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What is Applied Mathematics?

Applied Mathematics is not a definable scientific field
but a human attitude . . . (t)he(y) must be willing
to make compromises regarding rigorous
mathematical completeness; (t)he(y) must
supplement theoretical reasoning by numerical work,
plausibility considerations and so on.

– Courant (1965)

The motivation of the applied mathematician is to
understand the world and perhaps to change it . . .
techniques are chosen for and judged by their
effectiveness (the end is what’s important); and the
satisfaction comes from the way the answer checks
against reality and can be used to make predictions.

– Paul Halmos
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Plan of the rest of the talk

I Cryptography

I Quantum algorithms

I Post-quantum public key cryptography

I Lattices

I Signatures

I Proof of knowledge

Please ask questions
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Digital signatures

I Public key cryptography solves the authentication
problem: How can I be certain of the sender?

I Automatic software updates:
“Please install me on your computer. It’s OK, I am from
Microsoft.”

I Normal signatures are no good, because an attacker can
cut-and-paste.

I A digital signature on a file is created using the secret and
it depends on the file.
A digital signature can be verified using only the public
key.
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Internet shopping
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Quantum Computing

I Quantum computing was proposed by: Paul Benioff
(1980), Yuri Manin (1980), Richard Feynman (1982) and
David Deutsch (1985).

I Peter Shor (1994): polynomial-time quantum algorithm
for integer factorisation and discrete logs.

I Late 1990s: Breakthrough in quantum computing around
“10 years away”.

I Dave Wecker (Microsoft) invited talk at PQ Crypto 2018:
Microsoft will have a quantum computer suitable for
chemistry applications within 5 years and “something of
interest to this crowd” in 10 years.
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Quantum computer or microbrewery?
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Quantum computer or microbrewery?
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Internet shopping when bad guy has a quantum computer
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Post-quantum cryptography (PQC)

I PQC means cryptosystems that can be implemented using
current computing and communication channels, but are
secure against an adversary with a quantum computer.

I There is a totally different subject called quantum
cryptography, which is secure communication using
quantum devices.
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NIST post-quantum standardisation process

I August 2015: NSA Information Assurance Directorate
proposed “a transition to quantum resistant algorithms in
the not too distant future”.

I February 2016: NIST preliminary announcement of
standardization plan.

I November 2017: Submission deadline (69 submissions
accepted).

I Mathematical foundation: Lattices, coding-theory,
multivariate polynomial systems, hash trees, non-abelian
groups, isogenies.

I January 2019: Second round selections announced (26
selected).

I Draft standards expected around 2023-2025.
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Hermann Minkowski (1864-1909)

I Showed that special theory of
relativity is best understood
geometrically as a theory of
four-dimensional spacetime (now
known as “Minkowski spacetime”).

I Pioneered the “geometry of
numbers” to prove results in
number theory (such as the
finiteness of the ideal class group). [credit: wikipedia]
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Lattices

I Let b1, . . . , bm be linearly independent column vectors in
Rm.

I The set L = {
∑m

i=1 xibi : xi ∈ Z} is a (full rank) lattice.
Call its elements points or vectors.
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Lattices

I Let b1, . . . , bm be linearly independent column vectors in
Rm.

I The set L = {
∑m

i=1 xibi : xi ∈ Z} is a (full rank) lattice.
Call its elements points or vectors.

I The basis matrix is the m ×m matrix B whose columns
are the vectors b1, . . . , bm.)

I A lattice has many different bases, but the volume
(| det(B)|) is invariant.

I For computational reasons we work with lattices in Zm.
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Computational Problems (Informally)

I Shortest vector problem (SVP): Given a basis matrix B
for a lattice L ⊆ Zm find a non-zero vector v ∈ L such
that ‖v‖ is minimal.
The norm here is usually the Euclidean norm in Rn, but it
can be any norm such as the `1 norm or `∞ norm.

I SVP with the `∞ norm is NP-hard.

I Closest vector problem (CVP): Given a basis matrix B for
a full rank lattice L ⊆ Zm and an element t ∈ Rm find
v ∈ L such that ‖v − t‖ is minimal.

I These problems are believed to be hard for quantum
computers when dimension m is high.
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Short integer solution problem (Ajtai 1996)

I Let q be prime.

I Let A be an n ×m integer matrix, where m > n log2(q).

I Let x ∈ {−1, 0, 1}m be a vector.

I Let b ≡ Ax (mod q). So b ∈ Zn
q.

I Given (A, b), compute x .

I This is a hard lattice problem.
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Solving b ≡ Ax (mod q) (optional)

I Let L = {y ∈ Zm : Ay ≡ 0 (mod q)}, which is a lattice.

I Compute any z ∈ Zm such that Az ≡ b (mod q).

I Find a close lattice vector y ∈ L to z .

I Set x = z − y , so that ‖x‖ is short.

I Then Ax = Az − Ay ≡ b (mod q).
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Proving knowledge of a secret

I Can I prove to you that I know a secret, without telling
you (or anyone else)?

I For the rest of the talk I describe such an interactive
protocol for this lattice problem.

I The main ideas are due to Lyubashevsky (2009, 2012).

I Let (A, b) be public. Let x be a secret short vector such
that Ax ≡ b (mod q).

I I want to be able to convince you that I know the short
vector x , without telling you x .

I One can build a digital signature from this interactive
protocol.
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Interactive protocol to prove knowledge of the solution
(toy)

Prover Verifier
Short vector x (A, b)

Choose short y ∈ Zm

Set Y = Ay (mod q)
Y−→ Y−→

Choose small c ∈ Z
c←− c←−

z = y + xc
z−→ z−→ Check ‖z‖ short(-ish)

and Az ≡ Y + bc (mod q)
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Interactive protocol to prove knowledge of the solution
(toy)

I I need to show there is no forger who can impersonate me.

I The forger knows (A, b), but does not know x .

I Treat the forger as an algorithm that takes (A, b) as input.

I Want to show that if a forger exists then there is an
algorithm to find a short x ∈ Zm such that b ≡ Ax
(mod q).
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Security of the protocol

Forger Verifier
(A, b) (A, b)

Y−→ Y−→
Choose small c ∈ Z

c←− c←−
z−→ z−→ Check ‖z‖ short(-ish)

and Az ≡ Y + bc (mod q)
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Interactive protocol to prove knowledge of the solution
(toy)

I If forger knows what c the verifier will send, they can
cheat:

I Choose a random short vector z
I Set Y = Az − bc (mod q)

I But since the forger doesn’t know c before they send Y ,
then the protocol should be convincing.

I If c is from a small set then the protocol may need to be
repeated many times.

I (Real schemes use matrices or ring elements for x and c .)
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Security of the protocol

Forger Verifier
(A, b) (A, b)

Y−→ Y−→
Choose small c ∈ Z

c←− c←−
z−→ z−→ Check ‖z‖ short(-ish)

and Az ≡ Y + bc (mod q)
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Proof that this is a proof of knowledge (attempt 1)

I The verifier gets a vector Y from the forger.

I No matter which small integer c is chosen by the verifier,
the forger can respond with a short-ish vector z such that
Az ≡ Y + bc (mod q).

I We suppose verifier can choose two challenges c1, c2 for
same Y and get corresponding two responses z1, z2.

I We have Az1 ≡ Y + bc1 (mod q) and Az2 ≡ Y + bc2
(mod q).

I So A(z1 − z2) ≡ b(c1 − c2).

I Hence x = (z1 − z2)(c1 − c2)−1 (mod q) is a solution to
the equation Ax ≡ b (mod q).

I Problem: x may not be short.
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Second attempt: New computational problem

I New computational problem: Given an n ×m matrix A,
find a short (but non-zero) vector w such that Aw ≡ 0
(mod q).

I This is also a lattice problem.

I Lyubashevsky showed that if there is a forger for the
identification scheme, then there is an algorithm to solve
this problem.
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Proof that this is a proof of knowledge

I Let A be such a matrix.

I Choose a short vector x ∈ Zm and set b ≡ Ax (mod q).

I Run forger as before on input (A, b), to get two responses
z1, z2 for challenges c1, c2 for same Y .

I We have Az1 ≡ Y + bc1 and Az2 ≡ Y + bc2 (mod q).

I So A(z1 − z2) ≡ b(c1 − c2) ≡ (Ax)(c1 − c2) (mod q).

I Since we know x , we have

A(z1 − z2 − x(c1 − c2)) ≡ 0 (mod q).

I Let w = z1 − z2 − x(c1 − c2). So w is short and Aw ≡ 0
(mod q).

I Problem: w may be zero.
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Proof that this is a proof of knowledge

I Tweak the parameters and the computational assumption,
so that that there are many short vectors x ′ such that
b ≡ Ax ′ (mod q).

I The forger gets (A, b), but has no way to know which of
the possible vectors x we have chosen.

I It can be shown that with non-negligible probability
w = z1 − z2 − x(c1 − c2) is non-zero.

I In conclusion: If it is hard to find short non-zero kernel
vectors of random integer matrices then it is hard to fake
this interactive protocol.
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Zero knowledge

I We also have to worry about whether z leaks the secret x .

I Since z = y + xc where c is known, then a statistical
analysis might allow an attacker to determine x .

I This is prevented by taking the entries of y to be a
discrete Gaussian, and using rejection sampling.
(Lyubashevsky 2009)
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Discrete Gaussians

I A discrete Gaussian on Zm with parameter σ2 is a
distribution such that the probability of x ∈ Zm is
proportional to

exp(−‖x‖2/(2σ2)).

I If y and x are sampled from continuous Gaussians with

parameters (variances) σ2
1 and σ2

2 respectively, then y + x
is distributed as a continuous Gaussian with parameter
σ2
1 + σ2

2.

I This statement is no longer true for discrete Gaussians.

I In our applications, the distribution of z = y + xc is
important.
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Discrete Gaussians

I Let x be sampled from a continuous Gaussian on Zm with
parameter σ2 and let X be an n ×m matrix. Then
y = Xx has distribution with probability proportional to

exp(−xTXTXx/(2σ2)).

I The matrix XTX is called the Gram matrix.

I If x are sampled from a discrete Gaussian with parameter
σ2 then this statement is no longer true.

I Significant focus in cryptography research to get precise
estimates of these distributions, and distributions like
y + Xx etc.
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Mathematical tools that have been introduced to
cryptography in recent years

I Sampling algorithms for approximating probability
distributions.

I Convolution theorems.

I Algorithms to compute Cholesky decompositions.
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Some of my work in this area

I Shi Bai and Steven D. Galbraith, “An Improved
Compression Technique for Signatures Based on Learning
with Errors”, in J. Benaloh (ed.), CT-RSA 2014, Springer
LNCS 8366 (2014) 28–47.

I Shi Bai, Steven D. Galbraith, Liangze Li and Daniel
Sheffield, “Improved Combinatorial Algorithms for the
Inhomogeneous Short Integer Solution Problem”, Journal
of Cryptology, Volume 32, Issue 1 (2019) 35–83.

I Leo Ducas, Steven Galbraith, Thomas Prest and Yang Yu,
“Integral matrix sums of squares and lattice Gaussian
sampling without floats”, submitted.
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What kind of mathematics is this?

I Pure Mathematics?

I Computer Science?

I Applied Mathematics?
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Olga Taussky-Todd (1906-1995)

I Trained in algebraic number theory,
and later worked on matrix theory
and numerical analysis.

I “When people look down on
matrices, remind them of great
mathematicians such as Frobenius,
Schur, Siegel, Ostrowski, Motzkin,
Kac etc who made important
contributions to the subject. I am
proud to have been a torchbearer
for matrix theory.”

[credit: wikipedia]
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What should we be teaching our students?

(Not just for cyber security, but also data science, finance, etc)

I Linear algebra

I Numerical methods

I Probability

I Statistics

I Discrete Mathematics

I Calculus
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The End

“Mathematics is more unified than Mathematicians”
– Robbert Dijkgraaf

“I believe that it is vital to counteract these
dangerous tendencies by fighting over-specialization
and fragmentation of mathematics and by a vigorous
effort at building bridges between the diverging
mathematical fields”

– Richard Courant

“Mathematics, despite its many subdivisions and
their enormous rate of growth is an amazingly unified
intellectual structure”

– Paul Halmos
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