Lattices and their applications in cryptography and cryptanalysis

Steven Galbraith

The University of Auckland

February 1, 2013

Apology.

- Mathematical background on lattices.
- Computational problems.
- Algorithms to solve computational problems.
- Cryptanalysis: subset-sum and approx-GCD.
- Learning with errors.

Please ask questions at any time.

The required mathematical and crypto background will vary.

Lattices

- Let $\underline{b}_1, \ldots, \underline{b}_n$ be linearly independent vectors in \mathbb{R}^n .
- ▶ The set $L = \{\sum_{i=1}^{n} x_i \underline{b}_i : x_i \in \mathbb{Z}\}$ is a (full rank) lattice. Call its elements **points** or **vectors**.
- Alternative definition: A discrete subgroup of \mathbb{R}^n .
- Everyone working with lattices should declare whether their vectors are rows or columns. I am using rows.
- ► The basis matrix is the n × n matrix B whose rows are the vectors <u>b</u>₁,..., <u>b</u>_n.
- A lattice has many different bases.
- ► Exercise: Verify that the lattice Z² has the basis {(1,0), (0,1)} and the basis {(3,2), (2,1)} and infinitely many other bases.

Lattices

- The basis vectors define a **parallelepiped**.
- The volume of the parallelepiped is given by $|\det(B)|$.
- ► Exercise: Prove that if B₁ and B₂ are basis matrices for a lattice L then there exists an n × n integer matrix U such that B₂ = UB₁ and det(U) = ±1.
- ► Exercise: Let L₁ and L₂ be lattices such that L₂ ⊆ L₁ and both have the same volume. Prove that L₁ = L₂.
- ► Exercise: Let A be an m × n matrix (m ≤ n) and let q ∈ N. Let

$$L_q(A) = \{ \underline{v} \in \mathbb{Z}^n : \underline{v} \equiv \underline{x}A \pmod{q} \text{ for some } \underline{x} \in \mathbb{Z}^m \}$$

and

$$L_q^{\perp}(A) = \{ \underline{y} \in \mathbb{Z}^n : \underline{y}A^T \equiv 0 \pmod{q} \}.$$

Prove that $L_q(A)$ and $L_q^{\perp}(A)$ are (full rank) lattices. Harder: Give algorithms to compute a basis for $L_q(A)$ and $L_q^{\perp}(A)$. [Hint: You need to use the Hermite normal form.] Shortest vector problem (SVP): Given a basis matrix B for a lattice L find a non-zero vector <u>v</u> ∈ L such that ||<u>v</u>|| is minimal.

The norm here is usually the standard Euclidean norm in \mathbb{R}^n , but it can be any norm such as the ℓ_1 norm or ℓ_∞ norm.

Closest vector problem (CVP): Given a basis matrix B for a full rank lattice L ⊆ ℝⁿ and an element <u>t</u> ∈ ℝⁿ find <u>v</u> ∈ L such that ||<u>v</u> − <u>t</u>|| is minimal.

▶ Let $L \subseteq \mathbb{R}^n$ be a lattice and *B* a basis matrix. The successive minima $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are defined by

 $\lambda_i(L) = \inf\{r : i = \dim \operatorname{span}\{\underline{v} : \underline{v} \in L \text{ and } \|\underline{v}\| \leq r\}\}.$

• Minkowski's theorem: $\lambda_1(L) < \sqrt{n} |\det(B)|^{1/n}$.

- Let $\underline{b}_1 = (1,0)$ and $\underline{b}_2 = (0,1000)$ and $\underline{t} = (0,500)$. Then $\lambda_1(L) = 1$ but the nearest lattice point \underline{v} to \underline{t} has $||\underline{v} \underline{t}|| = 500$. Note that CVP is easy when given this lattice basis!
- Exercise: Give an algorithm that determines, for a basis matrix B of a lattice L and a vector <u>t</u> ∈ ℝⁿ, whether <u>t</u> lies in the lattice. Does it help if L ⊆ ℤⁿ or L ⊆ ℚⁿ?
- **Exercise:** Let $L = \mathbb{Z}^n$. Show that $\lambda_i(L) = 1$ for all $1 \le i \le n$. Show that there exists an element $\underline{t} \in \mathbb{R}^n$ such that $\|\underline{v} - \underline{t}\| = \sqrt{n/2}$ for all $\underline{v} \in L$.

Computational Problems

These problems depend on the basis matrix B, not on the lattice L itself. For complexity, the running time is a function of the number of bits needed to represent the basis matrix.

- ► Search-CVP: Given (B, t), find v ∈ L such that ||v − t|| is minimal.
- Decision-CVP: Given (B, <u>t</u>) and r > 0, decide whether or not there is <u>v</u> ∈ L such that ||<u>v</u> − <u>t</u>|| ≤ r.
- ► Search-SVP: Given B, find non-zero <u>v</u> ∈ L such that ||<u>v</u>|| minimal.
- ▶ Decision-SVP: Given B and r > 0, decide whether or not λ₁(L) ≤ r.
- ► SIVP: Given *B*, find *n* linearly independent vectors $\underline{v}_1, \ldots, \underline{v}_n \in L$ minimising max $||\underline{v}_i||$.
- γ-approx SVP:
- γ-approx CVP:
- GapSVP $_{\gamma}$:

- Decision-SVP is NP-complete (see Chapter 3 of Micciancio and Goldwasser).
- SVP is "easier", but still hard (see Chapter 4 of Micciancio and Goldwasser).
- Exercise: Show that Decision-CVP is polynomial-time equivalent to Search-CVP. In other words, given an oracle for Decision-CVP, give an algorithm to solve Search-CVP.
 [Hint: Given basis {<u>b</u>₁,..., <u>b</u>_n} and <u>t</u> see if answer is same when run oracle on that basis and the set {2<u>b</u>₁, <u>b</u>₂,..., <u>b</u>_n}.]

Any questions about the first part?

- SVP and CVP can be easy when given certain bases for certain lattices.
- ► Consider the lattice with basis {(1,0,0), (0,2,0), (0,0,5)}. Then SVP and CVP are easy.
- A good lattice basis has vectors that are "close to orthogonal".
- The invariance of lattice volume implies that such vectors are also relatively short.

Lattice reduction

- The goal of lattice reduction is to take as input a basis for a lattice and to compute a new basis for the same lattice. The new basis should have vectors that are "as close to orthogonal as possible" and "as short as possible".
- The famous Lenstra-Lenstra-Lovasz (LLL) algorithm is polynomial-time in the input and outputs a basis with relatively good properties. (Note that it is exponential-time in terms of the rank/dimension n.)
- The LLL algorithm is based on Gram-Schmidt. It's goal is to ensure that the Gram-Schmidt orthogonal basis does not decrease in size too quickly.
- ► Theorem: Let *B* be an LLL-reduced lattice basis (with $\delta = 3/4$). Then the first row <u>*b*</u>₁ of *B* satisfies

$$\|\underline{b}_1\| \le 2^{(n-1)/2} \lambda_1.$$

- The exponential approximation factors mean that LLL usually becomes useless once the rank is large enough.
- The 2-dimensional case of LLL is essentially the Euclid/continued fraction algorithm.
- ▶ There are also exponential-time enumeration algorithms that are guaranteed to output the shortest vector in a lattice. They are easily prevented when *n* is large enough.
- There are many variants of LLL. Block LLL combines LLL with enumeration algorithms performed on low-rank sublattices.
- See the LLL+25 conference proceedings (Nguyen and Vallée, editors).

- ► There are also enumeration algorithms for CVP. They are exponential-time, but guaranteed to output the closest lattice vector to <u>t</u> ∈ ℝⁿ.
- The Babai rounding algorithm is fast and simple, but is not guaranteed to output the closest lattice vector:
 Given a basis {<u>b</u>₁,...,<u>b</u>_n} and <u>t</u> ∈ ℝⁿ, compute real numbers x_i such that <u>t</u> = ∑_i x_i<u>b</u>_i. Then compute the lattice vector <u>v</u> = ∑_i[x_i]<u>b</u>_i.
- **Exercise:** Show that \underline{v} lies in the parallelepiped centered on \underline{t} . Show that if $\underline{t} \notin L$ then there is a unique such lattice vector.
- The Babai nearest plane algorithm is a little better. There are also nice variants of it by Klein and Lindner-Peikert.

Prehistoric crypto applications (GGH)

- Let B be a "nice" lattice basis for a lattice in Zⁿ with large volume.
 - Let U be a "random" $n \times n$ integer matrix with det $(U) = \pm 1$.
- The GGH public key is B' = UB and the private key is B.
- To encrypt a message <u>m</u> ∈ {−M,..., M}ⁿ ⊆ Zⁿ choose a "small" error vector <u>e</u> ∈ Zⁿ and compute the ciphertext c = <u>m</u>B' + <u>e</u>.
- ► To decrypt one uses the nice lattice basis to solve the closest vector problem and hence find a lattice point <u>v</u> such that c = v + e. One then computes m = v(B')⁻¹.
- Exercise: Show that the GGH cryptosystem does not have indistinguishability security under a passive attack.
- Exercise: A variant of GGH is to swap the roles of the message and the randomness. Explain the scheme. Show that this variant also does not have indistinguishability security under passive attacks.

- One can attempt to break GGH using lattice reduction on B', followed by Babai rounding or some other CVP algorithm. This is hopeless if n > 200.
- Nguyen cryptanalysed the original GGH proposal (which had errors of a specific form).

GGH signatures

- Let B' be a GGH public key as before.
- Given a message *m*, hash it to a "random" element $H(m) \in \mathbb{Z}^n$.

Then, using the private key, compute a lattice vector \underline{s} close to H(m). The signature on message m is then \underline{s} .

- ► To verify the signature one checks that <u>s</u> lies in the lattice and that ||<u>s</u> H(m)|| is sufficiently small.
- Problem: $\underline{s} H(m)$ lies in the parallelepiped corresponding to the nice basis *B*.

Nguyen-Regev (and more recently Ducas-Nguyen at ASIACRYPT 2012) have given a powerful attack to "learn" the nice basis from the statistical properties of many samples $\underline{s} - H(m)$.

Lyubashevsky gives better approaches to lattice signatures.

But first, any questions?

Short history of lattices in cryptanalysis

- Subset-sum/knapsack cryptosystems.
- Simultaneous Diophantine approximation.
- Coppersmith's algorithm for small roots of polynomial equations.
- Variants of RSA (zillions of papers; Subhamoy Maitra knows all about this).
- NTRU.
- Fixed pattern RSA signature forgery.
- Side-channel attacks (e.g., dlog signatures with some known bits or poor randomness).
- Noisy Chinese remainder theorem.
- Approximate GCD.

See survey paper Phong Nguyen, Public-Key Cryptanalysis, or my book.

The subset-sum problem

- Let $S = (m_1, \ldots, m_k)$ be a list of (large) integers $0 < m_i \le M$.
- Let $s = \sum_{i=1}^{k} x_i m_i$ where $x_i \in \{0, 1\}$.
- ▶ The problem is: Given *S* and *s* to compute the values *x_i*.
- Exercise: Show that the subset-sum problem is well-defined (i.e., there is a unique solution) for "random" lists of weights S as long as 2^k is much smaller than kM.
- ► Exercise: Show that if m_i = 2ⁱ⁻¹ then subset-sum has a unique solution, and that the solution is easy to compute.
- Subset-sum is NP-hard in general. But variants of it arise in knapsack cryptosystems.
- **Exercise:** Describe a "time-memory tradeoff" algorithm to solve the subset-sum problem that requires $\tilde{O}(2^{k/2})$ time and space. (Orr Dunkelman's talk does better.)

Lattice attack on subset-sum

Let

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 & m_1 \\ 0 & 1 & & 0 & m_2 \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & & 1 & m_k \\ 0 & 0 & \cdots & 0 & -s \end{pmatrix}$$

and note that

$$(x_1, x_2, \ldots, x_k, 1)B = (x_1, x_2, \ldots, x_k, 0)$$

might be a short vector compared with the Minkowski bound

$$\lambda_1 \leq \sqrt{n} |s|^{1/(k+1)}.$$

Hence, subset-sum can be solved (in some cases) by solving SVP. For further details see Coster, Joux, LaMacchia, Odlyzko, Schnorr and Stern.

- Let *p* be a fixed secret.
- ▶ Suppose given $X_i = q_i p + e_i$ for $1 \le i \le k$ where $q_i, e_i \in \mathbb{Z}$, $q_i > 0$, and $|e_i|$ are "small" compared with p. The goal is to compute p.
- This is well-defined if k is large enough.
- **Exercise:** Recall that the extended Euclid algorithm on X_1 and X_2 computes a sequence of triples of integers (s_i, t_i, r_i) such that $s_iX_1 + t_iX_2 = r_i$ and $|r_is_i| < X_2$. If $q_2e_1 - q_1e_2 < p$ then show that this process is likely to yield $(s_i, t_i) = (q_1, q_2)$, and thus $p = [X_1/q_1]$.

Lattice attack on approx GCD

Since $X_i = q_i p + e_i$ we have $q_i X_1 - q_1 X_i = q_i e_1 - q_1 e_i$. Let

$$B = \begin{pmatrix} E & -X_2 & -X_3 & \cdots & -X_k \\ 0 & X_1 & 0 & \cdots & 0 \\ 0 & 0 & X_1 & & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & X_1 \end{pmatrix}$$

and note that

$$(q_1, q_2, \ldots, q_k)B = (Eq_1, q_2e_1 - q_1e_2, \ldots, q_ke_1 - q_1e_k)$$

which is shorter than $(0, X_1, 0, ..., 0)$ and might be very a short vector in the lattice.

Hence, one can try to attack approx-GCD using lattice reduction.

- The approx-GCD problem seems to be hard if the q_i are large enough.
- The van Dijk, Gentry, Halevi, Vaikuntanathan homomorphic encryption scheme:

A ciphertext encrypting $m \in \{0,1\}$ is an integer

c = pq + 2r + m where |r| < p/2.

- ► To decrypt, knowing the secret *p*, we reduce modulo *p* and then reduce modulo 2.
- The sum and product of two ciphertexts correspond to the sum and product (mod 2) of the corresponding messages, as long as the errors remain small enough.
- Exercise: Give a brute force attack on approx-GCD by "trying all errors".

See Chen-Nguyen (EUROCRYPT 2012) for a faster solution.

The important point is that lattices can be used to solve all sorts of computational problems, even apparently "non-linear" problems like finding small roots of modular polynomials, or approximate GCD.

But first, any questions?

Oded Regev (2005)

- ▶ Let q be a prime and $n, m \in \mathbb{N}$. [Example: n = 200, m = 2300, q = 40009.]
- Let $\underline{s} \in \mathbb{Z}_q^n$ be secret (**column** vector).
- Suppose one is given an m × n matrix A chosen uniformly at random with entries in Z_q and a length m vector

$$\underline{c} \equiv A\underline{s} + \underline{e} \pmod{q}$$

where the vector \underline{e} has entries chosen independently from a "discrete normal distribution" on \mathbb{Z} with mean 0 and standard deviation 3.

The task is to find the vector <u>s</u>.

Discrete Gaussians

► The Gaussian distribution (= normal distribution) on ℝ with mean 0 and variance s² has probability density function

$$f(x)=\frac{1}{s\sqrt{2\pi}}e^{-x^2/(2s^2)}.$$

• To define the discrete Gaussian on $\mathbb Z$ compute

$$M = 1 + 2\sum_{k=1}^{\infty} e^{-k^2/(2s^2)}$$

and define the distribution on $x \in \mathbb{Z}$ by

$$\Pr(x) = \frac{1}{M}e^{-x^2/(2s^2)}.$$

Sampling closely from this distribution in practice is non-trivial!

Remarks on Learning with Errors

- LWE: Given A and $\underline{c} \equiv A\underline{s} + \underline{e} \pmod{q}$ to find \underline{s} .
- ▶ If <u>e</u> = 0 then easy.

 The solution <u>s</u> is not uniquely determined, but one value s is significantly more likely than the others.
 Hence LWE is well-defined as a maximum likelihood problem.

LWE is essentially a special case of CVP: We are given a matrix A generating the modular lattice L_q(A^T) in Z^m and a target <u>c</u> ∈ Z^m and want to find a lattice point <u>y</u> ≡ A<u>s</u> (mod q) close to <u>c</u>.

Hence, the natural way to solve LWE is to perform lattice reduction on A and then apply Babai nearest plane (see Lindner-Peikert).

 Conversely, Regev showed that if one can solve LWE in the average case then one can solve a variant of the closest vector problem in a lattice in the worst-case.
 Regev further showed a quantum average-worst reduction to

decision-SVP (also see Peikert).

- Decision-LWE: Given (A, <u>c</u>) decide whether or not <u>c</u> ≡ A<u>s</u> + <u>e</u> (mod q) for some <u>c</u> and error vector <u>e</u>.
- **Exercise:** Show that if one has an oracle that solves decision-LWE then one can solve search-LWE.

- Let <u>s</u> ∈ ℝⁿ, A be an m × n matrix and <u>e</u> an error vector in ℝ^m with entries identically and independently chosen from some distribution (e.g., normal with mean 0).
- Given A and <u>y</u> = A<u>s</u> + <u>e</u> the problem is to compute <u>s</u>. This is a well-defined question if m ≫ n (depending on the error distribution).
- This is solved by the least squares method. A good estimator for <u>s</u> is

$$\underline{\hat{s}} = (A^T A)^{-1} A^T \underline{y}.$$

In other words, solving linear regression is "easy".

- Since linear algebra works over any field it is natural to replace the field ℝ by the field Z_q.
- Let <u>s</u> ∈ Zⁿ_q, A be an m × n matrix with entries in Z_q, and <u>e</u> be an error vector in Z^m_q.
- Given A and $\underline{y} = A\underline{s} + \underline{e} \pmod{q}$ the problem is to compute \underline{s} .

Is

$$\underline{\hat{s}} \equiv (A^T A)^{-1} A^T \underline{y} \pmod{q}$$

a good estimator for <u>s</u>? In other words, is $\underline{s} - \underline{\hat{s}}$ small?

$$\underline{s} = \begin{pmatrix} 5\\76 \end{pmatrix}, \quad A = \begin{pmatrix} 22 & 102\\191 & 176\\-26 & 104 \end{pmatrix}, \quad \underline{e} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}.$$

Least squares computes

$$\underline{\hat{s}} \approx \left(\begin{array}{c} 4.993 \\ 76.003 \end{array} \right).$$

Now work over $\mathbb{Z}_{311}.$ The formula gives

$$\underline{\hat{s}} = \left(\begin{array}{c} 274\\223 \end{array} \right).$$

Exercise: Explain why linear regression does not work modulo q.

Public Key Cryptography from LWE

- Private key: <u>s</u> (column vector)
- Public key: $A, \underline{c} = A\underline{s} + \underline{e} \pmod{q}$
- To encrypt $M \in \{0, 1\}$:
 - Choose $\underline{u} \in \{0, 1\}^m$ (row vector)
 - Set $c_1 = \underline{u}A \pmod{q}$, $c_2 = \underline{u} \underline{c} + M(p-1)/2 \pmod{q}$
- ► To decrypt: Compute v = c₂ c₁s (mod q) reduced to the interval {-(q 1)/2,..., -1, 0, 1, ..., (q 1)/2}. If |v| < q/4 then output 0, else output 1.
- To break the cryptosystem one could try to compute <u>s</u> or <u>u</u>. Note that c₁ can be viewed as multiple modular subset-sum instances on the same secret <u>u</u>.

LWE has a number of amazing applications:

- Hierarchical identity-based encryption.
- Homomorphic encryption.
- Lossy trapdoor functions.

Thank You