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I Diffie-Hellman key exchange.
I Authenticated key exchange (AKE), Signatures, Oblivious

Transfer (OT), Pedersen commitments.
I Supersingular isogeny key exchange (SIDH).
I Authenticated key exchange from SIDH.

I S. D. Galbraith, Authenticated key exchange for SIDH, eprint 2018/266.

I CSIDH
I Signatures

I S. D. Galbraith, C. Petit and J. Silva, Identification Protocols and Signature Schemes Based on

Supersingular Isogeny Problems’, ASIACRYPT 2017.

I L. de Feo and S. D. Galbraith, SeaSign: Compact isogeny signatures from class group actions,

EUROCRYPT 2019.

I Oblivious Transfer from CSIDH
I Y.-F. Lai, S. D. Galbraith and C. Delpech de Saint Guilhem, Compact, Efficient and UC-Secure

Isogeny-Based Oblivious Transfer, eprint 2020/1012.

Please interrupt and ask questions any time.
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Discrete Logarithm Problem (DLP)

Let G be a group of order `.
The DLP is: Given g ∈ G and h = ga, to compute a.

Diffie-Hellman key exchange:

I Alice chooses a and sends tA = ga to Bob.

I Bob chooses b and sends tB = gb to Alice.

I Alice computes taB = gab.

I Bob computes tbA = gab.

I Usually hash gab to get a short-ish binary string as output
(key derivation function).
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Person in middle attack on Diffie-Hellman

Alice Eve Bob

tA = ga tA−→
tB←− tB = gb

taB = gab tbA = gab
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Person in middle attack on Diffie-Hellman

Alice Eve Bob

tA = ga tA−→

t ′A = g e
t′A−→

tB←− tB = gb

t′B←− t ′B = g f

(t ′B)a = gaf t fA = gaf ; teB = gbe (t ′A)b = g eb
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Person in middle attack on Diffie-Hellman
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Authenticated key agreement (AKE)

I Want Alice and Bob to interactively generate a random key.

I Want to prevent “person-in-the-middle” attacks, by providing
authentication.

I One solution is to MAC the protocol messages, but this
assumes a shared MAC key between Alice and Bob.

I Another solution is for Alice and Bob to have public keys
(authenticated by a PKI) for a digital signature scheme and to
sign all protocol messages.

I Generic Constructions of AKE from IND-CCA KEMs
I Colin Boyd, Yvonne Cliff, Juan Manuel González Nieto, Kenneth G. Paterson. One-round key

exchange in the standard model. IJACT 1(3): 181-199 (2009)

I Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, Kazuki Yoneyama. Strongly secure authenticated

key exchange from factoring, codes, and lattices. Des. Codes Cryptography 76(3): 469-504 (2015)

I Cyprien de Saint Guilhem, Nigel P. Smart, Bogdan Warinschi. Generic Forward-Secure Key

Agreement Without Signatures. ISC 2017: 114-133
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MQV and related schemes

I Alice has public key ga and Bob has public key gb.

I Alice sends g x . Bob sends g y .

I The shared key is H(g (x+aU)(y+bV )) for some values U and V
that are derived from the protocol messages and are “short”
to provide efficiency.

I This exploits the algebra(
(g x)(ga)U

)y+bV
= g (x+aU)(y+bV ).
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Public Key Signatures from DLP

I (Security relies on DLP, not Diffie-Hellman.)

I Apply Fiat-Shamir to an interactive identification protocol.

I Alice has public key ga, where g has order `.

I Alice sends gk for some random k .

I Bob responds with challenge c ∈ Z`.

I Alice sends z = k + ac (mod `).

I Bob checks whether

g z = gk(ga)c .

I Many variants: Schnorr, DSA, ECDSA, EdDSA, etc.
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Oblivious Transfer (OT)

I Sender (Alice) has two messages. Receiver Bob has a bit i .

I Bob wants to learn only the message mi and Alice should
learn nothing.

I Chou and Orlandi protocol: Alice sends A = g s to Bob.

I If i = 0 Bob sets B = g r and if i = 1 set B = Ag r . Send B
to Alice.

I Alice computes k0 = H(Bs) and k1 = H((B/A)s).

I Note: If i = 0 then k0 = H(g rs). If i = 1 then k1 = H(g rs).

I Alice computes cj = Enckj (mj) and sends (c0, c1) to Bob.

I Bob computes ki = H(Ar ) and computes mi = Decki (ci ).
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Pedersen commitment

I Let g , h be elements of group G of order ` such that no-one
knows DLP of h with respect to g .

I To commit to an integer 0 ≤ x < ` choose random 0 ≤ r < `
and compute the Pedersen commitment

C (x , r) = g xhr .

I To open the commitment publish (x , r).
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Important point about DLP crypto

We gave four different and important schemes:

I MQV scheme for authenticated key exchange

I DLP signatures

I Chou and Orlandi OT protocol

I Pedersen commitments

All them exploit the fact that we can exponentiate and multiply
group elements, and that we have the exponent rules

(ga)b = gab and gagb = ga+b.
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Spoiler for the rest of the talk

Which schemes can be done with isogenies?

I We have practical authenticated key exchange from isogenies

I Practical public key signatures are a huge open problem

I We have efficient isogeny-based OT protocols

I An isogeny-based analogue of Pedersen commitments is a
huge open problem
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Generalised Discrete Logarithm Problem

Let G be a group of order `.
Given g ∈ G and h = φ(g), to compute the group homomorphism
φ.

Generalised Diffie-Hellman key exchange (with commuting
homomorphisms):

I Alice chooses φA and sends tA = φA(g) to Bob.

I Bob chooses φB and sends tB = φB(g) to Alice.

I Alice computes φA(tB).

I Bob computes φB(tA).
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Generalised Discrete Logarithm Problem

Let G be a group of order `.
Given g ∈ G and a ∈ Z∗` write a ∗ g for ga.

Generalised Diffie-Hellman key exchange (with commuting
homomorphisms):

I Alice chooses a and sends tA = a ∗ g to Bob.

I Bob chooses b and sends tB = b ∗ g to Alice.

I Alice computes a ∗ tB .

I Bob computes b ∗ tA.
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Isogenies

I An elliptic curve over a field k is a non-singular projective
cubic curve. The set of k-rational points is a group.

I An isogeny φ : E0 → E1 of elliptic curves is a morphism and a
group homomorphism.

I Examples of isogenies include: [n] : E → E and Frobenius
map when k is a finite field.

I An isogeny has finite kernel G ⊆ E0(k).

I If the isogeny is separable then #G = deg(φ).

I Given a finite subgroup G ⊆ E0(k) there exists an elliptic
curve E1 and a (separable) isogeny φ : E0 → E1 with
ker(φ) = G .

I The pair (E1, φ) can be computed using Vélu’s formulae.
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If you want to learn more about isogenies . . .
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If you want to learn more about isogenies . . .
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Isogeny Graphs
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Main Computational Problem Regarding Isogenies

Given E1,E2 elliptic curves over Fq with #E1(Fq) = #E2(Fq), find
an isogeny φ : E1 → E2.

Issues:

I Unique?

I Representation?

I Algorithms?

I Classical or Quantum algorithms?

For a survey of algorithmic questions see: Galbraith and
Vercauteren, eprint 2017/774.
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Jao and De Feo key exchange (SIDH)
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Jao and De Feo key exchange (SIDH)

I Let p = `e1
1 `

e2
2 f ± 1 be prime.

I Let E over Fp2 be a supersingular elliptic curve.

I Then group structure of E (Fp2) is a product of two cyclic
groups of order `e1

1 `
e2
2 f .

I Fix points R1, S1 ∈ E [`e1
1 ] such that 〈R1, S1〉 = E [`e1

1 ].

I Fix R2, S2 such that 〈R2,S2〉 = E [`e2
2 ].

I The system parameters are (E ,R1, S1,R2,S2).
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Jao and De Feo key exchange (SIDH)

I Alice chooses a secret subgroup GA of E [`e1
1 ] by choosing an

integer 0 ≤ a < `e1
1 and setting TA = R1 + [a]S1, and

GA = 〈TA〉.
I Alice computes an isogeny φA : E → EA with kernel GA

generated by TA and sends (EA, φA(R2), φA(S2)) to Bob.

I Bob chooses 0 ≤ b < `e2
2 , computes φB : E → EB with kernel

GB generated by TB = R2 + [b]S2 and sends
(EB , φB(R1), φB(S1)) to Alice.

I Alice computes

T ′A = φB(R1) + [a]φB(S1) = φB(R1 + [a]S1) = φB(TA)

and then computes an isogeny φ′A : EB → EAB with kernel
generated by T ′A.
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Jao and De Feo key exchange (SIDH)

I Bob computes an isogeny φ′B : EA → E ′AB with kernel
〈φA(R2) + [b]φA(S2)〉.

I The composition φ′A ◦ φB : E → EAB has kernel 〈T1,T2〉.
I The actual elliptic curve equations EAB and E ′AB computed by

Alice and Bob are not likely to be the same, but the curves
are isomorphic.

I Hence, the shared key for Alice and Bob is j(EAB) = j(E ′AB).
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SIKE submission to NIST

I Submission to the NIST standardization process on
post-quantum cryptography.

I Authors: Jao, Azarderakhsh, Campagna, Costello, De Feo,
Hess, Jalali, Koziel, LaMacchia, Longa, Naehrig, Renes,
Soukharev and Urbanik.

I Submission contains specification of an IND-CCA KEM.

I http://sike.org/
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Differences between Diffie-Hellman and Isogenies

I With groups we have (ga)b = gab and gagb = ga+b.

I With SIDH we just have (E/GA)/GB = E/〈GA,GB〉.
I So lots of protocols from DLP-land do not have an analogue

in isogeny-land.
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Authenticated Key Exchange (AKE) from Isogenies

I Natural problem to develop authenticated key exchange based
on the SIDH protocol.

I Want to prevent “person-in-the-middle” attacks, by providing
authentication.

I There is a general solution using signatures.
Patrick Longa (eprint 2018/267) has presented an SIDH
scheme based on this idea, and argues it can be appropriate to
use a non-post-quantum signature (ECDSA).

I For a full SIDH solution we want to avoid using public key
signatures.

I We consider classical attackers in the random oracle model,
not quantum attackers.
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Generic Constructions of AKE from IND-CCA KEMs

I Recall there are generic constructions of AKE from IND-CCA
KEMs.

I Can get IND-CCA KEM from isogenies and the
Fujisaki-Okamoto transform (see SIKE submission).

I Note that there can be adaptive attacks on SIDH keys as
predicted by Kirkwood et al and analysed by Galbraith, Petit,
Shani and Ti.
Hence a scheme that has shared key H(gay , gbx) would be
secure in the DLP setting (assuming group membership tests
are done) but insecure using SIDH.

I Many other schemes: KEA, MQV, HMQV, NAXOS, etc.
Most of them rely on some kind of “public key validation”.
Some of them need “gap assumptions” in the security proof,
which we do not believe are safe in the isogeny setting.

I Can get secure schemes based on Boyd et al, Fujioka et al,
etc.
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JKL Scheme

I Adapt an authenticated key exchange protocol by Jeong, Katz
and Lee (2004).

I Jeong-Katz-Lee is in the DLP setting: Alice has public key ga

and Bob has public key gb.

I Alice sends g x . Bob sends g y .

I The shared key is H(A,B, g x , g y , g xy , gab).

I Security claim: In random oracle model, the JKL scheme is a
secure authenticated key exchange protocol in the CK model.

I The new scheme replaces Diffie-Hellman by supersingular
isogeny Diffie-Hellman (SIDH).
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JKL Scheme (1)

I The shared key in the JKL scheme is H(A,B, g x , g y , g xy , gab).

I Natural isogeny variant is for Alice to send EX and auxiliary
points, and Bob to send EY and auxiliary points, just as in
SIDH.

I Shared key H(A,B, j(EX ), j(EY ), j(EXY ), j(EAB)).
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JKL Scheme (2)

I System parameters (E ,P1,Q1,P2,Q2).

I Alice has private keys 0 ≤ a1 < `e1
1 and 0 ≤ a2 < `e2

2 , and
public key (EA,1,PA,1,QA,1,EA,2,PA,2,QA,2) where
EA,1 = E/〈P1 + [a1]Q1〉, EA,2 = E/〈P2 + [a2]Q2〉,
PA,1 = φA,1(P2), QA,1 = φA,1(Q2), etc.

I Alice: (Initiator)
I Choose 0 ≤ x < `e1

1 and set φX : E → EX = E/〈P1 + [x ]Q1〉.
I Set sid = (EX ,P

′
2 = φX (P2),Q ′2 = φX (Q2)).

I Send (Alice,Bob, sid) to Bob; Save x , j(EX ) .

I Bob: (Receiver)
I Check EX supersingular, and P ′2,Q

′
2 indep pts on EX order `e2

2 .
I Choose 0 ≤ y < `e2

2 and set φY : E → EY = E/〈P2 + [y ]Q2〉.
I Send (Alice,Bob, sid,EY ,P

′
1 = φY (P1),Q ′1 = φY (Q1)) to

Alice.
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JKL Scheme (3)
I Bob: (Completion)

I Compute EXY = EX/〈P ′2 + [y ]Q ′2〉.
I Look up Alice’s public key, verify certificate, look up long-term

private key b2, compute EAB = EA,1/〈PA,1 + [b2]QA,1〉.
I Compute session key

k = H(Alice,Bob, j(EX ),P ′2,Q
′
2, j(EY ),P ′1,Q

′
1, j(EXY ), j(EAB)).

I Flush working storage.

I Alice: (Completion)
I Check EY supersingular, P ′1,Q

′
1 are indep pts on EY order `e1

1 .
I Retrieve x , j(EX ), compute EXY = EY /〈P ′1 + [x ]P ′2〉.
I Get Bob’s public key (EB,2,PB,2,QB,2), verify cert, get

long-term priv key a1, compute EAB = EB,2/〈PB,2 + [a1]QB,2〉.
I Compute session key

k = H(Alice,Bob, j(EX ),P ′2,Q
′
2, j(EY ),P ′1,Q

′
1, j(EXY ), j(EAB)).

I Flush working storage.
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Security theorem and proof

I Assume classical attacker in random oracle model.

I SIDH-CDH problem: Given
(E ,P1,Q1,P2,Q2,EA, φA(P2), φA(Q2),EB , φB(P1), φB(Q1))
to compute j(EAB).

I Theorem: Suppose SIDH-CDH is hard. Then, in the random
oracle model, the new protocol is a secure authenticated key
exchange protocol in the classical Canetti-Krawczyk model.

I The scheme has weak forward secrecy but not KCI security.

I Public key validation: Can it be avoided? How to make it
more efficient?
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Current state of the art

Xiu Xu, Haiyang Xue, Kunpeng Wang, Man Ho Au, Song Tian.
Strongly Secure Authenticated Key Exchange from Supersingular
Isogenies. ASIACRYPT 2019.
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Signatures from isogenies

I Suppose Alice has public key E0 and E1 = E/G . Her private
key is G and the isogeny φ : E0 → E1.

I Alice can prove to Bob that she knows φ:

I Alice choose a subgroup H (order of H coprime to order of G )
and sends to Bob (E2,E3) where E2 = E0/H and
E3 = E1/φ(H).

I Bob sends a bit b.

I If b = 0 Alice responds with H and φ(H). Bob checks E2 and
E3 correctly formed.

I If b = 1 Alice responds with G ′ = ψ(G ) where ψ : E0 → E2 is
the isogeny with kernel H.
Bob checks that E2/G

′ = E3.

I Repeat.
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Signatures from isogenies

I The zero-knowledge proof can be turned into a signature
scheme using the Fiat-Shamir transform.

I This signature scheme was proposed independently in 2017
by: Yoo, Azarderakhsh, Jalali, Jao and Soukharev; Galbraith,
Petit and Silva.
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Isogeny Signatures - Second scheme

I For details see: S. D. Galbraith, C. Petit and J. Silva,
“Identification Protocols and Signature Schemes Based on
Supersingular Isogeny Problems”, ASIACRYPT 2017, Springer
LNCS 10624 (2017) 3–33.

I Full version: https://eprint.iacr.org/2016/1154

I Zero-knowledge proof of an isogeny φ : E1 → E2.

I Similar to graph isomorphism.

I The techniques include a set of algorithms for working with
orders in quaternion algebras and finding elements in
quaternion modules with “power-smooth” norms.

I 1/2 cheating probability means protocol must be repeated (in
parallel) many times.

I This scheme is not practical.
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Generalised Discrete Logarithm Problem

(Brassard and Yung 1990, Couveignes 1997)

Let G be a group.
Given g ∈ G and a ∈ Z write a ∗ g for ga.

Generalised Diffie-Hellman key exchange (with commuting
homomorphisms):

I Alice chooses a and sends tA = a ∗ g to Bob.

I Bob chooses b and sends tB = b ∗ g to Alice.

I Alice computes a ∗ tB .

I Bob computes b ∗ tA.
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Class Group Action on Elliptic Curves

(Couveignes 1997, Rostovtsev and Stolbunov 2006)

I Let E be an ordinary elliptic curve over Fq with End(E ) ∼= O
an order in an imaginary quadratic field.

I Let a be an invertible O-ideal.

I Can define the subgroup

E [a] = {P ∈ E (Fq) : φ(P) = 0 ∀φ ∈ a}.

(Waterhouse 1969)

I There is an isogeny E → E ′ with kernel E [a].
Define a ∗ E to be E ′ = E/E [a].

I a ∗ E depends only on the ideal class of a.

I This gives an action of the ideal class group Cl(O) on the set
of E with End(E ) ∼= O.
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Ordinary Isogeny Graph (` = 3)

Credit: Dustin Moody
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Supersingular Isogeny Graph

See: C. Delfs and S. Galbraith, Computing isogenies between

supersingular elliptic curves over Fp, Des., Codes and Crypto., 2016.Steven Galbraith Similarities and Differences of DH and Isogenies



CSIDH (Castryck, Lange, Martindale, Panny, Renes 2018)

I Let p = 4`1 · · · `k − 1.

I Let X be the set of isomorphism classes of supersingular
elliptic curves E with j-invariant in Fp.

I All E ∈ X have EndFp(E ) an order in Q(
√
−p).

Here EndFp(E ) = {φ : E → E defined over Fp}.
I CSIDH is an instantiation of group action crypto using

supersingular curves, which gives massive performance
improvements.

I Features:
I No public key validation needed, so can do non-interactive key

exchange.
I Better bandwidth.
I Only sub-exponentially quantum secure.

Steven Galbraith Similarities and Differences of DH and Isogenies



CSIDH

I Choose exponents |ei | ≤ B and define

a ≡
∏
i

leii

where li are ideals of small prime norm `i .

I Efficient to compute EA = a ∗ E using Vélu.
(Well, not very efficient. Actually quite slow.)

I Straightforward to get a Diffie-Hellman style key exchange.
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Public Key Signatures

I L. De Feo and S. Galbraith “SeaSign: Compact isogeny
signatures from class group actions”, EUROCRYPT 2019.

I Public key: E and EA = a ∗ E where

a ≡
∏
i

leii

and li ideals of small prime norm, |ei | ≤ B.
I Basic idea:

I Send EB = b ∗ E to verifier.
I Verifier sends a challenge bit c .
I If c = 0 the prover replies with b and if c = 1 the prover

replies with ba−1.
I Verifier checks EB = b ∗ E respectively EB = (ba−1) ∗ EA.
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Public Key Signatures

I Public: E and EA = a ∗ E .

I Signer generates random ideals bk =
∏n

i=1 l
fk,i
i for 1 ≤ k ≤ t

and computes Ek = bk ∗ E .

I Compute H(j(E1), . . . , j(Et),message) where H is a
cryptographic hash function with t-bit output b1, . . . , bt .

I If bk = 0 signature includes fk = (fk,1, . . . , fk,n) and if bk = 1
it includes

fk − e = (fk,1 − e1, . . . , fk,n − en).

I Use Lyubashevsky’s “Fiat-Shamir with aborts”.
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Improvements

I Thomas Decru, Lorenz Panny, Frederik Vercauteren. Faster
SeaSign signatures through improved rejection sampling.
PQCrypto 2019.

I Ward Beullens, Thorsten Kleinjung, Frederik Vercauteren.
CSI-FiSh: Efficient Isogeny Based Signatures Through Class
Group Computations. ASIACRYPT 2019

I Ali El Kaafarani, Shuichi Katsumata, Federico Pintore. Lossy
CSI-FiSh: Efficient Signature Scheme with Tight Reduction to
Decisional CSIDH-512. PKC 2020.

I But still none of these gives a practical signature.
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Isogeny OT

I The Chou-Orlandi scheme does not adapt to isogenies.

I We propose a simple scheme from CSIDH.

I Yi-Fu Lai, Steven D. Galbraith and Cyprien Delpech de Saint
Guilhem. Compact, Efficient and UC-Secure Isogeny-Based
Oblivious Transfer. eprint 2020/1012.

I Alice sends A = s ∗ E to Bob

I If i = 0 Bob computes C = r ∗ E else C = r ∗ A and sends to
Alice

I Alice computes k0 = H(s ∗ C ) and k1 = H(s−1 ∗ C ).

I Alice computes cj = Enckj (mj) and sends (c0, c1) to Bob.

I if i = 0 Bob computes ki = H(r ∗ A) else ki = H(r ∗ E ), and
computes mi = Decki (ci ).
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Isogeny OT

I For a curve E define E t to be the quadratic twist.

I Let E : y2 = x3 + Ax + B, then E t : dy2 = x3 + Ax + B
where d is a non-square.

I If E is supersingular and defined over Fp then E t is
supersingular and is also defined over Fp and is isogenous to
E .

I Special gadget with CSIDH: (a ∗ E )t = a−1 ∗ E t
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Isogeny OT

I We give a two rounds OT scheme.

I If i = 0 Bob computes C = r ∗ E else C = (r ∗ E )t and sends
C to Alice.

I Alice computes k0 = H(s ∗ C ) and k1 = H(s−1 ∗ C ).

I Alice computes cj = Enckj (mj) and sends (s ∗ E , c0, c1) to
Bob.

I Let A = s ∗ E . If i = 0 Bob computes k0 = H(r ∗ A) and if
i = 1 Bob computes k1 = H(r−1 ∗ At).

I Thus Bob gets mi .

I Paper contains full security analysis in the UC model. The full
scheme has 3 rounds.

I There is no analogous 2-round OT protocol based on DLP, as
far as we know.
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Summary

I We have practical authenticated key exchange from isogenies

I Practical public key signatures are a huge open problem

I We have efficient isogeny-based OT protocols

I An isogeny-based analogue of Pedersen commitments is a
huge open problem

Steven Galbraith Similarities and Differences of DH and Isogenies



Thank You
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