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Plan

I Apology.

I Mathematical background on lattices.

I Computational problems.

I Algorithms to solve computational problems.

I Cryptanalysis: subset-sum and approx-GCD.

I Learning with errors.

Please ask questions at any time.
The required mathematical and crypto background will vary.
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Lattices

I Let b1, . . . , bn be linearly independent vectors in Rn.

I The set L = {
∑n

i=1 xibi : xi ∈ Z} is a (full rank) lattice. Call
its elements points or vectors.

I Alternative definition: A discrete subgroup of Rn.

I Everyone working with lattices should declare whether their
vectors are rows or columns. I am using rows.

I The basis matrix is the n × n matrix B whose rows are the
vectors b1, . . . , bn.

I A lattice has many different bases.

I Exercise: Verify that the lattice Z2 has the basis
{(1, 0), (0, 1)} and the basis {(3, 2), (2, 1)} and infinitely
many other bases.
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Lattices

I The basis vectors define a parallelepiped.
I The volume of the parallelepiped is given by | det(B)|.
I Exercise: Prove that if B1 and B2 are basis matrices for a

lattice L then there exists an n× n integer matrix U such that
B2 = UB1 and det(U) = ±1.

I Exercise: Let L1 and L2 be lattices such that L2 ⊆ L1 and
both have the same volume. Prove that L1 = L2.

I Exercise: Let A be an m × n matrix (m ≤ n) and let q ∈ N.
Let

Lq(A) = {v ∈ Zn : v ≡ xA (mod q) for some x ∈ Zm}

and
L⊥q (A) = {y ∈ Zn : yAT ≡ 0 (mod q)}.

Prove that Lq(A) and L⊥q (A) are (full rank) lattices.
Harder: Give algorithms to compute a basis for Lq(A) and
L⊥q (A). [Hint: You need to use the Hermite normal form.]
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Computational Problems (Informally)

I Shortest vector problem (SVP): Given a basis matrix B for a
lattice L find a non-zero vector v ∈ L such that ‖v‖ is
minimal.
The norm here is usually the standard Euclidean norm in Rn,
but it can be any norm such as the `1 norm or `∞ norm.

I Closest vector problem (CVP): Given a basis matrix B for a
full rank lattice L ⊆ Rn and an element t ∈ Rn find v ∈ L
such that ‖v − t‖ is minimal.

Steven Galbraith Lattices and their applications in cryptography and cryptanalysis



Short vectors

I Let L ⊆ Rn be a lattice and B a basis matrix. The successive
minima 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are defined by

λi (L) = inf{r : i = dim span{v : v ∈ L and ‖v‖ ≤ r}}.

I Minkowski’s theorem: λ1(L) <
√
n | det(B)|1/n.
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Close vectors

I Let b1 = (1, 0) and b2 = (0, 1000) and t = (0, 500). Then
λ1(L) = 1 but the nearest lattice point v to t has
‖v − t‖ = 500.
Note that CVP is easy when given this lattice basis!

I Exercise: Give an algorithm that determines, for a basis
matrix B of a lattice L and a vector t ∈ Rn, whether t lies in
the lattice. Does it help if L ⊆ Zn or L ⊆ Qn?

I Exercise: Let L = Zn. Show that λi (L) = 1 for all 1 ≤ i ≤ n.
Show that there exists an element t ∈ Rn such that
‖v − t‖ =

√
n/2 for all v ∈ L.
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Computational Problems

These problems depend on the basis matrix B, not on the lattice L
itself. For complexity, the running time is a function of the number
of bits needed to represent the basis matrix.

I Search-CVP: Given (B, t), find v ∈ L such that ‖v − t‖ is
minimal.

I Decision-CVP: Given (B, t) and r > 0, decide whether or not
there is v ∈ L such that ‖v − t‖ ≤ r .

I Search-SVP: Given B, find non-zero v ∈ L such that ‖v‖
minimal.

I Decision-SVP: Given B and r > 0, decide whether or not
λ1(L) ≤ r .

I SIVP: Given B, find n linearly independent vectors
v1, . . . , vn ∈ L minimising max ‖v i‖.

I γ-approx SVP:
I γ-approx CVP:
I GapSVPγ :
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Complexity

I Decision-SVP is NP-complete (see Chapter 3 of Micciancio
and Goldwasser).

I SVP is “easier”, but still hard (see Chapter 4 of Micciancio
and Goldwasser).

I Exercise: Show that Decision-CVP is polynomial-time
equivalent to Search-CVP. In other words, given an oracle for
Decision-CVP, give an algorithm to solve Search-CVP.
[Hint: Given basis {b1, . . . , bn} and t see if answer is same
when run oracle on that basis and the set {2b1, b2, . . . , bn}.]
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Part 2: Algorithms for computational problems

Any questions about the first part?
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Easy lattice bases

I SVP and CVP can be easy when given certain bases for
certain lattices.

I Consider the lattice with basis {(1, 0, 0), (0, 2, 0), (0, 0, 5)}.
Then SVP and CVP are easy.

I A good lattice basis has vectors that are “close to
orthogonal”.

I The invariance of lattice volume implies that such vectors are
also relatively short.
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Lattice reduction

I The goal of lattice reduction is to take as input a basis for a
lattice and to compute a new basis for the same lattice. The
new basis should have vectors that are “as close to orthogonal
as possible” and “as short as possible”.

I The famous Lenstra-Lenstra-Lovasz (LLL) algorithm is
polynomial-time in the input and outputs a basis with
relatively good properties. (Note that it is exponential-time in
terms of the rank/dimension n.)

I The LLL algorithm is based on Gram-Schmidt. It’s goal is to
ensure that the Gram-Schmidt orthogonal basis does not
decrease in size too quickly.

I Theorem: Let B be an LLL-reduced lattice basis (with
δ = 3/4). Then the first row b1 of B satisfies

‖b1‖ ≤ 2(n−1)/2λ1.
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Lattice reduction

I The exponential approximation factors mean that LLL usually
becomes useless once the rank is large enough.

I The 2-dimensional case of LLL is essentially the
Euclid/continued fraction algorithm.

I There are also exponential-time enumeration algorithms that
are guaranteed to output the shortest vector in a lattice. They
are easily prevented when n is large enough.

I There are many variants of LLL. Block LLL combines LLL with
enumeration algorithms performed on low-rank sublattices.

I See the LLL+25 conference proceedings (Nguyen and Vallée,
editors).

Steven Galbraith Lattices and their applications in cryptography and cryptanalysis



Algorithms for CVP

I There are also enumeration algorithms for CVP. They are
exponential-time, but guaranteed to output the closest lattice
vector to t ∈ Rn.

I The Babai rounding algorithm is fast and simple, but is not
guaranteed to output the closest lattice vector:
Given a basis {b1, . . . , bn} and t ∈ Rn, compute real numbers
xi such that t =

∑
i xibi . Then compute the lattice vector

v =
∑

i [xi ]bi .

I Exercise: Show that v lies in the parallelepiped centered on t.
Show that if t 6∈ L then there is a unique such lattice vector.

I The Babai nearest plane algorithm is a little better. There are
also nice variants of it by Klein and Lindner-Peikert.
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Prehistoric crypto applications (GGH)

I Let B be a “nice” lattice basis for a lattice in Zn with large
volume.
Let U be a “random” n× n integer matrix with det(U) = ±1.

I The GGH public key is B ′ = UB and the private key is B.
I To encrypt a message m ∈ {−M, . . . ,M}n ⊆ Zn choose a

“small” error vector e ∈ Zn and compute the ciphertext
c = mB ′ + e.

I To decrypt one uses the nice lattice basis to solve the closest
vector problem and hence find a lattice point v such that
c = v + e. One then computes m = v(B ′)−1.

I Exercise: Show that the GGH cryptosystem does not have
indistinguishability security under a passive attack.

I Exercise: A variant of GGH is to swap the roles of the
message and the randomness. Explain the scheme. Show that
this variant also does not have indistinguishability security
under passive attacks.
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Cryptanalysis of GGH

I One can attempt to break GGH using lattice reduction on B ′,
followed by Babai rounding or some other CVP algorithm.
This is hopeless if n > 200.

I Nguyen cryptanalysed the original GGH proposal (which had
errors of a specific form).
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GGH signatures

I Let B ′ be a GGH public key as before.

I Given a message m, hash it to a “random” element
H(m) ∈ Zn.
Then, using the private key, compute a lattice vector s close
to H(m). The signature on message m is then s.

I To verify the signature one checks that s lies in the lattice and
that ‖s − H(m)‖ is sufficiently small.

I Problem: s − H(m) lies in the parallelepiped corresponding to
the nice basis B.
Nguyen-Regev (and more recently Ducas-Nguyen at
ASIACRYPT 2012) have given a powerful attack to “learn”
the nice basis from the statistical properties of many samples
s − H(m).

I Lyubashevsky gives better approaches to lattice signatures.
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Part 3: Lattices in cryptanalysis

But first, any questions?
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Short history of lattices in cryptanalysis

I Subset-sum/knapsack cryptosystems.

I Simultaneous Diophantine approximation.

I Coppersmith’s algorithm for small roots of polynomial
equations.

I Variants of RSA (zillions of papers; Subhamoy Maitra knows
all about this).

I NTRU.

I Fixed pattern RSA signature forgery.

I Side-channel attacks (e.g., dlog signatures with some known
bits or poor randomness).

I Noisy Chinese remainder theorem.

I Approximate GCD.

See survey paper Phong Nguyen, Public-Key Cryptanalysis, or my
book.
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The subset-sum problem

I Let S = (m1, . . . ,mk) be a list of (large) integers
0 < mi ≤ M.

I Let s =
∑k

i=1 ximi where xi ∈ {0, 1}.
I The problem is: Given S and s to compute the values xi .

I Exercise: Show that the subset-sum problem is well-defined
(i.e., there is a unique solution) for “random” lists of weights
S as long as 2k is much smaller than kM.

I Exercise: Show that if mi = 2i−1 then subset-sum has a
unique solution, and that the solution is easy to compute.

I Subset-sum is NP-hard in general. But variants of it arise in
knapsack cryptosystems.

I Exercise: Describe a “time-memory tradeoff” algorithm to
solve the subset-sum problem that requires Õ(2k/2) time and
space. (Orr Dunkelman’s talk does better.)
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Lattice attack on subset-sum

Let

B =


1 0 · · · 0 m1

0 1 0 m2
...

. . .
...

...
0 0 1 mk

0 0 · · · 0 −s


and note that

(x1, x2, . . . , xk , 1)B = (x1, x2, . . . , xk , 0)

might be a short vector compared with the Minkowski bound

λ1 ≤
√
n|s|1/(k+1).

Hence, subset-sum can be solved (in some cases) by solving SVP.
For further details see Coster, Joux, LaMacchia, Odlyzko, Schnorr
and Stern.
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Approximate GCD

I Let p be a fixed secret.

I Suppose given Xi = qip + ei for 1 ≤ i ≤ k where qi , ei ∈ Z,
qi > 0, and |ei | are “small” compared with p.
The goal is to compute p.

I This is well-defined if k is large enough.

I Exercise: Recall that the extended Euclid algorithm on X1

and X2 computes a sequence of triples of integers (si , ti , ri )
such that siX1 + tiX2 = ri and |ri si | < X2.
If q2e1 − q1e2 < p then show that this process is likely to yield
(si , ti ) = (q1, q2), and thus p = [X1/q1].
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Lattice attack on approx GCD

Since Xi = qip + ei we have qiX1 − q1Xi = qie1 − q1ei .
Let

B =


E −X2 −X3 · · · −Xk

0 X1 0 · · · 0
0 0 X1 0
...

...
. . .

...
0 0 · · · 0 X1


and note that

(q1, q2, . . . , qk)B = (Eq1, q2e1 − q1e2, . . . , qke1 − q1ek)

which is shorter than (0,X1, 0, . . . , 0) and might be very a short
vector in the lattice.
Hence, one can try to attack approx-GCD using lattice reduction.
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Approx GCD

I The approx-GCD problem seems to be hard if the qi are large
enough.

I The van Dijk, Gentry, Halevi, Vaikuntanathan homomorphic
encryption scheme:
A ciphertext encrypting m ∈ {0, 1} is an integer
c = pq + 2r + m where |r | < p/2.

I To decrypt, knowing the secret p, we reduce modulo p and
then reduce modulo 2.

I The sum and product of two ciphertexts correspond to the
sum and product (mod 2) of the corresponding messages, as
long as the errors remain small enough.

I Exercise: Give a brute force attack on approx-GCD by “trying
all errors”.
See Chen-Nguyen (EUROCRYPT 2012) for a faster solution.
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Lattices in cryptanalysis

The important point is that lattices can be used to solve all sorts
of computational problems, even apparently “non-linear” problems
like finding small roots of modular polynomials, or approximate
GCD.
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Part 4: Learning with errors

But first, any questions?
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Learning with Errors (LWE)

Oded Regev (2005)

I Let q be a prime and n,m ∈ N. [Example: n = 200,
m = 2300, q = 40009.]

I Let s ∈ Zn
q be secret (column vector).

I Suppose one is given an m × n matrix A chosen uniformly at
random with entries in Zq and a length m vector

c ≡ As + e (mod q)

where the vector e has entries chosen independently from a
“discrete normal distribution” on Z with mean 0 and standard
deviation 3.

I The task is to find the vector s.
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Discrete Gaussians

I The Gaussian distribution (= normal distribution) on R with
mean 0 and variance s2 has probability density function

f (x) = 1
s
√
2π
e−x

2/(2s2).

I To define the discrete Gaussian on Z compute

M = 1 + 2
∞∑
k=1

e−k
2/(2s2)

and define the distribution on x ∈ Z by

Pr(x) = 1
M e−x

2/(2s2).

I Sampling closely from this distribution in practice is
non-trivial!
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Remarks on Learning with Errors

I LWE: Given A and c ≡ As + e (mod q) to find s.

I If e = 0 then easy.

I The solution s is not uniquely determined, but one value s is
significantly more likely than the others.
Hence LWE is well-defined as a maximum likelihood problem.

I LWE is essentially a special case of CVP: We are given a
matrix A generating the modular lattice Lq(AT ) in Zm and a
target c ∈ Zm and want to find a lattice point y ≡ As
(mod q) close to c .
Hence, the natural way to solve LWE is to perform lattice
reduction on A and then apply Babai nearest plane (see
Lindner-Peikert).
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Remarks on Learning with Errors

I Conversely, Regev showed that if one can solve LWE in the
average case then one can solve a variant of the closest vector
problem in a lattice in the worst-case.
Regev further showed a quantum average-worst reduction to
decision-SVP (also see Peikert).

I Decision-LWE: Given (A, c) decide whether or not c ≡ As + e
(mod q) for some c and error vector e.

I Exercise: Show that if one has an oracle that solves
decision-LWE then one can solve search-LWE.
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Classical Linear Regression

I Let s ∈ Rn, A be an m× n matrix and e an error vector in Rm

with entries identically and independently chosen from some
distribution (e.g., normal with mean 0).

I Given A and y = As + e the problem is to compute s.
This is a well-defined question if m� n (depending on the
error distribution).

I This is solved by the least squares method. A good estimator
for s is

ŝ = (ATA)−1AT y .

I In other words, solving linear regression is “easy”.
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Linear Regression mod q

I Since linear algebra works over any field it is natural to
replace the field R by the field Zq.

I Let s ∈ Zn
q, A be an m × n matrix with entries in Zq, and e

be an error vector in Zm
q .

I Given A and y = As + e (mod q) the problem is to compute
s.

I Is
ŝ ≡ (ATA)−1AT y (mod q)

a good estimator for s?
In other words, is s − ŝ small?
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Example

s =

(
5

76

)
, A =

 22 102
191 176
−26 104

 , e =

 1
−1
0

 .

Least squares computes

ŝ ≈
(

4.993
76.003

)
.

Now work over Z311. The formula gives

ŝ =

(
274
223

)
.

Exercise: Explain why linear regression does not work modulo q.
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Public Key Cryptography from LWE

I Private key: s (column vector)

I Public key: A, c = As + e (mod q)
I To encrypt M ∈ {0, 1}:

I Choose u ∈ {0, 1}m (row vector)
I Set c1 = uA (mod q), c2 = u c + M(p − 1)/2 (mod q)

I To decrypt: Compute v = c2 − c1s (mod q) reduced to the
interval {−(q − 1)/2, . . . ,−1, 0, 1, . . . , (q − 1)/2}.
If |v | < q/4 then output 0, else output 1.

I To break the cryptosystem one could try to compute s or u.
Note that c1 can be viewed as multiple modular subset-sum
instances on the same secret u.
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Why LWE?

LWE has a number of amazing applications:

I Hierarchical identity-based encryption.

I Homomorphic encryption.

I Lossy trapdoor functions.
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Thank You
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