d

defines a non-degenerate, bilinear pairing.
If in any of the two pairings we have supp(ε(Di)) ∩ supp(ρ(Dj)) 6= ∅, then

ε(Di) needs to be replaced by any D ∈ Di with supp(D) ∩ supp(ρ(Dj)) = ∅.
The relation with the reduced Tate-Lichtenbaum pairing is

t(D2, D1) = a(D2, D1)kqk−1
and t(D1, D1) = â(D1, D2)(k/d)qk−1

.

One feature of the hyperelliptic ate pairing is that the final exponentiation
is very simple.

5 Pairing friendly curves

A curve C over Fq of genus g is called pairing friendly if there is a large prime
r | #Pic0

Fq
(C) with relatively small embedding degree k (say, 2 ≤ k ≤ 30g)

and such that µr does not lie in a proper subfield of Fqk . Supersingular curves
are pairing friendly. In this section we list some curves which are particularly
suitable for efficient pairing implementation.
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5.1 Elliptic curves

The most useful cases are ordinary curves for which the value S in the elliptic
ate pairing is small, and supersingular curves. An example in the supersingular
case is the curve E : y2 + y = x3 + x+ b over F2m where b = 0, 1 and m is odd.
The group order is 2m + 1 ± 2(m+1)/2 and the embedding degree is k = 4. See
[18, 5] for more details.

Elliptic curves suitable for the elliptic ate pairing can be constructed using
the method of Brezing and Weng [8]. A family which is especially adapted to
the ate pairing is given by the following parameterisation (which for n = 1 was
given already in [3]): let r(x) = Φ12n(x) for any positive integer n coprime to
3, t(x) = x + 1 and s(x) = (2x2n − 1). Following the method of [8] we define
p(x) = (t(x)2 − s(x)2(t(x)− 2)2/D)/4 with D = −3. If x is such that p(x) and
r(x) are prime, then one can easily construct an elliptic curve y2 = x3 + b with
embedding degree 12n. For n = 1 then deg(r(x)) = 4 and deg(p(x)) = 6, but for
larger values of n one can get deg(r(x)) ≈ deg(p(x)). Note that the trace is as
small as possible compared to r and that the elliptic curve admits sextic twists;
both these features are desirable for fast implementations of the ate pairings.

5.2 Hyperelliptic curves

An example of a supersingular genus 2 curve is Cd : y2 + y = x5 + x3 + d with
d = 0 or 1 over F2m , where m is coprime to 6. This curve has embedding degree
12 (see [18, 5] for more details).

An example of a family of superspecial hyperelliptic curves was studied by
Duursma and Lee [11]. They considered the curves C : y2 = xp−x+ d over Fpm

where d = ±1. The genus of C is (p − 1)/2. When p ≡ 3 mod 4 the embedding
degree is k = 2p. If p ≡ 1 mod 4 then the embedding degree is k = p. It is
worth noting that the fast pairing algorithms of [11, 5] required the condition
p ≡ 3 mod 4, but the ate method works for all cases.

In characteristic p ≥ 5, the best one can do with supersingular genus 2 curves
is k = 6. In [20] it is shown how to obtain suitable curves for any p ≡ 2 mod 3
by taking twists of the supersingular curve y2 = x6 + 1.

It is natural to try to use non-supersingular curves of genus g ≥ 2 for pairing-
based cryptography. However, it seems to be hard to generate suitable curves
in this case. The paper [19] gives some first steps towards solving this problem,
by presenting some quadratic polynomial families of abelian surfaces with given
embedding degree. However, [19] proves that for some embedding degrees (e.g.,
k = 8 and k = 12) there are no such quadratic families. These results suggest that
there is less structure in the genus 2 case (or, at least, that the structure is more
complicated in the genus 2 case) than in the elliptic case. For the polynomial
families found in [19] the authors were unable to generate any curves using the
CM method. Indeed, the CM method for curves of genus ≥ 2 is much less well
developed than the CM method in the elliptic case.

The first examples of non-supersingular pairing-friendly genus 2 curves are
due to Freeman [14]. The parameters for these curves are not very attractive for
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fast pairing implementation (precisely, the size of r is too small compared with
the size of q). More research is needed on methods to generate such curves with
parameters suitable for cryptography.

Note that many of the computational assumptions in pairing based cryptog-
raphy can be solved in subexponential time, hence it may not be necessary to
restrict to very small genus g, as is usually done for non-pairing cryptography.
Nevertheless, in our comparison with elliptic curves we will assume that g ≤ 5.

6 Miller’s algorithm

This section reviews the generalisation of Miller’s algorithm for computing Tate-
Lichtenbaum or ate pairings efficiently on hyperelliptic curves y2+H(x)y = F (x)
over Fq with a single point at infinity. We make the following assumptions:

– We are pairing two reduced divisors D1 and D2 with Frobenius eigenvalues
1 and q (for the Tate-Lichtenbaum pairing, D1 has eigenvalue 1 and D2 has
eigenvalue q, for the ate pairing it is the other way around).

– The pairing is computed as fS,D1(ε(D2))d for some integers S and d.

6.1 Hyperelliptic Miller

Miller’s algorithm computes functions fn,D with divisor div(fn,D) = nD −Dn,
where Dn = ρ(nD), i.e. the unique reduced divisor equivalent to nD. It basically
consists of a double and add algorithm exploiting the fact that one can define

fk+l,D = fk,D · fl,D · hDk,Dl
,

with div(hDk,Dl
) = Dk +Dl − ρ(Dk +Dl). These functions hDk,Dl

are obtained
easily from Cantor’s algorithm by equations (1) and (2).

However, we are not really interested in the functions fn,D1 themselves, but
only in the evaluation fn,D1(E) for some effective divisor E, so we need a method
to evaluate hDk,Dl

at E. Since this evaluation step is the crucial part of Miller’s
algorithm, we describe two different methods in detail (namely using a norm
computation and using resultants). The papers [23, 35] use resultants for pairing
computation.

Since any function can be written as a fraction of two polynomials, we can
limit ourselves to evaluating a polynomial h(x, y) ∈ Fq[x, y] at E for some Fq-
rational divisor D = E − d(∞), with Mumford representation [uE(x), vE(x)].

The first method is a simple optimisation of the definition of function eval-
uation at a divisor. Let E =

∑d
i=1(xi, yi), then we can compute the support of

E by factoring uE(x) as
∏d

i=1(x − xi) and setting yi = vE(xi). In general each
(xi, yi) will be defined over some extension field Fqei , where ei ≤ g. Of course,
we could then compute h(E) as

∏d
i=1 h(xi, yi), but in general this is not the

best method, since we are not exploiting the fact that the result has to be in Fq.
Instead, one could partition the support into distinct Galois orbits{

(xi, yi), (x
q
i , y

q
i ), . . . , (xqei−1

i , yqei−1

i )
}
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and compute the product of the evaluations at these points simply by comput-
ing NFqei /Fq

(h(xi, yi)). The above method is in general suboptimal due to the
overhead of factoring the polynomial uE(x). Therefore, we advise to restrict its
use to the case of degenerate divisors.

The second method is in general faster than the first, since it does not involve
any polynomial factorisations (nor any explicit arithmetic in extension fields the
way we have described it). It is based on the following basic observation: the
univariate polynomial h̃(x) = h(x, vE(x)) satisfies h̃(xi) = h(xi, yi), so we have
reduced the problem to computing

∏d
i=1 h̃(xi) where the xi are the zeros of

the monic polynomial uE(x). But this corresponds to the very definition of the
resultant of the two polynomials uE(x) and h̃(x), so we conclude

h(E) = Res(uE(x), h(x, vE(x))) .

Note that the above resultant also equals Res(uE(x), h̃(x) mod uE(x)), so it
suffices to work with polynomials of degree smaller than g. In more mathematical
terms, we still compute h(E) by using a norm, namely h(E) = NA/Fq

(h(x, y))
with A the finite Fq-algebra Fq[x, y]/(uE(x), y − vE(x)).

Algorithm 2 below executes one step in Miller’s algorithm and is a simple
adaptation of Cantor’s algorithm. It computes the evaluation of hnorm

D1,D2
(E) rep-

resented as follows: assume that hD1,D2 = h1(x, y)/h2(x, y), then the algorithm
returns h̃1(x) = h1(x, vE(x)) mod uE(x) and h̃2(x) = h2(x, vE(x)) mod uE(x)
and the constant h3 = lc∞(hD1,D2), so we conclude that

hnorm
D1,D2

(E) = Res(uE(x), h̃1(x))/(h
deg(uE)
3 · Res(uE(x), h̃2(x))) .

We assume in Algorithm 2 that all the intermediate functions are defined on
ε(E) (this is a reasonable assumption for the cryptographic applications).

These partial evaluations are then combined in Algorithm 3 below using a
double and add strategy. Note that the resultant computation is postponed to
the very end of the algorithm. The alternate strategy of computing the resultant
each time instead of computing modulo uE(x) is faster only in the genus 2 case.

6.2 Improvements to Miller’s algorithm

There are a number of standard implementation techniques to speed up pairing
computation (see [2, 4, 11, 17, 22]). We always assume that the embedding degree
satisfies k > 1. The improvements include the following.

– Using suitable representations for Fqk , such as pairing friendly fields [31],
i.e. Fq is a prime field with q ≡ 1 mod 12 and k of the form 2i3j . Using
a combination of Karatsuba and Toom-Cook, multiplication in such fields
takes 3i5j multiplications in the base field Fq.

– Changing the base in Miller’s algorithm. For example, base 3 is used in [2,
17] and base 8 is used in [5] in genus 2.

12



Algorithm 2 Miller Step
Input: D1 = [u1, v1], D2 = [u2, v2], E = [uE , vE ].
Output: Reduced divisor ρ(D1 + D2) and evaluation hnorm

D1,D2(E), represented by

[h̃1(x), h̃2(x), h3].
1: d1 ← gcd(u1, u2) = e1u1 + e2u2

2: d← gcd(d1, v1 + v2 + H) = c1d1 + c2(v1 + v2 + H)
3: h̃1 ← d mod uE , h̃2 ← 1, h3 ← 1
4: s1 ← c1e1, s2 ← c1e2, s3 ← c2

5: u← (u1u2)/d2, v ← (s1u1v2 + s2u2v1 + s3(v1v2 + F ))/d mod u
6: while deg(u) > g do
7: u′ ← Monic((F − vH − v2)/u), v′ ← (−H − v) mod u′

8: h̃1 ← h̃1 · (vE − v) mod uE

9: h̃2 ← h̃2 · u′ mod uE

10: if deg(v) > g then
11: h3 ← −lc(v) · h3 . lc = leading coefficient
12: end if
13: u← u′, v ← v′

14: end while
15: return [u, v], [h̃1, h̃2, h3]

Algorithm 3 Miller’s algorithm (base 2)

Input: S =
PB

i=0 Si2
i, d, D1 = [u1, v1], D2 = [u2, v2].

Output: Pairing value fS,D1(ε(D2))
d

1: D ← [u1, v1]
2: f ← 1, f1 ← 1, f2 ← 1, f3 ← 1
3: for i← B − 1 downto 0 do
4: f1 ← f2

1 mod u2, f2 ← f2
2 mod u2, f3 ← f2

3

5: D, [h1, h2, h3]← Miller Step(D, D, D2)
6: f1 ← f1 · h1 mod u2, f2 ← f2 · h2 mod u2, f3 ← f3 · h3

7: if Si = 1 then
8: D, [h1, h2, h3]← Miller Step(D, D1, D2)
9: f1 ← f1 · h1 mod u2, f2 ← f2 · h2 mod u2, f3 ← f3 · h3

10: end if
11: end for
12: f ← Res(u2, f1)/(f

deg(u2)
3 · Res(u2, f2))

13: return fd
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– Working with divisors of the form ε(D2) and computing leading coefficients
instead of evaluating functions on the reduced divisor D2 itself. Since the
support of D2 has ∞ in common with the support of D1, the alternative is
to “shift” D2 and this leads to extra function evaluations.

– Denominator elimination [11, 5]. If a final exponentiation is performed then
one can omit all terms lying in a proper subfield K such that Fq ⊆ K ⊂ Fqk .
In many cases (e.g. if one has even embedding degree, and D1 and D2 lie
in the 1-eigenspace and q-eigenspace of Frobenius respectively) then the
denominator f2 and leading coefficient f3 in Algorithm 3 are of this form,
hence the name denominator elimination.

– The loop length and number of additions in Miller’s algorithm depend on
the bit-length of S and its Hamming weight. Therefore, it is convenient to
choose S as small as possible and to have low Hamming weight.

– Pairing value compression, using trace or torus methods [22, 43].
– Speeding up the final exponentiation, by exploiting the special form of the

integer d and/or using trace or torus methods [4, 22, 24]. For instance, it is
not difficult to prove that r | Φk(q), so a final exponentiation of the form
(qk − 1)/r can be written as

qk − 1
r

=
Φk(q)
r

·
∏

s|k,s<k

Φs(q)

where exponentiation by the last factor can be computed extremely fast
using q-th power Frobenius operations.

The techniques mentioned above give impressive results for pairing imple-
mentation and they generalise trivially to hyperelliptic curves of genus g ≥ 2.

7 Degenerate divisors versus general divisors

In non-pairing cryptography it was noted by Katagi et al. [28, 29] that using
degenerate divisors can give performance advantages. In [5, 15] it is explained
how degenerate divisors can be used to speed up pairing-based cryptosystems.
For example, in the Boneh-Franklin identity-based encryption scheme [6], one
can choose Dpub to be degenerate (i.e., choose Dpub = (P )− (∞) first and then
set D = [s−1]Dpub). One can also choose H(ID) to be degenerate, so that we
hash to points rather than general divisors. Encryption in the Boneh-Franklin
scheme then involves a pairing of two degenerate divisors, so is fast. Decryption
still requires pairings of general divisors.

Several practical issues arise. First, can one choose a divisor Dpub of prime
order of the form (P )− (∞)? If one is choosing elements of G1 and the divisor
class group has prime order then this is automatic. The general case is discussed
by Frey and Lange [15]. They also note that, when k is even, one might choose
the second pairing argument from

{(x, y) ∈ Fqk : x ∈ Fqk/2 , y ∈ Fqk\Fqk/2},
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which is not a group but which is a much bigger set than the usual choice of G2.
Second, is there a loss of security from using degenerate divisors? It is easy

to show that the DLP for degenerate divisors is not easier than the general
DLP [29]. However, some protocols require more for security than just hardness
of the DLP. For example, in the Boneh-Franklin scheme it must be hard to
find collisions H(ID1) = H(ID2). The presentation in [5] is disingenuous in
this regard: since the number of degenerate divisors is roughly q, one can find
collisions in time O(q1/2), yet [5] gives running times for examples where the
security level is supposed to be O(q).

To summarise, the three advantages of using degenerate divisors in pairing
based cryptography are: faster computation of divisor multiplication and pair-
ings, simpler hashing into the group, and reduced bandwidth for transmitting
group elements. Only the first of these is really an advantage when compared
with elliptic curves. Hashing for elliptic curves is always to a single point, so is
easy (and we can often exploit twists to make it faster [26]). Regarding small
representatives of group elements, for elliptic curves over Fp one could use points
(x, y) ∈ E(Fp) where 1 < x < p1/g (with a single bit to determine y) and so the
bandwidth requirement is the same as the hyperelliptic case.

8 Torsion and distortion

The results of this section are taken from [20, 41]. Let C be a supersingular curve
of genus g over Fq and let r be prime and coprime to q. It is a standard fact that
Pic0

Fq
(C)[r] is isomorphic to (Z/rZ)2g. We let e be any non-degenerate, bilinear,

Galois-invariant pairing which maps to µr.
For pairings on elliptic curves with k > 1 one typically has E(Fq)[r] = 〈P,Q〉

(here the notation 〈P,Q〉 means the subgroup generated by P and Q) where P
is defined over Fq and Q is defined over Fqk . It follows that e(P, P ) = 1 and
hence, by non-degeneracy, e(P,Q) 6= 1. In other words, it is relatively simple
to classify pairs of points whose pairing is non-trivial. In particular, if P is Fq-
rational and ψ is any endomorphism of E such that ψ(P ) 6∈ 〈P 〉 then it follows
that e(P,ψ(P )) 6= 1.

In the higher genus case things are more complicated. Since a pairing e(D, ·)
defines a linear map from (Z/rZ)2g to Z/rZ it follows that the kernel of e(D, ·)
is (2g − 1)-dimensional. Hence, the condition ψ(D) 6∈ 〈D〉 is not sufficient to
imply that e(D,ψ(D)) 6= 1.

Definition 2. ([20, 50, 51]) A distortion map for a non-degenerate pairing e
and non-zero divisor classes D1 , D2 of prime order r on C is an endomorphism
ψ of Jac(C) such that e(D1, ψ(D2)) 6= 1.

It was proved in [51] that distortion maps always exist for supersingular
elliptic curves over Fq. The result was generalised in [20]. We denote by End(A)
the ring of endomorphisms on the abelian variety A defined over Fq.
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Theorem 3. ([20]) Let A be a supersingular abelian variety of dimension g
over Fq. Let r | #A(Fq) be prime. Let D1, D2 be non-trivial elements of A(Fq)
of order r. Then there is an element ψ ∈ End(A) such that e(D1, ψ(D2)) 6= 1.

Furthermore, it is shown in [20] that, to have distortion maps for every non-
trivial pair of divisors, it is necessary that the Z-rank of the endomorphism ring
is equal to (2g)2. In other words, if Jac(C) has endomorphism ring which has
Z-rank strictly less than (2g)2 then there will exist non-zero divisor classes D1

and D2 in Jac(C)[r] such that e(D1, ψ(D2)) = 1 for all ψ ∈ End(Jac(C)). In
other words, if C is not supersingular then there cannot be distortion maps for
every pair (D1, D2).

In practice, as in Section 4.2, one tends to choose divisors D1 and D2 which
lie in eigenspaces of the q-power Frobenius π. The following results may be of
practical relevance in this setting.

Lemma 1. Let A be a supersingular abelian variety over Fq with characteristic
polynomial of Frobenius equal to T 4 + aT 2 + q2 and suppose r | #A(Fq) =
(q2 + a+ 1). Then then Frobenius eigenvalues on A[r] are 1,−1, q,−q.

Proof. We have a ≡ −(q2 + 1) mod r. Hence,

(T − 1)(T − q)(T + 1)(T + q) = (T 2 − (q + 1)T + q)(T 2 + (q + 1)T + q)
= T 4 − (q2 + 1)T 2 + q2

≡ T 4 + aT 2 + q2 mod r.

Since the splitting of the characteristic polynomial of Frobenius is of this form,
then the eigenvalues of Frobenius on A[r] are (1,−1, q,−q). �

Lemma 2. With notation as above, let (D1, D2, D3, D4) be an ordered π-eigenbasis
for A[r] with eigenvalues (1,−1, q,−q) respectively. Suppose r - (q2− 1). Then if
1 ≤ i, j ≤ 4, we have e(Di, Dj) = 1 unless (i, j) = (1, 3), (3, 1), (2, 4) or (4, 2).

Proof. We use Galois invariance of e. For example, for D1 one has

π(e(D1, D1)) = e(π(D1), π(D1)) = e(D1, D1).

This implies e(D1, D1) ∈ Fq ∩ µr (recall that µr is the group of r-th roots of
unity and r - (q − 1)) and hence e(D1, D1) = 1.

Similarly,

e(D1, D2)q = π(e(D1, D2)) = e(π(D1), π(D2)) = e(D1,−D2) = e(D1, D2)−1.

Since, r - (q + 1) this implies e(D1, D2) = 1.
Similarly,

e(D1, D4)q = π(e(D1, D4)) = e(π(D1), π(D4)) = e(D1,−qD4) = e(D1, D4)−q.

Since r - 2q it follows that e(D1, D4) = 1. By non-degeneracy of e, one must
have e(D1, D3) 6= 1.

The other cases are similar. �
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It would be interesting to develop cryptographic protocols which utilise this
torsion structure and the properties of pairings stated in the above Lemma.

We see that π can be used as a distortion map. For example, suppose D =
D1 +D2 and D′ = D3 +mD4, with respect to the basis above, where m ∈ Z is
such that e(D,D′) = e(D1, D3)e(D2, D4)m = 1. Then we have

e(D,π(D′)) = e(D1, qD3)e(D2,−qmD4) = e(D1, D3)qe(D2, D4)−qm

and this is not equal to 1 if m 6≡ 0 mod r. Note that, for efficient implementation,
there are often reasons to prefer the trace map Tr(D) =

∑3
i=0 π

i(D) to π, though
in the above example we have Tr(D′) = 0 so in this particular case the trace
map is not useful.

9 Rubin-Silverberg point compression

Rubin and Silverberg [42] (also see [44, 45, 48]) have proposed an alternative
way to view pairings on abelian varieties. They observe that many supersingular
abelian varieties can be identified with subvarieties of Weil restrictions of super-
singular elliptic curves. An alternative way to view their method is as a form of
point compression for elliptic curves.

For example, the supersingular genus 2 curve C over F2 considered in [5] (also
see Section 5.2) has k = 12. Working over F2m , where m is coprime to 12, the
number of points on the Jacobian of C is N = 22m±2(3m+1)/2+2m±2(m+1)/2+1.
As mentioned above, one can use this curve for pairing-based cryptography and
the finite field security comes from F212m . Alternatively, one can consider the
supersingular elliptic curve Eb : y2 +y = x3 +x+ b with b = 0, 1 over F23m . This
curve has k = 4, so we also map into F212m . Furthermore, the order of Eb(F23m)
(for the right choice of b) is divisible by N . Indeed, Jac(C) can be identified with
the trace zero part of the Weil restriction of scalars Eb with respect to F23m/F2m .

In the above example, from a security point of view, there is no difference
between computing pairings on Eb(F23m) and Jac(C)(F2m). However, one can
represent a general divisor on the genus 2 curve over F2m with about 2m bits,
whereas it requires about 3m bits to represent a point in Eb(F23m). The con-
tribution of Rubin and Silverberg is to give a method to represent elements of
order N in Eb(F23m) using only 2m bits. In other words, the “per bit” security
of the genus 2 curve is attained using elliptic curves. For precise details in this
case see [5, 48].

The above is an example of the Rubin-Silverberg method with, in their no-
tation, r = 3. The compression method is trivial (and fast). The decompression
method involves solving some non-linear equations over the finite field, and it is
practical only for small values of r (e.g., r = 3 or 5). Note that the method can
be used for any elliptic curve, not just supersingular ones.

In [5] a performance comparison is given for the above example. When pairing
degenerate divisors on the genus 2 curve (such elements do not correspond to
special points on the elliptic curve side) the timings in [5] show that using genus
2 curves in this setting is faster than the Rubin-Silverberg approach. However, if
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required to compute the pairing of general divisors on the genus 2 curve, then the
timings indicate that the Rubin-Silverberg approach using the eta /ate pairing
on supersingular elliptic curves is faster.

It therefore seems that, for parameters of current practical interest, it is more
efficient to use elliptic curves with the Rubin-Silverberg compression method,
than to work with divisor class groups of curves of genus g ≥ 2. However, it
should be noted that there are three possible exceptions to this statement: when
degenerate divisors can be exploited the pairing may be faster for curves of genus
g ≥ 2; the decompression method is only practical for small values of r (whereas
comparable performance with some high genus curves could require larger r);
Abelian varieties have a richer torsion structure which may be useful for some
applications.

10 Comparison of pairings on elliptic and hyperelliptic
curves

In this section we compare the characteristics of pairings on elliptic and hyper-
elliptic curves of genus g. We write

e : G1 ×G2 → GT ⊆ F×
qk

for any of the pairings considered above. Here we assume that G1 is the subgroup
defined over the small field (so it has the more compact representation) and G2

is the subgroup potentially defined over a larger field (hence, if using the ate
pairing then e(P,Q) = aS(Q,P )).

The main criteria for our comparison are:

– Computation time (for operations in G1, G2, GT as well as for computing e).
– Size of representation (for G1, G2 and GT ).
– Flexibility and efficiency of parameter generation.
– Any other special properties.

10.1 Computation time

In most situations we may assume that G1 is a group of prime order r, con-
sisting of elements defined over Fq, with r ≈ qg. In this case, according to [33,
34], hyperelliptic curves can be as much as twice as fast as elliptic curves. If
the hyperelliptic curve is more general (e.g., has 2 points at infinity) then the
computation times in G1 may be a little slower for the hyperelliptic curve than
the elliptic case.

If G1 is a rather small subgroup of the whole curve group then define ρ =
g log(q)/ log(r). If the elliptic and hyperelliptic cases have similar values for ρ
then the performance should be comparable. But operations on a hyperelliptic
curve with ρ ≥ 2 (for example, Freeman’s genus 2 curves [14]) will be slower
than an elliptic curve with ρ ≈ 1.
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We now consider operations in G2. In the supersingular case, G2 = G1 and
the above remarks apply. More generally, we aim to take G2 to be a subgroup
of the divisor class group of a twist of the curve. The field of definition of G2

depends on the field Fqk (i.e., it is a function of the embedding degree). The
crucial observation is that the field Fqk is required to be the same size regardless
of the genus. Hence, the group G2 will be defined over a finite field of size
independent of the genus. We therefore expect that operations in G2 will be
slower in the hyperelliptic case than in the elliptic case, unless one can exploit
twists of high degree (e.g., degree > 6g).

The field Fqk is the same size whether using elliptic or hyperelliptic curves.
So the computation time in GT is the same in both cases.

We now consider the cost of computing pairings. First we present an over-
simplified analysis: the dominant part of a standard Tate-Lichtenbaum pairing
computation (on either an elliptic or hyperelliptic curve) is log2(r) iterations
of computing h(D) for some function h and some divisor D (and accumulating
the product of these values). As mentioned above, the field of definition of D
depends on the embedding degree and so is similar in both cases. Furthermore,
the functions h are more complicated for hyperelliptic curves than for elliptic
curves. Hence, in general we expect pairing computation on hyperelliptic curves
to be slower than elliptic curves.

The above analysis is extremely oversimplified and, indeed, is contradicted
by the fact that the fastest known pairing computation is the ηT pairing on a
supersingular genus 2 curve in characteristic 2 with embedding degree 12 (see
the timings in Section 10 of [5]). The speed in that case is due to the implemen-
tation tricks available (including exploiting features of the processor architecture
which are favourable to the genus 2 case). Also, the quoted timing is when using
degenerate divisors; if general divisors are used then one gets faster timings using
elliptic curves.

With hyperelliptic ate pairings over Fq one has a loop of length approximately
log2(q) in genus g rather than g log2(q). This can be matched using the elliptic ate
pairing if one can construct an elliptic curve over Fp (for log2(p) ≥ g log2(q)) with
trace of Frobenius t ≈ q. The Brezing-Weng method [8] can be used to construct
such curves. The example in Section 5.1 with n = 1 gives log2(t) ≈ log2(r)/4,
which matches the loop shortening obtained by using genus 4 curves. Hence,
despite the attractive properties of the hyperelliptic ate pairing, it seems that in
practice one can always match the speed of pairing computation by using elliptic
curves.

10.2 Size of representation

In general, we expect the size of the representation of G1 to be the same for both
elliptic and hyperelliptic curves (at least, as long as the ρ values are comparable
in both cases). As noted earlier, degenerate divisors in G1 require less storage
than general elements, but there are potential security issues to take into account
here. Also, as mentioned, the same effect can be achieved using elliptic curves
by selecting points with short representations.
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One issue here is comparing differing embedding degrees. For example, with
supersingular curves in characteristic 2 we have k = 4 for elliptic curves and
k = 12 for genus 2. One therefore would expect more compact representations
in genus 2. However, the Rubin-Silverberg point compression method for elliptic
curves can be applied. Hence, in practice, it seems that the size of elements of
G1 is always no worse for elliptic curves than hyperelliptic curves.

We now consider the size of elements of G2. In the supersingular case,
G1 = G2 and so the above remarks apply. If not, as mentioned above, the
field of definition of G2 depends on the embedding degree and so we expect the
representation of G2 to be larger in the hyperelliptic case than the elliptic case.

The representation of GT is usually the same in both cases. Trace or torus
methods can be used to compress these values [22, 43, 44].

10.3 Flexibility and efficiency of parameter generation

The main concerns in this section are as follows. Are there pairing-friendly curves
with useful parameters for secure and efficient implementation? Are there many
possible examples or just a few? Is it easy to construct equations for such curves?
Does the user have very fine control over the parameters?

If supersingular curves are used then there is roughly the same amount of
flexibility in parameter generation for both elliptic and hyperelliptic curves.

There have been a number of results on constructing ordinary pairing-friendly
elliptic curves using the CM method (see [13] for a survey). The outcome of this
research is that there are many polynomial families of suitable curves. Further,
one can generate curves with relatively small values of t, which are attractive
due to the elliptic ate pairing [26]. So there is plenty of flexibility when choosing
elliptic curves for pairing-based cryptography. In genus g ≥ 2 the situation is
much less satisfactory as was discussed in Section 5.2.

10.4 Special properties

For pairings on elliptic curves there are great efficiency savings for computations
in G2 (including hashing to G2) by using twists [26]. If non-supersingular hyper-
elliptic curves are to be competitive with ordinary elliptic curves then it is likely
that similar techniques would have to be developed.

As noted in Section 8, in genus ≥ 2 there are larger torsion structures avail-
able and there is interesting pairing behaviour (see Lemma 2). It is natural to
ask whether there might be novel cryptosystems which exploit this structure.
Such applications would give renewed motivation for using hyperelliptic curves
in pairing-based cryptography.

11 Conclusions and open problems

For non-pairing cryptography there are potential advantages of using hyperel-
liptic curves of genus g ≥ 2. It is thus natural to consider hyperelliptic curves
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for pairing-based cryptography. We have surveyed work in this area. Our anal-
ysis indicates that, in practice, hyperelliptic curves are not more efficient than
elliptic curves for general pairing applications. The only potentially significant
advantage of hyperelliptic curves in pairing-based cryptosystems seems to be
the speed of operations in G1. Hence, hyperelliptic curves may be preferable for
protocols with few pairing computations but many operations in G1.

We conclude with a list of open problems.

– Can further loop shortening (as in [26, 37]) be performed for the hyperelliptic
ate pairing?

– A major problem is to give methods to construct non-supersingular pairing
friendly curves of genus g ≥ 2 and k in the range, say, 6g ≤ k ≤ 30g. Ideally,
these curves would have a single point at infinity and would have useful
twists (as in [26]).

– Give fast methods to compute pairings on hyperelliptic curves with two
points at infinity [21] or on non-hyperelliptic curves.

– Consider whether efficient and secure pairing-based cryptosystems can be
developed for curves of genus g ≥ 3, in spite of the index calculus attacks on
curves in this case.

– Exploit the richer torsion structure available for abelian varieties. In partic-
ular, find cryptographic applications of pairings on groups which require 3
or more generators.
A related problem is to give efficient methods to choose divisors in the par-
ticular subgroups.

– Improve the efficiency of the Rubin-Silverberg elliptic curve point decom-
pression method. Generalise the Rubin-Silverberg method to divisor class
groups of curves of genus g ≥ 2.

– In Section 9 we recalled the identification of certain abelian varieties with
subvarieties of the Weil restriction of supersingular curves. In the case where
the abelian variety is a Jacobian, is there a way to compute explicit ho-
momorphisms between the elliptic curve representation and the Jacobian
representation?
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