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Abstract

Some functions can be well approximated by taking their Fourier transforms and
discarding the terms that have small Fourier coefficients. The sparse Fourier
transform is an algorithm that computes such an approximation more efficiently
than computing the entire Fourier transform.

The sparse Fourier transform has many applications to problems in mathemat-
ics and engineering. For example, in mathematics the sparse Fourier transform
can be used to solve the chosen multiplier hidden number problem. In engineering,
the sparse Fourier transform can be used to compress audio or video data.

In Chapter 3 we present an algorithm that computes the sparse Fourier trans-
form. This algorithm generalises and unifies the sparse fast Fourier transforms
in [19] and [21]. These algorithms are of particular importance as they are the
earliest algorithms for computing the sparse Fourier transform.

The final chapter develops a method for reducing the problem of calculating
the sparse Fourier transform over Zn to calculating it over Z2k where k is the
smallest integer such that n ≤ 2k, provided the function has certain special
properties. This method is based on ideas from Shor’s algorithm for factoring
integers.
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Chapter 1

Introduction

1.1 The sparse Fourier transform

Fourier analysis was originally developed to study the vibration of strings [8, p.
267]. A vibrating string can be viewed as a function on an interval, the red graph
in Figure 1.1. This complicated function can be decomposed into simple, periodic
functions, the blue graphs in Figure 1.1, called pure tones.

=

+

+

Figure 1.1: A complicated function, in red, as the sum of three simple, periodic
functions, in blue.

In practice, the vibration of a string is measured by dividing the interval into
evenly spaced segments and measuring the displacement of the string at each
segment as in Figure 1.2.

More formally, the red function in Figure 1.2 is a mapping f : Zn → R
where n is the number of samples. And the pure tones are a family of functions
gk : Zn → R by gk(x) = cos

(
π
n
(x+ 1/2)(k + 1/2)

)
where k = 0, 1, . . . , n− 1. The
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+

Figure 1.2: A discrete version of figure 1.1.

gk are periodic and form a basis for the space of all functions {f : Zn → R}.
Thus any f : Zn → R can be written as a linear combination, f =

∑n−1
k=0 ckgk,

where the ck ∈ R are the amplitudes of the pure tones.

In this thesis, we will be interested in complex valued functions. We therefore
consider f : Zn → C (more generally, f : G → C where G is a finite abelian
group). The complex analogue of the pure tones is the family of functions χα :
Zn → C defined by χα(x) = exp(2πixα/n) for α = 0, 1, . . . , n − 1. The χα form
a basis for the space of all functions {f : Zn → C}. Thus any f : Zn → C can be

written as a linear combination, f =
∑n−1

α=0 f̂(α)χα where f̂(α) ∈ C. The complex

numbers f̂(α) are called the Fourier coefficients.

We now have two ways to describe a function f : Zn → C. We can either list
the function values f(0), f(1), . . . , f(n− 1) or we can list the Fourier coefficients

f̂(0), f̂(1), . . . , f̂(n− 1). The discrete Fourier transform is the mapping f 7→ f̂ .

The fast Fourier Transform is an algorithm which computes the discrete
Fourier transform of a function f : Zn → C where n is an integer power of 2. That
is, the fast Fourier transform takes the list of complex numbers f(0), f(1), . . . , f(n−
1) as input and outputs f̂(0), f̂(1), . . . , f̂(n − 1). The running time of the fast
Fourier transform is O(n log n). This is “fast” because the naive algorithm takes
O(n2) time. Moreover, since the output for the discrete Fourier transform has
size n, the best running time we can hope for is a linear time algorithm, i.e.,
O(n).

For many applications (see the next section) it is only necessary to find the

α ∈ Zn for which |f̂(α)| is “large”. One way of finding these coefficients would
be to use the fast Fourier transform to calculate all the Fourier coefficients and
then discard those with small magnitude. Of course, this seems wasteful if there
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are only a small number of large coefficients. Thus there is interest in developing
algorithms which can improve on this naive approach. A (possibly probabilistic)

algorithm which can identify the α ∈ Zn for which |f̂(α)| is large in sublinear
time is called a sparse Fourier transform.

1.2 Applications

The Fourier transform has applications in analysing signals where it is expected
that f̂(α) is large for only a few α ∈ Zn. It turns out that many signals which are
relevant to engineering satisfy this property. For example, in a typical 8×8 video
only 11% of the Fourier coefficients are non-negligible [14]. There is a research
group at MIT which has developed many sparse Fourier transform algorithms and
has even built a chip which is optimised to calculate sparse Fourier transforms
[1].

Sparse fast Fourier transforms also have applications to a problem called the
hidden number problem. The hidden number problem was introduced in [6] by
Boneh and Venkatesan to study the bit security of the Diffie-Hellman key ex-
change protocol.

Definition 1 (Hidden number problem). Let f : Zp → C where p is prime. Let
s ∈ Z∗p. Given a set of pairs {(xi, f(sxi))}i and access to the function f , the
hidden number problem is to find s.

We now explain the motivation for this definition. In the Diffie-Hellman key
exchange protocol two parties, Alice and Bob, with private keys a and b compute
ga and gb where g ∈ Z∗p is a primitive element and send each other these values.
They then compute the shared key gab. The goal for an attacker is, given g, ga

and gb, to find s = gab. This is known as the Diffie-Hellman problem.
The computational assumption is that finding s hard. This necessarily means

that it is difficult to compute some of the bits of s; if all the bits of s were easy
to compute we would have the binary representation for s. If we want to show a
particular bit is hard to compute, say the most significant bit, we first suppose the
opposite, i.e., there exists an algorithm A which given g, ga and gb can compute in
polynomial time the most significant bit of gab for any integers a, b. We then show
that if Eve has access to the algorithm A then she can calculate s in polynomial
time. This contradicts the computational assumption that the Diffie-Hellman
problem is hard and proves that the problem of computing the most significant
bit of s is a hard problem.
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Define f : Zp → C by f(h) = (−1)MSB(h) and define fs : Zp → C by
f(h) = f(sh). Eve can choose various numbers k and calculate gagk = ga+k.
If we suppose she has access to the oracle A she can calculate A(g, ga+k, gb) =
MSB((ga+k)b) = MSB(sgkb). This means Eve can calculate pairs (gkb, fs(g

kb)).
Since the goal is to find s, the problem is now reduced to a specific case of the
hidden number problem, in particular the case where f : Zp → {−1, 1}.

There is a variant of the hidden number problem called the chosen multiplier
hidden number problem where, instead of being given the pairs (xi, f(sxi)) and
being asked to find s, one is given oracle access to the function fs : Zp → C
defined by fs(x) = f(sx).

Definition 2 (Chosen multiplier hidden number problem). Let f : Zp → C where
p is prime. Let s ∈ Z∗p. The goal is to find s given oracle access to the function
fs : Zp → {1,−1} defined by fs(x) = f(sx).

Note that a solution to the chosen multiplier hidden number problem does
not give a solution to the hidden number problem. That is, the chosen multiplier
hidden number problem is weaker than the hidden number problem.

Nevertheless, the chosen multiplier hidden number problem is in itself inter-
esting. In fact, it can be reduced the problem of identifying the large Fourier
coefficients by the next theorem.

Theorem 1. (Informal) Let A be an algorithm that learns the large Fourier
coefficients of a function f : Zp → C. Then there exists an algorithm which
solves the chosen multiplier hidden number problem for f .

Proof. (Sketch) Let f, fs : Zp → C be the functions from the hidden number

problem. The Fourier transform has the property that f̂s(x) = f̂(s−1x) see
Proposition 8 . Thus the Fourier coefficients of fs are simply the Fourier co-
efficients of f permuted by s−1. We use the algorithm, A to compute the (short)
list of large Fourier coefficients of f and fs and then match them up to deduce
the permuting element s−1.

1.3 Work on the problem

The first sparse fast Fourier transform algorithm was published by Kushilevitz
and Mansour in [19] who built on work by Goldreich and Levin in [11]. Kushilevitz
and Mansour showed how their algorithm could be used to learn decision trees.
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Their algorithm works for functions of the form f : Zn2 → {−1, 1}. This was
soon followed by another paper by Mansour [21] which showed how to identify
the heavy Fourier coefficients of functions of the form f : Z2n → C. Since then,
work on sparse Fourier transforms has flourished and many algorithms have been
proposed, including [9], [5], [10], [4], [18], [14], [13], [20], [7], [22], [17], [16]. See
[16] for a table of algorithms and their complexity.

To solve the hidden number problem we need to compute the sparse Fourier
transform over Zp. Most of the algorithms cited above work over Z2n , where n is
some positive integer, as this is the most common case for engineering applications
and lends itself to divide and conquer style algorithms. A sparse Fourier transform
over Zp was first outlined in [5] and further details were given in [2] and [3].

1.4 Organisation of thesis

The main part of this thesis is divided into four chapters. Chapter 2 develops the
theory surrounding the Fourier transform in a rigorous and self contained way.
The goal is to present (mostly) standard knowledge with consistent notation and
in full generality.

In Chapter 3 we present an algorithm that computes the sparse Fourier trans-
form over any finite abelian group; it is efficient when the prime factors of |G| are
small. This algorithm generalises and unifies the sparse fast Fourier transforms
in [19] and [21]. These algorithms are of particular importance as they are the
earliest algorithms for computing the sparse Fourier transform.

Chapter 4 contains a discussion of the algorithm in [5] which works for func-
tions of the form f : Zn → C where n is any positive integer. We show how the
ideas used in this algorithm are related to the algorithms in [19] and [21].

The final chapter develops a method for reducing the problem of calculating
the sparse Fourier transform over Zn to calculating it over Z2k , where k is the
smallest integer such that n ≤ 2k, provided the function has certain special
properties. This method is based on ideas from Shor’s algorithm for factoring
integers.
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Chapter 2

Preliminaries for Fourier analysis

A good reference for the mathematics of the discrete Fourier transform is [24,
Chapter 7]. It contains a version of many of the theorems we will present here.
However, as the book is written with engineering applications in mind, the ap-
proach is less group-theoretic and less general.

The author highly recommends the textbook [26] by Terras. This book de-
scribes an interesting array of applications of discrete Fourier analysis. Most of the
material in this chapter is covered in this textbook, although, as the book is quite
expositional and gives many applications, these theorems are spread throughout
the book and many of the proofs are left as exercises.

In this chapter we will develop the theory surrounding the Fourier transform
in a rigorous and self contained way. The goal is to present (mostly) standard
knowledge with consistent notation and in full generality.

2.1 The space L2(G)

The group Zn = (Zn,+) is the set of integers {0, 1, . . . , n − 1} under the group
operation of addition modulo n. For x ∈ Zm1 ×Zm2 × · · · ×Zmr we write x as an
r-tuple x = (x1, x2, . . . , xr) where xi ∈ Zmi . We use C∗ = (C \ {0}, · ) to denote
the group of nonzero complex numbers under multiplication.

Definition 3. Let G be a finite, abelian group. Define L2(G) to be the set of all
functions f : G→ C. In symbols,

L2(G) = {f : G→ C}.

11
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The set L2(G) is a vector space over C with the usual addition and scalar
multiplication of functions. It comes with an inner product

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x).

In fact, L2(G) is a Hilbert space; i.e., the inner product satisfies the following
properties:

• 〈f, g〉 = 〈g, f〉,

• 〈f, g〉 is linear in f and conjugate linear in g,

• 〈f, f〉 ≥ 0,

• 〈f, f〉 = 0 if and only if f = 0,

and the space is complete with respect to the norm induced by the inner product

‖f‖2 =
√
〈f, f〉.

Proposition 1. Let G be a finite, abelian group. Then

dimL2(G) = |G|.

Proof. For all x ∈ G define δx : G → C by δx(y) = 1 if x = y and δx(y) = 0
if x 6= y. Then the δx are linearly independent. For any f ∈ L2(G) we have
f =

∑
x∈G f(x)δx thus the δx span L2(G). It follows that dimL2(G) = |G|.

Definition 4. Let G be a finite, abelian group. Let f, g ∈ L2(G). Then the
convolution of f and g is the function f ∗ g : G→ C defined by

(f ∗ g)(x) =
1

|G|
∑
y∈G

f(y)g(x− y).

Proposition 2. Let G be a finite, abelian group. Let f, g, h ∈ L2(G). Then

1. f ∗ g = g ∗ f ,

2. f ∗ (g ∗ h) = (f ∗ g) ∗ h,

3. f ∗ (g + h) = f ∗ g + f ∗ h.
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Proposition 2 shows that the vector space L2(G) is an associative algebra
where ∗ is the algebra multiplication. In fact, if we instead define convolution
by (f ∗ g)(x) =

∑
y∈G f(y)g(x − y) then the space L2(G) is isomorphic to the

group algebra of G where the multiplication in the group algebra is convolution
in L2(G). We will use Definition 4 as this seems to be the standard definition in
the cryptography literature.

2.2 Characters

Definition 5. Let G be a finite, abelian group. Define the dual of G, denoted
Ĝ, to be the set of all group homomorphisms from G to the group of non-zero
complex numbers C∗. In symbols,

Ĝ = {χ : G→ C∗ | χ is a group homomorphism}.

The members of Ĝ are called characters.

Remark 1. For any χ ∈ Ĝ and any x ∈ G we have χ(x)|G| = χ(|G|x) = χ(0) = 1.
So χ(x) is a |G|-th root of unity and, in particular, |χ(x)| = 1.

Definition 6. Let χ ∈ Ĝ be a character of G. Define the conjugate character
χ(x) : G→ C by χ(x) = χ(x).

Proposition 3. The set Ĝ from Definition 5 forms an abelian group where the
group operation is pointwise multiplication, i.e. (χψ)(x) = χ(x)ψ(x) for any

χ, ψ ∈ Ĝ and any x ∈ G.

Proof. The group operation is clearly associative. Let χ, ψ ∈ Ĝ. Then (χψ)(x+

y) = χ(x + y)ψ(x + y) = χ(x)χ(y)ψ(x)ψ(y) = (χψ)(x)(χψ)(y). So Ĝ is closed

under multiplication. Finally the inverse of a character χ in the group Ĝ is
the conjugate character χ as defined in Definition 6. The function χ is clearly a
homomorphism and it is the inverse of χ since (χχ)(x) = χ(x)χ(x) = |χ(x)|2 = 1,
where the last equality follows by Remark 6.

Definition 7. Let G = Zm1×Zm2×· · ·×Zmr . Then for every x = (x1, x2, . . . , xr) ∈
G define χx : G→ C∗ by

χx(y) =
r∏
j=1

exp

(
2πi

xjyj
mj

)
,

where i =
√
−1.
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Remark 2. Note that χx(y) = χy(x) for all x, y ∈ G.

It is easy to verify that χx is a character of G for all x ∈ G. The next
proposition shows that all the characters are of this form.

Proposition 4. Let G = Zm1 × Zm2 × · · · × Zmr . Then G ∼= Ĝ under the

isomorphism φ : G→ Ĝ defined by φ(x) = χx.

Proof. The map φ is a homomorphism since

χx+y(z) =
r∏
j=1

exp

(
2πi

(xj + yj)zj
mj

)

=
r∏
j=1

exp

(
2πi

xjzj
mj

)
exp

(
2πi

yjzj
mj

)
= χx(z)χy(z).

For surjectivity, define ej = (0, . . . , 0, 1, 0 . . . , 0) ∈ G to be the tuple with 1 in
the j-th position and 0 everywhere else. Let χ : G → C∗ be a homomorphism.
Then χ(ej) is an mj-th root of unity (see Remark 1) so χ(ej) = exp(2πixj/mj)
for some xj ∈ {0, 1, . . . ,mj − 1}. Let x = (x1, . . . , xmj) then χx(ej) = χ(ej)
for all 1 ≤ j ≤ r and, since the ej form a generating set for G, it follows that
χ = χx.

The fundamental theorem of finite abelian groups, when combined with the
proposition above, tells us that any finite abelian group is isomorphic to its dual.

Proposition 5. Any finite abelian group G is isomorphic to its dual Ĝ.

Note that there is no canonical isomorphism between G and Ĝ. For example,
when G is cyclic we must first identify it with Zn to invoke Proposition 4. To do
this we must first choose a generator for G.1 A change in the choice of generator
changes the isomorphism. Despite this, we will find it very useful later on (see

Definition 6) to index the elements of Ĝ with elements of G using the χx notation.
Since G is isomorphic to its dual it is obvious that G is isomorphic to its

double dual, Gˆ̂ . Even though there is no canonical isomorphism between G and
Ĝ there is a canonical isomorphism between G and Gˆ̂ . The isomorphism is
φ : G→ Gˆ̂ where, for each g ∈ G we define φ(g) : Ĝ→ C∗ by [φ(g)](χ) = χ(g).

1It is possible to define precisely what it means to say no isomorphism between G and Ĝ is
canonical using category theory. We will not discuss it here.
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Theorem 2. Let G be a finite, abelian group. The group, Ĝ, of characters of G
satisfies the following orthogonality relations:

∑
x∈G

χ(x) =

{
|G| if χ is the identity in Ĝ,

0 otherwise,

∑
χ∈Ĝ

χ(x) =

{
|G| if x = 0,

0 otherwise.

Proof. Let S =
∑

x∈G χ(x). If χ is the identity in Ĝ then clearly χ(x) = 1 for all
x ∈ G so S = |G|. If not, then there exists some y ∈ G such that χ(y) 6= 1. Then

χ(y)S =
∑
x∈G

χ(x+ y) = S.

Hence S = 0.
For the second part let T =

∑
χ∈Ĝ χ(x). If x = 0 then T = |G|. If x 6= 0

then, by using Definition 7 it is easy to see there exists some ψ ∈ Ĝ such that
ψ(x) 6= 1. Then

ψ(x)T =
∑
χ∈Ĝ

(ψχ)(x) = T.

Hence T = 0.

Corollary 1. Let χ, ψ ∈ Ĝ. Then

〈χ, ψ〉 =

{
1 if χ = ψ,

0 if χ 6= ψ.

Thus the set Ĝ forms an orthonormal basis for L2(G).

Proof. By definition

〈χ, ψ〉 =
1

|G|
∑
x∈G

χ(x)ψ(x) =
1

|G|
∑
x∈G

(χψ)(x).

Recall from the proof of Proposition 3 that ψ = ψ−1. The corollary now follows by
substituting χψ−1 for χ in the first equation of the theorem. Since the characters
are orthogonal they are linearly independent in L2(G). Using Propositions 4 and

1 we know |Ĝ| = |G| = dimL2(G) hence the characters form a spanning set.
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2.3 The Fourier transform

Since the characters form an orthonormal basis for L2(G) we know that any
f ∈ L2(G) can be written as f =

∑
x∈G cxχx, where cx = 〈f, χx〉. The Fourier

transform of a function is a mapping which takes a character as input and outputs
the coefficient, cx, of that character.

Definition 8. The Fourier transform is a function F : L2(G)→ L2(Ĝ) defined
by

(Ff)(χ) = 〈f, χ〉
for any f ∈ L2(G).

Since the inner product on L2(G) is linear in the first slot it follows that F

is a linear map. The kernel of F is trivial because if 〈f, χ〉 = 0 for all χ ∈ Ĝ
then f =

∑
χ∈Ĝ 〈f, χ〉χ = 0. This means that F is an injective linear map and,

since L2(G) has the same dimension as L2(Ĝ), we conclude that F is in fact a
bijection. In other words F is a vector space isomorphism. We formalise this in
the next proposition.

Proposition 6. The map F : L2(G)→ L2(Ĝ) is bijective and linear.

Unfortunately the notation (Ff)(χ) is a little cumbersome. We will define a
different notation which uses the fact that we can index the characters of Zm1 ×
Zm2 × · · · × Zmr by the elements of Zm1 × Zm2 × · · · × Zmr .

Definition 9. Let G = Zm1 × Zm2 × · · · × Zmr . For every f : G → C define

f̂ : G→ C by f̂(x) = (Ff)(χx).

Note that f̂(x) is not well defined if the domain of f is an arbitrary abelian

group. This is because there is no canonical isomorphism between G and Ĝ and
therefore no God-given choice for what the character χx should be for a given
x ∈ G.

The next proposition gives us a formula for writing f as a linear combination
of the characters of Zm1 × Zm2 × · · · × Zmr .

Proposition 7. Let G = Zm1 × Zm2 × · · · × Zmr . Then

f =
∑
x∈G

f̂(x)χx

for all f ∈ L2(G).
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Proof. Note by definition f̂(x) = 〈f, χx〉. The proposition now follows since the
χx form an orthonormal basis.

Remark 3. In the special case where the group G is the n-roots of unity, i.e.,
G = {ωj | j ∈ {0, . . . , n − 1} where ω = exp(2πi/n) and i =

√
−1. It is

easy to see that all the homomorphisms from G to C∗ are of the from x 7→
xj where j ∈ {0, 1, . . . , n − 1}. This means that the space L2(G) is equal to
spanC{1, x, x2, . . . , xn−1}. In other words, L2(G) is the set of all polynomials
with complex coefficients of degree less than n. The Fourier coefficients are the
coefficients of the polynomial.

We have seen in Proposition 6 that the Fourier transform respects the addition
and scalar multiplication in L2(G). Propositions 8 through 11 prove some of the
fundamental properties of the Fourier transform. The first of these propositions
shows us how the Fourier transform interacts with the convolution operator.

Proposition 8. Let G = Zm1 × Zm2 × · · · × Zmr . Then

(f̂ ∗ g)(x) = f̂(x)ĝ(x)

for every f, g ∈ L2(G) and every x ∈ G.

Proof. Let f, g ∈ L2(G). Let x ∈ G. Then

(f̂ ∗ g)(x) = 〈f ∗ g, χx〉

=
1

|G|
∑
y∈G

(f ∗ g)(y)χx(y)

=
1

|G|
∑
y∈G

(
1

|G|
∑
z∈G

f(z)g(y − z)

)
χx(y)

=
1

|G|2
∑
y,z∈G

f(z)g(y − z)χx(y)
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using the change of variables w = y − z we get

=
1

|G|2
∑
w,z∈G

f(z)g(w)χx(w + z)

=
1

|G|2
∑
w,z∈G

f(z)g(w)χx(w)χx(z)

=
1

|G|
∑
z∈G

f(z)χx(z)
1

|G|
∑
w∈G

g(w)χx(w)

= 〈f, χx〉〈g, χx〉
= f̂(x)ĝ(x).

Proposition 9 (Parseval’s Identity). Let G = Zm1 × Zm2 × · · · × Zmr . Let
f ∈ L2(G). Then

1

|G|
∑
x∈G

|f(x)|2 =
∑
x∈G

|f̂(x)|2.

Proof. We have

1

|G|
∑
x∈G

|f(x)|2 = 〈f, f〉

= 〈
∑
x∈G

f̂(x)χx, f〉

=
∑
x∈G

f̂(x)〈χx, f〉

=
∑
x∈G

f̂(x)〈f, χx〉

=
∑
x∈G

f̂(x)f̂(x)

=
∑
x∈G

|f̂(x)|2.

There are two other useful forms of Parseval’s theorem which we state in the
corollaries below for easy reference later.
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Corollary 2. Let G and f be as above. Then 1
|G| 〈f, f〉 =

〈
f̂ , f̂

〉
.

Corollary 3. Let G and f be as above. Then 1
|G|‖f‖

2
2 = ‖f̂‖2

2.

Proposition 10. Let s ∈ G. Let f ∈ L2(G). Define g : G → C by g(x) =

f(s+ x). Then ĝ(x) = χx(s)f̂(x).

Proof. We have

ĝ(x) = 〈g, χx〉

=
1

|G|
∑
y∈G

g(y)χx(y)

=
1

|G|
∑
y∈G

f(s+ y)χx(y)

=
1

|G|
∑
w∈G

f(w)χx(w − s) substituting w = y + s

=
1

|G|
∑
w∈G

f(w)χx(w)χx(−s)

=
1

|G|
∑
w∈G

f(w)χx(w)χ−s(x)

=
1

|G|
∑
w∈G

f(w)χx(w)χx(s)

= χx(s)
1

|G|
∑
w∈G

f(w)χx(w).

This next proposition is used in the proof of Theorem 1 which shows the
equivalence between finding heavy Fourier coefficients and solving the chosen
multiplier hidden number problem.

Proposition 11. Let s ∈ Z∗n. Let f ∈ L2(Zn). Define g : Zn → C by g(x) =

f(sx). Then ĝ(x) = f̂(s−1x).
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Proof. We have

ĝ(x) = 〈g, χx〉

=
1

n

∑
y∈Zn

g(y)χx(y)

=
1

n

∑
y∈Zn

f(sy)χx(y)

We use the change of variables z = sy. Since s ∈ Z∗n we know that z ranges over
Zn as y ranges over Zn.

=
1

n

∑
y∈Zn

f(sy)χx(y)

=
1

n

∑
z∈Zn

f(z)χx(s−1z)

=
1

n

∑
z∈Zn

f(y)χs−1x(z)

= 〈f, χs−1x〉
= f̂(s−1x).

2.4 Quotient groups and the Poisson summa-

tion formula

Sparse Fourier transform algorithms were given by Kushilevitz and Mansour for
functions of the form f : Zn2 → C in [19] and for f : Z2n → C by Mansour
in [21]. The generalisation and unification of these two algorithms will be the
subject of the next chapter, however we will describe their general approach here
as Proposition 15 was inspired by these two papers.

Both the algorithms in [19] and [21] use a divide and conquer approach. They

begin by considering a function f =
∑

α∈G f̂(α)χα and then divide G into two
disjoint subsets G = A ∪ B. They then consider the functions fA, fB : G →
C defined by fA =

∑
α∈A f̂(α)χα and fB =

∑
α∈B f̂(α)χα. Both algorithms
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recursively find the large Fourier coefficients of fA and fB and then combine the
results to get the large Fourier coefficients of f . In both papers the sets A and B
are cosets of some subgroup.

The central idea in both algorithms is to have some way of calculating fA(x)
when given access to f . In [19] a formula for fA(x) is given in Lemma 3.2 and
in [21] a formula for fA(x) is given in Lemma 3.3. The origin of the formulas for
fA(x) are unclear; in fact, the proof of Lemma 3.2 in [21] begins by saying “The
proof is somewhat technical. We basically transform the right-hand side to the
left-hand side.”

Proposition 15 gives a generalisation of the discrete Poisson summation for-
mula which, as far as the author is aware, is novel. The lemmas in [19], [21] are
special cases of the proposition. The author hopes that this will demystify the
formulas in [19] and [21] and provide some context.

Before we prove Proposition 15 we turn our attention to classifying the duals
of quotient groups. This will give us the results we need to prove the finite
analogue of the Poisson summation formula. It turns out we can identify the
duals of all the quotients of G with subgroups of Ĝ.

Definition 10. Let G be a finite, abelian group and let H ≤ G be a subgroup of
G. Define

H# = {χ ∈ Ĝ | χ(h) = 1 for all h ∈ H}.

In the next proposition we use the notation χ to refer to a character defined
on a quotient of G. Everywhere else in this thesis the notation χ refers to the
conjugate character defined by χ(x) = χ(x) as in Definition 6.

Proposition 12. Let G be a finite, abelian group and let H ≤ G be a subgroup
of G. For each χ ∈ H# define χ : G/H → C∗ by χ(g + H) = χ(g). Then χ is
well defined and

H# ∼= Ĝ/H

under the map χ 7→ χ.

Proof. Define φ : H# → Ĝ/H by φ(χ) = χ. Let χ ∈ H#. Since χ(h) = 1 for
all h ∈ H the function χ is well defined. The map φ is a homomorphism since

χψ(g +H) = χψ(g) = χ(g)ψ(g) = χ(g +H)ψ(g +H). Define θ : Ĝ/H → H# by
θ(ψ)(g) = ψ(g+H). Then θ(ψ) is identically 1 on H, so the map is well defined.
It is easy to show that θ is the inverse of φ, thus φ is bijective. This completes
the proof.



22 CHAPTER 2. PRELIMINARIES FOR FOURIER ANALYSIS

Definition 11. Let G = Zm1 × Zm2 × · · · × Zmr . Let H ≤ G. Define

H⊥ = {x ∈ G | χx ∈ H#}.

Let G = Zn. Then any H ≤ G is generated by a single element H = 〈a〉.
If we assume a is minimal then a divides n and H⊥ = 〈n/a〉. Moreover, if K
is a subgroup of some group J then (H × K)⊥ = H⊥ × K⊥ ≤ G × J , so given
generators for any subgroup of Zm1 × Zm2 × · · · × Zmr it is easy to find H⊥.

Now that we have defined H⊥ we can prove a generalisation of the orthogo-
nality relations in Proposition 2.

Proposition 13. Let G = Zm1 × Zm2 × · · · × Zmr . Let H ≤ G. Then

∑
h∈H

χh(x) =

{
|H|, if x ∈ H⊥,
0, otherwise.

Proof. If x ∈ H⊥ then, by definition of H⊥, we have χx(h) = 1 for all h ∈ H.
Hence by Remark 2 we have χh(x) = 1 for all h ∈ H. If x 6∈ H⊥ then, by
definition of H⊥, there exists some h′ ∈ H for which χx(h

′) 6= 1. Then∑
h∈H

χh(x) =
∑
h∈H

χh+h′(x) = χh′(x)
∑
h∈H

χh(x) = χx(h
′)
∑
h∈H

χh(x)

which implies that
∑

h∈H χh(x) = 0.

Proposition 14 (Poisson summation formula). Let G = Zm1 ×Zm2 × · · ·×Zmr .
Let f : G→ C. Let H ≤ G. Then∑

h∈H

f̂(h)χh(x) =
1

|G : H|
∑
y∈H⊥

f(x− y).

We will actually prove a slightly more general version of the Poisson summa-
tion formula where the sum on the left hand side of the equation is a sum over a
coset instead of a subgroup.

Proposition 15. Let f : G→ C. Let H ≤ G. Let α ∈ G. Then∑
h∈H

f̂(α + h)χα+h(x) =
1

|G : H|
∑
y∈H⊥

f(x− y)χα(y).
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Proof. Define g : G → C by g(x) =
∑

h∈H χα+h(x). Then Proposition 8 tells us

that (f̂ ∗ g)(α) = f̂(α)ĝ(α) so∑
h∈H

f̂(α + h)χα+h(x) = (f ∗ g)(x).

Now since the mapping x 7→ χx is an isomorphism we know χα+h(x) = χα(x)χh(x).
Hence g(x) = χα(x)

∑
h∈H χh(x). It follows from Proposition 13 that

g(x) =

{
χα(x) · |H|, if x ∈ H⊥,
0 otherwise.

Putting this all together we get

(f ∗ g)(x) = (g ∗ f)(x) =
1

|G|
∑
y∈G

g(y)f(x− y) =
|H|
|G|

∑
y∈H⊥

χα(y)f(x− y)

which is the right hand side of the equation.

As described in the introduction to this section, Proposition 15 is a general
version of Lemma 3.2 in [19] and Lemma 3.3 in [21].

The Poisson summation formula is now an immediate consequence of Propo-
sition 15 by substituting α = 0.
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Chapter 3

A sparse Fourier transform
algorithm

3.1 Introduction

The first sparse Fourier transform algorithm was published by Kushilevitz and
Mansour in [19] who built on work by Goldreich and Levin in [11]. Their algorithm
is probabilistic and works for boolean functions on the hypercube, i.e., functions
of the form f : Zn2 → {−1, 1}. They were interested in functions of this form
was because of their application to learning decision trees (see their paper [19]
for details).

Two years later, another paper was published by Mansour [21] which gave
a probabilistic algorithm for finding the heavy Fourier coefficients of functions
of the form f : Z2n → C. Although the paper was written in the language of
polynomials (the paper’s title is “Randomized interpolation and approximation of
sparse polynomials”) this is really the same as computing the Fourier coefficients
of a function, see Remark 3.

The goal of this chapter is to generalise the ideas from these two papers to
construct an algorithm which finds the heavy Fourier coefficients of f : G → C
where G is a finite abelian group. The algorithms in [19] and [21] were developed
for specific applications: learning decision trees and interpolating polynomials
respectively. Our approach is more group-theoretic and many of the proofs are
substantially different. We hope this approach will lay bare the ideas behind
these algorithms.

25
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3.2 Results

The following theorem is the main result of this chapter.

Theorem 3. There exists an algorithm A which has the following input:

1. An abelian group G,

2. Oracle access to a function f : G→ C,

3. M , an upper bound for maxx∈G |f(x)|2,

4. A threshold value θ,

5. A failure probability δ.

The output of A is a list α1, α2, . . . , αr ∈ G such that with probability at least
1− δ the list contains all α ∈ G such that |f̂(α)|2 ≥ θ and does not contain any

α ∈ G for which |f̂(α)|2 < θ/2.
The algorithm, A, runs in time poly(p, log |G|,M/θ, log(1/δ)), where p is the

largest prime dividing |G|.

The running time depends on the ratio M/θ, in order for the algorithm to be
efficient this ratio can not be too large. The time complexity of the algorithms
in[19] and [21] also depends on this ratio.

Before we present the algorithm we will develop some terminology and nota-
tion.

Definition 12. Let f : G → C. We say that the Fourier coefficient f̂(α) is

θ-heavy if |f̂(α)|2 > θ.

Definition 13 (Expected Value Notation). Let A = {ai | i ∈ I} ⊆ C be a finite
set of complex numbers indexed by I. We define

E
i∈I

[ai] =
1

|I|
∑
i∈I

ai.

Note that ‖f‖2
2 = 1

|G|
∑

x∈G |f(x)|2 = Ex∈G |f(x)|2. We will use expected value
notation to signal to the reader that the quantity can be approximated by taking
random samples and computing the mean. For example we could approximate
‖f‖2

2 by choosing m samples xi ∈ G at random and calculating 1
m

∑m
i=1 |f(xi)|2.

The Chernoff-Hoeffding bounds tell us how large the sample size m needs to be
in order for the estimation 1

m

∑m
i=1 |f(xi)|2 to be close to the true value ‖f‖2

2.
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Theorem 4 (Chernoff-Hoeffding). Let A = {ai | i ∈ I} be a finite set of complex
numbers such that |x| ≤ M for all x ∈ A. Let ε > 0. Let m ≥ 2M2

ε2
log(2/δ). Let

xj ∈ A be chosen randomly and uniformly from A where 1 ≤ j ≤ m. Then

Pr

[∣∣∣∣∣ Ei∈I[ai]− 1

m

m∑
j=1

xj

∣∣∣∣∣ > ε

]
≤ δ

Proof. See [15, Theorem 2].

Definition 14. Let X be a finite set. Let f : X → C. The support of f is the
subset of X, denoted by supp f , given by:

supp f = {x ∈ X | f(x) 6= 0}.

3.3 The Algorithm

3.3.1 Overview

At a high level the algorithm is relatively simple. It is a recursive algorithm that
proceeds as follows.

• Partition G into disjoint subsets, say G = A ∪ B. Define fA, fB : G → C
by fA(x) =

∑
α∈A f̂(α)χα(x) and fB(x) =

∑
α∈B f̂(α)χα(x).

• Estimate the values ‖fA‖2
2 and ‖fB‖2

2.

• 1. If ‖fA‖2
2 < θ then no Fourier coefficient f̂(β) can be θ-heavy for any

β ∈ A since by Parseval’s identity |f̂(β)|2 ≤
∑

α∈A |f̂(α)|2 = ‖fA‖2
2 <

θ. Thus we can exclude the set A from our search.

2. If ‖fA‖2
2 ≥ θ then recursively partition A and continue the search.

3. Do steps 1 and 2 for ‖fB‖2
2.

• This continues until the sets are singletons.

It is entirely non-obvious how to do the second step of the algorithm and
we will spend most of this section developing a technique for estimating ‖fA‖2

2

and ‖fB‖2
2. Instead of choosing arbitrary sets, we will ensure A and B are both

cosets of some subgroup of G. This will allow us to take advantage of the group
structure of G when estimating ‖fA‖2

2 and ‖fB‖2
2.
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3.3.2 Pseudocode

We will now formally describe the algorithm in pseudocode. The algorithm make
calls to the subroutine EstNormSq which estimates ‖fA‖2

2 and ‖fB‖2
2. How the

subroutine works will be described later.
Let G be a finite abelian group with a chain of subgroups 0 = H1 ≤ H2 ≤

· · · ≤ Hn = G where |Hi+1 : Hi| is prime for all i. Algorithm 1 defines a recursive
function, Heavy, that can be used to compute that θ-heavy coefficients of f . The
θ-heavy coefficients of f can be determined by calling Heavy(G).

Algorithm 1: Heavy

Input: A coset z +Hi where z ∈ G and 1 ≤ i ≤ n.
if i = 1 then

return z
else

Let Y be a set of coset representatives for Hi−1 in Hi

Let Y ′ = {y ∈ Y | EstNormSq(f(z+y)+Hi−1
) ≥ 3θ/4}

return ∪y∈Y ′ Heavy((z + y) +Hi−1)

Figure 3.1 on the next page gives an example of how the algorithm would
work when the group is G = Z8 and the subgroups are 0 ≤ 4Z8 ≤ 2Z8 ≤ Z8 = G.

The graphs in the figure are of the Fourier coefficients of the functions fA
for various A ⊆ Z8. The algorithm begins by splitting Z8 into two disjoint sets,
0 + 2Z8 and 1 + 2Z8. It then estimates ‖f0+2Z8‖2

2 =
∑

α∈0+2Z8
|f̂(α)|2, deter-

mines that this is less than the threshold θ and concludes there are no θ-heavy
Fourier coefficients in this set. That branch of the tree is therefore not explored
any further and is greyed out in the diagram. The algorithm then determines
that ‖f1+2Z8‖2

2 is above the threshold, thus it recursively divides this set in two
and explores both subsets. This continues until the sets under consideration are
singletons.

3.3.3 The subroutine EstNormSq and filtering

Algorithm 1 relies on calls to the subroutine EstNormSq which estimates ‖fA‖2
2

efficiently. In this section we describe how this subroutine works.
The idea is to use Parseval’s identity, which says that ‖fA‖2

2 = Ex∈G |fA(x)|2.
If we could evaluate fA(x) for any x ∈ G, then we could estimate ‖fA‖2

2 by



3.3. THE ALGORITHM 29

|f̂(α)|

α ∈ Z8

|f̂0+2Z8(α)|

α ∈ Z8

|f̂1+2Z8(α)|

α ∈ Z8

|f̂1+4Z8(α)|

α ∈ Z8

|f̂3+4Z8(α)|

α ∈ Z8

|f̂{1}(α)|

α ∈ Z8

|f̂{5}(α)|

α ∈ Z8

Figure 3.1: An example of the recursion tree of Algorithm 1 for a function f :
Z8 → C.
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choosing m sufficiently large (as determined by the Chernoff-Hoeffding bounds),
randomly choosing xi ∈ G where 1 ≤ i ≤ m and calculating

1

m

m∑
i=1

|fA(xi)|2.

This reduces the problem of estimating ‖fA‖2
2 to the problem of calculating

fA(x). Unfortunately, for a given x ∈ G, calculating fA(x) directly from the

definition of fA would require us to know f̂(α) for all α ∈ A (and would take |A|
additions).

We will therefore estimate fA(x), instead of computing it exactly. To accom-
plish this we use a technique called filtering. We define a function hA : G → C
by

hA(x) =
∑
α∈A

χα(x). (3.1)

We choose this function because it has the property that ĥA(α) = 1 if α ∈
A and ĥA(α) = 0 otherwise. We can now use Proposition 8 which says that

f̂ ∗ hA(α) = f̂(α)ĥA(α) so

f̂ ∗ hA(α) =

{
f̂(α), if α ∈ A,

0, otherwise.

This implies that f ∗hA = fA. The function hA is called a filter function because
it is defined in such a way that when convoluted with f , it filters out all the
coefficients except those in A. Figure 3.2 gives a graphical demonstration of this.

We can estimate fA(x) by using the fact that

fA(x) = (f ∗ hA)(x) =
1

|G|
∑
y∈G

f(y)hA(x− y) = E
y∈G

f(y)hA(x− y). (3.2)

We would like to estimate fA(x) by choosing sufficiently many random samples
y ∈ G and estimating the sum on the right hand side of equation (3.2). This
does not require us to know any Fourier coefficients and only requires access to
the function f .

In order to be able to efficiently estimate fA(x) using this method, there are
two hurdles that need to be overcome:

1. We need to be able to calculate hA(x− y) for various y ∈ G.
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Fourier coefficients of f

|f̂(α)|

α ∈ Z8

1

Fourier coefficients of hA

|ĥA(α)|

α ∈ Z8

1

Fourier coefficients of fA = f ∗ hA

|f̂A(α)|

α ∈ Z8

1

Figure 3.2: The effect of the filter function hA when convoluted with f : Z8 → C.
Here A = {1, 3, 5, 7}.

2. We require that the number of samples to get an accurate estimate is not
too large.

This is where the structure of the set A is crucial; if A is a coset then A = z+H
for some z ∈ G and H ≤ G. Then

hz+H(x) =
∑
h∈H

χz+h(x) =
∑
h∈H

χz(x)χh(x) = χz(x)
∑
h∈H

χh(x).

Recall the definition of H⊥ in Definition 11. Proposition 13 now tells us that

hz+H(x) =

{
χz(x) · |H|, if x ∈ H⊥,
0, otherwise.

(3.3)

This solves the first problem: we can easily calculate hA(x) by simply checking
if x ∈ H⊥ and applying the formula.

For the second problem the Chernoff-Hoeffding bounds tell us that the number
of samples m must be proportional to M = maxy∈G |f(y)hA(x − y)|. Unfortu-
nately hA(x− y) could possibly be as large as |A| (when, for example x− y = 0).



32 CHAPTER 3. A SPARSE FOURIER TRANSFORM ALGORITHM

This is where we use the fact that hA(x) has small support:

fA(x) =
1

|G|
∑
y∈G

f(y)hA(x− y)

=
1

|G|
∑
y∈H⊥

f(y)χz(x− y) · |H|

= E
y∈H⊥

[f(y)χz(x− y)].

We can now estimate Ey∈H⊥ [f(y)χz(x − y)] using the Chernoff-Hoeffding
bounds. The number of samples only needs to be proportional to maxy∈H⊥ |f(y)χz(x−
y)| = maxy∈H⊥ |f(y)|.

Remark 4. In general a filter function should:

• Be easy to calculate.

• Have the property that |ĥ(x)| ≈ 1 if x ∈ A and |ĥ(x)| ≈ 0 if x 6∈ A. (In this

particular case |ĥ(x)| = 0 for x 6∈ A but this is not necessary, as we will see
in the next chapter.)

• Have small support.

For more information on filter functions see [25, Section 4.4].

To summarise, we can write ‖fA‖2
2 using an expected value formula.

‖fA‖2
2 = ‖(f ∗ hA)‖2

2

= E
x∈G
|(f ∗ hA)(x)|2

= E
x∈G
| E
y∈G

[f(y)hA(x− y)] |2

= E
x∈G

∣∣∣∣ E
y∈H⊥

[f(y)χz(x− y)]

∣∣∣∣2 (using Equation (3.3))

This allows us to approximate ‖fA‖2
2 by choosing m1,m2 sufficiently large,

randomly choosing xi ∈ G where 1 ≤ i ≤ m1, randomly choosing yij ∈ H⊥ for
each i where 1 ≤ j ≤ m2 and calculating

EstNormSq(fA) =
1

m1

m1∑
i=1

∣∣∣∣∣ 1

m2

m2∑
j=1

f(yij)χz(xi − yij)

∣∣∣∣∣
2

. (3.4)
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In the next section, where we prove the running time of the algorithm, we will
determine how large m1 and m2 need to be.

Algorithm 2: EstNormSq

Input: fz+H : G→ C.
Choose xi ∈ G at random for 1 ≤ i ≤ m1

for each xi do
Choose yij ∈ H⊥ at random 1 ≤ j ≤ m2

Calculate 1
m2

∑m2

j=1 f(yij)χz(xi − yij)

return 1
m1

∑m1

i=1

∣∣∣ 1
m2

∑m2

j=1 f(yij)χz(xi − yij)
∣∣∣2

3.4 Analysis of algorithm

We will analyse the running time of Algorithm 1 by first bounding the running
time of the subroutine EstNormSq in Subsection 3.4.1 and then bounding the
number of calls Algorithm 1 makes to the subroutine.

3.4.1 The running time of EstNormSq

The running time of the subroutine EstNormSq is m1m2 (we assume all addi-
tion and multiplications take constant time to perform). We therefore begin our
analysis of Algorithm 1 by determining how large the integers m1 and m2 in
Equation (3.4) need to be. We will use the Chernoff-Hoeffding bounds, although
their application is not straightforward. We define two random variables. The
first is

Am2(xi, z +H) =
1

m2

m2∑
j=1

f(yij)χz(xi − yij),

and the second is

Bm1,m2(z +H) =
1

m1

m1∑
i=1

|Am1(xi, z +H)|2.

Note that Bm1,m2(z +H) is the right hand side of equation 3.4.
We begin with a technical lemma, the purpose of which will become clear in

the proof of Theorem 5.
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Lemma 1. Let L > 0. Let A = {ai | 1 ≤ i ≤ m} ⊆ C and B = {bi |
1 ≤ i ≤ m} ⊆ C be sets of complex numbers such that max1≤i≤m |ai| ≤ L and
max1≤i≤m |bi| ≤ L. Suppose

|ai − bi| ≤ ε/2L

for all i ∈ {1, . . . ,m}. Then∣∣∣∣∣ 1

m

m∑
i=1

|ai|2 −
1

m

m∑
i=1

|bi|2
∣∣∣∣∣ < ε.

Proof. For all i ∈ {1, . . . ,m} we have∣∣|ai|2 − |bi|2∣∣ = |ai + bi||ai − bi|

≤ (|ai|+ |bi|)
ε

2L

≤ 2L
ε

2L
= ε.

Thus ∣∣∣∣∣ 1

m

m∑
i=1

|ai|2 −
1

m

m∑
i=1

|bi|2
∣∣∣∣∣ ≤ 1

m

m∑
i=1

∣∣|ai|2 − |bi|2∣∣
≤ 1

m
mε

≤ ε.

We now prove the main result for this subsection.

Theorem 5. Let f : G → C. Then there exists constants c1 and c2 such that if
m1 ≥ c1

M2

θ2
log(4/δ) and m2 ≥ c2

M2

θ2
log(4m1/δ) then

Pr

[∣∣Bm1,m2(z +H)− ‖fz+H‖2
2

∣∣ > θ

4

]
< δ.
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Proof. Since

∣∣Bm1,m2(z +H)− ‖fz+H‖2
2

∣∣ ≤ ∣∣∣∣∣Bm1,m2(z +H)− 1

m1

m1∑
i=1

|fz+H(xi)|2
∣∣∣∣∣

+

∣∣∣∣∣ 1

m1

m1∑
i=1

|fz+H(xi)|2 − ‖fz+H‖2
2

∣∣∣∣∣
it suffices to show that each of the summands on the RHS is at most θ/8 with
high probability.

Recall that ‖fz+H‖2
2 = Ex∈G |fz+H(xi)|2. To apply the Chernoff-Hoeffding

bounds to the second summand, we need an upper bound for |fz+H(xi)|2. Since
fz+H(xi) = Ey∈H⊥ f(y)χz(x − y) we know that |fz+H(xi)| ≤ maxy∈G |f(y)| ≤√
M . Thus |fz+H(xi)|2 ≤M . Choose m1 ≥ 2M2

(θ/8)2
log(4/δ) the Chernoff-Hoeffding

bounds tell us that ∣∣∣∣∣ 1

m1

∑
i=1

|fz+H(xi)|2 + ‖fz+H‖2
2

∣∣∣∣∣ < θ

8

with probability at least 1 − δ/2. Choose m2 ≥ 2M
(θ/(16

√
M))2

log(4m1/δ) we know

that, for each i,

|Am2(xi, z +H)− fz+H(xi)| ≤
θ

16
√
M

with probability at least 1−δ/(2m1). We now apply Lemma 1 which tells us that∣∣|Am2(xi, z +H)|2 − |fz+H(xi)|2
∣∣ ≤ θ

8
.

It follows that the above equation holds for every i simultaneously with proba-
bility at least 1− δ/2. Hence∣∣∣∣∣Bm1,m2(z +H)− 1

m1

m1∑
i=1

|fz+H(xi)|2
∣∣∣∣∣ =

∣∣∣∣∣ 1

m1

m1∑
i=1

|Am2(xi, z +H)|2 − 1

m1

m1∑
i=1

|fz+H(xi)|2
∣∣∣∣∣

≤ 1

m1

m1∑
i=1

∣∣|Am2(xi, z +H)|2 − |fz+H(xi)|2
∣∣

≤ θ

8
.
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3.4.2 The running time of the algorithm

We have shown that we can estimate ‖fz+H‖2
2 with an error of at most θ/4. Thus

if ‖fz+H‖2
2 > θ then we know with probability at least 1−δ that |Bm1,m2(z+H)| >

3θ/4. And if ‖fz+H‖2
2 < θ/2 then |Bm1,m2(z +H)| < 3θ/4.

This shows that the algorithm performs the right recursive calls with high
probability. We now bound the number of recursive calls at each level in the
recursion tree.

Lemma 2. Let f : G→ C.

• There are at most 2‖f‖2
2/θ values of α such that |f̂(α)|2 ≥ θ/2.

• Let H ≤ G. There are at most 2‖f‖2
2/θ cosets z + H such that ‖fz+H‖2

2 ≥
θ/2.

Proof. We prove the second claim first. Suppose it is not true. Let Z be a set of

coset representatives for H in G. Then ‖f‖2
2 =

∑
z∈Z ‖fz+H‖2

2 >
2‖f‖22
θ

θ
2

= ‖f‖2
2, a

contradiction. The first claim is just a special case of the second when H = 0.

We finally prove the running time of the algorithm.

Theorem 6. The running time of Algorithm 1 is polynomial in p, M/θ, log |G|
and log(1/δ).

Proof. From Lemma 2 we know for each i = 1, . . . , n the number of cosets, z+Hi,
such that ‖fz+Hi‖2

2 > θ/2 is at most 2‖f‖2
2/θ. We can bound the norm of f by

‖f‖2
2 = 1

|G|
∑

x∈G |f(x)|2 ≤M so we have 2‖f‖2
2/θ ≤ 2M/θ. Since |Hi : Hi−1| ≤ p

this bounds the number of calls to EstNormSq by 2Mpn/θ (recall that n is the
length of the chain of subgroups H1 ≤ H2 ≤ · · ·Hn).

Since there are at most 2Mpn/θ calls to EstNormSq, in order to guarantee a
total error probability of no more than δ we need to choose m1 and m2 so that
the probability of error on any particular call is no more than δθ/(2Mpn).

Hence the running time is

O

(
pnM

θ
m1m2

)
= O

(
pnM

θ

M2

θ2
log

(
4

δ′

)
M2

θ2
log

(
4m1

δ′

))
,

where δ′ = δθ/(2Mpn). This formula is polynomial in p, n, M/θ and log(1/δ).
The result now follows since n ≤ blog2 |G|c+ 1.
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3.5 Estimating the heavy coefficients once they

have been identified

Algorithm 1 outputs a list of α1, . . . , αr ∈ G which contains all α ∈ G such
that |f̂(α)|2 > θ and does not contain any α ∈ G for which |f̂(α)|2 < θ/2.

Once we have this list we can estimate the values f̂(αi) by using the fact that

f̂(αi) = 〈f, χαi〉 = 1
|G|
∑

y∈G f(y)χαi(y). By the Chernoff-Hoeffding bounds if we

choose m ≥ 2M
ε2

log(2/δ) and randomly select yj ∈ G for 1 ≤ j ≤ m, then with
probability 1− δ we have∣∣∣∣∣f̂(αi)−

1

m

m∑
j=1

f(yj)χαi(yj)

∣∣∣∣∣ < ε.

This allows us to estimate the coefficients with arbitrary precision.
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Chapter 4

The AGS algorithm

Algorithm 1 from the previous chapter uses a divide and conquer approach to
determine the heavy Fourier coefficients of f : G → C. The group G is divided
into disjoints sets and the algorithm determines which sets contain no heavy
coefficients and discards them. The remaining sets are then recursively searched
to find the heavy coefficients. In Algorithm 1 we require that the disjoint sets are
cosets of some subgroup of G. This was the approach in [19] and [21] (although,
they did not use the language of group theory).

If G = Zp, where p is a large prime, then the only subgroups of G are the
trivial subgroup and Zp itself. This means that the algorithm will divide G into
the cosets of the trivial subgroup: {0}, {1}, {2}, . . . , {p − 1} and search each
one. This will take O(p) time, whereas we want the algorithm to run in time
polynomial in log p.

In [5] Akavia, Goldwasser and Shafra give an algorithm which finds the heavy
Fourier coefficients of a function f : Zn → {−1, 1} for any n ∈ N (our convention
is that N does not include 0) and the running time is polynomial in log n. We
will call this the AGS algorithm. A patent application for the AGS algorithm
was filed in 2005 [12].

The paper [5] is relatively brief. Akavia’s PhD thesis [2, Chapter 3] goes into
more detail and generalises the algorithm slightly. The precise statement of the
theorem, as in [2], is given below.

Theorem 7. There exists an algorithm which, when given oracle access to the
function f : G→ C, finds all the θ-heavy Fourier coefficients of f . The running
time is polynomial in log |G|, 1/θ and ‖f‖∞ = maxx∈G |f(x)|.

The goal of this chapter is to give a sketch of the algorithm and show how it

39
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is related to the algorithms in [19] and [21]. Although the algorithm works for
any f : G → C we will focus on the case where G = Zp where p is prime. We
refer the reader to [2, Chapter 3] for more details.

4.1 The AGS algorithm

At a high level the algorithm works the same as Algorithm 1 (see Section 3.3.1
for a high level description of Algorithm 1). However, since we can not filter out
cosets of Zp as described in Section 3.3.3 we will instead filter out intervals. That
is, we define A = {0, 1, . . . bp/2c} and B = {bp/2c+ 1, bp/2c+ 2, . . . , p− 1} and

then estimate the norm of fA and fB. By Parseval’s identity ‖fA‖2
2 =

∑
z∈A |f̂(z)|2

so if A contains a θ-heavy coefficient then ‖fA‖2
2 ≥ θ. If ‖fA‖2

2 ≥ θ then the
algorithm recursively divides the interval in half. If ‖fA‖2

2 < θ then the interval
A is discarded and the search continues in B. The pseudocode is given below.
To determine the θ-heavy coefficients of f , you simply call AGS(Zp).

Algorithm 3: AGS

Input: A = {a, a+ 1, . . . , b} ⊆ Zp .
if a = b then

return {a}
else

Let c = b(a+ b)/2c
Let A1 = {a, a+ 1, . . . , c}
Let A2 = {c, c+ 1, . . . , b}
Let I = {i ∈ {1, 2} | AGSEstNormSq(fAi) ≥ θ}
return ∪i∈I Heavy(Ai)

As in Algorithm 1 the difficult part is the estimation of ‖fA‖2
2 and ‖fB‖2

2. In
Algorithm 1 we relied on the fact that A and B were cosets to prove that ‖fA‖2

2

and ‖fB‖2
2 can be estimated efficiently. Since A,B are now intervals, a different

approach is used which we describe in the next section.

4.2 The subroutine AGSEstNormSq

Let A = {a, a + 1, . . . , b}. We will now demonstrate how to efficiently estimate
‖fA‖2

2. As in Section 3.3.3 the idea is that ‖fA‖2
2 = Ex∈G |fA(x)|2 so if we can
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estimate fA(x) for particular values of x then we can estimate ‖fA‖2
2 using the

Chernoff-Hoeffding bounds. We could naively try to estimate fA(x) by using the
filter function hA(x) =

∑b
α=a χα(x), which is the Zp analogue to equation (3.1).

Then fA(x) = (f ∗ hA)(x) as in Section 3.3.3.
However, this naive approach does not work. We would like to approximate

(f∗hA)(x) by choosingm random elements yi ∈ G and calculating 1
m

∑m
i=1 f(yi)hA(x−

yi). Unfortunately, the Chernoff-Hoeffding bounds require that the number of
samples, m, is polynomial in L, where L is an upper bound for |hA(x)f(x− y)|.
Thus, m would need to be too large since |hA(x)| could possibly be as large as
b − a (when, for example, x = 0). This means that when searching the interval
{0, 1, . . . , bp/2c} we would need m to be proportional to p/2. In Section 3.3.3 we
got around this by using the fact that if A is a coset then hA has small support.
However, in general hA does not have small support. Therefore a different filter
function is needed.

We now present the filter function defined in [2, Definition 3.14]. This filter
function can be seen as an adaptation of equation (3.3) to the Zp case. Let

a, b ∈ Zp so 0 ≤ a < b < p. Let c = b(a+ b)/2c. Let t =
⌊

N
2(b−a)

⌋
. Define

ha,b(x) =

{
p
t
χ−c(x), if 0 ≤ x ≤ t− 1,

0, otherwise.

The idea is that this function satisfies the properties in Remark 4. In partic-
ular, it has Fourier coefficients which are close to 1 inside the interval [a, b] and
close to zero outside the interval. The set of Fourier coefficients inside the interval
[a, b] is called the passband. Figure 4.1 is a plot of the Fourier coefficients of ha,b
and the passband is labelled on the diagram.

This means that when ha,b is convoluted with the function f the coefficients
of f outside the interval [a, b] are filtered out.

In [2, Chapter 4, Section 4] Akavia proves that the filter function ha,b has the
desired properties. In particular, Akavia proves the following Lemma.

Lemma 3. For all x ∈ Zp define abs(x) = min(x, n − x). If b − a ≤ p/2 then
ha,b satisfies the following properties:

• Pass Band: For all α ∈ Zp and γ ∈ [0, 1], if abs(α − a+b
2

) ≤ γ b−a
2

, then

|ĥa,b(α)|2 > 1− 5
6
γ2.

• Fast decreasing: For all α ∈ Zp, we have |ĥa,b(α)|2 <
(

2(b−a)

abs(α−a+b2 )

)
.
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Fourier coefficients of ha,b

|ĥa,b(α)|2

α ∈ Zp

Passband

Figure 4.1: The Fourier coefficients of the filter function ha,b. The passband is
the interval [a, b]. Here p = 83, a = 21, b = 41.

Proof. See [2, Proposition 3.31].

Lemma 3 shows that |ĥa,b(α)| ≈ 1 if a ≤ α ≤ b and |ĥa,b(α)| ≈ 0 for α outside

this interval. Since (f̂ ∗ ha,b)(α) = f̂(α)ĥa,b(α), if A = {a, a+1, . . . , b} then f̂A(α)

is approximately equal to (f̂ ∗ ha,b)(α). Hence

‖fA‖2
2 =

∑
a≤α≤b

|f̂(α)|2 ≈
∑
α∈Zp

(f̂ ∗ ha,b)(α) = ‖f ∗ ha,b‖2
2.

We also have

‖(f ∗ ha,b)(x)‖2
2 = E

x∈Zp

∣∣∣∣ E
y∈Zp

[f(y)ha,b(x− y)]

∣∣∣∣2
= E

x∈Zp

∣∣∣∣ E
0≤y≤t−1

[f(y)χ−c(x− y)]

∣∣∣∣2 ,
where c = b(a+ b)/2c.
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So we can approximate ‖fA‖2
2 as before by choosing m1, m2 sufficiently large,

randomly choosing xi ∈ Zp where 1 ≤ i ≤ m1, randomly choosing yij ∈ {0, 1, . . . , t−
1} for each i where 1 ≤ j ≤ m2 and calculating

AGSEstNormSq(fA) =
1

m1

m1∑
i=1

∣∣∣∣∣ 1

m2

m2∑
j=1

f(yij)χ−c(xi − yij)

∣∣∣∣∣
2

.

Algorithm 4: AGSEstNormSq

Input: fA : G→ C where A = {a, a+ 1, . . . , b} ⊆ Zp.
Choose xi ∈ Zp where 1 ≤ i ≤ m1

Let t =
⌊

N
2(b−a)

⌋
For each i, choose yij ∈ {0, 1, . . . , t− 1} where 1 ≤ j ≤ m2

Let c = b(a+ b)/2c

return 1
m1

∑m1

i=1

∣∣∣ 1
m2

∑m2

j=1 f(yij)χ−c(xi − yij)
∣∣∣2

The number of required samples m1,m2 is given in [2, Chapter 3]. Both m1

and m2 are polynomial in 1/θ, log |G| and ‖f‖∞ = maxx∈G |f(x)|. This means
that the running time of the algorithm is polynomial in 1/θ, log |G| and ‖f‖∞.
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Chapter 5

Modulus switching

In the literature, most algorithms for finding the heavy Fourier coefficients of
f : G → C are designed to work when |G| is an integer power of 2. This is the
most common case, especially in engineering applications. Since the community
has invested serious effort to optimise sparse Fourier transform algorithms for
this case it would be useful to take advantage of this work when computing
sparse Fourier transforms where, for example |G| is prime. While some of these
algorithms could probably individually be modified to handle the case where |G|
is prime this would be quite difficult as many of the proofs become considerably
more messy. We wish to develop a more general approach.

In this section we will explore a way of finding the heavy Fourier coefficients
of f : Zp → C when given access to an algorithm which finds the heavy Fourier
coefficients of functions of the form g : Z2k → C, for k ∈ N. We therefore reduce
the problem of finding the heavy Fourier coefficients of f : Zn → C to the case
where n is an integer power of 2. We call this modulus switching. We show how
this technique can be used in the case where the heavy Fourier coefficients of f
are sufficiently far apart from each other.

Throughout this chapter we will suppose that f is mapping from Zp where
p is some large prime. It is not essential that p is prime, although this is the
application we have in mind. Let k be the smallest integer such that p < 2k.
Define f̃ : Z2k → C by f̃(x) = f(x) for x ∈ {0, 1, . . . , p − 1} and f̃(x) = 0 for
x ∈ {p, p + 1, . . . , 2k − 1}. If we compare the discrete Fourier transform of f

and f̃ in Figures 5.1 and 5.2 it appears that the heavy Fourier coefficients of f̃
are somehow related to the heavy Fourier coefficients of f . The idea is to show
that if we can find the heavy Fourier coefficients of f̃ (using one of the many
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algorithms which work when the domain size is a power of 2) then we can recover
the coefficients of f .

|f̂(x)|2

x ∈ Zp

0.2

0.4

0.6

0.8

1.0

0 10 20 30

Figure 5.1: Plot of the magnitude of the Fourier coefficients of a function f :
Zp → C. In this particular example p = 37.

|̂̃f (x)|2

x ∈ Z2k

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

Figure 5.2: Plot of the magnitude of the Fourier coefficients of f̃ . Here 2k = 64.
It appears as though two peaks correspond to the peaks in Figure 5.1.
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5.1 Shor’s Algorithm

The techniques in this section are similar to those used in Shor’s quantum al-
gorithm for factoring integers. In Shor’s algorithm, the problem of factoring an
integer N is reduced to the problem of locating the heavy Fourier coefficients of
function f : ZN → C. In fact, the function is defined by f(x) = ax (mod N),
where a is chosen randomly (for more details see the original paper [23]). The
algorithm then uses the quantum Fourier Transform to calculate the Fourier co-
efficients of f . The coefficients are not calculated directly as the quantum Fourier
transform only works when N is an integer power of 2. Instead, a related func-
tion g : ZQ → C is constructed where Q is the smallest integer power of 2 such
that Q ≥ N2. The function g is defined by g(x) = f(x (mod N)). The quantum
Fourier transform is used to compute the discrete Fourier transform of g and then
this information is used to recover coefficients of the original function f .

In this chapter we use a similar technique but instead define the function g
by g(x) = f(x) if 0 ≤ x ≤ N − 1 and g(x) = 0 otherwise. Instead of choosing
Q ≥ N2 we choose Q ≥ N . We then show that if f statisfies certain conditions
it is possible to recover the coefficients of f .

5.2 Tilde Notation

Given some f : Zp → C we will define the function f̃ : Z2k → C in such a way so

that if we know the heavy Fourier coefficients of f̃ then this information can be
used to recover the heavy Fourier coefficients of f .

Throughout this chapter we use p to refer to a fixed, positive integer and n
will be fixed a positive integer such that n > p. For the particular application
we have in mind p is a prime number and n is the smallest integer power of 2
such that n > p. However the assumption that p is prime and n is a power of
2 is not necessary for most of the theorems. We will therefore clearly state the
restrictions on p and n in the hypotheses of each theorem.

Definition 15. Let p ∈ N. Let n ∈ N such that n > p. Let f : Zp → C. Define

f̃ : Zn → C by

f̃(z) =

{
f(z), if 0 ≤ z ≤ p− 1,

0, if p ≤ z ≤ n− 1.

Note that this definition is different from the one used in Shor’s algorithm.
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It is easy to verify that the mapping ·̃ : L2(Zp) → L2(Zn) is both injective
and linear. As the next lemma shows, it also behaves nicely with respect to the
inner product.

Lemma 4. Let p ∈ N. Let n ∈ N such that n > p. Let f, g ∈ L2(Zp). Let

f̃ , g̃ ∈ L2(Zn) be defined as in Definition 15. Then

〈f̃ , g̃〉 =
p

n
〈f, g〉.

Proof. We have

〈f̃ , g̃〉 =
1

n

n−1∑
z=0

f̃(z)g̃(z)

=
1

n

p−1∑
z=0

f(z)g(z)

=
p

n
〈f, g〉

as required.

Lemma 4 implies that if any two g, h : Zp → C are orthogonal then g̃, h̃ :
Zn → C, are also orthogonal. In particular all the members of the set {χ̃ : Zn →
C | χ : Zp → C is a character} are mutually orthogonal.

Corollary 4. Let p, n and f be as in the Lemma. Then ‖f̃‖2
2 = p

n
‖f‖2

2.

Proof. By definition of the norm ‖f̃‖2
2 = 〈f̃ , f̃〉 = p

n
〈f, f〉 = p

n
‖f‖2

2.

5.3 The Fourier coefficients of χ̃x

Given some function f : Zp → C we can write f as f =
∑

x∈Zp f̂(x)χx. Since the

map f 7→ f̃ is linear we then get f̃ =
∑

x∈Zp f̂(x)χ̃x. This proves the following
proposition.

Proposition 16. Let p ∈ N. Let n ∈ N such that n > p. Let f : Zp → C. The

function f can be written as f =
∑

x∈Zp f̂(x)χx. Then

f̃ =
∑
x∈Zp

f̂(x)χ̃x.
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∣∣∣̂̃χx(z)
∣∣∣2

z ∈ Zn

0.1

0.2

0.3

0 10 20 30 40 50 60

Figure 5.3: The magnitude of the Fourier coefficients for ̂̃χx. Here p = 37, n = 64
and x = 5.

We will therefore first analyse the function χ̃x and later we will use this anal-
ysis to prove results about the function f̃ .

Figure 5.3 is a graph of the Fourier coefficients of χ̃x : Zn → C. The graph
appears to have a single peak and then decays rapidly.

In this section we prove two main results. The first, Proposition 18, is that
the peak is at the closest integer to xn/p and the second (Lemma 6) is that the
size of the y-th Fourier coefficients is inversely proportional to |xn/p− y|.

To avoid confusion we use χ for characters of Zp and ψ for characters of Zn.
So χw(z) = exp(2πwz/p) and ψx(z) = exp(2πixz/n).

Proposition 17. Let p ∈ N. Let n ∈ N such that n > p. Let χw : Zp → C be a
character so χ̃ is a mapping from Zn to C. For all x ∈ Zn we have

|̂̃χw(x)|2 =


(
p
n

)2
, if w

p
− x

n
∈ Z,

1
n2

sin2(πpn x)
sin2(πn(x−wnp ))

, otherwise.
(5.1)
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Proof. Let ψx(z) = exp(2πixz/n) be the x-th character of Zn. Then

̂̃χ(x) = 〈χ̃w, ψx〉

=
1

n

n−1∑
z=0

χ̃w(z)ψx(z)

=
1

n

p−1∑
z=0

χw(z)ψx(z)

We now use the definition of the characters χw and ψx.

=
1

n

p−1∑
z=0

exp(2πiwz/p) exp(−2πixz/n)

=
1

n

p−1∑
z=0

exp

(
2πi

(
w

p
− x

n

))z
.

If w/p − x/n ∈ Z then exp
(

2πi
(
w
p
− x

n

))
= 1 hence 〈χ̃w, ψx〉 = p/n. If w/p −

x/n 6∈ Z we can use the formula for the sum of a geometric series. Then

〈χ̃w, ψx〉 =
1

n

1− exp
(

2πi
(
w
p
− x

n

))p
1− exp

(
2πi
(
w
p
− x

n

))
=

1

n

1− exp
(

2πip
(
w
p
− x

n

))
1− exp

(
2πi
(
w
p
− x

n

)) .
For all θ ∈ R we have |1−exp (iθ) |2 = (1− cos (θ))2 +sin2 (θ) = 1−2 cos (θ)+

cos2 (θ) + sin2 (θ) = 2− 2 cos (θ) = 2− 2 cos
(
2 θ

2

)
= 2− 2

(
cos2

(
θ
2

)
− sin2

(
θ
2

))
=

2
(
1− cos2

(
θ
2

))
+ 2 sin2

(
θ
2

)
= 2 sin2

(
θ
2

)
+ 2 sin2

(
θ
2

)
= 4 sin2

(
θ
2

)
. So by setting

θ = 2πp
(
w
p
− x

n

)
and θ = 2π

(
w
p
− x

n

)
for the numerator and denominator re-
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spectively we get

|〈χ̃w, ψx〉|2 =

∣∣∣∣∣∣ 1n
1− exp

(
2πip

(
w
p
− x

n

))
1− exp

(
2πi
(
w
p
− x

n

))
∣∣∣∣∣∣
2

=
1

n2

sin2
(
πp
(
w
p
− x

n

))
sin2

(
π
(
w
p
− x

n

))
=

1

n2

sin2
(
πp
n
x
)

sin2
(
π
n

(
x− wn

p

)) .

The aim is to show that for fixed p, n, w the real number |〈χ̃w, ψx〉|2 is large
for a few x ∈ Zn and small for all other x ∈ Zn. We will consider the right hand
side of Equation (5.1) as a function of the real variable x. We therefore define
g : R→ R by

g(x) =


(
p
n

)2
, if x ∈ wn

p
+ nZ,

1
n2

sin2(πpn x)
sin2(πn(x−wnp ))

, otherwise.
(5.2)

(Note that w/p− x/n ∈ Z if and only if x ∈ wn/p+ nZ = {wn/p+ `n | ` ∈ Z}.)
The function g is periodic with period n. Figure 5.4 gives a plot of the Fourier
coefficients of χ̃x (as in Figure 5.3) and g on the same axis.

Proposition 18. Let n ∈ N. Let w ∈ {0, 1, . . . , n − 1}. Let p ∈ Z be such that
n/2 < p < n. Define g : R → R as in equation 5.2. Let x be the closest integer

to wn/p. Then g(x) ≥ 4
π2

(
p
n

)2
.

Proof. Let x ∈ Z be the integer closest to the real number wn/p. If x = wn/p

then g(x) =
(
p
n

)2 ≥ 4
π2

(
p
n

)2
. If x 6= wn/p then let r = x − wn/p. Then

0 < |r| ≤ 1/2 and x = wn/p+ r. Hence
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x
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0.3

0.4

0 10 20 30 40 50 60

|̂̃χw(x)|2

g(x)

Figure 5.4: In blue: the magnitude of the Fourier coefficients of χ̃w where p = 37,
n = 64 and w = 5. In green: the function g as defined in Equation 5.2.
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g(x) =
1

n2

sin2
(
πp
n
x
)

sin2
(
π
n

(
x− wn

p

))
=

1

n2

sin2
(
πp
n

(
wn
p

+ r
))

sin2
(
π
n

(
wn
p

+ r − wn
p

))
=

1

n2

sin2
(
πp
n
r
)

sin2
(
π
n
r
) .

We now use the inequalities sin2(x) ≤ x2, for all x ∈ R (this follows from the
fact that | sinx| ≤ |x| for all x ∈ R) and sin2(x) ≥ 4

π2x
2, for all x ∈ [−π/2, π/2]

(this follows from Jordan’s inequality: sin(x) ≥ 2
π
x for all x ∈ [0, π/2]) and apply

them to the denominator and numerator respectively. We get

g(x) ≥ 1

n2

4
π2

(
πp
n
r
)2(

π
n
r
)2

=
4

π2

p2

n2
.

Corollary 5. Let p ∈ N. Let n ∈ N such that n/2 < p < n. Let χw : Zp → C
be the w-th character of Zp. Let x ∈ Zn be the closest integer to wn/p. Let
ψx : Zn → C be the x-th character in Zn. Then

|〈χ̃w, ψx〉| ≥
1

π
.

Proof. The proposition gives |〈χ̃w, ψx〉| = g(x) ≥ 2
π
p
n
≥ 1

π
.

Now that we have lower bounds, we now turn our attention to finding upper
bounds for the Fourier coefficients of χ̃x. Lemma 6 is the result we want, but first
we prove a more technical lemma.

Definition 16. Let n ∈ N. For every x ∈ R let [x]n be the unique real number
with the property that x− [x]n ∈ nZ and [x]n is in the interval (−n/2, n/2].
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Lemma 5. Let n ∈ N. Let x ∈ R such that x 6∈ nZ. Then

1∣∣sin(π
n
x)
∣∣ ≤ 1∣∣π

n
[x]n
∣∣ + 1.

Proof. The function
∣∣sin(π

n
x)
∣∣ is an even function with period n hence | sin(π

n
x)| =

| sin(π
n
[x]n)| for all x ∈ R. Since u ≤ tan(u) for all 0 ≤ u < π/2 we have

u2 ≤ tan2(u)⇒ 1
u2
≥ cot2(u) = cosec2(x)− 1⇒ 1

sin2(u)
≤ 1

u2
+ 1. Hence

1

| sinu|
=

√
1

sin2(u)
≤
√

1

u2
+ 1 ≤

√
1

u2
+
√

1 =
1

|u|
+ 1.

Finally
1∣∣sin(π
n
x)
∣∣ =

1∣∣sin(π
n
[x]n)

∣∣ ≤ 1∣∣π
n
[x]n
∣∣ + 1.

Lemma 6. Let p ∈ N. Let n ∈ N such that n/2 < p < n. Let χw : Zp → C be a
character of Zp. Let x ∈ Zn. Then

|̂̃χw(x)| ≤ min

(
p

n
,

1

π

1

|[wn/p− x]n|
+

1

n

)
.

Proof. First we observe that |̂̃χw(x)|2 ≤
∑

w∈Zn |̂̃χw(x)|2 = ‖χ̃w‖2
2 = p

n
‖χw‖2

2 = p
n
.

We now use the result from the Proposition 17 and the previous lemma which
gives

|〈χ̃w, ψx〉| =
1

n

∣∣∣∣ sin(πp
n
x)

sin(π
n
(x− wn/p))

∣∣∣∣ ≤ 1

π

1

|[x− wn/p]n|
+

1

n
.

5.4 The Fourier coefficients of f̃

The previous section tell us that the function χ̃w has a heavy Fourier coefficient
at approximately wn/p. Since f̃ =

∑
w∈Zp f̂(w)χ̃w for any f : Zp → C we would

therefore hope that if |f̂(w)| is large then |̂̃f (y)| is large, where y is the closest
integer to wn/p.
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To prove this we will suppose that there is some set Γ ⊆ Zp such that for

all w ∈ Γ we have |f̂(w)| > L for some L ∈ R. That is, Γ contains all w ∈
Zp for which |f̂(w)| is large. We will also assume that for all w 6∈ Γ we have

|f̂(w)| < τ , where τ is much smaller than L. Let fΓ =
∑

w∈Γ f̂(w)χw and fZn\Γ =∑
w∈Zn\Γ f̂(w)χw. We can write f as f = fΓ +fZn\Γ and hence f̃ = f̃Γ + f̃Zn\Γ. In

Proposition 19 we prove that all the Fourier coefficients of f̃Zn\Γ are O(τ log p).

In Proposition 8 we show that | ̂̃fΓ(y)| is Ω(L) where y is the closest integer to

wn/p for some w ∈ Γ. Combining these two proposition we get that |̂̃f (y)| is

Ω(L− τ log p). So if τ is sufficiently small then |̂̃f (y)| is large.

Proposition 19. Let p ∈ N. Let n ∈ N such that n/2 < p < n. Let f =∑p−1
w=0 f̂(w)χw ∈ L2(Zp). Suppose |f̂(w)| < τ for all w ∈ Zp. Then |̂̃f (y)| ≤

τ(3 + 2 log p) for all y ∈ Zn. So |̂̃f (y)| is O(τ log p).

Proof. Let y ∈ Zn. Then

|̂̃f (y)| = |〈f̃ , ψy〉|

=

∣∣∣∣∣〈
p−1∑
w=0

f̂(w)χ̃w, ψy〉

∣∣∣∣∣
=

∣∣∣∣∣
p−1∑
w=0

f̂(w)〈χ̃w, ψy〉

∣∣∣∣∣
≤

p−1∑
w=0

|f̂(w)|〈χ̃w, ψy〉|

≤ τ

p−1∑
w=0

|〈χ̃w, ψy〉|

Let α be the closest integer to yp/n then so α = yp/n+ η where |η| ≤ 1/2. Then

τ

p−1∑
w=0

|〈χ̃w, ψy〉| = τ

p−1∑
w=0

|〈χ̃α+w, ψy〉|,
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where the indices α + w are taken mod p.

τ

p−1∑
w=0

|〈χ̃α+w, ψy〉| ≤ τ

(
3

√
p

n
+

p−2∑
w=2

|〈χ̃α+w, ψy〉|

)

≤ τ

(
3 +

p−2∑
w=2

(
1

π

1

|[(α + w)n/p− y]n|
+

1

n

))

≤ τ

(
3 +

p−2∑
w=2

(
1

π

1

|[n
p
(α + w − yp/n)]n|

+
1

n

))

≤ τ

(
4 +

p−2∑
w=2

1

|[n
p
(w + η)]p|

)

Note that |[n
p
(w + η)]n| = n

p
(w + η) for w ∈ (2, p/2 − η) and |[n

p
(w + η)]n| =

|n
p
(w+ η)−n| = n− n

p
(w− η) for w ∈ (p/2− η, p− 2). Furthermore the function

1

[np (w+η)]
n

is decreasing on the interval (2, p/2− η) and increasing on the interval

(p/2− η, p− 2). We can therefore split the sum into two parts and bound by an
integral.

τ

(
4 +

p−2∑
w=2

1

|[n
p
(w + η)]p|

)
= τ

(
4
p

n
+

∫ p/2−η

1

dw
n
p
(w + η)

+

∫ n−1

p/2−η

dw
n
p
(n− w − η)

)

≤ τ

(
4
p

n
+

∫ p/2−η

1

dw

w + η
+

∫ n−1

p/2−η

dw

n− w − η

)
= τ (4 + 2 log(p/2)− log(1 + η)− log(1− η))

= τ (4 + 2 log(p)− 2 log(2)− log(1 + η)− log(1− η))

≤ τ(3 + 2 log p).

As required.

We now need some terminology to describe the heavy Fourier coefficients of
f : Zp → C being “far apart”. We use the following definition.

Definition 17. We say a set Γ ⊆ Zp is r-spread if |[x − y]p| < r implies x = y
for all x, y ∈ Γ.
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Figure 5.5: A graph of Z11.

If we draw Zn as a graph, as in Figure 5.4, where the vertices are the elements
of Zn and the edges are between x and x+1 then the expression |[x−y]p| is equal
to the distance between the vertices x and y in the graph.

This makes it easy to see that {0, 4, 8} ⊆ Z11 is a 4-spread set but not a
5-spread set and the set {1, 10} ⊆ Z11 is a 2-spread set but not a 3-spread set.

Theorem 8. Let p ∈ N. Let n ∈ N such that n/2 < p < n. Let L ∈ R. Let
C > 1. Let r = 20C(1 + log n) + 1. Let f : Zp → C and suppose there exists an

r-spread set Γ ⊆ Zp such that f̂(w) = 0 for all w 6∈ Γ. Moreover suppose that

L ≤ |f̂(w)| ≤ CL

for all w ∈ Γ.

Let y ∈ Γ. Then |̂̃f (α)| ≥ 1
4
L, where α is the closest integer to yn/p.
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Proof. By the reverse triangle inequality

|̂̃f (α)| = |〈f̃ , ψα〉|

=

∣∣∣∣∣∑
w∈Γ

f̂(w)〈χ̃w, ψα〉

∣∣∣∣∣
≥

∣∣∣∣∣∣∣|f̂(y)〈χ̃y, ψα〉| −

∣∣∣∣∣∣∣
∑
w∈Γ
w 6=y

f̂(w)〈χ̃w, ψα〉

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

We know from Corollary 5 that |f̂(y)〈χ̃y, ψα〉| ≥ 1
π
L. Thus if we can upper bound∣∣∣∣∑w∈Γ

w 6=y
f̂(w)〈χ̃w, ψα〉

∣∣∣∣ by L/20 then this proves the proposition. We first use the

hypothesis in the proposition∣∣∣∣∣∣∣
∑
w∈Γ
w 6=y

f̂(w)〈χ̃w, ψα〉

∣∣∣∣∣∣∣ ≤
∑
w∈Γ
w 6=y

∣∣∣f̂(w)〈χ̃w, ψα〉
∣∣∣ ≤ CL

∑
w∈Γ
w 6=y

|〈χ̃w, ψα〉| .

We now upper bound
∑

w∈Γ
w 6=y
|〈χ̃w, ψα〉| using Lemma 6.

∑
w∈Γ
w 6=y

|〈χ̃w, ψα〉| ≤
∑
w∈Γ
w 6=y

(
1

π

1

|[α− wn/p]n]|
+

1

n

)

≤
∑
w∈Γ
w 6=y

1

π

1

|[α− wn/p]n]|
+ |Γ|/n

≤
∑
w∈Γ
w 6=y

1

π

1

|[α− wn/p]n]|
+

1

r

Since α is the closest integer to yn/p we can write α = yn/p+ η where |η| ≤ 1/2.
Thus∑
w∈Γ
w 6=y

|〈χ̃w, ψα〉| ≤
∑
w∈Γ
w 6=y

1

π

1

|[α− wn/p]n]|
+

1

r
=
∑
w∈Γ
w 6=y

1

π

1

|[yn/p+ η − wn/p]n]|
+

1

r
.
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Let ε = ηp/n. Note that |ε| ≤ 1/2. Hence

∑
w∈Γ
w 6=y

|〈χ̃w, ψα〉| ≤
∑
w∈Γ
w 6=y

1

π

1

|[n
p
(y − w − ε)]n]|

+
1

r
.

The expression 1
|[n
p

(w−y−ε)]n]| is maximised when w is close to y. Since w 6= y

and the members of Γ are all at least r apart thus the sum on the right hand side
of this sum is maximised when w − y = ±r,±2r,±3r, . . . . We therefore have

∑
w∈Γ
w 6=y

1

π

1

|[n
p
(w − y − ε)]n]|

+
1

r
≤

∑
−|Γ|/2≤z≤|Γ|/2

z 6=0

1

π

1

|[n
p
(rz − ε)]n]|

+
1

r

=
1

π

1

|[n
p
(r − ε)]n]|

+
1

π

1

|[n
p
(−r − ε)]n]|

+
∑

−|Γ|/2≤w≤|Γ|/2
w 6=−1,0,1

1

π

1

|[n
p
(rw − ε)]n]|

+
1

r

≤ 2

π

1
n
p
(r − 1)

+
∑

−|Γ|/2≤w≤|Γ|/2
w 6=−1,0,1

1

π

1

|[n
p
(rw − ε)]n]|

+
1

r

≤ 2

π

1

r − 1
+

∑
−|Γ|/2≤w≤|Γ|/2

w 6=−1,0,1

1

π

1

|[n
p
(rw − ε)]n]|

+
1

r
.

This sum can be bounded with integrals. We use the fact that the function
1

|[n
p

(rw−ε)]n]| is decreasing on the interval [1, |Γ|/2] and increasing on the interval
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[−|Γ|/2,−1]. Then

2

π

1

r − 1
+

∑
−|Γ|/2≤w≤|Γ|/2

w 6=−1,0,1

1

π

1

|[n
p
(rw − ε)]n]|

+
1

r

≤ 1

π

2

r − 1
+

1

π

∫ |Γ|/2
1

dw
n
p
(rw − ε)

+
1

π

∫ −1

−|Γ|/2

dw
n
p
|rw + ε|

≤ 1

π

2

r − 1
+

1

π

∫ |Γ|/2
1

dw

rw − ε
+

1

π

∫ −1

−|Γ|/2

dw

|rw + ε|

=
2

π

1

r − 1
+

1

πr
log

(
r|Γ|

2
− ε
)
− 1

πr
log(r − ε)

+
1

πr
log

(
r|Γ|

2
+ ε

)
− 1

πr
log(r + ε)

≤ 2

π

1

r − 1
+

2

πr
log

(
r|Γ|

2
− 1

)
≤ 2

π

1

r − 1
+

2

πr
log(r|Γ| − 1).

Since the elements of Γ are at least r apart we know that r|Γ| ≤ n. So

2

π

1

r − 1
+

2

πr
log(r|Γ| − 1) ≤ 2

π

1

r − 1
+

2

πr
log n

≤ 2

π

1

r − 1
(1 + log n)

Substituting r = 20C(log n+ 1) + 1 gives us 1
20C

as required.

We can now combine to the previous two results to prove the main result of
this chapter.

Proposition 20. Let L ∈ R. Let C > 1. Let r = 20C(log n + 1) + 1. Let

f : Zp → C and suppose there exists an r-spread set Γ ⊆ Zp such that |̂̃f (w)| ≤
τ < L

20
1

3+2 log p
for all w 6∈ Γ. Moreover suppose that L ≤ |̂̃f (w)| ≤ CL for all

w ∈ Γ.

Let y ∈ Γ and let α be the closest integer to yn/p. Then |̂̃f (α)| ≥ 1
5
L.
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Proof. We can write f as f = fΓ + fZn\Γ. Then

|̂̃f (α)| =
∣∣∣∣ ̂̃fΓ(α) +

̂̃
fZn\Γ(α)

∣∣∣∣ ≥ ∣∣∣∣| ̂̃fΓ(α)| − |̂̃fZn\Γ(α)|
∣∣∣∣

We now apply Proposition 19 to fZn\Γ and Proposition 8 to fΓ to obtain∣∣∣∣| ̂̃fΓ(α)| − |̂̃fZn\Γ(α)|
∣∣∣∣ ≥ 1

4
L− 1

20
L ≥ 1

5
L.

Proposition 20 gives us a way of finding the heavy Fourier coefficients of
f : Zp → C for any p ∈ N, provided f satisfies the hypotheses in the proposition.
Let n be the smallest integer power of 2 greater than p. We can find the Fourier
coefficients of f̃ : Zn → C which are greater than 1

5
L using some sparse Fourier

transform algorithm which works for functions with domain size a power of 2.

For every α ∈ Zn where |̂̃f(α)| ≥ 1
5
L we find the closest integer to αp/n, call this

integer y. Finally we check if |f̂(y)| ≥ L using the method described in Section
3.5. Proposition 20 guarantees that all Fourier coefficients of magnitude at least
L will be recovered using this method.

We formalise this in the algorithm below.

Algorithm 5:

Input: A function f : Zp → C that satisfies the hypotheses in Proposition
20.

Let n be the smallest integer power of 2 such that n ≥ p.

Define f̃ : Zn → C by f̃(x) = f(x) for 0 ≤ x ≤ p− 1 and f̃(x) = 0
otherwise.
Use a sparse Fourier transform algorithm to find a list all α ∈ Zn such that

|̂̃f(α)| ≥ L/5.
Let A = ∅.

for each α ∈ Zn such that |̂̃f(α)| ≥ L/5 do
Let y be the closest integer to αp/n

Check if |f̂(y)| ≥ L using the method described in Section 3.5, if so, let
A = A ∪ {y}

return A
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5.5 Further work

In Algorithm 5 we require that the set of all α such that |f̂(α)| is large must
be an r-spread set (where r is specified in Proposition 20). The next step in
this research will be to modify Algorithm 5 so that it works for a larger class of
functions. Full details can be found in an upcoming paper by the author and
Barak Shani.

It would also be interesting to compare how the time complexity of Algorithm
5 compares to the time complexity of the AGS algorithm.
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