
Department of Mathematics,
University of Auckland

Improving the Efficiency of
Code-Based Cryptography

Thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy (PhD)

by

Edoardo Persichetti

under the supervision of Ass. Prof. Steven Galbraith

Auckland, November 23rd, 2012

A mamma, papà
Flami e Lulli:

siete la mia vita!

Abstract

Recent public-key cryptography is largely based on number theory problems,
such as factoring or computing of discrete logarithm. These systems constitute
an excellent choice in many applications, and their security is well defined and
understood. One of the major drawbacks, though, is that they will be vulnerable
once quantum computers of an appropriate size are available. There is then a
strong need for alternative systems that would resist attackers equipped with
quantum technology.

One of the most well-known systems of this kind is the McEliece cryptosys-
tem, introduced in 1978, that is based on algebraic coding theory. There are
no known vulnerabilities against quantum computers, and it has a very fast and
efficient encryption procedure. However, it has also one big flaw, the size of the
public key, that makes it impractical for many applications.

The first part of this thesis is dedicated to finding a way to significantly
reduce the size of the public key. Latest publications achieve very good results
by using codes with particular structures, obtaining keys as small as 4,096 bits.
Unfortunately, almost all of the variants presented until now have been broken
or proven to be insecure against the so-called structural attacks, i.e. attacks that
aim to exploit the hidden structure in order to recover the private key. My work
is based on Generalized Srivastava codes and represents a generalization of the
Quasi-Dyadic scheme proposed by Misoczki and Barreto, with two advantages: a
better flexibility, and improved resistance to all the known attacks. An efficient
implementation of the above scheme is also provided, as a result of a joint work
with P.-L. Cayrel and G. Hoffmann.

In the next chapters, other important aspects of code-based cryptography
are investigated. These include the study of a higher security standard, called
indistinguishability under a chosen ciphertext attack, in the standard model,
and the design of a code-based key encapsulation mechanism (KEM), which
is an essential component of the hybrid encryption protocol. The last chapter
is about digital signatures, a fundamental protocol in modern cryptography;
existing code-based signatures schemes are reviewed and a negative result is
obtained, showing that the design of an efficient signature scheme based on
coding theory is still an open problem.

i

ii

Acknowledgements

First of all, I would like to thank my supervisor Steven Galbraith, for his
constant support throughout the development of this PhD. Thanks for giving
me the chance to come to New Zealand and pursue this doctorate, for the endless
patience you have shown in every situation, for sharing your expertise with me
and allowing all this to become a reality.
A big thanks goes also to the University of Auckland and the Maths Department
for being a wonderful host, together with all of its members. I would like to men-
tion in particular Julia Novak, Alastair McNaughton, Eamonn O’Brien, Arkadii
Slinko, Tom ter Elst, Greg Oates and all the administration ladies, especially
Adina Nagy and Olita Moala.
To my co-authors Pierre-Louis Cayrel and Gerhard Hoffmann: thanks for invit-
ing and welcoming me to Darmstadt, and for starting a pleasant and fruitful
collaboration despite the several miles that separate us.
During these three years I had the luck to meet many people with whom I shared
some very enjoyable and productive experiences, Paulo Barreto, Christiane Pe-
ters and Nicolas Sendrier above all.
Thanks to the many people that supported me at various points during my PhD:
Paolo Pietrogrande, all this wouldn’t even have started without your assistance;
Toto Donà, my biggest fan and eternal model; Kari Buckland, a small woman
with a great heart, you are a wonderful person and I will always remember all
you’ve done for me and my family; Valentina Napoli, the very first person I met
in Auckland and a true friend.
A special mention for Arnaud Brothier: you’ve been a great friend and a great
inspiration since the very start, and during all your visits to Auckland and in
Paris. Merci, mon ami.
Finally, I would like to thank all the people that accompanied me along this long
and tortuous path that was the road to my PhD: my girlfriend Alicia and my
boys Roberto, Dario, Stefano, Guido, Giovanni, Peppe and Andrea; my office-
mates Heiko, Tuan and Nazli and my colleagues Manfred, Paul, Maryam, Katie,
Mike, Ali, Afshin, Peter, Jennifer, Steffi and all the rest of the PhD guys; Alfio,
Martina, Sandra and all the people at Dante Alighieri Society; Claire, Andrecita,
Amy, Brigida, Salil, Brice, Muteb, Jordan, Jonathan and all my good Auckland
friends; Katy, John and all the Sale St crew; Capo, Vincenzo and the Gina’s
boys. Thanks, I will not forget.

To Paolo, Giulia, Miki, Stefano, Ricca, Fabri and all my friends back in Italy:
I did it!!

iii

iv

Contents

Abstract i

Acknowledgements iii

Glossary vii

1 Introduction 1

2 Background 7
2.1 Cryptology . 9

2.1.1 Symmetric Cryptography 9
2.1.2 Public-key Cryptography 10
2.1.3 Security of Encryption Schemes 11
2.1.4 Digital Signatures . 16

2.2 Coding Theory . 18
2.2.1 Error-Correcting Codes 18
2.2.2 Cyclic Codes . 21
2.2.3 Alternant Codes . 23

2.3 Cryptology and Coding Theory: Hard Problems 29

3 McEliece and Previous Work 31
3.1 Original Proposals . 33

3.1.1 The McEliece Cryptosystem 33
3.1.2 The Niederreiter Cryptosystem 34
3.1.3 Remarks on the McEliece and Niederreiter Cryptosystems 35

3.2 Security Overview . 36
3.2.1 Decoding Attacks and ISD 36
3.2.2 Structural Attacks . 40
3.2.3 Other Attacks on the General Framework 40

3.3 New Horizons and Recent Proposals 41
3.3.1 Quasi-Cyclic . 42
3.3.2 Quasi-Dyadic . 43
3.3.3 FOPT . 47

4 A Quasi-Dyadic Variant of McEliece using Generalized Srivas-
tava Codes 51
4.1 Introduction . 53
4.2 Construction . 53
4.3 Correctness of Key Generation 55

v

4.3.1 Full-rank Matrices . 55
4.3.2 Determinant of Block Matrices 58

4.4 Security . 59
4.4.1 Cryptanalysis . 59
4.4.2 Parameters . 61

4.5 Implementation . 63
4.5.1 The Fujisaki-Okamoto Conversion 63
4.5.2 Applying Fujisaki-Okamoto to McEliece 65
4.5.3 Results . 66

4.6 Conclusions . 69

5 Design of an Efficient Code-Based KEM 71
5.1 Introduction . 73
5.2 Preliminaries . 73

5.2.1 Encapsulation Mechanisms and the Hybrid Framework . . 73
5.2.2 Other Cryptographic Tools 75

5.3 The Hybrid Encryption Scheme 76
5.3.1 The KEM Construction 76
5.3.2 A Standard DEM . 78

5.4 Conclusions and Future Work . 79

6 On a CCA2-secure Variant of McEliece in the Standard Model 81
6.1 Introduction . 83
6.2 The Rosen-Segev Scheme . 83

6.2.1 Computable Functions and Correlated Products 83
6.2.2 The Rosen-Segev Encryption Scheme 84

6.3 Two Previous Proposals . 85
6.3.1 Syndrome Decoding . 85
6.3.2 k-repetition PKE . 86

6.4 A Direct Translation . 90
6.5 Conclusions . 94

7 Signatures 95
7.1 Introduction . 97
7.2 Existing Schemes . 97

7.2.1 CFS . 97
7.2.2 KKS . 100
7.2.3 Identification Schemes and Fiat-Shamir 103

7.3 An Alternative Approach for Signatures 111
7.3.1 Number Theory and Lattices 111
7.3.2 A Coding Theory Scenario 113

7.4 Conclusions . 115

8 Conclusions and Future Work 117

Bibliography 121

vi

Glossary

In this thesis, we adopt the following mathematical conventions (unless oth-
erwise specified). We denote all strings and vectors in boldface, and sets and
matrices with capital letters. If a is a number then |a| is its absolute value, while
|S| denotes the cardinality of the set S. If x is a string of length n, its elements
are denoted by (x1, . . . , xn) and its length by |x|. If M is a matrix we usually
adopt the compact notation Mi,j to indicate the element in the i-th row and j-th
column, and we denote with MT its transpose and with M−1 its inverse (where
applicable). Similarly, xT indicates the transpose of the vector x. We use the
symbol || to indicate concatenation of strings and | to indicate concatenation of
matrices; that is, if x is a string of length n1, y is a string of length n2, A is an
m × n1 matrix and B is an m × n2 matrix, then (x||y) is the string of length
n1+n2 obtained by concatenating x and y, and (A|B) is the m×(n1+ n2) matrix
obtained by concatenating each row of A with the corresponding row of B.
We denote with a

$←− A the action of choosing the element a at random from
the set or distribution A. We denote by Pr[E] the probability that the event E
occurs and with Pr[E|F] the conditional probability, that is, the probability that
E occurs given that F occurs.
Algorithms that are part of cryptographic protocols are denoted as follows: we
use superscript notation to indicate the scheme they refer to, and subscript no-
tation to specify the key in use. The input of the algorithm is given within
brackets. So for example EncPKE

pk (φ) means encryption of φ in the cryptosystem
PKE under the key pk.

The symbols that we will use most frequently are listed below:

Symbol Description

⊕ bitwise XOR

Fq finite field with q elements

{0, 1}∗ set of bit strings of arbitrary length

Wq,n,w set of words of length n and Hamming weight w over Fq
⊥ failure/reject

wt Hamming weight

d Hamming distance

vii

viii

Introduction

Cryptology is, as defined by Rivest in [103], “the study of techniques for
secure communication in the presence of third parties (called adversaries)”. It
is commonly divided into two distinct areas known as Cryptography and Crypt-
analysis. The former refers to the use and practice of the techniques in order to
create secure communication protocols, while the latter is the study of methods
for obtaining the encrypted information without access to the key normally re-
quired to do so, i.e. it is the study of how to break the cryptographic protocols.
Of course, no area would exist without the presence of the other, and the inter-
action between the two parts is of vital importance.
For many years the subject was considered only in the context of privacy, and
the words “cryptography” and “encryption” were synonyms. Moreover, encryp-
tion was always intended as an exchange between two parties in possession of
the same key (symmetric cryptography).
Modern cryptology evolved in many directions and, also thanks to the develop-
ment of computers, features now various types of protocols, such as public-key
encryption schemes, signature schemes, zero-knowledge identification schemes,
multi-party computations and so on. We will see definitions and examples of the
main cryptographic protocols in Chapter 2.

This thesis focuses on the area known as Public-Key Cryptography (see Sec-
tion 2.1.2 for details), and, in particular, investigates code-based cryptography,
that is, the branch of cryptography that makes use of primitives based on hard
coding theory problems. As we will see in Section 2.2, coding theory was ini-
tially studied with the purpose of solving a variety of problems in electronic
communication. The first application of coding theory in a cryptographic con-
text is the 1978 seminal work of R. J. McEliece [80]. Since then, the area
has attracted the attention of the community as one of the candidates for the
so-called “post-quantum cryptography”. This is the name commonly used to
indicate the area of cryptographic research that considers a scenario in which
adversaries are equipped with quantum technology. Quantum computers of a
small size are already a reality and, although hard to estimate, it is plausible
that in the near future such a scenario would be concrete. With enough quan-
tum computational power, an adversary could make use of techniques such as
Shor’s algorithm [114] to break many current cryptographic protocols relying
on number-theoretic primitives such as RSA and Diffie-Hellman. It is there-
fore important to provide alternative schemes whose security won’t be affected
in case this scenario becomes real. The McEliece cryptosystem has no known
vulnerabilities against quantum algorithms. However, code-based cryptography
has never been truly considered practical for many cryptographic applications,
the most important reason being the very large size of the public key. The aim
of this thesis is then to improve the efficiency and the credibility of code-based
cryptography by studying and addressing some of these issues.

The work is structured as follows: Chapter 2 is divided into two main sec-
tions which provide definitions and notions for, respectively, cryptography and
coding theory. A final small section is dedicated to the hard problems based
on coding theory, i.e. the connecting point between the two areas. Chapter 3

3

introduces the McEliece cryptosystem and all the previous work related to it:
the Niederreiter variant, a cryptanalytic overview and the most recent algebraic
variants. Chapter 4 puts together the content of two distinct, previously pub-
lished papers [98, 22]. The first paper is an individual work by the author and
features an original scheme that was designed with the aim of reducing the public
key size. The scheme is a variant of the McEliece cryptosystem that arises from
a 2009 proposal by Misoczki and Barreto [85]; it consists of a construction based
on the family of Generalized Srivastava codes. To the best of our knowledge, it
is the first time that this family of codes has been employed in a cryptographic
setting; these codes are compatible with the quasi-dyadic framework of Misoczki
and Barreto, and the results obtained by employing Generalized Srivastava codes
are comparable to the ones obtained by employing Goppa codes, at the same
time providing more generality and responding to security requirements dictated
by the most recent structural attack by Faugère, Otmani, Perret and Tillich [38].
On the other hand, [22] is a joint work with Pierre-Louis Cayrel and Gerhard
Hoffmann that provides an implementation of the scheme for C++ language and
for an embedded microcontroller, together with a conversion that achieves IND-
CCA2 security (the most desirable level of security for public-key encryption
schemes). It is shown that the costs of the conversion affect the overall timings
only minimally, and that the global scheme is very fast, thus making another
point in favor of code-based cryptography. Chapter 5 is a short chapter dedicated
to the construction of a key encapsulation mechanism (KEM) based on coding
theory, specifically on the Niederreiter cryptosystem. KEMs are the public-key
component of a recent general approach (KEM-DEM) for “hybrid” encryption
(Cramer and Shoup, [30]). The scheme achieves IND-CCA2 security with a very
tight security reduction and a very simple construction, and promises even faster
implementation results. The implementation work is currently in progress and
therefore falls beyond the scope of this thesis. Chapter 6 discusses a work on
IND-CCA2 security of code-based cryptography in the standard model. This
is also another very important aspect to be treated since schemes that are se-
cure in the standard model are much more desirable, in practice, than schemes
that require the use of a random oracle (normally simulated by a cryptographic
hash function). The work, which was also previously published as a preprint,
stems from a recent paper by Dowsley, Müller-Quade and Nascimento [36] that
introduces a new scheme called “k-repetition PKE”, inspired by a framework
by Rosen and Segev [106], with the suggestion of using a randomized version of
McEliece in the framework. A flaw in the security proof is noted and corrected,
and an accurate security proof is then presented, together with an instantiation
of a McEliece construction that is much closer to the original Rosen-Segev ap-
proach. Finally, we present a work on coding signatures in Chapter 7. A detailed
literature review forms the first part of the chapter, describing the three main
prototypes of code-based signature schemes: CFS [29], KKS [62] and Stern’s
identification scheme [120]. All three have been studied extensively over the
years and many variants have been proposed, the most relevant being included
in the chapter; however, none of the proposed schemes or variants managed to
achieve efficiency due to multiple issues such as a very long signature size, a

4

very large public key size, a very slow signing algorithm, or simply not enough
security. Next, we describe a new approach, initiated by Lyubashevsky for the
lattice setting [74]. The construction is simple and elegant, although the required
choice of parameters makes it essentially impractical. We then argue the impos-
sibility of translating such approach to a coding theory scenario, mostly due to
properties that are inherent to the metric used. We conclude that producing an
efficient code-based signature scheme is still an open problem.

5

6

Background

2.1 Cryptology

In this section we introduce the basic cryptographic schemes that we will need
throughout this thesis. Furthermore, in modern cryptology it is common practice
to give precise mathematical definitions for security properties and to consider
very powerful adversaries. We will also define those precisely along with the
corresponding schemes.

2.1.1 Symmetric Cryptography

Symmetric cryptography’s distinctive feature is the use of the same key (hence
symmetric) for encryption and decryption. The key represents therefore a shared
secret between two (or more) parties that wish to communicate.
A Symmetric Encryption (SE) scheme is a 6-tuple (K,P,C,KeyGen,Enc,Dec)
defined as follows.

Table 2.1: Symmetric Encryption scheme.

K The key space.

P The set of messages to be encrypted, or plaintext space.

C The set of the messages transmitted over the channel, or ciphertext space.

KeyGen A probabilistic key generation algorithm that takes as input a security
parameter 1λ and outputs a key κ ∈ K.

Enc A deterministic encryption algorithm that receives as input a key κ ∈ K
and a plaintext φ ∈ P and returns a ciphertext ψ ∈ C.

Dec A deterministic decryption algorithm that receives as input a key κ ∈ K
and a ciphertext ψ ∈ C and outputs a plaintext φ ∈ P.

Symmetric schemes are commonly called ciphers. The first cipher known
dates back to the Romans: there is evidence of Julius Caesar using this method to
communicate with his generals, hence the scheme is usually referred to as “Caesar
cipher”. It consists simply of shifting the letters in a message by a certain number
of positions. Modern ciphers are divided into two families: stream ciphers and
block ciphers. Schemes in the first family encrypt the bits of a message one at
a time, while the block ciphers, as the name suggests, take a certain number
of bits and encrypt them as a single unit, padding the plaintext so that it is a
multiple of the block size. An example is the very famous AES [31], that uses
blocks of size 128, 192 or 256.
Block ciphers operate in different modes, depending whether the encryption
algorithm is applied “as is” (EBC), using an “initialization vector” (CBC and
CBCC) or a random “starting point” (CTR and CTRC). We will not go into
details here, but we refer the reader to [9, Chapter 4] for precise definitions.
We now present a very popular scheme, the one-time pad (Vernam, 1917, U.S.
Patent 1,310,719), that we will need for some of our constructions later on.

9

Table 2.2: The One-Time Pad.

Setup Fix system parameters k, n ∈ N such that n ≤ k.

K The set of binary strings {0, 1}k.

P The set of binary strings {0, 1}n.

C The set of binary strings {0, 1}n.

KeyGen Generate at random a key κ ∈ {0, 1}k.

Enc On input a key κ ∈ K and a plaintext φ = (x1, . . . , xn) ∈ P, compute
yi = xi ⊕ κi for i = 1, . . . , n and return the ciphertext ψ = (y1, . . . yn) ∈ C.

Dec On input a key κ ∈ K and a ciphertext ψ = (y1, . . . , yn) ∈ C, compute
xi = yi ⊕ κi for i = 1, . . . , n and return the plaintext φ = (x1, . . . xn) ∈ P.

Usually in practice one chooses k = n.

The one-time pad as presented above achieves perfect secrecy (in the sense of
unconditional security) as long as the keys are used only once, and then discarded
(hence the “one-time”). We will define this concept more accurately among other
security notions in Section 2.1.3.
Obviously, the fact that the key needs to be at least as large as the message
constitutes a severe limitation to the use of the one-time pad.

2.1.2 Public-key Cryptography

Public-key cryptography was first introduced in the 1970’s through the work of
Diffie and Hellman [33] and represents a major breakthrough in the cryptographic
world. The most famous public-key scheme is probably RSA [104], presented in
1978 by Rivest, Shamir and Adleman and still widely used at the present time.
The key feature is the idea of a asymmetric key, as opposed to the symmetric
schemes described above; that is, each key is composed of a pair of keys. One
of the keys is public, used for encryption, and is distributed over the channel,
while the other one is private and is in possession of the authorized user(s) only,
in order to allow decryption.
Due to this particular nature, to realize the protocol is necessary to have a
function that is easy to compute, but hard to invert. In cryptography these are
called trapdoor one-way functions.

Definition 2.1 A collection of Efficiently Computable Functions is a pair of
algorithms F = (G,F) where G is a generation algorithm that samples the de-
scription f of a function and F(f, x) is an evaluation algorithm that evaluates
the function f on a given input x.

Definition 2.2 A Trapdoor One-Way Function is an efficiently computable
function that, given the image of a uniformly chosen input, is easy to invert
with the use of a certain trapdoor td but hard to invert otherwise. In particular,
there exists an algorithm F−1 such that F−1(td,F(f, x)) = x.

10

Definition 2.3 Given a one-way function f , a Hard-Core Predicate of f is a
predicate b (i.e., a function whose output is a single bit) which is easy to compute
given the input x but is hard to compute given f(x). That is, there is no
probabilistic polynomial-time algorithm that computes b(x) from f(x) with non-
negligible advantage.

A Public-Key Encryption (PKE) scheme is a 6-tuple (K,P,C,KeyGen,Enc,Dec)
defined as follows.

Table 2.3: Public-Key Encryption scheme.

K
Kpubl the public key space.

Kpriv the private key space.

P The set of messages to be encrypted, or plaintext space.

C The set of the messages transmitted over the channel, or ciphertext space.

KeyGen A probabilistic key generation algorithm that takes as input a security pa-
rameter 1λ and outputs a public key pk ∈ Kpubl and a private key sk ∈ Kpriv.

Enc A (possibly probabilistic) encryption algorithm that receives as input a pub-
lic key pk ∈ Kpubl and a plaintext φ ∈ P and returns a ciphertext ψ ∈ C.

Dec A deterministic decryption algorithm that receives as input a private key
sk ∈ Kpriv and a ciphertext ψ ∈ C and outputs either a plaintext φ ∈ P or
the failure symbol ⊥.

Most of the trapdoor one-way functions used in cryptography are based on
some hard problems coming from number theory, such as the case of prime
factorization for RSA or the discrete logarithm for the Diffie-Hellman scheme.
Of course, since the encryption key is public, an attacker trying to decrypt the
ciphertext could try to encrypt every possible message and eventually come up
with the desired plaintext. Clearly, this happens only in theory; however, it
doesn’t make sense anymore to speak about perfect secrecy. Instead, public-key
schemes are designed so to obtain computational security. We define this in the
next section.

2.1.3 Security of Encryption Schemes

The word “security” in cryptography has multiple meanings and often depends
on external factors rather than just on the scheme itself. There are two main
types of security:

- Unconditional Security

- Computational Security

Unconditional Security
The idea of unconditional security is a concept of Information Theory (hence also
called information-theoretic security) and dates back to Claude Shannon [113]. It

11

is the strongest possible notion of security for cryptosystems, and implies that the
system is unbreakable even if the attacker has unlimited computational power:
the adversary simply does not have enough information to break the security.
Thus, an unconditionally secure scheme does not rely on any computational
assumptions.
A special case is known as perfect secrecy. This was defined by Shannon in [113].

Definition 2.4 Let E be an encryption scheme. E achieves Perfect Secrecy if a
ciphertext produced by Enc provides no information about the plaintext without
knowledge of the key. That is, if we fix probability distributions on P and C with
random variables, respectively, Φ and Ψ, then1

∀φ ∈ P, ∀ψ ∈ C Pr[Φ = φ |Ψ = ψ] = Pr[Φ = φ]. (2.1)

The one-time pad is the only known perfectly secret cryptographic scheme; the
perfect secrecy was proved by Shannon in [113].

Computational Security

A cryptosystem is said to be computationally secure if, for any existing adver-
sary, the computational power needed to break the scheme would exceed the
available resources. Therefore, computational security is characterized by lev-
els: a cryptosystem is or isn’t secure given a fixed amount of computational
resources. These are usually defined by a certain, large, number of operations,
such as binary operations, field operations etc. For example, a desirable security
level for a public-key cryptosystem is 2128 or 2256 bit operations, depending on
the application. In public-key cryptography, computational security is achieved
relying on the hardness of some well-known problem. Because the hardness of a
problem is difficult to prove, most of the times this is just “assumed” to hold in
order to guarantee the desired security for the scheme. We will see some exam-
ples in e.g. Chapter 3. Of course, when designing a cryptographic protocol, one
always aims to rely on the weakest possible assumption.

Provable Security

The concept of provable security is relatively recent (Goldwasser and Micali,
[53]), and very different from the previous ones. Rather than stating universal
security properties (as in unconditional security) or just limiting computational
resources (as in computational security), provable security also defines different
security notions so that the cryptographer knows what to expect and what to aim
for. More precisely, a cryptosystem is said to be provably secure if its security
requirements can be stated formally in an adversarial model. Clear assumptions
are made about what informations the adversary has access to, as well as the
available computational resources. Most of all, it is possible to provide a “proof
of security” (hence the term provable), usually called a reduction, that works by
connecting the scheme to a certain problem for which the hardness is assumed

1Note that, while Φ is an independent variable, Ψ depends on the implicit random variable
K for a certain probability distribution over K.

12

to hold. The first object to be formally defined, of course, is the universe in
which the proof is given. There are two main kinds, called the Standard Model
and the Random Oracle Model, that we will define below.

Definition 2.5 The Standard Model is the model of computation where the ad-
versary is only limited by the amount of time and computational power available.

This is the “real-life” scenario. Schemes that are proven secure using only com-
plexity assumptions are said to be secure in the standard model. Since security
proofs are notoriously difficult to achieve in the standard model, often cryp-
tographic primitives are replaced by idealized versions, called random oracles.

Definition 2.6 A Random Oracle is a mathematical abstraction that works as
a theoretical black box, that is, an oracle that answers to every query with a
truly random output, chosen uniformly from its output domain. For any specific
query, the output returned is always the same.

In this sense, the random oracle is like a mapping that associates to each query
a fixed, but random output.
Random oracles are very useful to represent functions that need to have a truly
random behavior, most commonly cryptographic hash functions.

Definition 2.7 Let H be a function on A whose range B is a set of strings
of fixed length n. Then H is a Cryptographic Hash Function if it satisfies the
following properties:

- Computability
For all x ∈ A it is easy to compute H(x).

- Preimage resistance
For all y ∈ B it is infeasible2 to find x ∈ A such that y = H(x).

- Second-preimage resistance
For all x ∈ A it is infeasible to find x′ 6= x such that H(x′) = H(x).

- Collision resistance
It is infeasible to find x1, x2 ∈ A such that x1 6= x2 and H(x1) = H(x2).

The value H(x) is called message digest or simply digest. Clearly, all the proper-
ties are required in order to ensure that a malicious adversary is unable to modify
the input without changing its digest. Usually the data is encoded in binary,
and we have A = {0, 1}∗ (bit-strings of arbitrary length) and B = {0, 1}n.

Definition 2.8 The Random Oracle Model is the model of computation that
allows the functions with random behavior to be modelled as random oracles.

Generally, proofs in this environment aim to show that an attacker must re-
quire impossible behavior from the oracle, or solve some problem believed hard.
Schemes that admit a security proof of this kind are said to be secure in the
random oracle model.

2i.e. the computation would take longer than some time bound T .

13

Other cases such as the Generic Group Model or the Public-Key Infrastructure
(PKI) Model are not relevant for this thesis and won’t be discussed here. We
will instead proceed to describe the main types of attack models.

We already saw (Definition 2.2) what is a trapdoor one-way function. We now
define one-way security for a PKE scheme; the definition is completely analogous
for symmetric schemes.

Definition 2.9 A One-Way adversary is a polynomial-time algorithm A that
takes as input a public key pk ∈ Kpubl and a ciphertext ψ = Encpk(φ) ∈ C and
outputs φ′ ∈ P. The adversary succeeds if φ′ = φ. We say that a PKE scheme
is One-Way Secure if the probability of success of any adversary A is negligible
in the security parameter, i.e.

Pr[pk
$←− Kpubl, φ

$←− P : A(pk,Encpk(φ)) = φ] ∈ negl(λ). (2.2)

In practice, one-way security only requires that recovering the entire plaintext
given a ciphertext and the public key is infeasible, but doesn’t tell anything
about the indistinguishability of a certain ciphertext.

Definition 2.10 An adversary A for the indistinguishability (IND) property is
a two-stage polynomial-time algorithm. In the first stage, A takes as input a
public key pk ∈ Kpubl, then outputs two arbitrary plaintexts φ0, φ1. In the second
stage, it receives a ciphertext ψ∗ = Encpk(φb), for b ∈ {0, 1}, and returns a bit
b∗. The adversary succeeds if b∗ = b. More precisely, we define the advantage of
A against PKE as

Adv(A, λ) =
∣∣∣Pr[b∗ = b]− 1

2

∣∣∣. (2.3)

We say that a PKE scheme enjoys Indistinguishability if the advantage of any
adversary A over all choices of pk, ψ∗ and the randomness used by A is negligible
in the security parameter.

Indistinguishability can be achieved in various attack models. We present here
two of the most famous.

Definition 2.11 The attack game for IND-CPA (or passive attack) proceeds as
follows:

1. Query a key generation oracle to obtain a public key pk.

2. Choose φ0, φ1 ∈ P and submit them to an encryption oracle. The oracle
will choose a random b ∈ {0, 1} and reply with the “challenge” ciphertext
ψ∗ = Encpk(φb).

3. Output b∗ ∈ {0, 1}.

We say that a PKE scheme has Indistinguishability against Chosen Plaintext
Attacks (IND-CPA) if the advantage AdvCPA of any IND adversary A in the
CPA attack model is negligible.

14

The above model was first introduced in [53] and captures the idea of an
adversary being unable of extract even partial information about a plaintext
given its corresponding ciphertext. An even stronger attack model, called CCA2
(Rackoff and Simon, [100]), allows the adversary to make use of a decryption
oracle during the game, with the only exception that it is not allowed to ask for
the decryption of the challenge ciphertext.

Definition 2.12 The attack game for IND-CCA2 (or active attack) proceeds
as follows:

1. Query a key generation oracle to obtain a public key pk.
2. Make a sequence of calls to a decryption oracle, submitting any string ψ

of the proper length (not necessarily an element of C). The oracle will
respond with Decsk(ψ).

3. Choose φ0, φ1 ∈ P and submit them to an encryption oracle. The oracle
will choose a random b ∈ {0, 1} and reply with the “challenge” ciphertext
ψ∗ = Encpk(φb).

4. Keep performing decryption queries. If the submitted ciphertext is ψ = ψ∗,
the oracle will return ⊥.

5. Output b∗ ∈ {0, 1}.

We say that a PKE scheme has Indistinguishability against Adaptive Chosen
Ciphertext Attacks (IND-CCA2) if the advantage AdvCCA2 of any IND adversary
A in the CCA2 attack model is negligible.

The equivalent scenario for symmetric schemes is a model called find-guess
(Bellare et al., [5]). The definition is similar to IND, except that in this case some
extra information is needed before producing the response bit. This replaces
the role of the randomness in the adversary since we are now operating with
symmetric encryption. The names “find” and “guess” refer to the two stages of
the algorithm.

Definition 2.13 An adversary A for the find-guess (FG) property is a two-
stage polynomial-time algorithm. In the first stage (find), A takes as input a
key κ ∈ K, then outputs two arbitrary plaintexts φ0, φ1 along with some extra
information ι to be used later. In the second stage (guess), it receives a ciphertext
ψ∗ = Encκ(φb) for b ∈ {0, 1}, and returns a bit b∗ = A(κ, ψ∗, ι). The adversary
succeeds if b∗ = b. More precisely, we define the advantage of A against SE as

Adv(A, λ) =
∣∣∣Pr[b∗ = b]− 1

2

∣∣∣. (2.4)

We say that a SE enjoys Find-Guess security if the probability of success of any
adversary A over all choices of pk, ψ∗ and ι is negligible in the security parameter.

A slightly different notion is the one called non-malleability, introduced by
Dolev, Dwork and Naor [34]. In this case the adversary has again access to a
decryption oracle, but instead of recovering partial information about the plain-
text, the aim is to produce another encryption of a different plaintext that is

15

somehow related to the original. Non-malleability and CCA2 have been proven
to be equivalent, in certain settings, by the same authors in [35] and by Bellare
et al. in [6].
Other “intermediate” notions of security have been proposed, for example by
Naor and Yung [87]. This model, commonly called indifferent chosen ciphertext
attack (CCA1) as opposed to the one presented above, or sometimes lunch-time
or midnight attack, allows the adversary to query the decryption oracle only
before receiving the challenge ciphertext. However, this attack model is much
less popular than CCA2 and we will therefore omit a detailed definition.

2.1.4 Digital Signatures

Digital signatures arose approximately at the same time of public-key cryptog-
raphy; initially conjectured in [33], they were successively formalized by Gold-
wasser, Micali and Rivest in [54]. Digital signatures are a cryptographic protocol
with a different aim from encryption schemes: rather than disguising the mes-
sage itself, these protocols produce a signature to be attached to the transmitted
document, in order to preserve its authenticity and to avoid forgeries. The sig-
nature is verified with the help of a dedicated, public verification algorithm.
The tools used to construct digital signatures are very similar to the ones used
in public-key encryption, namely an asymmetric key scheme, and often the same
cryptographic primitives can be adapted to produce a signature scheme. This is
the case of, for example, RSA [104]3. Arguably, signatures are nowadays at least
as important as encryption schemes in the context of modern communications.

Formally, a Digital Signature scheme, or simply Signature scheme (SS) is a 6-
tuple (K,M,Σ,KeyGen,Sign,Ver) defined as follows:

Table 2.4: Signature scheme.

K
Ksign the signing key space.

Kver the verification key space.

M The set of documents to be signed, or message space.

Σ The set of the signatures to be transmitted along with the messages, or
signature space.

KeyGen A probabilistic key generation algorithm that takes as input a security
parameter 1λ and outputs a signing key sgk ∈ Ksign and a verification key
vk ∈ Kver.

Sign A (possibly probabilistic) signing algorithm that receives as input a signing
key sgk ∈ Ksign and a message µ ∈ M and returns a signature σ ∈ Σ.

Ver A deterministic decryption algorithm that receives as input a verification
key vk ∈ Kver, a message µ ∈ M and a signature σ ∈ Σ and outputs 1, if
the signature is recognized as valid, or 0 otherwise.

3Although “plain” RSA signatures would not be secure.

16

Obviously, being a public-key scheme, a signature scheme cannot possibly
achieve unconditional security. Instead, just as for PKE schemes, security is
tailored on computational assumptions and varies according to different attack
models, similar to the ones presented in the previous section, all illustrated in
[54]:

- Key-only attack
The attacker is only given the public verification key.

- Known message attack
The attacker is in possession of valid signatures for a set of messages

known to him, but not of his choice.
- Adaptive chosen message attack

The attacker can request signatures on arbitrary messages.

Clearly, recovering the signing key would result in a total break of the scheme.
Other attack results are categorized as follows:

- Universal forgery
The ability to reproduce valid signatures on any message.

- Selective forgery
The ability to reproduce valid signatures on a set of messages chosen

by the adversary and fixed before the attack.
- Existential forgery

The ability to reproduce at least one valid message/signature pair.

Since existential forgery is the weakest possible adversarial model, the strongest
notion of security for signature schemes is existential unforgeability under an
adaptive chosen message attack.

We now present a slightly different version of unforgeability called one-time
strong unforgeability, which we will employ later in this thesis.

Definition 2.14 We define an adversary A as a polynomial-time algorithm that
acts as follows:

1. Query a key generation oracle to obtain a verification key vk.

2. Choose a message µ ∈ M and submit it to a signing oracle. The oracle will
reply with σ = Signsgk(µ).

3. Output a pair (µ∗, σ∗).

The adversary succeeds if Vervk(µ∗, σ∗) = 1 and (µ∗, σ∗) 6= (µ, σ). We say that a
signature scheme is One-Time Strongly Unforgeable if the probability of success
of any adversary A is negligible in the security parameter, i.e.

Pr[vk $←− Kver : Vervk(A(vk,Signsgk(µ))) = 1] ∈ negl(λ). (2.5)

17

A famous example of one-time signature scheme is the Lamport scheme [65],
introduced in 1979. The message bits are signed one at a time, and the scheme
requires the use of a one-way function (commonly a cryptographic hash function).

Table 2.5: The Lamport Signature Scheme.

Setup Fix a one-way function f : Y → Z.

K
Ksign the Cartesian product Y 2k.

Kver the Cartesian product Z2k.

M The set of binary strings {0, 1}k.

Σ The set of binary strings {0, 1}k.

KeyGen Choose at random 2k elements yi,j ∈ Y and compute the corresponding
images zi,j = f(yi,j) for i = 1, . . . , k, j = 0, 1. Return the signing key
y = {yi,j} ∈ Ksign and the verification key z = {zi,j} ∈ Kver.

Sign On input a signing key y ∈ Ksign and a message µ ∈ M, return the signature
σ = (y1,µ1 , . . . , yk,µk

) ∈ Σ.

Ver On input a verification key z ∈ Kver, a message µ ∈ M and a signature
σ ∈ Σ, output 1 if f(σi) = zi,µi for i = 1, . . . , k, else return 0.

Clearly, in order to forge a signature, an attacker would need to invert the
function f , contradicting the one-way assumption. It is also immediate to see
that this holds as long as each key is used to sign exactly one message.

2.2 Coding Theory

Coding theory began as an engineering problem in the 1940’s, with the work of
Golay, Hamming and Shannon. It developed thereafter using more and more
complex mathematical tools. Modern coding theory sits comfortably in be-
tween those two areas, encompassing very diverse families of codes, such as the
algebraic-geometric (AG) codes coming from algebraic geometry, the low-density
parity-check (LDPC) codes based on graph theory, and so on. In this thesis, we
treat just codes of the first kind.
Coding theory studies the transmission of data, and consists mainly of two as-
pects: data compression (source coding) and error correction (channel coding).
We will now focus on the latter, and from now on we will therefore speak of
error-correcting codes.

2.2.1 Error-Correcting Codes

We start by introducing the notion of linear code.

Definition 2.15 Let Fq be the finite field with q elements. An [n, k] Linear
Code C is a subspace of dimension k of the vector space Fnq .

18

Elements of the code are called codewords. Each message is represented as a
vector of Fkq and mapped to a unique codeword. The parameter n is the code
length, k is the code dimension and the difference n− k is the redundancy of the
code. The ratio R = k/n is known as code rate and measures the information
rate, i.e. the proportion of useful (non-redundant) data transmitted in each
codeword.

Codes are usually studied in the context of the Hamming metric, determined by
the distance defined below.

Definition 2.16 Let C be an [n, k] linear code over Fq. Let x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ C be two codewords. The Hamming Distance dH(x,y) be-
tween the codewords is the number of positions in which they differ, that is

dH(x,y) = |{i : xi 6= yi, 1 ≤ i ≤ n}|. (2.6)

It is easy to see that dH is non-negative, symmetric and sub-additive, hence it is
effectively a distance.

Definition 2.17 Let C be an [n, k] linear code over Fq. Let x = (x1, . . . , xn) ∈ C
be a codeword. The Hamming Weight wtH(x) of the codeword is the number of
non-zero positions, that is:

wtH(x) = |{i : xi 6= 0, 1 ≤ i ≤ n}|. (2.7)

Clearly, the Hamming distance and the Hamming weight define each other in
the sense that wtH(x) = dH(x, 0) and dH(x,y) = wtH(x− y).
Alternative metrics, such as the Lee metric, are often used in other scenarios,
for example codes over rings, and will not be discussed here. For simplicity, we
will then denote the Hamming distance and weight by, respectively, d and wt.

The following is a very important concept for linear codes.

Definition 2.18 Let C be an [n, k] linear code over Fq. The Minimum Distance
d of C is the minimum of the distances among all the codewords, that is

d = min{d(x,y) : x,y ∈ C,x 6= y}. (2.8)

The minimum distance of a code is fundamental to determine its error-correction
capabilities. Imagine a codeword x is transmitted over a noisy channel, and
errors occur in a certain number of positions, say w. We represent this as an
error vector e of weight w having non-zero positions exactly where the errors
occur. The received word will then be z = x+ e. We say that a code C is able
to correct w errors if, for each codeword, it is possible to detect and correct any
configuration of w errors occurred during transmission.
The following theorem holds.

Theorem 2.1 Let C be an [n, k] linear code over Fq having minimum distance
d. Then C is able to correct at most w = bd−1

2 c errors.

19

Proof For every codeword x ∈ C define the sphere of radius w centered in x as
Sx = {z ∈ Fnq : d(z,x) ≤ w}. Now consider two spheres Sx and Sy for x 6= y and
let z ∈ Sx∩Sy. Then d(z,x) ≤ w and d(z,y) ≤ w, hence d(z,x)+d(z,y) ≤ 2w
and this is a contradiction since, by the triangular inequality, d(z,x)+d(z,y) ≥
d(x,y) ≥ d. This shows that the two spheres are disjoint; hence, if the error
vector occurred on a codeword has weight ≤ w, the corresponding vector z
belongs to an uniquely determined sphere and it is then possible to recover the
correct codeword. 4

Linear codes can be efficiently described by matrices.

Definition 2.19 Let C be an [n, k] linear code over Fq. Let B = {v1, . . . ,vk}
be a basis for the vector subspace determined by C. The k× n matrix G having
the vectors of B as rows is called Generator Matrix for C, that is

G =

v1

v2

...
vk

 . (2.9)

The matrix G generates the code as a linear map: for each message m ∈ Fkq
we obtain the corresponding codeword mG. Of course, since the choice of basis
is not unique, so is the choice of generator matrix. More specifically, given
a generator matrix G, then the matrix SG, where S is any invertible matrix,
generates the same code. It is possible to choose S in a particular way, so that
G = (Ik|M). This is called systematic form of the generator matrix.

Note that using a generator matrix in systematic form each message appears
in the first k positions of the corresponding codeword (i.e. the first k positions
carry the information symbols).
We now provide another important way to describe a code. We start by intro-
ducing the dual code.

Definition 2.20 Let C be an [n, k] linear code over Fq. The Dual Code of C is
the set C⊥ = {x ∈ Fnq : x · y = 0 ∀y ∈ C}.

Theorem 2.2 Let C be an [n, k] linear code over Fq. Then the dual code C⊥
is an [n, n − k] linear code. Moreover, if G = (Ik|M) is a generator matrix in
systematic form for C, then H = (−MT|In−k) is a generator matrix for C⊥.

The matrix H is a very important matrix for the code C itself.

Definition 2.21 Let C be an [n, k] linear code over Fq and let C⊥ be its dual
code. The (n− k)× n generator matrix H is called Parity-Check Matrix for C.

The parity-check matrix describes the code as follows:

∀x ∈ Fnq , x ∈ C ⇐⇒ HxT = 0. (2.10)

20

The name comes from the first, somewhat crude method for error detection, the
parity check, in which a single redundancy bit is added at the end of a codeword,
the bit being a 0 if the codeword has an even number of 1’s and a 1 otherwise.
In this way, if the received word has an odd number of 1’s, it is sure that at least
an error has occurred. The vector HxT is called syndrome of x, and gives its
name to a very efficient error-correcting method, known as syndrome decoding.
This works by splitting the code C in qn−k cosets and then pre-computing a
table containing the syndromes of all the corresponding coset leaders (that is,
the minimal weight elements for each coset).

Table 2.6: Syndrome Decoding.

Input An (n−k)×n parity-check matrix H and the received word z = x+e ∈ Fnq .

Output The codeword x.

1. Calculate the syndrome s = HzT.

2. Find the coset leader ` associated to s.

3. If ` is found, return x = z − `, else return ⊥.

This method succeeds as long as w = wt(e) is within the correcting radius of the
code, i.e. w ≤ bd−1

2 c, where d is the minimum distance of the code. In fact, since
x is a codeword, we have HzT = HxT +HeT = 0 +HeT = HeT and, because its
weight is within the correcting radius, e is a uniquely determined coset leader.
It is then easy to find the corresponding syndrome on the table.

We will see more advanced decoding methods in the next sections.

2.2.2 Cyclic Codes

A special subfamily of linear codes is that of cyclic codes.

Definition 2.22 Let C be an [n, k] linear code over Fq. We call C Cyclic if

∀a = (a0, a1 . . . , an−1), a ∈ C =⇒ a′ = (an−1, a0 . . . , an−2) ∈ C. (2.11)

Clearly, if the property holds, then all the right shifts, for any number of posi-
tions, have to belong to C as well.

An algebraic characterization can be given in terms of polynomial rings. In fact,
it is natural to build a bijection between cyclic codes and ideals of the polynomial
ring Fq[x]/(xn−1). We identify the vector (a0, a1 . . . , an−1) with the polynomial
a0 + a1x+ · · ·+ an−1x

n−1, and then the right shift operation corresponds to the
multiplication by x in the ring.
Each ideal is generated by a certain polynomial g(x) (for simplicity, we assume
always g to be monic) such that g(x) divides xn − 1. To each polynomial corre-
sponds a distinct cyclic code, and we therefore call g the generator polynomial
of the code. Like before, we can produce a generator matrix: this will have a
special form.

21

Definition 2.23 Let C be an [n, k] cyclic code over Fq. Then B = {g(x), xg(x),
. . . , xk−1g(x)} is a basis for C and we obtain the generator matrix

G =

g(x)

xg(x)
...

xk−1g(x)

 . (2.12)

Note that G will be in circulant form, where the i-th row corresponds to the
cyclic right shift by i positions of the first row.

Generalizations include constacyclic codes, where in Equation (2.11) a′ changes
to (γan−1, a0 . . . , an−2) for a certain constant γ ∈ Fq, and in particular the
special case of γ = −1 (negacyclic codes). Another generalization, the quasi-
cyclic codes, we will see in the next chapter.

Among cyclic codes are some important families of codes such as Hamming
codes, Quadratic-residue codes and especially BCH codes (Hocquenghem [59],
Bose and Ray-Chaudhuri [20]), which we will present briefly.

Definition 2.24 Let q be a prime power, b, δ ≤ n positive integers with (q, n) =
1, m the multiplicative order of q modulo n and α a primitive n-th root of unity
in Fqm . The BCH Code over Fq of length n and designated distance δ is the
cyclic code generated by g(x) = lcm{mi(x) : b ≤ i ≤ b+ δ − 2}, where mi(x) is
the minimal polynomial of αi over Fq.

If b = 1 then the code is said to be narrow-sense, and if the length is exactly
n = qm − 1 the code is called primitive.

The following is known as BCH Bound.

Proposition 2.1 Let C be a BCH code with designated distance δ. Then C has
minimum distance at least δ.

BCH codes enjoy many dedicated decoding algorithms, the most famous being
probably the Berlekamp-Massey algorithm [12, 76]. They are appreciated for
their ease of use, resulting in many applications such as satellite communications,
DVD’s, two-dimensional bar codes etc.
A subclass of BCH codes is of particular interest to us.

Definition 2.25 Let q be a prime power and k a positive integer. A Reed-
Solomon (RS) Code is a BCH code having length n = q − 1 and designated
distance δ = n− k + 1.

These codes were introduced by Reed and Solomon in [101]. Again, if b = 1 we
talk about narrow-sense Reed-Solomon codes.
Narrow-sense RS codes admit an alternative definition in terms of polynomial
evaluation.

22

Definition 2.26 Let q be a prime power and k a positive integer. Let Pk be
the set of polynomials of degree ≤ k over Fq, α a primitive n-th root of unity in
Fq and n = q− 1. Then the code C = {(f(1), f(α), . . . , f(αq−2)) : f ∈ Pk} is the
narrow-sense [n, k, n− k + 1] RS code over Fq.

It is straightforward to see that the two definitions are equivalent. The above
can be further generalized (Kasami, Lin and Peterson [63]) to define an even
more important family of codes.

Definition 2.27 Let q be a prime power and n, k positive integers such that
1 ≤ k ≤ n ≤ q. Let m be the multiplicative order of q modulo n, α a primitive
n-th root of unity in Fqm and Pm,k be the set of polynomials of degree ≤ k
over Fqm . Fix distinct x = (x1, . . . , xn) and non-zero y = (y1, . . . , yn) in Fnqm .
Then the Generalized Reed-Solomon (GRS) Code of order r = n− k is the code
GRSr(x,y) = {(y1f(x1), y2f(x2), . . . , ynf(xn)) : f ∈ Pm,k}.

Clearly, the narrow-sense RS code C defined above is the GRS code GRSr(x,y)
having m = 1, n = q − 1, xi = αi−1 and yi = 1 for all i = 1, . . . , n.

GRS codes have the important property of being maximum distance separable
(MDS), since their minimum distance is exactly n− k + 1. Moreover, it is pos-
sible to prove (for example, MacWilliams and Sloane [75]) that GRSr(x,y)⊥ =
GRSn−r(x,y′) for a certain sequence y′ ∈ Fqm . With the canonical choice of
basis (1, x, . . . , xk−1) we can describe the generator matrix of the dual, that, as
we know, is a parity-check matrix for GRSr(x,y), in the following form:

H(x,y′) =

y′1 . . . y′n

y′1x1 . . . y′nxn
...

...
...

y′1x
r−1
1 . . . y′nx

r−1
n

 . (2.13)

It is then possible to describe GRS codes through the above parity-check matrix
(for ease of notation, we swap the roles of y and y′).

Definition 2.28 Let the integers q,m, n, k, the field element α and the se-
quences x,y be defined as above. Then GRSr(x,y) is the code with parity-check
matrix H(x,y).

2.2.3 Alternant Codes

We now present the family of alternant codes, that are defined as subfield subcodes
of GRS codes.

Definition 2.29 Let C be an [n, k] linear code over Fqm . The Subfield Subcode
C|Fq of C over Fq is the vector space C ∩ Fnq .

23

The easiest way to obtain a subfield subcode is to use the trace construction.

Definition 2.30 Let H = {hi,j} be an r × n matrix over Fqm . Fix an ordered
basis E = {e1, . . . , em} for Fqm over Fq and the corresponding projection function
φE : Fqm → Fmq defined by φE(α) = (a1, . . . , am)T for α = a1e1 + · · · + amem.
We define the Trace Matrix T (H) as the rm × n matrix obtained by replacing
each element hi,j with φE(hi,j), and the Co-Trace Matrix T ′(H) as the rm× n
matrix whose ((l−1)r+ i, j) element is φE(hi,j)l, for i = 1, . . . r, j = 1, . . . n and
l = 1, . . . ,m. Note that T ′(H) is equivalent to T (H) by a left permutation.

It is shown in [75] that the dual of C|Fq is the trace of the dual of C. Since
a generator matrix for the dual code is in fact a parity-check matrix for C, in
practice this means that we can build a parity-check matrix for the subfield
subcode directly from C.

Theorem 2.3 Let C be an [n, k, d] linear code over Fqm and H be a parity-check
matrix for C. Then the subfield subcode C|Fq is an [n, k′, d′] linear code over Fq,
where k′ ≥ n−m(n− k), d′ ≥ d and Ĥ = T (H) is a parity-check matrix for it.

Proof It is immediate to prove that C|Fq is linear. In fact, ∀ x,y ∈ C|Fq and
∀ a, b ∈ Fq, we have ax + by ∈ C (since C is linear) and ax + by ∈ Fnq since all
the components are elements of Fq. Therefore, ax+ by ∈ C ∩ Fnq = C|Fq .
It is also obvious that the code length is still n, and since C|Fq is a proper subset
of C, clearly d′ cannot be less than d. To prove k′ ≥ n−m(n− k), we build the
parity-check matrix and then look at the dimension.
For any vector u = (u1, . . . , un) ∈ Fnqm , write the projection of each element
φE(uj) = (a1,j , . . . , am,j)T for 1 ≤ j ≤ n, and call u[i] = (ai,1, . . . , ai,n) for
1 ≤ i ≤ m. Let v = (v1, . . . , vn) ∈ Fnq . Then

u · v = 0 ⇐⇒
∑n

j=1 ujvj = 0

⇐⇒
∑n

j=1(
∑m

i=1 ai,jei)vj = 0

⇐⇒
∑m

i=1(
∑n

j=1 ai,jvj)ei = 0

⇐⇒
∑n

j=1 ai,jvj = 0 ∀i = 1, . . . ,m

⇐⇒ u[i] · v = 0 ∀i = 1, . . . ,m.

Now, since H is a parity-check matrix for C, it defines the code as usual by
v ∈ C ⇐⇒ HvT = 0. So clearly, if v ∈ Fnq , we have v ∈ C|Fq ⇐⇒ HvT = 0. If hj
is the j-th row ofH, this means that v ∈ C|Fq ⇐⇒ hjv = 0 for all j = 1, . . . , n−k.
For what we have just seen, this is equivalent to say v ∈ C|Fq ⇐⇒ h

[i]
j v = 0 for

all j = 1, . . . , n − k and i = 1, . . . ,m. This defines exactly the trace matrix
T (H). We have m rows for each row of H, but Ĥ is not necessarily of full rank
and must be reduced by a Gaussian elimination. Therefore the dimension is
≥ n−m(n− k), as claimed. 4

We are now ready to define alternant codes.

24

Definition 2.31 Let GRSr(x,y) be a GRS code of order r over Fqm for a certain
prime power q and extension degree m > 1. The Alternant Code Ar(x,y) is the
subfield subcode GRSr(x,y)|Fq .

Alternant codes admit a modified version of the Berlekamp-Massey algorithm,
which we present below. First, though, we need to introduce a few important
notions.

Definition 2.32 Let Ar(x,y) be an alternant code over Fq as defined above
and let x be the transmitted codeword. Suppose we receive the vector z = x+e
having wt(e) = w within the correction range, with error values v1, . . . , vw in
positions p1, . . . , pw. We call:

- Error Locators the elements xp1 , . . . , xpw

- Error Locator Polynomial the polynomial Λ(z) =
w∏
i=1

(1− xpiz)

- Error Evaluator Polynomial the poly Ω(z) =
w∑
j=1

vjypj

∏
1≤i≤w
i 6=j

(1− xpiz).

It is evident that the error positions are uniquely determined by the reciprocals
of the roots of Λ. Once these are found, the error values are given by

vj =
Ω(x−1

pj
)

ypj

∏
1≤i≤w
i 6=j

(1− xpix
−1
pj

)
. (2.14)

Table 2.7: Alternant decoding.

Input An r×n parity-check matrix H(x,y) and the received word z = x+e ∈ Fnq .

Output The codeword x.

1. Calculate the syndrome s = HzT and write down the corresponding poly-
nomial S(z) =

∑r−1
i=0 siz

i.

2. Use the Euclidean algorithm for polynomials to solve the key equation

Ω(z) ≡ Λ(z)S(z) (mod zr) (2.15)

and retrieve Λ and Ω.

3. Use a root-finding algorithm4 to find the roots of Λ. Find the corresponding
error positions p1, . . . , pw and then the values v1, . . . , vw; build the error
vector e having the value vi in position pi for i = 1, . . . , w and 0 everywhere
else. Return x = z − e.

4Commonly a Chien search [27].

25

Among alternant codes are some very important families of algebraic codes,
such as:

- Chien-Choy generalized BCH codes

- Goppa codes

- Generalized Srivastava codes

We will analyze in detail the last two, which are of cryptographic importance.

Goppa codes

Goppa codes were first introduced in 1970s by Victor Goppa [55] and represent
a simple case of algebraic-geometric codes. Those are evaluation codes, like RS
codes in Definition 2.26, but where the objects involved, rather than polynomials,
are functions evaluated on rational points of a certain algebraic curve. The
original formulation [56] is the following.

Let χ be an algebraic curve over Fq, P1, . . . , Pn distinct rational points on χ andD
the divisor P1+· · ·+Pn. Let G be another divisor such that supp(G)∩supp(D) = ∅
and denote by L(G) the unique5 finite-dimensional vector space, with respect to
the divisor G, such that L(G) is a subspace of the function field of χ. The Goppa
Code Γ (D,G) is defined by

Γ (D,G) = {(f(P1), . . . , f(Pn)) : f ∈ L(G)}. (2.16)

Sometimes, Goppa codes expressed in this way are referred to as geometric Goppa
codes.
An equivalent, more common formulation is given by means of a generator poly-
nomial, much like BCH codes, and makes use of the subfield subcode construc-
tion.

Definition 2.33 Fix a finite field Fq and an extension degree m > 1. Choose a
polynomial g(x) in Fqm [x] of degree ` < n/m and a sequence of distinct elements
α1, . . . , αn ∈ Fqm (called support) such that g(αi) 6= 0 for all i. The polynomial
g(x) is called the Goppa Polynomial. Define the [n, n− `] linear code C over Fqm

as the set of words a = (a1, . . . , an) ∈ Fnqm such that

n∑
i=1

ai
x− αi

≡ 0 (mod g(x)). (2.17)

The Goppa Code Γ = Γ (α1, . . . , αn, g) over Fq is the corresponding subfield
subcode C|Fq .

5By the Riemann-Roch theorem [102, 105].

26

It is easy to see that a Goppa code defined in this way admits a parity-check
matrix of the form

H(α, g) =

1

g(α1)
. . .

1
g(αn)

...
...

...
α`−1

1

g(α1)
. . .

α`−1
n

g(αn)

 (2.18)

from which is possible to see that the Goppa code Γ is de facto an alternant
code, precisely A`(x,y) with xi = αi, yi = 1/g(αi) for i = 1, . . . , n.
It is then also evident that a Goppa code has dimension k ≥ n − m`. The
minimum distance is `+ 1, or 2`+ 1 in the special binary case (q = 2).

Goppa codes enjoy a particularly efficient decoding algorithm, an adaptation of
the Berlekamp-Massey algorithm given by Patterson [95]. We will not present
this in detail, and we will instead proceed to the next family of codes that is
important for our purposes.

Generalized Srivastava codes

This family of codes was introduced in an unpublished work by J. N. Srivastava
in 1967 and successively presented by Helgert in [57]. Before the definition, we
briefly return to alternant codes. Recall the special form for the parity-check
matrix of the alternant code Ar(x,y):

H(x,y) =

y1 . . . yn

y1x1 . . . ynxn
...

...
...

y1x
r−1
1 . . . ynx

r−1
n

 . (2.19)

Remember that for every r×r invertible matrix S, the matrix SH is an equivalent
parity-check matrix. It is then clear that an alternative form for H(x,y) is

H =

s1,1 . . . s1,r

s2,1 . . . s2,r

...
...

...

sr,1 . . . sr,r

y1 . . . yn

y1x1 . . . ynxn
...

...
...

y1x
r−1
1 . . . ynx

r−1
n

 =

27

=

y1g1(x1) . . . yng1(xn)

y1g2(x1) . . . yng2(xn)
...

...
...

y1gr(x1) . . . yngr(xn)

 (2.20)

where gi(x) = si,1 + si,2x+ si,3x
2 + · · ·+ si,rx

r−1 for each i = 1, . . . , r.

Definition 2.34 Fix a finite field Fqm with m > 1. Let α1, . . . , αn, w1, . . . , ws be
n+ s distinct elements of Fqm , and z1, . . . , zn be non-zero elements of Fqm . The
Generalized Srivastava (GS) code of order r = st and length n is the alternant
code Ar(x,y) defined by the parity-check matrix (2.20) having

g(l−1)t+k(x) =

s∏
j=1

(x− wj)t

(x− wl)k
for l = 1, . . . , s and k = 1, . . . , t

yi =
zi

s∏
j=1

(αi − wj)t
for i = 1, . . . , n.

This implies

yig(l−1)t+k(αi) =
zi

(αi − wl)k
(2.21)

for i = 1, . . . , n, l = 1, . . . , s and k = 1, . . . , t.
It is then possible to deduce a standard form for the parity-check matrix of GS
codes as

H =

H1

H2

...

Hs

 (2.22)

where each block is

Hi =

z1

α1 − wi
. . .

zn
αn − wi

z1

(α1 − wi)2
. . .

zn
(αn − wi)2

...
...

...
z1

(α1 − wi)t
. . .

zn
(αn − wi)t

.

28

The original Srivastava codes are the special case t = 1 and zi = ανi for all
i = 1, . . . , n and for a certain power ν.
Since GS codes are alternant codes, the parameters are length n ≤ qm − s,
dimension k ≥ n−mst and minimum distance d ≥ st+ 1.
By analogy with BCH codes, GS codes are called primitive if the αi’s are chosen
to be all the elements of Fqm apart from the wi’s. In this case the code length is
exactly n = qm − s.

GS codes are a large family of codes that includes other families as a special
case. For example, when m = 1 these are called Gabidulin codes. Moreover, it
is easy to prove that every GS code with t = 1 is a Goppa code.
We will use this property, together with the fact that GS codes can be decoded
with the usual alternant decoding algorithm (Table 2.7), to build a cryptographic
scheme in Chapter 4.

2.3 Cryptology and Coding Theory: Hard Problems

In the previous sections we’ve presented the fundamentals of cryptology and
coding theory. The meeting point between the two is the branch commonly
known as code-based cryptography, and is centered on problems that arise from
coding theory, which are hard enough to serve as cryptographic primitives. In
this section, we will present the most relevant of those problems and discuss
their hardness.

We start with the following, commonly called general decoding problem (GDP).

Table 2.8: General Decoding Problem.

Given An [n, k] linear code C over Fq and a vector y ∈ Fnq .

Goal Find x ∈ C such that d(x,y) is minimal.

Note that this corresponds to correcting a certain number of errors occurred
on the codeword x, represented by an error vector e, that is y = x + e. By
Theorem 2.1, a unique solution exists if the weight of e is less than or equal to
w = bd−1

2 c, where d is the minimum distance of C.

This problem is well known and was proved to be NP-complete by Berlekamp,
McEliece and van Tilborg in [13]. Moreover, GDP is believed to be hard on
average, and not just on the worst-case instances (see for example Sendrier [111]).

An alternative and very popular formulation is given in terms of the parity-
check matrix, and is known as the Syndrome Decoding Problem (SDP). Some-
times, this is also referred to as computational syndrome decoding problem.
However, note that there is no “gap” between the computational and the deci-
sional versions of SDP: an attacker equipped with a decisional syndrome decoding
oracle can in fact solve any instance of SDP with a linear number of queries.

29

Table 2.9: Syndrome Decoding Problem.

Given An [n−k, n] parity-check matrix for an [n, k] linear code C over Fq, a vector
s ∈ Fn−kq and an integer w ∈ N+.

Goal Find e ∈ Fnq of weight ≤ w such that s = HeT.

We now present a very important bound for linear codes:

Definition 2.35 Let C be an [n, k] linear code over Fq. The Gilbert-Varshamov
(GV) Distance is the largest integer d0 such that

d0−1∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k. (2.23)

It is then clear that, if w ≤ d0, we have a unique solution to SDP. Otherwise,
multiple solutions exist (see for example Overbeck and Sendrier, [94]). It follows
that decoding problems are meaningful only if the weight w is small. If the given
syndrome is random, then the weight is likely to be close to the GV bound,
therefore providing a guarantee for the hardness of the problem. However in
practice, as we will see, for cryptographic schemes the weight is much smaller
since it has to be within the correction range of the code in use.

30

McEliece and Previous Work

3.1 Original Proposals

3.1.1 The McEliece Cryptosystem

As the name suggests the scheme is due to Robert J. McEliece and dates back to
1978. The original formulation [80] makes use of binary Goppa codes. Accord-
ing to the author, these are chosen mainly for two reasons: they form a large
family, providing a vast number of potential public keys, and there exists an effi-
cient, i.e. polynomial-time, algorithm for decoding these codes (e.g. Patterson’s
algorithm). The scheme can be easily generalized to codes over Fq.

Table 3.1: The McEliece cryptosystem.

Setup Fix public system parameters q,m, n, k, w ∈ N such that k ≥ n− wm.

K
Kpubl the set of k × n matrices over Fq.

Kpriv the set of triples formed by a k×k invertible matrix over Fq, an n×n
permutation matrix over Fq and a code description1.

P The vector space Fkq .

C The vector space Fnq .

KeyGen Generate at random a polynomial g ∈ Fqm [x] and elements α1, . . . , αn ∈
Fqm , then build the Goppa code Γ = Γ (α1, . . . , αn, g) over Fq and its
generator matrix Ĝ. Select at random a k × k invertible matrix S and an
n×n permutation matrix P . Publish the public key G = SĜP ∈ Kpubl and
store the private key (S, P,Γ) ∈ Kpriv.

Enc On input a public key G ∈ Kpubl and a plaintext m ∈ P, sample a random
error vector e of weight w in Fnq and return the ciphertext ψ = mG+e ∈ C.

Dec On input the private key (S, P,Γ) ∈ Kpriv and a ciphertext ψ ∈ C, first
compute ψP−1 then apply the decoding algorithm DΓ to it. If the decoding
succeeds, multiply the output m̂ by S−1, and return the resulting plaintext
φ = m̂S−1. Otherwise, output ⊥.

It is easy to see that the decryption process works when the ciphertext is correctly
formed. In fact, if ψ = mG+e with wt(e) = w, we have ψP−1 = mSĜ+eP−1,
and since P is a permutation matrix, the vector eP−1 has still weight w. We can
consider this as the encoding of mS for the code defined by G. The decoding
algorithm will succeed returning m̂ = mS, from which we easily recover m.

There are two computational assumptions underlying the security of the scheme.

Assumption 1 (Indistinguishability) The matrix G output by KeyGen is com-
putationally indistinguishable from a uniformly chosen matrix of the same size.

Assumption 2 (Decoding hardness) Decoding a random linear code with pa-
rameters n, k, w is hard.

1For Goppa codes, given by the support α1, . . . , αn and the Goppa polynomial g.

33

Note that Assumption 2 is in fact equivalent to assuming the hardness of GDP.
It is immediately clear that the following corollary is true.

Corollary 3.1 Given that both the above assumptions hold, the McEliece cryp-
tosystem is one-way secure under passive attacks.

Remark 3.1 In a recent paper [37], Faugère et al. presented a distinguisher
for instances of the McEliece cryptosystem that make use of high-rate Goppa
codes. While this doesn’t itself represent an attack on the scheme, avoiding such
choices of Γ would at least preserve the generality of the security argument.

A version of the McEliece cryptosystem that uses the parity-check matrix
instead of the generator matrix has been subsequently presented by Niederreiter
[88], and has been proved to be completely equivalent in terms of security (Li,
Deng and Wang [69]). We present it in the next section.

3.1.2 The Niederreiter Cryptosystem

This cryptosystem was introduced by H. Niederreiter in 1985. The security
relies directly upon SDP and hence it is often considered a “dual” version of the
original McEliece cryptosystem.

Table 3.2: The Niederreiter cryptosystem.

Setup Fix public system parameters q,m, n, k, w ∈ N such that k ≥ n− wm.

K
Kpubl the set of (n− k)× n matrices over Fq.

Kpriv the set of triples formed by an (n− k)× (n− k) invertible matrix over
Fq, an n× n permutation matrix over Fq and a code description.

P The set Wq,n,w of words of Fnq with Hamming weight w.

C The vector space F(n−k)
q .

KeyGen Generate at random a polynomial g ∈ Fqm [x] and elements α1, . . . , αn ∈
Fqm , then build the Goppa code Γ = Γ (α1, . . . , αn, g) over Fq and its
parity-check matrix Ĥ. Select at random an (n − k) × (n − k) invertible
matrix S and an n × n permutation matrix P . Publish the public key
H = SĤP ∈ Kpubl and store the private key (S, P,Γ) ∈ Kpriv.

Enc On input a public key H ∈ Kpubl and a plaintext e ∈ P, compute the
syndrome of e, that is s = HeT and return the ciphertext ψ = s ∈ C.

Dec On input the private key (S, P,Γ) ∈ Kpriv and a ciphertext ψ ∈ C, first
compute S−1ψ then apply the decoding algorithm DΓ to it. If the decoding
succeeds, multiply the output ê by P−1, and return the resulting plaintext
φ = P−1êT. Otherwise, output ⊥.

Just like before, we can verify the consistency of the decryption process. In fact,
we have S−1ψ = ĤPeT and since P is a permutation matrix, the vector PeT

has still weight w. Decoding and then multiplying by P−1 on the left returns
the desired plaintext.

34

The computational assumptions for Niederreiter are almost the same, except for
Assumption 1, that changes as follows.

Assumption 3 (Indistinguishability) The (n − k) × n matrix H output by
KeyGen is computationally indistinguishable from a uniformly chosen matrix of
the same size.

Remark 3.2 Note that the use of matrices S and P , in both schemes, is
rather outdated and unpractical; moreover, it can introduce vulnerabilities to
the scheme as per the work of Strenzke et al. (for example [122, 123]). A still
secure (Biswas and Sendrier, [19]), but much simpler description would be to
take the public key G (resp. H) to be just the systematic form of Ĝ (resp. Ĥ),
and the private key to be Γ alone.

3.1.3 Remarks on the McEliece and Niederreiter Cryptosystems

Note that the encryption process for both cryptosystems is very fast. In fact,
its complexity is dominated by (McEliece) or exactly equal to (Niederreiter) a
matrix-vector multiplication operation. Even intuitively, this is much simpler
than, for example, exponentiation such as the case of RSA.
Recent benchmarks2 suggest that the McEliece encryption process is often even
faster than the NTRU cryptosystem [60], which makes of fast encryption its
strongest point. Decryption, on the other hand, involves a decoding operation
and that increases considerably the complexity time.
The major drawback of the scheme is the large memory requirements, in par-
ticular the necessity to store a big public key. This is possibly also the main
reason why code-based cryptography has not yet been considered in any prac-
tical application. McEliece in the original manuscript sets the parameters as
n = 1024, k = 524, w = 50. With this setting, the public key size is 524 × 1024
bits = 67072 bytes.
A first improvement comes already with the Niederreiter scheme, following the
suggestion to compute the systematic form of the public key, i.e. H = (M |In−k),
and store only the non-trivial part M to save some space. This would require
500× 524 bits = 32750 bytes, clearly still too big for most applications.
Several proposals have then been made in the following years, trying to modify

McEliece’s original framework in order to deal with this issue. Unfortunately,
almost all of them turned out to be insecure or inefficient. Niederreiter himself,
in the first place, suggests to use generalized Reed-Solomon codes instead of
Goppa codes for his scheme [88]. A famous attack due to Sidelnikov and Shes-
takov [117] was subsequently published in 1992 and proved that the algebraic
structure of GRS codes can be easily exploited, de facto excluding the whole
class from the possible choices for a coding-theory based scheme. A similar fate
occurred to proposals centered on Reed-Muller codes (Sidelnikov [116], crypt-
analysed in [84] by Minder and Shokrollahi) and Gabidulin codes (Gabidulin et
al. [47, 48], cryptanalysed in [93] by Overbeck).

2http://bench.cr.yp.to/results-encrypt.html

35

3.2 Security Overview

Due to its particular nature, the most successful attacks on the McEliece cryp-
tosystem (and its variants) are classified into two major families: general at-
tacks and key-recovery attacks. It is McEliece himself, in the final section of
the original paper, to suggest this classification. Algorithms of the first kind are
ciphertext-only attacks, hence trying to recover the plaintext directly from the
ciphertext. To do this, the cryptanalyst is faced with the problem of decoding
a linear code with an unknown structure. Thus, these algorithms are usually
called decoding attacks. The second family contains attacks directed on the pri-
vate key of the cryptosystem. The aim is to reconstruct the private key in order
to be able to apply the decryption algorithm. Sometimes (as in Faugère et al.,
[38]), it is enough to recover an equivalent key, rather than exactly the private
key produced by KeyGen. Since all of these algorithms are based on recognizing
the structure of the codes in use, they are known as structural attacks.

3.2.1 Decoding Attacks and ISD

Attacks in this category evolve from a brute force decoding approach and try to
solve the general decoding problem assuming the knowledge of an upper bound
for the distance to the next codeword. Despite several speedups and improve-
ments, decoding attacks require exponential time, and therefore still represent
only a non-critical threat to McEliece, in the sense that is enough to enlarge the
parameter size in order to make them infeasible. As a consequence, decoding
attacks are often used as a tool to determine the minimum parameter size re-
quired to achieve the desired security level (e.g. 280, 2128 or 2256 bit operations).
The most renowned and highly regarded is undoubtedly the technique known
as Information-Set Decoding (ISD), and all the best decoding attacks are de-
rived from it. The technique takes its name from the fundamental notion of
information set.

Definition 3.1 Let G be an arbitrary generator matrix for the [n, k] linear code
C. Let I = {i1, . . . , ik} be a subset of {1, . . . , n} and denote by GI the k × k
submatrix of G formed by the columns indexed by I. If GI is invertible, then
G′ = G−1

I G and G generate the same code, and for any codeword mG′ the I-
indexed entries will carry the information symbols. Therefore, the set I is called
an information set.

The basic information-set decoding works as follows: consider receiving a
vector y in Fnq which is known to have distance w from a codeword x = mG
in C. Let I be an information set and suppose that y and x coincide on the
positions indexed by I, i.e., no errors occurred at these positions. It is then
possible to recover the error vector (and consequently the plaintext m). Let
y = (yi1 , . . . , yik), then x = yIG

′ and we obtain the error vector as y − x.
The attack in this primordial form was already proposed by McEliece in his
original paper. The next step consists then of iterating this procedure until
the selected information set is such that there are no error positions in the

36

corresponding-indexed columns, i.e. we are in the above situation. This was first
formalized by Lee and Brickell [66], whose algorithm (in a generalized version)
we present in Table 3.3.

Table 3.3: The generalized Lee-Brickell algorithm.

Input A generator matrix G, a ciphertext ψ = y ∈ Fnq and a parameter p ∈ N.

Output An error vector e of weight w.

1. Choose a random information set I and compute yI , GI and G′ as above.

2. Calculate y′ = y − yIG′.
3. For each size-p subset {a1, . . . , ap} ⊂ I, for each x1, . . . , xp ∈ Fq \ {0}:

Compute the corresponding3 weighted sum ĝ =
∑p
i=1 xiG

′
ai

.
Write e = y′ − ĝ. If wt(e) = w then return e.

4. Go back to Step 1.

The idea is to allow for p errors in the information set, and iterate the procedure
by checking every time the weight of the corresponding error vector obtained.
The parameter p is usually chosen small to keep the number of possible size-p
subsets reasonably small. In the (original) binary case, p = 2 is optimal [18].
In an independent work [68], Leon proposed an improvement while looking for
minimum weight-words in a code. This improvement can be adapted and ap-
plied to Lee-Brickell’s algorithm, and consists in further constraining the possible
locations for the errors by introducing a size-` window of zeroes outside of the
information set. The idea was optimized by Stern [119], resulting in the following
algorithm.

Table 3.4: The generalized Stern algorithm.

Input A generator matrix G, a ciphertext ψ = y ∈ Fnq and parameters `, p ∈ N.

Output An error vector e of weight w.

1. Choose a random information set I and compute yI , GI and G′ as above.

2. Calculate y′ = y − yIG′.
3. Choose at random a subset X ⊂ I of size k/2 and set Y = I \ X, then

select at random a size-` set Z in {1, . . . , n} \ I.

4. For any size-p subset A = {a1, . . . , ap} ⊂ X form the set U as the union of
the sets {y′− ĝ : ĝ =

∑p
i=1 xiG

′
ai
} over all choices of x1, . . . , xp ∈ Fq \ {0}.

5. For any size-p subset B = {b1, . . . , bp} ⊂ Y form the set V as the union of
the sets {ĥ : ĥ =

∑p
i=1 yiG

′
bi
} over all choices of y1, . . . , yp ∈ Fq \ {0}.

6. For each pair (A,B):

Look for collisions, i.e. vectors u ∈ U and v ∈ V such that uZ = vZ ,
then write e = u− v. If wt(e) = w then return e.

7. Go back to Step 1.

3We indicate with G′j the row of G′ where there is a 1 in position j. Note that, by definition,
this is unique if j is an element of an information set.

37

Several other improvements have been proposed and added to Stern’s algo-
rithm over the years; we cite in particular [21] and [16]. All of these improvements
do not change the general structure of the algorithm, but rather add some tech-
nical twists to the process, such as introducing a family of disjoints sets {Zi}
instead of the set Z, or reusing existing pivots or additions of vectors in order
to obtain a speed-up.
Peters in [99] gives a translation of all the algorithms to the case of codes over
Fq where q > 2.
The latest evolution of ISD was presented in 2011 by Bernstein, Lange and Pe-
ters with the name “Ball-collision Decoding”. A simplified version is presented
in Table 3.5; for the complete description of the algorithm, we refer the reader
to [17].

Table 3.5: The ball-collision decoding algorithm.

Input A generator matrix G, a ciphertext ψ = y ∈ Fnq and parameters `1, `2, p1, p2,
q1, q2, k1, k2 ∈ N such that p1 + p2 + q1 + q2 ≤ w and k1 + k2 = k.

Output An error vector e of weight w.

1. Choose a random information set I and compute yI , GI and G′ as above.

2. Calculate y′ = y − yIG′.
3. Partition I into two subsets X,Y of size k1 and k2.

4. Select in {1, . . . n} \ I two subsets Z1 and Z2 of size `1 and `2.

5. Calculate “weighted sums” having respective weights p1, p2 for X and Y ,
and q1, q2 for Z1 and Z2.

6. For each choice of the above sets:

Look for collisions, i.e. vectors e such that eI has exactly weight
p1 + p2 and eZ1∪Z2 has exactly weight q1 + q2.
If wt(e{1,...,n}\(I∪Z1∪Z2)) = w − p1 − p2 − q1 − q2 then return e.

7. Go back to Step 1.

As it is possible to observe, the major contribution comes in that besides fix-
ing some error positions in the information set, now some positions are also fixed
in the set Z, here partitioned into Z1 ∪Z2. This can be thought of as expanding
each point of X and Y into balls of Hamming radius q1 and q2 (hence the name
“ball-collision”); the collisions are then looked for between these balls. Together
with the usual tricks of reusing sums and new tricks such as, for example, early
aborting, the ball-collision decoding algorithm allows for a further speed-up in
the overall cost of attacking a McEliece ciphertext.
Note that even if in the description of the algorithm the parameters can be cho-
sen distinct, for each practical choice they are in fact pairwise coincident, i.e. we
have k1 = k2 = k/2, `1 = `2, p1 = p2 and q1 = q2. Furthermore, when q1 = q2 = 0
we reduce to Stern’s algorithm (indicated by the authors simply as “collision
decoding”).

38

A better understanding of the evolution of the algorithm in its different stages is
obtained using a graphical representation, due initially to Overbeck and Sendrier
[94] and later expanded by the authors in [17]. We reproduce it below.

k←−−−−−−−−−−−−−−−→ n−k←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Plain ISD 0 w

Lee-Brickell p w − p

`←−−−−−→ n−k−`←−−−−−−−−−−−−−−−−−−−−−→
Leon p 0 w − p

Stern p p 0 w − 2p

Ball-collision p p q q w − 2p− 2q

To conclude this section, we present a table containing a comparison of the
different results obtained to attack the McEliece cryptosystem. The numbers
are based on a recent paper by Becker, Joux, May and Meurer [4], presented
at Eurocrypt 2012, and include also a previous result from May, Meurer and
Thomae [79]. The paper features a further improvement to the algorithm thanks
to a twist in a specific step, namely the initial search step.
The running time is measured (asymptotically) as a function of n and R only,
that is T (n,R) = O(2θn), where R = k/n is the code rate and we define θ =

f(R) = lim
n→∞

1
n

log(T (n,R)).

Table 3.6: Complexity of different general decoding algorithms. The numbers refer to
the worst-case scenario where R is close to the Gilbert-Varshamov bound.

θ

Lee-Brickell 0.05751

Stern 0.05563

Ball-collision 0.05558

MMT 0.05363

BJMM 0.04970

We also have to mention a recent related work by Sendrier [112], called De-
coding One Out of Many, or simply DOOM. As the name suggests, this technique
is used when the adversary is in possession of many ciphertexts and is satisfied
by decrypting a single one among them. The attack is performed by applying
a variant of the collision decoding algorithms that we have just described to a
set of say N instances of the decoding problem (i.e. McEliece/Niederreiter ci-
phertexts). In particular, the author presents a generalized version of [42]. The
approach allows for a gain of almost

√
N operations when N is sufficiently large:

39

results are given in [112, Table 5] for N ≥ 240. Thus, as the author concludes,
this attack should be kept in mind when selecting parameters for an application
of code-based schemes (e.g. for exchanging session keys) that repeatedly employs
the same public key.

3.2.2 Structural Attacks

As opposed to all of the algorithms presented in the previous section, structural
attacks target some specific structural weaknesses, sometimes with the help of
additional information, and aim to reconstruct the private key, or an equivalent
one, in order to decrypt. It is clear that this kind of attack cannot be simply
avoided by enlarging the parameters, and most of the time it breaks the cryp-
tosystem completely.
McEliece in [80] already mentions this strategy of attack, although quickly dis-
missed for the simple reason that there are too many possibilities for S,G and
P . This simplistic argument has proven to hold so far, and a structural attack
against McEliece in its original form seems hopeless. However, there are many
conditions that could quickly alter this conclusion.
It is necessary to choose carefully the family of codes used to generate the keys.
For the original McEliece cryptosystem, for example, Goppa codes with a binary
generator polynomial produce weak keys. Loidreau and Sendrier in [72] show
that these instances are easily recognizable: in fact, the automorphism group of
a Goppa code with binary generator polynomial is generated by the Frobenius
field automorphism. This results in an attack that makes use of Sendrier’s Sup-
port Splitting Algorithm (SSA) as in [110].
We have already mentioned that GRS codes, Reed-Muller codes and Gabidulin
codes constitute an insecure choice. Other unsuccessful attempts include, for ex-
ample, concatenated codes [109], elliptic codes [83] and the algebraic-geometric
codes proposed by Janwa and Moreno [61], although for the latter only the case
of curves with small genus has been cryptanalysed properly.
The general pitfalls to avoid, as summarized in [94], are twofold:

- Families with high performance, like the above cited concatenated codes,
turbo-codes or LDPC codes ([1, 86]) are likely to leak some structure due
to the high number of low-weight codewords in their duals.

- Families having optimal (as for the GRS codes) or sub-optimal (elliptic
codes) combinatorial properties are also dangerous, since minimum-weight
codewords are not hard to find and reveal a lot of information about the
code structure.

3.2.3 Other Attacks on the General Framework

So far, we have only described attacks that target the OW-CPA security of the
McEliece cryptosystem, such as ISD, and mentioned the structural flaws that
can compromise its integrity (attacks on the private key). We haven’t, instead,
analyzed the behavior of the encryption scheme with respect to other security
requirements, such as Indistinguishability (Definition 2.10). It is easy to see that

40

both McEliece and Niederreiter, in their original formulations, are vulnerable to
this kind of attacks and, in fact, they are not even IND-CPA secure. Consider
an adversary A for McEliece that plays the CPA game as in Definition 2.11. To
start, A is given a public key G; it then chooses two plaintexts m0,m1, submits
them to the encryption oracle and gets back ψ∗ = EncMcE

G (mb). To win the game,
it is enough for A to choose a random b∗ ∈ {0, 1} and encode mb∗ , then check
the weight of ψ∗−mb∗G: clearly b = b∗ if and only if wt(ψ∗−mb∗G) = w. The
attack is trivial for Niederreiter since the scheme is deterministic and obviously
can’t satisfy an indistinguishability requirement.

We will describe in Section 6.3.2 a simple variant introduced by Nojima,
Imai, Kobara and Morozov [89] that achieves IND-CPA security. The variant
consists of introducing additional randomness by padding the message with a
few random bits, and it is suitable both for McEliece and Niederreiter.
CCA2 security, on the other hand, is a much stronger notion, and it there-
fore requires a more subtle approach. It is easy to see that both the general
McEliece/Niederreiter framework and the IND-CPA variant are vulnerable to a
chosen ciphertext attack. Consider an adversary A for McEliece that plays the
CCA2 game as in Definition 2.11. Again, A is given a public key G; it then
chooses two plaintexts m0,m1, submits them to the encryption oracle and gets
back ψ∗ = EncMcE

G (mb). At this point, A can use the decryption oracle in the
following way: it flips a random bit of ψ∗ and submits the new ciphertext ψ′

to the oracle. Since ψ′ 6= ψ∗, the oracle will accept the query and reply with
DecMcE

sk (ψ′). Now, if the position flipped was part of the support of the error vec-
tor generated by EncMcE, decryption succeeds and A recoversmb. Otherwise, the
oracle outputs ⊥, in which case A repeats the process choosing another position.
Clearly, this attack works also in the non-binary case, where instead of flipping
a bit we are simply changing the value of a specific position. Another, more
elegant attack consists of adding a known codeword to the challenge ciphertext,
that is, ψ′ = ψ∗ + c for c = m′G. In this way, the decryption oracle will always
return a correctly formed plaintext; A can then recover mb by subtracting m′.
It can be shown that a similar attack can be used against Niederreiter.

Note that all of the above attacks allow A to fully recover the plaintext,
thus breaking not only the indistinguishability but also the one-wayness of the
cryptosystem (that is, neither McEliece nor Niederreiter are OW-CCA2 secure).
Generic constructions that achieve IND-CCA2 security in the random oracle
model will be presented in Section 4.5, while IND-CCA2 security in the standard
model is the core of Chapter 6.

3.3 New Horizons and Recent Proposals

Since codes with too much evident algebraic structure don’t seem to provide
a secure choice for McEliece, a new approach is instead being attempted. It
consists of introducing just a partial algebraic structure, using clever scrambling
techniques to preserve it, while hoping to hide enough of the underlying private
code. The core idea is to make use of subfield subcodes as in Section 2.2.3.

41

3.3.1 Quasi-Cyclic

A first example in this direction was given in 2005 by Gaborit [49] and further
pursued by Berger, Cayrel, Gaborit and Otmani [11]. The scheme makes use of
the so-called quasi-cyclic codes.

Definition 3.2 Let N = N0` and let π` be the permutation on {0, . . . , N − 1}
defined by the orbits {(0, . . . , `− 1), (`, . . . , 2`− 1), . . . , ((N0 − 1)`, . . . , N − 1)}.
We say that a linear code C of length N is Quasi-Cyclic of order ` and index N0

if it is globally invariant under the action of π`.

We know that cyclic codes admit a generator matrix in circulant form (see Def-
inition 2.23); similarly, a quasi-cyclic code of order ` can be described by means
of a matrix composed by circulant `× ` blocks.
The key generation process starts by choosing a Reed-Solomon code in quasi-
cyclic form defined over a large alphabet Fqm . This is easy since it’s well known
that every Reed-Solomon code is in fact a cyclic code [75]; all one needs to
do then is to rearrange the support in order to get a quasi-cyclic code. After
rearranging and deleting the majority of the blocks (to counter key-recovery at-
tacks tied to the quasi-cyclic structure), the next step consists of transforming
the shortened Reed-Solomon code into a quasi-cyclic Generalised Reed-Solomon
code. This is accomplished purely by algebraic means by scalar multiplication
and matrix multiplication with a diagonal matrix. Finally, the subfield subcode
is constructed over Fq and the resulting block-circulant matrix is the public key.
Details of the process are given in Table 3.7.

Table 3.7: The BCGO KeyGen algorithm.

Setup Fix the public parameters n, k, w, ` such that n = n0` and k ≤ n − 2mw.
Fix also a finite field Fqm and a primitive element α, then call N = qm − 1.

1. Choose a Reed-Solomon code R of length N = N0` and rearrange the
support to get the corresponding quasi-cyclic code R̂ of order ` defined by
the parity-check matrix U = (A0| . . . |AN0−1).

2. Select at random n0 blocks of U and rearrange them in any order to form
U(j) = (Aj0 | . . . |Ajn0−1).

3. Let s be an integer between 1 and ` − 1, a be an n0-tuple of non-zero
elements of Fqm and D the ` × ` diagonal matrix such that dii = βi−1,
where β = αN0 . Construct the matrix U(j,a, s) = (B0| . . . |Bn0−1), where
Bi = aiAjiD

s.

4. Compute the trace matrix of U(j,a, s) to obtain the matrix H over Fq.
Return the public key H ∈ Kpubl and the private key (j,a, s) ∈ Kpriv.

Thanks to the particular structure of the resulting code, the public key can
be expressed in block-circulant form, therefore only the first line of each block
needs to be stored. This allows for a considerable reduction in the memory
requirements.
We present some sets of parameters for the scheme in the following table.

42

Table 3.8: Example of parameters for the BCGO scheme (taken from [11, Table 1]).

qm ` N0 w Name n k q n0 Security Size (bits)

216 51 1285 50

A16 459 255

28

9 80 8160
B16 510 306 10 90 9792
C16 612 408 12 100 13056
D16 765 510 15 120 20400

220
75 13981 56 A20 450 225

210
6 80 6750

93 11275 63 B20 558 279 6 90 8370
93 11275 54 C20 744 372 8 110 14880

The column “Security”, indicates an estimate of the log2 of the number of binary
operations necessary to perform a general decoding attack.
Unfortunately, a much more dangerous attack was presented shortly after by
Faugère, Otmani, Perret and Tillich [38], and all of these parameters have been
broken in negligible time (ranging from 0.02 to 0.06 seconds). Following the
guidelines of [11], the authors of the attack, to which we will refer from now on
as FOPT, build a much bigger code (estimated complexity of a general decoding
attack of 2600, below) and show that the time necessary to break even this huge
set of parameters is not affected if not for a very small factor (0.08 seconds total).
Therefore, the scheme has to be considered definitively insecure.

qm ` N0 w Name n k q n0 Security Size (bits)
216 255 257 529 QC600 3825 1705 28 15 600 113400

3.3.2 Quasi-Dyadic

This scheme was presented by Misoczki and Barreto [85] in 2009 and it features
a structure similar to the quasi-cyclic proposal, but using codes in quasi-dyadic
form instead.

Definition 3.3 Given a ring R and a vector h = (h0, . . . , hn−1) ∈ Rn, the
Dyadic matrix ∆(h) ∈ Rn×n is the symmetric matrix with components ∆i,j =
hi⊕j , where ⊕ stands for bitwise exclusive-or on the binary representations of
the indices. The sequence h is called its signature.
If n = 2k, then every n× n dyadic matrix can be described recursively as

∆ =
(
A B
B A

)
(3.1)

where each block is a 2k−1 × 2k−1 dyadic matrix (and where any 1× 1 matrix is
dyadic).

It is easy to verify that square dyadic matrices of constant dimension n over
a fixed ring R form a commutative ring: this is an important feature as we will
see later in this section, and again in Chapter 4.

43

Definition 3.4 A matrix is called Quasi-Dyadic of order t if it is a block matrix
whose component blocks are t× t dyadic submatrices.

We denote with ∆(t,h) the matrix ∆(h) truncated to its first t rows. It
is clear that, if t divides n, then ∆(t,h) is a quasi-dyadic matrix (of order t).
Note, however, that not all quasi-dyadic matrices need to be of the form ∆(t,h).
The difference is highlighted in the following table, where every capital letter
represents a t× t dyadic matrix.

Table 3.9: Example of dyadic vs quasi-dyadic matrices. The matrix (a) is 4t × 4t
dyadic, its truncation (b) is quasi-dyadic of order 2t and (c) is quasi-dyadic of order t.

A B C D
B A D C
C D A B
D C B A

 (
A B C D
B A D C

) (
A B C D
E F G H

)

(a) (b) (c)

We next define a special kind of permutation matrices.

Definition 3.5 Let Πi be the dyadic matrix ∆(h) whose signature h is the
i-th row of the identity matrix. This is called dyadic permutation since it is a
permutation matrix that preserves the dyadic structure.

In what follows, the main focus will be on dyadic matrices defined over the ring
R = Fqm , the finite field with qm elements, for a certain prime power q.
The scheme of [85] is based on Goppa codes as in the original McEliece, but
these are carefully selected to admit a parity-check matrix in Cauchy form.

Definition 3.6 Given two disjoint sequences v = (v1, . . . , v`) ∈ F`qm and L =
(L1, . . . , Ln) ∈ Fnqm , the Cauchy matrix C(v,L) is the matrix with components

Ci,j =
1

vi − Lj
, i.e.

C(v,L) =

1
v1 − L1

. . .
1

v1 − Ln
...

...
...

1
v` − L1

. . .
1

v` − Ln

 . (3.2)

Cauchy matrices have the property that all of their submatrices are invertible
[108]. Note that in general Cauchy matrices are not necessarily dyadic and
vice-versa, but the intersection of these classes is non-empty in characteristic 2.

We know (Tzeng and Zimmermann, [124]) that Goppa codes admit a parity-
check matrix in Cauchy form if the generator polynomial is monic and without
multiple zeros. In particular, the following theorem holds.

44

Theorem 3.2 Let Γ = Γ (α1, . . . , αn, g) be a Goppa code. If the generator poly-
nomial g is monic and separable, i.e. g(x) = (x − x0) . . . (x − x`−1), then Γ
admits a parity-check matrix in Cauchy form H = C(x,α).

The trick to generate a public key in dyadic form is to choose a Goppa code
that allows a parity-check matrix that is simultaneously dyadic and Cauchy.
Misoczki and Barreto show that this intersection is non-empty in [85, Th. 2].

Theorem 3.3 Let H be an n × n matrix over Fqm such that H = ∆(h) for a
certain signature h ∈ Fnqm and H = C(v,L) for two disjoint sequences v,L ∈
Fnqm. Then Fqm has characteristic 2, h satisfies

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0

(3.3)

and we have vi+1 = 1/hi + ω and Lj+1 = 1/hj + 1/h0 + ω for a certain offset
ω ∈ Fqm.

A method to solve Equation 3.3 is provided in Algorithm 1 of the same paper,
and it consists of choosing distinct non-zero h0 and h2c , for 0 ≤ c ≤ log2 n, then
assigning

hi+j =
1

1
hi

+ 1
hj

+ 1
h0

(3.4)

for all 0 < j < i (so that i + j = i ⊕ j). To make sure that this value is well
defined, we choose all the elements of the signature to be distinct. Details are
given in the following table.

Table 3.10: Constructing a Goppa code in dyadic form ([85, Algorithm 1]).

Input An integer q = 2c, an extension degree m and parameters n ≤ q/2, `.

Output The support α1, . . . , αn, generator polynomial g and parity-check matrix H
for the Goppa code Γ = Γ (α1, . . . , αn, g) with minimum distance d = 2`+1
over Fq.

1. Choose the dyadic signature:

i. Set U = Fqm \ {0}, assign h0 at random in U , then remove h0 from U .

ii. For each hi where i is a power of 2, assign hi at random in U , then
compute hi+j = 1/(1/hi + 1/hj + 1/h0) for j = 1, . . . , i − 1. Remove
all the elements just assigned from U .

iii. Terminate when length n is reached. The signature is h = (h1, . . . , hn).
2. Assign the offset ω at random in Fqm .

3. Compute the elements xi = 1/hi + ω for i = 0, . . . , ` − 1 and return the
Goppa polynomial g(x) =

∏`−1
i=0 (x− xi).

4. Calculate the support αi+1 = 1/hj + 1/h0 + ω for i = 0, . . . , n− 1.

5. Return α1, . . . , αn, g and H = ∆(`,h).

45

The above algorithm is the core of the key generation process. The idea is to
start from a fully dyadic code, and then select, permute and scale the columns
(block by block) before applying the subfield subcode technique in a similar way
as in [11].

Table 3.11: The Misoczki-Barreto KeyGen algorithm.

Setup Fix a finite field Fqm = F2u where q = 2c, u = mc. Choose a code length
n < qm, with n = n0` for ` such that m` < n.

1. Call the algorithm in Table 3.10 to produce a dyadic matrix H = ∆(`,h)
over Fqm , with h having length N = N0` > n.

2. Partition H into N/` dyadic blocks (A0| . . . |AN/`−1) of size `× `.

3. Select at random n0 blocks among the previous, together with n0 dyadic
permutations Πj0 , . . . ,Πjn0−1 and n0 scale factors a0, . . . , an0−1 ∈ Fq.

4. Form the matrix H ′ = (a0Ai0Πj0 | . . . |an0−1Ain0−1Πjn0−1).

5. Compute the co-trace matrix of H ′ over the base field Fq and its systematic
form (M |In−k).

6. Return the public key M ∈ Kpubl and the private key H ′ ∈ Kpriv.

Note that all the operations involved in the key generation process preserve
the dyadicity of the matrix, including the use of dyadic permutations, the co-
trace construction, and the block operations performed during the final Gaussian
elimination. In this way, the public key will be composed of dyadic submatrices
each of which can be represented compactly by its signature, therefore saving a
factor of ` in the public key size. Since M is (n− k)× k = m`× k and is `× `
block dyadic, it requires only km`/` = km field elements for storage, equivalent
to kmc bits.

Remark 3.3 The algorithm presented by Misoczki and Barreto runs in poly-
nomial time. Since every element of the signature is assigned a value exactly
once, the running time is O(n) steps. The authors in [85] did not give a lower
bound for the number of possible distinct codes, but only the upper bound(
N/`
n0

)
·n0! · tn0 ·

∏dlogNe
i=0 (qm − 2i) (due to, respectively, selection, rearrangement,

permutations of the blocks and number of signatures generated by the algo-
rithm). It is believed that the algorithm does produce close to this number of
codes, but it is too hard to actually state the exact number of distinct codes
constructible.

Several sets of parameters are proposed in the original paper. We report them in
Table 3.12. For the last set of parameters, the paper provides also a comparison
with common cryptographic schemes such as RSA, to show that, for relatively
similar key sizes, the scheme based on quasi-dyadic codes enjoys much faster
encryption/decryption. Unfortunately, almost all of the parameters proposed
have been broken by the FOPT attack that we already cited, and that we will
present in the next section in detail.

46

Table 3.12: Example of parameters for the Misoczki-Barreto scheme ([85, Tables 2-5]).

q m n k ` Security Size (bits)
2 16 3584 1536 128

128

24576
22 8 3584 1536 256 24576
24 4 2048 1024 256 16384
28 2 1280 768 256 12288

28 2
1024

512
256 168

8192768 128 136
640 64 102

2 16

8192 4096 256 256 65536
7168 3072 256 192 49152
4096 2048 128 128 32768
3072 2048 64 112 32768
2560 1536 64 80 24576

28 2

1536 1024 256 256 16384
1280 768 256 192 12288
768 512 128 128 8192
640 384 128 112 6144
512 256 128 80 4096

3.3.3 FOPT

In this section we summarize the structural attack by Faugère, Otmani, Perret
and Tillich [38]. It relies on the fundamental property of coding theory H ·GT = 0
to build an algebraic system, using then Gröbner bases techniques to solve it.

Table 3.13: The FOPT algorithm.

Input A k×n generator matrix G = {gi,j} for the subcode C|Fq , G being a matrix
formed of `× ` blocks, with k = k0`, n = n0`, over Fq = F2c .

Output A parity-check matrix in alternant form H = {yixji} for C over Fqm .

1. Generate the following system of equations in the unknowns X = {Xi} and
Y = {Yi}:{
gi,0Y0X

j
0 +· · ·+gi,n−1Yn−1X

j
n−1 = 0 : 0 ≤ i ≤ k−1, 0 ≤ j ≤ `−1

}
. (3.5)

2. Choose nY ′ ≥ n− k variables Y ′ from Y , and use the equations to express
all other variables in Y \ Y ′ as polynomials in Y ′. We call the Y ′ variables
“free” and the remaining “dependent”.

3. Compute the projection of the solutions with respect to the variables Y ′.

4. Having determined the Y ′, the system will simplify to{
g′i,0X

j
0 + · · ·+ g′i,n−1X

j
n−1 = 0 : 0 ≤ i ≤ k − 1, 0 ≤ j ≤ `− 1

}
. (3.6)

5. Consider now the subset of the equations having degree equal to a power
of two, i.e. j = 2l, for l = 1, . . . , log2 (`− 1).

6. Use the Frobenius automorphism to produce a system over F2, consisting
of mcn unknowns and mc log2 (`− 1)k equations.

7. Solve the system for Xi and return H.

47

The key idea of the algorithm is that the codes in use are part of the alternant
family, and therefore it looks for a parity-check matrix that, even if different
from the private key, still allows efficient decoding. Observe that for all suitable
choices of cryptographic parameters, we have that log2 (`− 1)k > n, hence the
system produced in Step 6 is easily solvable.

The special properties of the structured codes used in the variants presented
above are of key importance, as they contribute to considerably reduce the num-
ber of unknowns of the system. Some relations, peculiar of each of the two
schemes, are in fact derived from these properties, and then used in the context
of Step 2 to determine the number of free variables nY ′ and simplify the system.
These are presented below:

Table 3.14: Properties for the quasi-cyclic (left) and quasi-dyadic (right) schemes.

 Xj`+i = Xj`β
i

Yj`+i = Yj`β
ie

Yj`+i = Yj`

Xj`+i +Xj` = Xi +X0

Xj`+(i⊕i′) = Xj`+i +Xj`+i′ +Xj`

for 0 ≤ j ≤ n0 − 1, 0 ≤ i ≤ ` − 1
and an integer e ∈ {0, . . . , `− 1} picked
secretly4.

for 0 ≤ j ≤ n0 − 1 and 0 ≤ i, i′ ≤ `− 1.

Now, in some cases this number is very small (e.g. 1 or 2); an exhaustive search
thus leads already to a practical attack. Otherwise, the technique used is to find
a projection of the solutions with respect to the variables of the block Y ′, which
can be done, as anticipated, by computing a Gröbner basis. This is by far the
most expensive part of the algorithm.

Applying the relations in Table 3.14 to the general framework it is possible to
deduce the following scenarios for the two schemes, where r such that rm = n−k
is the order of the alternant form (in the quasi-dyadic case, we have r = `):

Table 3.15: System specifications for the quasi-cyclic (left) and quasi-dyadic (right)
schemes.

QC QD

Unknowns Yi n0 − 1 n0 − 1

Unknowns Xi n0 − 1 n0 − 2 + log2 `

Linear equations involving only the Yi k0 n0 −m

Non-linear equations containing monomials of the
form YiX

ξ
i , for ξ > 0

(r − 1)k0 `(`− 1)(n0 −m)

4For the purpose of the attack, e is assumed to be known, even just via an exhaustive search.

48

To prove the above values is a matter of a few easy calculations. We report
them for the quasi-dyadic case, which is the one we are most interested in.
In this case, the first property in Table 3.14 states that the Yi of each block are
all equal, thus there are n/` = n0 distinct variables. We can arbitrarily choose
one of them, which explains n0−1. Moreover, because of the dyadicity of G, the
linear equations in the Yi are identical, hence redundant, for all the rows of each
dyadic block. So we have k/` = (n−m`)/` = (n0`−m`)/` = `(n0−m)/` = n0−m
linear equations as claimed.
The other two values are a direct consequence of the second and third properties:
in fact, we can fix arbitrarily two variables, say X0 and X` and express every
other in terms of those two for each block, which means n0 + log2 ` − 2. As for
the non-linear equations there are exactly `k − k = (`− 1)k of them, and since
k = `(n0 −m) as we just saw, we obtain the claimed value of `(` − 1)(n0 −m)
(the dyadicity of G doesn’t have an impact when ξ > 1 unlike the linear case).

Further analysis has been conducted by the same authors in [39], where the
complexity of the attack is studied more carefully. The algebraic system de-
scribed by (3.5) is seen as an affine bi-linear system with equations of bi-degree
(d1, d2) = (2j , 1) and nX′ + nY ′ unknowns, where nX′ is the number of Xi vari-
ables obtained after the reduction in Step 2. A theoretical estimate is provided.

Proposition 3.1 Let D = min(nX′ + 1, nY ′ + 1) and denote by Ra,b the vector
space of bihomogeneous polynomials of bi-degree (a, b) over the polynomial ring
R. Then the time complexity (field operations) of computing a Gröbner basis of
(3.5) is approximated by

Ttheo ≈
∑

d1+d2=D
1≤d1,d2≤D−1

(
dim(Rd1,d2)− [td11 t

d2
2]HS(t1, t2)

)
dim(Rd1,d2) (3.7)

where [td11 t
d2
2]HS(t1, t2) stands for the coefficient of the term td11 t

d2
2 in the Hilbert

bi-series5HS(t1, t2).

The experimental results obtained by running the algorithm on the set of
parameters proposed in [11, 85] prove to be reasonably close to this bound, even
if this is far from being tight. At the current time, no further analysis has been
conducted and the numbers provided by the bound can be interpreted as a good
approximation of the overall costs of the algorithm.
While this clearly doesn’t fully assess the security of the scheme, it is enough to
discard many weak sets of parameters.

A summary is given in [39, Tables 1-2] and presented below.

5See [39, Appendix A].

49

Table 3.16: Summary of the complexities for the FOPT attack.

Name q m ` n0 nX′ nY ′ Security Time(s) Ops Ttheo

QC

A16

28 2 51

9 8 3 80 0.06 218.9 217

B16 10 9 3 90 0.03 217.1 218

C16 12 11 3 100 0.05 216.2 220

D16 15 14 4 120 0.02 214.7 226

A20

210 2
75 6 5 2 80 0.05 215.8 210

B20 93 6 5 2 90 0.05 217.1 210

C20 93 8 7 2 110 0.02 214.5 211

QC600 28 2 255 15 14 3 600 0.08 216.6 221

QD

Table 2
22 8

64
56 59 7

128
1776.3 234.2 265

24 4 32 36 3 0.50 222.1 229

28 2 12 16 1 0.03 216.7 28

Table 3 28 2
64 10 14

1
102 0.03 215.9 28

128 6 11 136 0.02 215.4 27

256 4 10 168 0.11 219.2 27

Table 5 28 2

128 4 9

1

80 0.06 217.7 26

128 5 10 112 0.02 214.5 27

128 6 11 128 0.01 216.6 27

256 5 11 192 0.05 217.5 27

256 6 12 256 0.06 217.8 27

As it is possible to observe, the attack is very successful except for a single case
(line 9, 1776.3 seconds ' half an hour). In fact, the complexity clearly increases
proportionally to the value ρ = D − 1 = min(nX′ , nY ′). For the quasi-dyadic
case, this is exactly ρ = m− 1 (see Table 3.15), so unlike the other case, it does
not depend on the code parameters (length, dimension) but on the field chosen.
It is also immediate to notice that the parameters for Table 4 of [85] are missing:
for these parameters we have ρ = 15 and the authors report that they didn’t
manage to efficiently solve the system. This suggests that the time necessary for
the computation is beyond the range of the machine in use for the tests (Xeon
bi-processor 3.2Ghz, with 16 Gb of Ram); however another phenomenon occurs
for binary Goppa codes (see Remark 3.4 below).
The authors conclude that any system with ρ ≤ 20 should be within the scope
of the attack.

Remark 3.4 For binary quasi-dyadic Goppa codes the analysis is less accurate.
In this case, in fact, it is easy to compute the Gröbner basis for the system,
but this is somehow “trivial”, i.e. reduced to just one equation, therefore not
providing enough information. This is typically due to the fact that only a
subset of the equations is used (the ones with bi-degree (2j , 1)). As a result,
the variety associated is too big, and the attack cannot be mounted efficiently.
To understand how to use all the equations in a more clever way in this case,
remains an open problem.

50

A Quasi-Dyadic Variant of McEliece
using Generalized Srivastava Codes

4.1 Introduction

The McEliece cryptosystem (Table 3.1) is one of the main candidates for the post-
quantum era. It has a very fast and efficient encryption procedure, and there
are no known vulnerabilities against quantum algorithms: in a recent paper by
Bernstein [15] it is shown that the speedup in general decoding attacks (e.g. ISD)
requires to increase the key sizes by a factor of four. In the previous chapter we
have seen that, although the original McEliece has resisted cryptanalysis so far, it
has one big flaw: the size of the public key. Our proposal is based on Generalized
Srivastava codes (Definition 2.34) and represents a generalization of the scheme
of Misoczki and Barreto [85], with the advantage of a better flexibility. By
flexibility we mean the following: there is an intersection between the families
of Goppa codes and Generalized Srivastava codes (which includes the original
Srivastava codes), corresponding to a fixed, particular choice of parameters. In
our construction the parameters can instead be chosen in various ways, in order
to maximize the reduction in the key size, or to comply with higher levels of
security. In particular, we claim a greater resistance to the known structural
attacks, while the keys have similar size to the ones presented in [85].
The chapter is organized as follows: Section 4.2 contains a precise description
of the construction. Details about security are given in Section 4.4, as well
as a choice of parameters and a brief comparison with the Misoczki-Barreto
scheme. In Section 4.5 we present the implementation results obtained in a joint
work with Pierre-Louis Cayrel and Gerhard Hoffmann [22]. These comprise the
implementation on a computer processor and an embedded device, both for a
“plain” McEliece scheme, and for an IND-CCA2 secure variant of it. Finally, we
conclude in Section 4.6.

4.2 Construction

Our proposal is to use GS codes (Definition 2.34) instead of Goppa codes in the
context of the quasi-dyadic scheme presented in Table 3.3.2. Note that GS codes
are also alternant codes, hence it is possible to use the efficient alternant decoding
algorithm (Table 2.7). According to Sarwate [107, Cor. 2] the complexity of
decoding is O(n log2 n), which is the same as for Goppa codes; thus GS codes
are another suitable choice for a McEliece-type cryptosystem.
Recall the special form for the parity-check matrix of a GS code given in (2.22).
Now, it is evident that an equivalent parity-check matrix (by a row permutation)
is given by

Ĥ =

Ĥ1

Ĥ2
...
Ĥt

 (4.1)

where each block is

53

Ĥi =

z1

(α1 − w1)i
. . .

zn
(αn − w1)i

z1

(α1 − w2)i
. . .

zn
(αn − w2)i

...
...

...

z1

(α1 − ws)i
. . .

zn
(αn − ws)i

. (4.2)

Our idea is to start from a Goppa code in dyadic form, as output by the
algorithm in Table 3.10, and to apply some operations to transform it into a
GS code while preserving the quasi-dyadic structure. The above equivalent form
for the parity-check matrix, in fact, suggests that it is enough to take successive
powers of the first block, and then multiply by a diagonal matrix. In our key
generation process we use an updated version of the algorithm, introduced by
Barreto et al. in [2] as Algorithm 2. The main idea is to generate a signature of
the maximum possible length qm − ` and then discard the block(s) containing
undefined entries.

Table 4.1: The new KeyGen algorithm.

Setup Fix a finite field Fqm = F2u where q = 2c, u = mc. Choose a code length
n < qm, with n = n0s and s being a power of 2. The parameters s, t are
chosen such that mst < n. More details about the choice of s and t will be
given later.

1. Call the algorithm in Table 3.10 to produce a dyadic matrix H = ∆(s,h)
over Fqm , with h having length n

2. Set Ĥ1 = H with wi = vi, αj = Lj . Since we are in characteristic 2, we
have:

vi − Lj = vi + Lj = wi + αj = αj + wi = αj − wi.

for all i = 1, . . . , s, j = 1, . . . , n. Note that this block is dyadic (of order s)
as it defines a GS code with t = 1, equivalent to a Goppa code.

3. Form the remaining blocks by consecutive powers, up to the power of t.
This means Ĥ2 is obtained by squaring each element of Ĥ1, Ĥ3 is obtained
by cubing, and so on.

4. Pick the zi uniformly at random with the following restriction:

zis+j = zis for i = 0, . . . , n0 − 1, j = 1, . . . , s.
5. Compute the matrix H ′ = Ĥ · Diag(zi) and its co-trace matrix over the

base field Fq in its systematic form (M |In−k), having k = n−mst with high
probability (see Section 4.3.1).

6. Return the public key M ∈ Kpubl and the private key H ′ ∈ Kpriv.

54

Note that, in addition to all the other operations, we also choose the zi to be
equal s-wise in order to preserve the dyadicity. Since M is (n−k)×k = mst×k
and is s × s block dyadic, it requires only kmst/s = kmt field elements for
storage, equivalent to kmtc bits.

Remark 4.1 As pointed out above, we decode GS codes by means of the al-
ternant decoding algorithm, starting from a parity-check matrix H(x,y) as in
(2.13). Recall that there is a 1-1 correspondence between the roots of the error
locator polynomial Λ(z) and the error positions: in fact, there is an error in
position i if and only if Λ(1/xi) = 0. Of course, if one of the xi’s is equal to 0,
it is not possible to find the root, and to detect the error.
Now, the generation of the error vector is random, hence we can assume the
probability of having an error in position i to be around st/2n; since the codes
give the best performance when mst is close to n/2, we can estimate this proba-
bility as 1/4m, which is reasonably low for any non-trivial choice of m; however,
we still argue that the code is not fully decodable and we now explain how to
adapt the key generation algorithm to ensure that all the xi’s are non-zero.
As part of the key generation algorithm we assign to each xi the value Li, hence
it is enough to restrict the possible choices for ω to the set {α ∈ Fqm : α 6=
1/hi + 1/h0, i = 0, . . . , n− 1}. In doing so, we considerably restrict the possible
choices for ω but we ensure that the decoding algorithm works properly.

4.3 Correctness of Key Generation

4.3.1 Full-rank Matrices

We give an estimate of the expected probability of having an invertible submatrix
after the co-trace operation defined in Step 5 of the key generation algorithm.
The aim of this section is just to provide a techincal explanation of why row
reduction to the systematic form is actually possible, and happens with high
probability; therefore, it may be skipped by the reader.

We start by considering random matrices as a general case.

Lemma 4.1 Let M be a random n×n matrix over the finite field Fq. Then the
probability that M is non-singular is:

p =

n∏
i=1

(
qn − qi−1

)
qn2 .

Proof A matrix M is non-singular if and only if its rows are linearly independent
vectors. The choices for the first row are qn−1, while for each row after the first,
we have to be sure that it is not in the span of the previous vectors; hence for the
i-th row we have only qn−qi−1 choices. This gives (qn−1)(qn−q) . . . (qn−qn−1)
choices over the total qn

2
, which is what we wanted to prove. 4

55

Now, we take into account the special form of our matrix. Since it is dyadic,
the number of choices for the row vectors is restricted, since every time we choose
a row, the following s− 1 are uniquely determined according to the dyadic form
(permutations). Practically speaking, we are considering an r × r quasi-dyadic
matrix, where r = mst = r0s, and we are choosing only r0 row vectors.

However now, in each choice, we must also ensure that the set of s rows produced
is by itself linearly independent. Since each of those is composed by r0 square
blocks of side s, we first focus on a single block.

Lemma 4.2 Let D = ∆(h) be an s× s matrix over the finite field Fqm (q = 2λ)
given by the signature h = (h0, . . . , hs−1), with s being a power of 2. Then:

D is singular ⇐⇒
s−1∑
i=0

hi = 0.

Proof Since s is a power of 2, say 2j , we know D is of the following form:

D =

 A B

B A

where A,B are dyadic submatrices of dimension 2j−1 defined, respectively, by
hA = h0, . . . , hs/2−1 and hB = hs/2, . . . , hs−1. All we need is to consider the de-
terminant of D. Recall from Section 3.3.2 that dyadic matrices form a commuta-
tive ring, hence in particular A and B commute. We can then invoke a general-
ization of Silvester [118] (see Section 4.3.2) and claim that detD = det(A2+B2).
Applying the argument recursively (and remembering that we are in character-
istic 2) we arrive at the conclusion that detD = (h0 + · · ·+ hs−1)2

j
. Now, D is

singular ⇐⇒ detD = 0 ⇐⇒ (h0 + · · · + hs−1)2
j

= 0 ⇐⇒ h0 + · · · + hs−1 = 0,
which terminates the proof. 4

Thanks to Lemma 4.2 it is now easy to give a description of how to select the
first row. We call a row vector v good if the set of s vectors consisting of v and
its dyadic rearrangements is linearly independent, and we call v bad if it is not
good. Now, for every choice of s − 1 field elements, the sum will still be a field
element; hence, for each block we have qs−1 signatures that sum to 0, and overall
(qs−1)r0 bad sequences. It is then sufficient to subtract this number from the
total possible choices qr, and we obtain that the number of good choices for the
first row vector is:

qr − (qs−1)r0 = qr − qr0(s−1) = qr − qr−r0 = qr−r0(qr0 − 1).

Let’s call G the set of all good rows. As a last precaution, we need to determine
how many linear combinations of the rows in a size-s set produce a row which is
still in G, so that we can exclude them at the moment of choosing the next one.

This is easy for the first set.

56

Lemma 4.3 Let v(1), . . . , v(s) be the first s row vectors of a quasi-dyadic matrix,

and suppose the first row is good. Then for every v =
s∑
i=1

aiv
(i):

v ∈ G ⇐⇒
s∑
i=1

ai 6= 0.

Proof Let’s analyze, without loss of generality, the first block and write:

v1 + v2 + · · ·+ vs =

= (a1v
(1)
1 + a2v

(2)
1 + · · ·+ asv

(s)
1) + · · ·+ (a1v

(1)
s + a2v

(2)
s + · · ·+ asv

(s)
s) =

= (a1v
(1)
1 + a1v

(1)
2 + · · ·+ a1v

(1)
s) + · · ·+ (asv

(s)
1 + asv

(s)
2 + · · ·+ asv

(s)
s) =

= a1

s∑
i=1

v
(1)
i + a2

s∑
i=1

v
(2)
i + · · ·+ as

s∑
i=1

v
(s)
i .

Now, each of these sums is exactly the sum of the elements of each row, which
because of the dyadicity is constant, say equal to α, and by hypothesis different
from 0; hence we can write α(a1 + · · · + as) = 0 ⇐⇒ a1 + · · · + as = 0, which
terminates the proof. 4

According to Lemma 4.3 then, qs−1(q − 1) linear combinations of the rows in
the first set produce a row in G. Unfortunately the same reasoning doesn’t work
when we consider the next sets, as the rows in the next set will sum in principle
to a different element (say β, γ etc.). Hence, we can just obtain a lower bound,
by excluding all the qs linear combinations. However, it is reasonable to think
that very few linear combinations produce a bad row, so our lower bound is not
far from the real value.

Theorem 4.1 Let H be an r× n parity-check matrix over Fq as in Step 5, with
r = mst = r0s. Then the row-reduction to the systematic form for H succeeds
with probability at least:

p =
r0−1∏
i=0

(
1− 1

qr0
− 1
q(r0−i)s

)
.

Proof Follows directly from our last argument: we get p =

r0−1∏
i=0

(
qr − qr−r0 − qis

)
qr0r

.

This is a product of r0 terms and since qr0r = (qr)r0 we can divide each term by
qr and obtain the conclusion. 4

Experimental results suggest this number looks roughly like (q − 1)/q.

57

4.3.2 Determinant of Block Matrices

We state the following result, which we will need to prove Lemma 4.2:

Lemma 4.4 Let D be an n × n block-symmetric matrix over a finite field F of
characteristic 2, i.e. D is in the form:

D =

 A B

B A

.

where A and B are themselves block-symmetric matrices of dimension n/2.
If A and B commute, then detD = det(A2 +B2).

Proof We know from [118] that det

 A B

0 C

 = det

 A 0

B C

 = detAdetC.

Now, consider the following product M =

 A B

B A

 A 0

B I

.

Since A and B are both symmetric and commute, we have that A = AT, B = BT

and AB = (AB)T, hence we can rewrite the product as:

M =

 A B

BT A

 AT 0

B I

 =

 A2 +B2 B

BTAT +AB A

 =

=

 A2 +B2 B

(AB)T +AB A

 =

 A2 +B2 B

0 A

.

Looking at determinants, and applying the hypothesis, we read:

detM = detD detA = det(A2 +B2) detA

which implies in particular (detD + det(A2 + B2)) detA = 0 and the result
follows immediately if we assume detA 6= 0. However, we don’t even need this
assumption if we use the following trick: instead of working over F, let’s do our
calculations over the corresponding polynomial ring F[x] by defining Ax = A+xI

and Dx =

 A B

B Ax

.

We obtain (detDx + det(AAx + B2)) detAx = 0 but now this time we are
considering a product of polynomials and detAx = det(A+ xI) is certainly not
the zero polynomial, hence the left-hand side must be.
Thus detDx = det(AAx + B2) follows, from which it is enough to put x = 0 to
get our result. 4

58

4.4 Security

4.4.1 Cryptanalysis

It is clear that, since GS codes also belong to the class of alternant codes, the
main security issue is the FOPT attack (Table 3.13). As we will see, this can be
applied to our proposal directly, with the system properties (Table 3.14) holding
in a similar way.
Despite the absence of a precise criterion for assessing the security, it makes
sense to compare the different security levels for the Misoczki-Barreto scheme
and for our scheme. In fact, we can think of a Goppa code or a GS code with the
same parameters [n, k, d] having, respectively, k = n−m` = n−mst =⇒ ` = st.
If t = 1 then our scheme is exactly the same as [85]. For t > 1, however, the
system parameters change, as n = n0` = n′0s having n′0 > n0. We now focus our
attention on the linear part of the system: just like before, it is possible to prove
that all the Yi in a block are equal.

Proposition 4.1 Let Yi be the set of unknowns defined in (3.5). Then:

Yis+j = Yis for i = 0, . . . , n0 − 1, j = 1, . . . , s.

Proof Recall from Definition 2.34 the specifications for the particular alternant
form of GS codes. Now, we want to prove that yis+j = yis for i = 0, . . . , n0 − 1,
j = 1, . . . , s. Let’s then fix a specific i (i.e. choose a block) and consider in
particular yis+j∗ = yis, for any j∗ ∈ {1, . . . , s}.

If we can prove that
s∏
j=1

(αis+j∗ − wj) =
s∏
j=1

(αis − wj), then obviously

s∏
j=1

(αis+j∗ − wj)t =
s∏
j=1

(αis − wj)t =⇒ 1
s∏
j=1

(αis+j∗ − wj)t
=

1
s∏
j=1

(αis − wj)t
.

We know that zis+j = zis for i = 0, . . . , n0 − 1, j = 1, . . . , s by construction.

Hence
zis+j

s∏
j=1

(αis+j∗ − wj)t
=

zis
s∏
j=1

(αis − wj)t
, and this means yis+j = yis.

Since this does not depend on the choice of i, it is then true for all i, and we
obtain our result.

It remains to prove
s∏
j=1

(αis+j∗ − wj) =
s∏
j=1

(αis − wj).

Now, remember that, by means of the algorithm, the support was built as wi+1 =
vi+1 = 1/hi + ω and αj+1 = Lj+1 = 1/hj + 1/h0 + ω, so our expression becomes

59

s∏
j=1

(1/his+j∗−1 + 1/h0 − 1/hj−1) =
s∏
j=1

(1/his−1 + 1/h0 − 1/hj−1)

or, without loss of generality, rearranging and since we are in characteristic 2,

s∏
j=1

(1/h0 + 1/his+j∗ + 1/hj) =
s∏
j=1

(1/h0 + 1/his + 1/hj).

Let k1 = is+ j∗ and k2 = is; then, remembering equation (3.3), we can rewrite:

s∏
j=1

(1/h0 + 1/hk1 + 1/hj) =
s∏
j=1

(1/h0 + 1/hk2 + 1/hj)⇐⇒

⇐⇒
s∏
j=1

(1/hk1⊕j) =
s∏
j=1

(1/hk2⊕j)⇐⇒
1

s∏
j=1

hk1⊕j

=
1

s∏
j=1

hk2⊕j

⇐⇒

⇐⇒
s∏
j=1

hk1⊕j =
s∏
j=1

hk2⊕j ,

which is true since k1 and k2 belong to the same block (the matrix is s×s dyadic).
Essentially, this corresponds to multiplying together the elements of a string of
length s (substring of a row) on two different rows of the same block; since each
block is dyadic, any two rows are a permutation of each other, and the product of
the elements is therefore constant. Hence the equality holds, and this terminates
the proof. 4

Proposition 4.1 tells us that there are n′0 − 1 distinct variables (since, like
before, we can arbitrarily fix one of them). Now, the dimension of the blocks
is smaller (as s < `), so we will have more equations, but the numbers are not
increasing at the same rate. In fact k/s = (n − mst)/s = (n′0s − mst)/s =
s(n′0 −mt)/s = n′0 −mt. We will then have the following values for the linear
part of the system.

Table 4.2: System specifications for our scheme (linear part).

GS-QD

Unknowns Yi n′0 − 1

Linear equations involving only the Yi n′0 −mt

The solution space will therefore have dimension mt−1. This is a major improve-
ment since now the security does not rely only on m; we can instead increase
t so that we are not forced to use a big extension field, which gives large and
unpractical keys, while making the attack less effective.

60

4.4.2 Parameters

In the following tables we give various sets of parameters in order to better il-
lustrate the features of our scheme. The column “Size” refers to the public key
size, expressed in bytes, while the column “ISD cost” refers to the estimated
complexity of decoding attacks1(log2 of binary operations). We also include ex-
perimental results about resistance to the attack just presented (column “FOPT
cost”); these are obtained by using the upper bound provided by equation (3.7).
We remark that the resulting numbers are just a theoretical upper bound that
gives the approximate cost of computing a Gröbner basis with the indicated
dimensions and variables, but nevertheless are useful to give an idea of the ex-
pected cost of the attack against that specific set of parameters. The numbers
obtained by the theorem match with the costs obtained for the attacks success-
fully mounted against the codes of [11] and [85]. It also seems to emerge why the
authors indicate 20 as a safe threshold, since all the parameters that produce a
number of free variables greater than 20 generate a complexity superior to 2128.
Table 4.3 highlights the differences in performance and security according to the
choice of m and t when keeping fixed the other parameters. Note that the first
line (t = 1) represents a Goppa code.

Table 4.3: Example of parameters for GS codes over the base field F22 , for a fixed
number (mt− 1 = 23) of free variables.

m n k s t Errors Size (bytes) ISD cost FOPT cost
24 12288 6144 28 1 128 36864 128 150
12 6144 3072 27 2 128 18432 128 150
8 4096 2560 26 3 96 15360 128 160

Here we chose to keep constant this particular number of free variables mainly
because mt = 24 gives a lot of possibilities for factoring (i.e. a lot of different
choices for m and t) and the resulting amount 23 is well above the threshold of
20 indicated in [39].
It is also possible to observe that choosing an odd value for t gives better results
even with a smaller number of errors introduced (e.g. compare line 2 and 3).
That is because while the product st decreases (and consequently the numbers
of correctable errors), so do the code minimum requirements for size (n) and
dimension (k). This allows a tighter choice of parameters and overall works
better for our purposes.

Table 4.4: GS codes over the base field F22 with fixed length n = 1920 and extension
degree m = 6.

k s t Errors Size (bytes) ISD cost FOPT cost
960 25 5 80 7200 90 186
768 26 3 96 3456 80 105

1To compute this number we refer to [99] and use the corresponding script provided by
Christiane Peters in http://www2.mat.dtu.dk/people/C.Peters/isdfq.html.

61

From Table 4.4 it is evident that a bigger t allows the construction of a code
with better performance, but results in a much bigger key. It is also clear how
deeply all the parameters are intertwined, at the same time contributing to the
flexibility of the scheme: the first code, for instance, generates a much greater
complexity against the structural attack, while achieving an even smaller key
size than any of the codes in Table 4.3. However, the security against general
decoding attacks decreases considerably.
Keeping all of this in mind, we give in Table 4.5 a sample of some smaller codes
with the aim to minimize the public key size.

Table 4.5: Sets of parameters for smaller GS codes, obtained by choosing larger base
fields and increasing t, while lowering the extension degree.

Base Field m n k s t Errors Size (bytes) ISD cost FOPT cost
F25 2 992 416 25 9 144 4680 128 105
F24 3 768 432 24 7 56 4536 80 132
F25 2 512 256 24 23 64 2560 80 96

In an updated version of [85], the authors remove all the insecure parameters
and keep only the set referring to binary quasi-dyadic codes. We present them
again below for a comparison.

Table 4.6: Quasi-Dyadic Goppa codes ([85, Table 2]) with base field F2 and extension
degree m = 16.

n k ` Size (bytes) ISD cost
8192 4096 256 8192 256
6912 2816 256 5632 192
4092 2048 128 4096 128
3584 1536 128 3072 112
2304 1280 64 2560 80

Note that we decided not to include the column “FOPT cost” in this case. This
is because, as we argued in Remark 3.4, the FOPT algorithm doesn’t, to date,
lead to an attack against binary quasi-dyadic Goppa codes. We remark that it
still makes sense considering a comparison, in the eventuality that some future
work might succeed in completing the attack for the binary case.

For all the above codes, the level of security (m − 1 = 15) against FOPT is
the same of the last code in Table 4.5, but only one has the same key size (2560
bytes), whereas the others are all considerably larger. If our main concern is
resistance against structural attacks rather than general decoding attacks, it is
then evident that we have an advantage.
An example is the codes in Table 4.5, line 1 and Table 4.6, line 3. For the same
security level of 2128 we have a solution space of dimension mt− 1 = 17 for the
former as opposed to 15 for the latter.

62

We remark that until a precise complexity analysis for the structural attacks
is given, we should obey the condition obtained from the experimental results
presented in [39], thus keeping the dimension of the solution space for the Yi
strictly greater than 20.

Remark 4.2 The special structure of the blocks Ĥi as described in (4.2) might
suggest the possibility of a modification of the FOPT attack to exploit the extra
structure coming from the powering process when t > 1. In particular, the coeffi-
cients zi could be treated as an additional set of unknowns {Zi}. This, however,
would imply changing completely the algebraic system to solve, since the matrix
given in (4.1) is not in alternant form. We remark that the FOPT attack is
aimed generally at codes that are part of the alternant family, to the point that
it could as well be directed against the original McEliece. This possibility is in
fact mentioned by the authors in [38], and immediately discarded since solving
the system in this case would prove infeasible. The success of FOPT depends on
the additional structure coming from the quasi-cyclic or quasi-dyadic properties,
rather than the properties of the code itself.
To date, such a modification hasn’t been proposed.

4.5 Implementation

4.5.1 The Fujisaki-Okamoto Conversion

There are standard ways to obtain an IND-CCA2 secure encryption scheme from
one that only has OW-CPA, for example the Fujisaki-Okamoto transform [46],
introduced in 1999. The construction achieves CCA2-security in the random
oracle model by integrating an asymmetric encryption scheme with a symmetric
scheme, and therefore it is also known as Hybrid Encryption.
The IND-CPA security is obtained directly if the asymmetric scheme is One-
Way secure and the symmetric scheme is Find-Guess secure. The IND-CCA2
security requires an additional property of the asymmetric encryption scheme
called γ-uniformity. We define it here.

Definition 4.1 Let E be a PKE scheme as defined in Table 2.3 and let’s call
R the set where the randomness is chosen for the (probabilistic) encryption
algorithm. For given (pk, sk) ∈ K, φ ∈ P and a string y, we define

γ(φ,y) = Pr[r $←− R : y = Encpk(φ, r)] (4.3)

where the notation Encpk(φ, r) makes explicit the role of the randomness r. We
say that E is γ-uniform if, for any (pk, sk) ∈ K, any φ ∈ P and any string y, we
have γ(φ,y) ≤ γ for a certain γ ∈ R.

63

Table 4.7: The Fujisaki-Okamoto conversion. H1 and H2 are hash functions.

Encryption of φ Decryption of ψ

η
$←− PPKE ψ = (ψ1||ψ2)

r = H1(η, φ) η̂ = DecPKE
sk (ψ1) (return ⊥ if decryption fails)

ψ1 = EncPKE
pk (η, r) φ̂ = DecSE

H2(η̂)(ψ2) (return ⊥ if decryption fails)

ψ2 = EncSE
H2(η)(φ) r̂ = H1(η̂, φ̂)

if EncPKE
pk (η̂, r̂) = ψ1 return φ = φ̂

return ψ = (ψ1||ψ2) else return ⊥

In a successive paper [64], Kobara and Imai proposed three alternative construc-
tions in a similar fashion, tailored specifically for the McEliece cryptosystem
rather than a general OWE encryption scheme. The biggest contribution of the
new constructions is that the amount of overhead data (i.e. difference between
the bit-length of the ciphertext and the bit-length of the plaintext) is consider-
ably reduced. While this is certainly an important issue for some applications,
in the common cryptographic practice it will never constitute a serious concern.
In fact, the aim of public key cryptography is not to encrypt a whole, large
plaintext, but rather to encrypt just a small (e.g. 128 or 256 bits) key for a more
efficient symmetric scheme, that will be then used to encrypt the message. From
a computational point of view the Kobara-Imai encryption process seems to be
more expensive; in fact, the whole construction is rather complex.

Table 4.8: The Kobara-Imai hybrid “Conversion γ” for the McEliece (McE) public-key
encryption scheme. H is a hash function, Gen a random number generator, Conv a
constant weight encoding function and Const a (predetermined) public constant.

Encryption of φ Decryption of ψ

r
$←− {0, 1}∗ ψ = (y5||y′)

y1 = Gen(r)⊕ (φ||Const) y3 = DecMcE
sk (y′)

y2 = r ⊕H(y1) z = y3G⊕ y′

(y5||y4||y3) = (y2||y1) y4 = Conv−1(z)

z = Conv(y4) (y2||y1) = (y5||y4||y3)

r = y2 ⊕H(y1)

(x̂||Const′) = y1 ⊕Gen(r)

if Const′ = Const return φ = φ̂

return ψ = (y5||EncMcE
G (y3, z)) else return ⊥

Note that the Fujisaki-Okamoto decryption process includes an encoding
operation in the final check. This makes decryption slower. The cost of the

64

process, though, is still dominated by the decoding operation rather than the
matrix-vector multiplication. Moreover, as we already remarked, we argue that
the distinctive feature of the McEliece scheme is the fast encryption process,
and the Fujisaki-Okamoto conversion preserves fast encryption better than the
Kobara-Imai approach.

4.5.2 Applying Fujisaki-Okamoto to McEliece

We give here a new way to use McEliece together with the Fujisaki-Okamoto
transform. We remark that, although this work appears in [22], it is solely due
to the author.
Previous approaches always needed a constant weight encoding function to con-
vert H1(η, φ) into an error vector. Our idea is to swap the message and the error
in the McEliece scheme, with a technique similar to the one used by Micciancio
in [82]. This means that we interpret EncMcE

G (m, e) = eG + m, encoding the
message in the error vector rather than in the codeword. This is possible be-
cause, unlike other PKE schemes, the decryption process of McEliece, consisting
mainly of decoding, returns both m and e, allowing to recover, in addition to
the plaintext, also the randomness used. With this simple trick, we avoid having
to use a (inconvenient) constant weight encoding function and we simplify the
encryption process considerably.
For simplicity we take the symmetric encryption scheme to be the one-time pad
with an ephemeral key generated as H2(η) where H2 is a random oracle with
arbitrary length output. This symmetric encryption scheme satisfies the Find-
Guess security property. In practice, one might use a block cipher in CBC mode.

Table 4.9: The Fujisaki-Okamoto transform applied to McEliece. Wq,n,w, the set of
words of length n and weight w over Fq, is the usual space R for the McEliece PKE
scheme.

Encryption of φ Decryption of ψ

η
$←−Wq,n,w ψ = (ψ1||ψ2)

r = H1(η||φ) η̂ = DecMcE
sk (ψ1) (return ⊥ if decoding fails)

ψ1 = rG+ η φ̂ = H2(η̂)⊕ ψ2

ψ2 = H2(η)⊕ φ r̂ = H1(η̂||φ̂)

if r̂G+ η̂ = ψ1 return φ = φ̂

return ψ = (ψ1||ψ2) else return ⊥

The following lemma is fundamental to prove that our scheme enjoys the
γ-uniformity required by the conversion.

Lemma 4.5 The McEliece encryption scheme is γ-uniform for γ =
1
qk

.

65

Proof Let G be a public key for McEliece, that is a generator matrix for the
code C; in our setting, y is a generic string in Fnq . Then clearly:

γ(η,y) = Pr[r $←− Fkq : y = rG+ η] =

0 if y − η /∈ C

1
qk

if y − η ∈ C

(4.4)

and that concludes the proof. 4

Theorem 4.2 If the assumptions of indistinguishability and decoding hardness
of the McEliece PKE hold, the encryption scheme described in Table 4.9 is IND-
CCA2 secure in the random oracle model.

Proof The scheme enjoys one-way security because of the computational as-
sumptions in the hypothesis. Moreover, Lemma 4.5 provides the γ-uniformity
as required. Finally, the symmetric scheme used (one-time pad) satisfies the
Find-Guess security property. It is then possible to apply [46, Th. 12]. 4

4.5.3 Results

We now report on some implementation results, published in [22]. The implemen-
tation was initially done in C++ by my colleagues P.-L. Cayrel and G. Hoffmann,
and is based on the library SBCrypt (Syndrome-Based Cryptography Library)
by Barreto, Misoczki and Villas Boas. The code was subsequently converted to
run on an embedded device, namely the microcontroller ATxmega256A3 from
the AVR XMEGA family. It has 264 Kbytes of Flash memory, 16 Kbytes of
SRAM memory and is running at a clock frequency of 32 MHz. The test results
for the C++ code have been executed on an Intel(R) Core(TM) 2 Duo CPU
E8400@3.00GHz running Ubuntu/Linux 2.6.32, where the source has been com-
piled with gcc 4.4.3. Similar results have been obtained using the Intel compiler
icpc/icc. As for the embedded microcontroller, the code has been simulated on
AVR Studio 5.02.

A key feature of our scheme is that we are able to make use of exponen-
tial/antilog tables to perform finite field arithmetic; these are simply tables
containing the logarithmic representation of the elements of the finite field in
question (see for example [75, Ch. 4, §5]). This is possible for all the codes
in Table 4.5 as the extension fields are small enough to fit completely in the
available memory, and it is therefore one of the main reasons to choose GS codes
over Goppa codes.
As for the hash functions H1 and H2, we opted for the Keccak family3 , recently
selected by NIST as the winner of the SHA-3 competition, with assigned output
length equal to k, in the first instance, or equal to the plaintext length (128 bits

2www.atmel.com/avrstudio
3http://keccak.noekeon.org/.

66

in our case), in the second. Its flexibility also allows for using it as a stream ci-
pher. For details on how to use it for randomly sampling error vectors of weight
w, we refer again to [22].

McEliece based on GS codes

We have measured two different operations: the encoding step mG + e for
m ∈ Fkq and the decoding of a ciphertext ψ ∈ Fnq . Results are presented below
for three sets of parameters that we call, respectively, codes A,B and C.

Table 4.10: Profiling results for McEliece using GS codes. The timings are expressed
in milliseconds (ms).

Name Base Field m n k s t Errors Encoding Decoding
A F25 2 992 416 25 9 144 0.287 5.486
B F24 3 768 432 24 7 56 0.179 1.578
C F25 2 512 256 24 23 64 0.093 1.234

It is easy to see that the decoding process dominates the runtime.

The next table reports the results obtained when running the same operations
on the microcontroller, for the last two codes. The costs displayed are in clock
cycles; for a conversion to the standard time units, it is enough to keep in mind
that the device runs at 32MHz, hence we have 32 million cycles per second.

Table 4.11: Details of the costs of encryption and decryption for codes B and C.

Operation Code B Code C

Generate error vector e 313,114 316,568
Load the plaintext m 4,313 2,553
Encode mG 3,418,292 1,603,854
Add e 8,818 5,944

Encoding total 3,744,537 1,928,919

Operation Code B Code C

Compute syndrome HeT 6,910,742 5,440,245
Solve key equation 955,597 1,192,400
Compute error positions 2,061,066 1,571,689
Compute error values 611,898 794,463
Correct the errors 8,641 5,121

Decoding total 10,547,944 9,003,918

67

CCA2-McEliece based on GS codes

We now consider the implementation of the full CCA2-secure variant using the
Fujisaki-Okamoto transformation. The performances of the scheme are given in
Table 4.12 and Table 4.13, respectively for the C++ code and for the microcon-
troller.

Table 4.12: Profiling results for CCA2-McEliece using GS codes.

Name Base Field m n k s t Errors Encryption Decryption
A F25 2 992 416 25 9 144 0.323 5.914
B F24 3 768 432 24 7 56 0.213 1.814
C F25 2 512 256 24 23 64 0.114 1.382

Table 4.13: Details of the costs of encryption and decryption for CCA2-McEliece.

Operation Code B Code C

Generate error vector η 322,109 321,812
Load the plaintext x 1,019 1,019
Hash r = H(η, x) 282,285 281,497
Encode rG 3,426,700 1,591,031
Add η 1,103 1,314
Hash K(η) 137,704 137,720
Pad K(η)⊕ x 1,814 1,811

Encryption total 4,171,734 2,336,204

Operation Code B Code C

Compute syndrome HψT
1 7,029,985 5,425,696

Solve key equation 954,522 1,202,032
Compute error positions 2,031,514 1,561,946
Compute error values 611,944 794,524
Correct the errors 1,108 5,112
Hash K(η̂) 147,822 144,768
Pad K(η̂)⊕ ψ2 1,585 1,586
Hash r̂ = H(η̂, x̂) 282,066 282,278
Encode r̂G 3,426,721 1,591,049
Add η̂ 1,113 1,273
Check equality 9,207 6,135

Decryption total 14,497,587 11,016,399

Comparing the results in Table 4.10 and Table 4.12 (as well as Table 4.11 and
Table 4.13), we see that indeed the computational overhead to get CCA2 security
is quite low.

For further clarification, the comparison of the total timings is reported in Tables
4.14 and 4.15.

68

Table 4.14: Summary of the timings (ms) for the C++ code.

Code Encoding CCA2 Encryption Decoding CCA2 Decryption
A 0.287 0.323 5.486 5.914
B 0.179 0.213 1.578 1.814
C 0.093 0.114 1.234 1.382

Table 4.15: Summary of the timings (clock cycles) for the embedded device.

Code Encoding CCA2 Encryption Decoding CCA2 Decryption
B 3,744,537 4,171,734 10,547,944 14,497,587
C 1,928,919 2,336,204 9,003,918 11,016,399

4.6 Conclusions

We have given a detailed description of a construction based on Quasi-Dyadic
Generalized Srivastava codes. This is a generalization of [85], and is suitable as a
trapdoor for a McEliece or Niederreiter scheme. The public keys are considerably
smaller than the original McEliece proposal, and the construction easily gives
codes secure against general decoding attacks.
Thanks to the introduction of the parameter t we are able to modulate our
scheme in a much more flexible way, allowing us to consider codes over smaller
extension fields without losing in security; moreover, the parameter t balances
both the ratio (extension degree)/(number of free variables), and the reduction in
the public key size, as this depends solely on s, which grows or shrinks according
to t (for a fixed dimension and error-correction capacity). The result of this is a
flexible and practical scheme which produces very small keys and resists all the
attacks presented so far.
The choice of a base field other than F2, though actually increasing the public
key size, looks like a better choice for the construction. Unlike the case of Goppa
codes, GS codes do not benefit from an increased error-correction capacity in the
binary case, so there is no particular reason to choose binary over non-binary.
Instead, choosing a bigger base field allows us to further reduce the extension
degree to values for which the scheme would otherwise be infeasible.

An independent work proposing a CCA2-secure scheme based on quasi-
dyadic Goppa codes has been recently presented at PQCrypto 2011 by Stefan
Heyse [58]. The performance indicated for encryption and decryption on the em-
bedded device are slower than our results (the simulator program is the same,
AVR Studio, although in a slightly older version). Part of the reason is due to
the use of a constant weight encoding function (more than three times as costly
as hashing) that we avoid thanks to the particular configuration of our scheme.
However, the major difference comes from the fact that our vector-matrix mul-
tiplication, despite performing operations over non-binary fields, is at least two
times faster, and this is the dominating part in the encryption process and is
also a very high cost in the decryption process. This is a direct consequence of

69

the structure of the scheme. In fact, the construction in [58] makes use of binary
Goppa codes, which for security reasons [38] need to be defined over the exten-
sion field F216 : this is too big to fit the corresponding log/antilog tables on the
flash memory of the device. The result is that, in order to avoid using additional,
external memory, the tables for F28 are represented instead, and operations are
performed using tower field arithmetic, which is much slower. For example, a
multiplication over a tower F(28)2 is equivalent to performing 5 multiplications
over F28 .

Another disadvantage of [58] is that the public key G is computed as SĜ
like in the original McEliece (P is supposed to be implicit in the support of the
code), and the scramble matrix S occupies a great amount of memory (131,072
bytes, see [58, Table 3]). This is completely redundant, as the reduction to the
systematic form is enough to mask the trapdoor and provide one-way security,
as shown in [19].
On the other hand, the length of the encrypted plaintext is about 10 times the
length of our plaintext (1288 bits, as opposed to 128 bits); however, we stress
again that, in a “real-world” scenario, public-key encryption would only be used
for encrypting a small amount of data. So if a large number of bits needs to be
encrypted, then a PKE scheme would be used to exchange a small key (usually
128 or 256 bits) and then the plaintext would be encrypted with a symmetric
encryption scheme.
If we follow this approach in our case, the timings that we obtain strongly support
our claim. The latest benchmark speed indicated for AES-128 is about 16 cycles
per byte4. Hence, if we want to encrypt, for a comparison, a plaintext of length
1288 bits = 161 bytes, it would take only 2,576 clock cycles; even on an embedded
device, this number is very small compared to the rest of the encryption process.
In total, our encryption process ranges from around 1.5 to 2.7 times faster than
the scheme proposed in [58].

Table 4.16: Cost of encrypting a plaintext of length 1288 bits.

Code Cost (clock cycles)
Goppa + Kobara-Imai 6,358,952
Code B 4,174,310
Code C 2,338,780

A similar argument holds for decryption.
Finally, we would like to highlight that we are using Keccak for both our hash
functions and as a random number generator; the flexibility that it provides
is evident. Other SHA-3 competitors like the function Blue Midnight Wish
(BMW) used in [58] have been proved to be faster [44], but do not reach the
same level of security, and for this have been discarded: although, as noted in
the announcement of the finalists, “none of these candidates was clearly broken”,
several attacks have been presented5.

4http://www.cryptopp.com/benchmarks.html
5http://ehash.iaik.tugraz.at/wiki/Blue Midnight Wish

70

Design of an Efficient Code-Based
KEM

5.1 Introduction

A Hybrid Encryption scheme is a cryptographic protocol that features both a
public-key encryption scheme and a symmetric encryption scheme, the former
with the task of encrypting a key for the latter, in charge of encrypting the
actual body of the message. The first component is therefore known as Key
Encapsulation Mechanism (KEM) while the second is called Data Encapsulation
Mechanism (DEM). Key feature is that the two parts are independent of one
another. The framework was first introduced in a seminal work by Cramer and
Shoup [30], along with the corresponding notions of security and an example
of a scheme based on the DDH assumptions. In a successive work [115], Shoup
presents a proposal for an ISO standard on public-key encryption including many
different schemes based on the RSA assumptions (RSA-OAEP, RSA-KEM), el-
liptic curves (ECIES) and Diffie-Hellman (PSEC, ACE). Other schemes based on
integer factorization such as EPOC or HIME are also mentioned. This work fol-
lows up a suggestion from Bernstein [14] and stems from the RSA-KEM scheme
(also known as “Simple RSA” in earlier versions of the paper) and as far as we
know is the first proposal for a KEM based on the coding theory assumptions.
The chapter is organized as follows: in the next section we introduce all the def-
initions and notions of security for KEMs and DEMs, plus other cryptographic
tools that we will need for our scheme, such as KDFs and MACs. In Section 5.3
we present the construction, prove its security and give a hint on how to realize
an efficient DEM to associate. Finally, we conclude in Section 5.4.

5.2 Preliminaries

5.2.1 Encapsulation Mechanisms and the Hybrid Framework

A key encapsulation mechanism is essentially a public-key encryption scheme,
with the exception that the encryption algorithm takes no input apart from the
public key, and returns a pair (K,ψ0). The string K has fixed length `K , specified
by the KEM, and ψ0 is an “encryption” of K in the sense that Decsk(ψ0) = K.
Formally, a KEM consists of the following three algorithms.

Table 5.1: Key Encapsulation Mechanism.

KeyGen A probabilistic key generation algorithm that takes as input a security
parameter 1λ and outputs a public key pk and a private key sk.

Enc A probabilistic encryption algorithm that receives as input a public key pk
and returns a key/ciphertext pair (K,ψ0).

Dec A deterministic decryption algorithm that receives as input a private key
sk and a ciphertext ψ0 and outputs either a key K or the failure symbol ⊥.

A KEM is required to be sound for at least all but a negligible portion of public
key/private key pairs, that is, if Encpk() = (K,ψ0) then Decsk(ψ0) = K with
overwhelming probability.

73

The data encapsulation mechanism is a (possibly labeled) symmetric encryp-
tion scheme that uses as a key the string K output by the KEM. In what follows
we only discuss, for simplicity, un-labeled DEMs.
Formally, a DEM consists of the following two algorithms.

Table 5.2: Data Encapsulation Mechanism.

Enc A deterministic encryption algorithm that receives as input a key K and a
plaintext φ and returns a ciphertext ψ1.

Dec A deterministic decryption algorithm that receives as input a key K and a
ciphertext ψ1 and outputs either a plaintext φ or the failure symbol ⊥.

We require that the key K used in Enc and Dec has the same length `K as in
the KEM. In this case, the mechanisms are said to be compatible, and can be
composed in the canonical way as follows.

Table 5.3: Hybrid Encryption scheme.

K
Kpubl the public key space.

Kpriv the private key space.

P The set of messages to be encrypted, or plaintext space.

C The set of the messages transmitted over the channel, or ciphertext space.

KeyGen A probabilistic key generation algorithm1that takes as input a security pa-
rameter 1λ and outputs a public key pk ∈ Kpubl and a private key sk ∈ Kpriv.

Enc A probabilistic encryption algorithm that receives as input a public key pk ∈
Kpubl and a plaintext φ ∈ P. The algorithm invokes EncKEM

pk () and obtains
a key/ciphertext pair (K,ψ0), then runs EncDEM

K (φ) and gets a ciphertext
ψ1. Finally, it outputs the ciphertext ψ = (ψ0||ψ1).

Dec A deterministic decryption algorithm that receives as input a private key
sk ∈ Kpriv and a ciphertext ψ ∈ C. The algorithm parses ψ as (ψ0||ψ1), then
decrypts the left part by running DecKEM

sk (ψ0); it either gets ⊥ or a key K.
In the first case, the algorithm returns ⊥, otherwise it runs DecDEM

K (ψ1) and
returns either the resulting plaintext φ or the failure symbol ⊥.

The security notions are similar to their corresponding ones for PKE and SE
schemes (see Section 2.1.3). We present them below.

Definition 5.1 The adaptive chosen ciphertext attack game for a KEM pro-
ceeds as follows:

1. Query a key generation oracle to obtain a public key pk.

2. Make a sequence of calls to a decryption oracle, submitting any string ψ0

of the proper length2. The oracle will respond with DecKEM
sk (ψ0).

1Note that this coincides with KeyGenKEM.
2The adversary is free to choose this string in any arbitrary way, and not necessarily using

the encryption algorithm.

74

3. Query an encryption oracle. The oracle runs EncKEM
pk to generate a pair

(K̃, ψ̃0), then chooses a random b ∈ {0, 1} and replies with the “challenge”
ciphertext (K∗, ψ̃0) where K∗ = K̃ if b = 1 or K∗ is a random string of
length `K otherwise.

4. Keep performing decryption queries. If the submitted ciphertext is ψ∗0 , the
oracle will return ⊥.

5. Output b∗ ∈ {0, 1}.

We say that a KEM is secure if the advantage AdvKEM of any adversary A in
the above CCA2 attack model is negligible.

Definition 5.2 The attack game for a DEM proceeds as follows:

1. Receive as input a key K.

2. Choose two plaintexts φ0, φ1 and submit them to an encryption oracle.
The oracle will choose a random b ∈ {0, 1} and reply with the “challenge”
ciphertext ψ∗1 = EncDEM

K (φb).

3. Make a sequence of calls to a decryption oracle, submitting any pair (L,ψ1).
The oracle will respond with DecDEM

K (L,ψ1). If the submitted ciphertext
is (L∗, ψ∗1), the oracle will return ⊥.

4. Output b∗ ∈ {0, 1}.

We say that a DEM is secure if the advantage AdvDEM of any adversary A in
the above attack model is negligible.

It is then easy to prove that, given an adversary A for the hybrid scheme
(HY), there exist an adversary A1 for KEM and an adversary A2 for DEM
running in roughly the same time as A, such that for any choice of the secu-
rity parameter λ we have AdvHY(A, λ) ≤ AdvKEM(A1, λ) + AdvDEM(A2, λ). See
Cramer and Shoup [30, Th. 5] for a complete proof.

5.2.2 Other Cryptographic Tools

In this section we introduce other cryptographic tools that we need for our
construction. We start with key derivation functions.

Definition 5.3 A Key Derivation Function (KDF) is a function that takes as
input a string x of arbitrary length and an integer ` ≥ 0 and outputs a bit string
of length `.

A KDF is modelled as a random oracle, and it satisfies the entropy smoothing
property, that is, if x is chosen at random from a high entropy distribution,
the output of KDF should be computationally indistinguishable from a random
length-` bit string.
Intuitively, a good choice for a KDF could be a hash function with a variable
(arbitrary) length output, such as Keccak (see previous chapter).

75

Definition 5.4 A Message Authentication Code (MAC) is an algorithm that
produces a short piece of information (tag) used to authenticate a message. A
MAC is defined by a function Ev that takes as input a key K and an arbitrary
string T and returns a tag to be appended to the message, that is, a string τ of
fixed length `M .

Informally, a MAC is similar to a signature scheme, with the difference that the
scheme makes use of private keys both for evaluation and verification; in this
sense, it could be seen as a “symmetric encryption equivalent” of a signature
scheme.
The usual desired security requirement is existential unforgeability under chosen
message attacks (see Section 2.1.4).

5.3 The Hybrid Encryption Scheme

5.3.1 The KEM Construction

The key encapsulation mechanism we present in this section follows the origi-
nal Niederreiter approach (Table 3.2) and is thus based on the hardness of the
Syndrome Decoding problem (Table 2.9). Note that, compared to the original
Niederreiter scheme, a slight modification is introduced in the decryption pro-
cess. As we will see later, this is necessary for the proof of security. Although
unusual, this particular formulation still satisfies the requirements of a KEM.

Table 5.4: The Niederreiter KEM.

Setup Fix public system parameters q, n, r, w ∈ N.

KeyGen Generate a random parity-check matrix Ĥ for an [n, n− r] linear code over
Fq with an efficient decoding algorithm given by the code description Γ ,
a r × r random invertible matrix S and an n × n permutation matrix P .
Publish the public key H = SĤP and store the private key (S, P,Γ).

Enc On input a public key H choose a random e ∈ Wq,n,w, then compute
K = KDF(e, `K), ψ0 = HeT and return the key/ciphertext pair (K,ψ0).

Dec On input a private key (S, P,Γ) and a ciphertext ψ0, first compute
ψ′0 = S−1ψ0 then apply the decoding algorithm DΓ to ψ′0. If the de-
coding succeeds, multiply the output by P−1, and recover e, then compute
K = KDF(e, `K) and return K. Otherwise, set K to be a string of length
`K determined as a pseudorandom function3 of ψ′0. Return K.

If the ciphertext is correctly formed, the decoding will always succeed, hence the
KEM is perfectly sound. Furthermore, we will see in Section 5.3.2 that, even if
with this formulation DecKEM never fails, there is no integrity loss in the context
of the hybrid encryption scheme thanks to the integrity check given by the MAC.

We prove the security of the KEM in the following theorem.

3A natural suggestion is for example to set K = KDF(ψ′0, `K).

76

Theorem 5.1 Let A be an adversary in the random oracle model for the Nieder-
reiter KEM as in Definition 5.1. Then there exists an adversary A′ for SDP such
that AdvKEM(A, λ) ≤ AdvSDP(A′, λ) + nDec/N , where nDec is the total number
of decryption queries performed and N = |Wq,n,w|. The running time of A′ will
be approximately equal to the running time of A plus nKDF matrix-vector multi-
plications, where nKDF is the number of random oracle queries performed, and
some table lookups.

Proof We replace KDF with a random oracle H mapping words in Wq,n,w to bit
strings of length `K . To prove our claim, we proceed as follows. Let’s call G0 the
original attack game played by A, and S0 the event that A succeeds in game G0.
We define a new game G1 which is identical to G0 except that the game is halted
if the challenge ciphertext ψ∗0 = He∗T obtained when querying the encryption
oracle had been previously submitted to the decryption oracle: we call this event
F1. Since the number of valid ciphertexts is N , we have Pr[F1] ≤ nDec/N . It
follows that

∣∣∣Pr[S0] − Pr[S1]
∣∣∣ ≤ nDec/N , where S1 is the event that A succeeds

in game G1. Next, we define game G2 which is identical to G1 except that
we generate the challenge ciphertext ψ∗0 at the beginning of the game, and we
halt if A ever queries H at e∗: we call this event F2. By construction, since
H(e∗) is undefined, it is not possible to tell whether K∗ = K, thus we have
Pr[S2] = 1/2, where S2 is the event that A succeeds in game G2. We obtain that∣∣∣Pr[S1]− Pr[S2]

∣∣∣ ≤ Pr[F2] and we just need to bound Pr[F2].
We now construct an adversary A′ against SDP. A′ interacts with A and is able
to simulate the random oracle and the decryption oracle with the help of two
tables T1 and T2, initially empty, as described below.

Key Generation: On input the instance (H, s∗, w) of SDP, return pk = H.

Challenge queries: When asked for the challenge ciphertext:

1. Generate a random string K∗ of length `K .

2. Set ψ∗0 = s∗.

3. Return the pair (K∗, ψ∗0).

Random oracle queries: On input e ∈Wq,n,w to the random oracle:

1. Look up e in T1. If (e, s,K) is in T1 for some s and K, return K.

2. Compute s = HeT.

3. If s = s∗ then A′ outputs e and the game ends.

4. Look up s in T2. If (s,K) is in T2 for some K (i.e. the decryption oracle
has been evaluated at s), return K.

5. Set K to be a random string of length `K and place the triple (e, s,K) in
table T1.

6. Return K.

77

Decryption queries: Upon a decryption query ψ0 = s ∈ Frq:

1. Look up s in T2. If (s,K) is in T2 for some K, return K.

2. Look up s in T1. If (e, s,K) is in T1 for some e and K (i.e. the random
oracle has been evaluated at e such that s = HeT), return K.

3. Generate a random string K of length `K and place the pair (s,K) in T2.

4. Return K.

Note that, in both random oracle and decryption queries, we added Step 1 to
guarantee the integrity of the simulation, that is, if the same value is queried
more than once, the same output is returned.

A fundamental issue is that it is impossible for the simulator to determine if a
word is decodable or not. If the decryption algorithm returned ⊥ if and only if
a word was not decodable, then it would be impossible to simulate decryption
properly. We have resolved this problem by insisting that the KEM decryption
algorithm always outputs a hash value. With this formulation, the simulation is
flawless and A′ outputs a solution to the SDP instance with probability equal
to Pr[F2]. 4

5.3.2 A Standard DEM

For completeness, we show how to construct a DEM in a standard way by means
of a SE scheme and a one-time MAC.

Table 5.5: Standard DEM.

Enc On input a key K and a plaintext φ, parse K as (K1||K2) then compute
ψ′ = EncSE

K1
(φ), set T = ψ′ and evaluate τ = Ev(K2, T). Return the ciphertext

ψ1 = (ψ′||τ).

Dec On input a key K and a ciphertext ψ1, parse4 ψ1 as (ψ′||τ) then parse K as
(K1||K2), set T = ψ′ and apply the MAC algorithm to obtain τ ′ = Ev(K2, T).
If τ ′ 6= τ the verification fails, hence return ⊥. Otherwise, compute φ =
DecSE

K1
(ψ′) and return the plaintext φ.

It is easy to prove that if the underlying components are secure, so is the resulting
DEM. In particular it is possible to prove [30, Th. 4] that, for any DEM adversary
A, we have AdvDEM(A, λ) ≤ AdvFG(A1, λ) + AdvMAC(A2, λ), where A1 and A2

are, respectively, a find-guess adversary for SE and a one-time existential forgery
adversary for MAC, both running in about the same time of A.

4Note that this step may fail if, for example, ψ1 is too short.

78

5.4 Conclusions and Future Work

We have introduced a key encapsulation method based on the Niederreiter cryp-
tosystem. This is the first KEM based directly on a coding theory problem and
it enjoys a simple construction and a tight security proof. Future work includes
investigating practical applications of the KEM, with the aim of an implementa-
tion. This could potentially make use of an algebraic variant aimed to reduce the
public key size, in a similar way as described in the previous chapter. The im-
plementation work is still in progress at the current time and we chose therefore
to not include it in this thesis.

79

80

On a CCA2-secure Variant of
McEliece in the Standard Model

6.1 Introduction

As we saw in the previous chapters, it is possible to produce CCA2-secure code-
based schemes in the random oracle model, but it is of interest to study systems
that are secure in the standard model.
Rosen and Segev in [106] gave a general approach for CCA2 security in the
standard model incorporating tools such as lossy trapdoor functions (a very
powerful tool introduced by Peikert and Waters in [97]) and one-time signature
schemes. This general protocol can be applied directly to many different hard
problems such as Quadratic Residuosity, Composite Residuosity, the d-linear
Assumption and the Syndrome Decoding Problem, as shown in [45]. Dowsley et
al. [36] have tried to apply the Rosen-Segev approach to the McEliece framework.
To do this, a new structure called k-repetition PKE is introduced, as well as a
number of differences in the key generation, encryption and decryption processes.
It is claimed that the scheme has IND-CCA2 security in the standard model.
In this chapter we make some observations on the ambiguity of the description of
the scheme of [36], provide a correct formulation and proof of security, and then
show how to get a CCA2-secure cryptosystem based on the McEliece assumptions
using the original Rosen-Segev approach.
The chapter is structured as follows: in the next section, we recall the original
Rosen-Segev scheme. Section 6.3 features two existing proposals for a scheme
based on coding theory: the first makes use of the Niederreiter cryptosystem [88],
while the second is a summary of [36]. In Section 6.4 we propose an alternative
scheme to realize the Rosen-Segev protocol with McEliece. We conclude in
Section 6.5.

6.2 The Rosen-Segev Scheme

6.2.1 Computable Functions and Correlated Products

We define here the notion of security under correlated products for a collection
of functions. Recall from Definition 2.1 the notion of a collection of efficiently
computable functions. We define a k-wise product as follows:

Definition 6.1 Let F = (G,F) be a collection of efficiently computable functions
and k be an integer. The k-wise product Fk is a pair of algorithms (Gk,Fk) such
that:

- Gk is a generation algorithm that independently samples k functions from
F by invoking k times the algorithm G and returns a tuple (f1, . . . , fk).

- Fk is an evaluation algorithm that receives as input a sequence of functions
(f1, . . . , fk) and a sequence of points (x1, . . . , xk) and invokes F to evaluate
each function on the corresponding point, i.e.

Fk(f1, . . . , fk, x1, . . . , xk) = (F(f1, x1), . . . ,F(fk, xk)). (6.1)

83

Let’s now also recall the definition of trapdoor one-way function (Defini-
tion 2.2). We may think to extend the notion to the case where the input is
given according to a certain distribution, that is, there exists a correlation be-
tween the points x1, . . . , xk.

Definition 6.2 Let F = (G,F) be a collection of efficiently computable functions
with domain D and Ck be a distribution of points in D1× · · · ×Dk. We say that
F is secure under a Ck-correlated product if Fk is one-way with respect to the
input distribution Ck.

In the special case where the input distribution Ck is exactly the uniform
k-repetition distribution (that is, k copies of the same input x ∈ D) we simply
speak about one-wayness under k-correlated inputs. Rosen and Segev in [106]
showed that a collection of lossy trapdoor functions for an appropriate choice
of parameters can be used to construct a collection of functions that is one-way
under k-correlated inputs. Their work is summarized in the next section.

6.2.2 The Rosen-Segev Encryption Scheme

The computational assumption underlying the scheme is that there exists a col-
lection of functions F = (G,F) which is secure under k-correlated inputs. The
scheme makes use of a strongly-unforgeable signature scheme and of a hard-core
predicate h for the collection Fk.

KeyGenRS : Invoke G for 2k times independently and obtain the descriptions
of functions (f0

1 , f
1
1 , . . . , f

0
k , f

1
k) and the corresponding trapdoors (td0

1 , td
1
1 , . . . ,

td0
k, td

1
k). The former is distributed as the public key pk, while the latter is the

private key sk.

EncRS : To encrypt a plaintext m ∈ {0, 1} with the public key pk, sample a
key from a strongly-unforgeable one-time signature scheme, say (vk, sgk) and a
random x ∈ {0, 1}N . Write vki for the i-th bit of vk and let h be a hard-core
predicate, then:

1. Evaluate ci = F(f vki
i , x) for i = 1, . . . , k.

2. Set y = m⊕ h(f vk1
1 , . . . , f vkk

k , x).

3. Compute σ = SignSS
sgk(c1, . . . , ck, y).

It is assumed that vk ∈ {0, 1}k: if not, it is enough to apply a universal one-way
hash function to obtain the desired length.
Finally, output the ciphertext ψ = (vk, c1, . . . , ck, y, σ).

DecRS : Upon reception of a ciphertext ψ:

1. Verify the signature; if VerSS
vk((c1, . . . , ck, y), σ) = 0 output ⊥.

2. Otherwise compute xi = F−1(tdvki
i , ci) for i = 1, . . . , k.

3. If x1 = · · · = xk then set m = y ⊕ h(f vk1
1 , . . . , f vkk

k , x1) and return the
plaintext m, otherwise output ⊥.

84

The security of the scheme comes from the next theorem, proved in [106].

Theorem 6.1 Assuming that F is secure under k-correlated inputs, and that the
signature scheme is one-time strongly unforgeable, the above encryption scheme
is IND-CCA2-secure.

The proof consists of a standard argument, divided in two parts. The first
part shows that if an adversary exists that can to break the CCA2 security of the
scheme, it can be converted to an adversary able to forge the signature scheme.
In the second part, assuming that the forgery doesn’t occur, an adversary is built
that contradicts the security of the hard-core predicate. We don’t present the
proof here, but we refer the reader to [106] for more details.

6.3 Two Previous Proposals

If we describe the McEliece encryption as a function fG(x,y) = xG + y then
clearly this is not secure under correlated inputs: in fact, given two evaluations
fG1(x,y) = xG1+y and fG2(x,y) = xG2+y we could sum the outputs together
and, since the error vector cancels out (we assume we are in the binary case like
in the original McEliece scheme), we get x(G1 + G2) from which it is easy to
recover x. The problem is that, since we are defining a function, there is no
randomness anymore, whereas McEliece requires a random error vector in order
to be secure under k-correlated inputs. A mapping that incorporates a random
element would in fact give a different result for multiple encryptions of the same
plaintext and so won’t have a unique image.

We now present two alternative schemes that have been proposed to deal with
the matter.

6.3.1 Syndrome Decoding

This construction was presented by Freeman, Goldreich, Kiltz, Rosen and Segev
[45] and is based on the Niederreiter cryptosystem (Table 3.2). The Niederreiter
trapdoor function can be efficiently described in the above fashion as the family
N = (G,F) where G and F are defined as follows:

Generation: On input n, k the algorithm G generates a random parity-check
matrix Ĥ for an [n, k] linear code over Fq with an efficient decoding algorithm
given by the code description Γ , an (n− k)× (n− k) random invertible matrix
S and an n×n permutation matrix P , then publishes the public key H = SĤP
and the private key (S, P,Γ).

Evaluation: On input H, e, where e is a string of fixed weight w in Fnq , the
algorithm F computes ψ = HeT and returns the ciphertext ψ.

It is possible to invert F using the trapdoor: on input (S, P,Γ) and ψ, multiply
ψ by S−1, decode to obtain PeT and retrieve eT by multiplying by P−1.

85

The function is proved to be one-way under k-correlated inputs in [45, Th. 6.2],
provided that k is chosen such that the indistinguishability and decoding hard-
ness assumptions still hold for n and (n − k)k; it is intended to be used in the
general Rosen-Segev framework.

6.3.2 k-repetition PKE

Dowsley, Müller-Quade and Nascimento [36] propose a scheme that resembles
the Rosen-Segev protocol trying to apply it to the McEliece cryptosystem. De-
spite the authors claim that this is the “direct translation” of [106], clearly this
is not the case. Among other differences, the scheme doesn’t rely on a collec-
tion of functions but instead defines a structure called k-repetition Public-Key
Encryption (PKEk). This is essentially an application of k samples of the PKE
to the same input, in which the decryption algorithm also includes a verification
step on the k outputs. The encryption step produces a signature directly on the
McEliece ciphertexts instead of introducing a random vector x as in the orig-
inal scheme; therefore an IND-CPA secure variant of McEliece’s cryptosystem
(Nojima et al. [89]) is necessary to achieve CCA2 security. We briefly recall it
below.

Table 6.1: The Randomized McEliece cryptosystem.

Setup Fix public system parameters q,m, n, k, w ∈ N such that k ≥ n − wm,
k = k1 + k2.

K
Kpubl the set of k × n matrices over Fq.

Kpriv the set of triples formed by a k×k invertible matrix over Fq, an n×n
permutation matrix over Fq and a code description.

P The vector space Fk1q .

R The vector space Fk2q .

C The vector space Fnq .

KeyGen Generate at random a polynomial g ∈ Fqm [x] and elements α1, . . . , αn ∈
Fqm , then build the Goppa code Γ = Γ (α1, . . . , αn, g) over Fq and its
generator matrix Ĝ. Select at random a k × k invertible matrix S and an
n×n permutation matrix P . Publish the public key G = SĜP ∈ Kpubl and
store the private key (S, P,Γ) ∈ Kpriv.

Enc On input a public key G ∈ Kpubl, a plaintext m ∈ P and a randomness
r ∈ P, sample a random error vector e of weight w in Fnq and return the
ciphertext ψ = (r||m)G+ e ∈ C.

Dec On input the private key (S, P,Γ) ∈ Kpriv and a ciphertext ψ ∈ C, first
compute ψP−1 then apply the decoding algorithm DΓ to it. If the decoding
succeeds, multiply the output by S−1, parse it as (r||m) and return the
plaintext φ = m. Otherwise, output ⊥.

We now present the scheme described in [36]. Note that, in the paper, this is
presented as a general scheme, applicable to any IND-CPA secure PKE which is
secure and verifiable under k-correlated inputs.

86

KeyGenDMQN : Invoke KeyGenPKE for 2k times independently and obtain the col-
lection of public keys (pk0

1 , pk1
1 , . . . , pk0

k, pk1
k) and the corresponding private keys

(sk0
1 , sk

1
1 , . . . , sk

0
k, sk

1
k), then run the key generation algorithm for the signature

scheme to obtain a key (vk∗, sgk∗).
Publish the public key pk = (pk0

1 , pk1
1 , . . . , pk0

k, pk1
k) and choose the private key

accordingly to vk∗, i.e. sk = (vk∗, sk1−vk∗1
1 , . . . , sk

1−vk∗k
k).

EncDMQN : To encrypt a plaintext m with the public key pk, sample another,
different key (vk, sgk) from the signature scheme, then:

1. Evaluate ci = EncPKE

pk
vki
i

(m) for i = 1, . . . , k.

2. Compute σ = SignSS
sgk(c1, . . . , ck).

3. Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN : Upon reception of a ciphertext ψ:

1. If vk = vk∗ or VerSS
vk((c1, . . . , ck), σ) = 0 output ⊥.

2. Otherwise compute m = DecPKE

sk
vki
i

(ci) for some i such that vki 6= vk∗i .

3. Verify that ci is a possible output of EncPKE

pk
vki
i

(m) for all i = 1, . . . , t. If the

verification is successful return the plaintext m, otherwise output ⊥.

Since we know that vk 6= vk∗, there is at least one position in which they
differ, hence the decryption process is well defined.

Remark 6.1 Note that, even though the encryption process is not determinis-
tic, for McEliece encryption it is still possible to perform the check in the last
step of DecDMQN. It is in fact enough to check the Hamming weight of ci −mGi
where Gi is the generator matrix corresponding to the public key pkvki

i . This
is not clearly stated by the authors along with the description of the general
scheme, but it is mentioned later on in [36, Theorem 3] for the particular case
of the randomized McEliece.

Remark 6.2 Clearly, the above specification of the scheme is ambiguous. In
fact, even assuming that the underlying encryption scheme is IND-CPA secure,
the encryption step is described simply as EncPKE

pk
vki
i

(m) for i = 1, . . . , k, without

indicating explicitly the role of the randomness. In [36, Section 4] some remarks
are made about the security and it is suggested to use the randomized McEliece
scheme from [89] (see Table 6.1); however, precise details on how this should
be instantiated are missing. One could in general think at the k encryptions as
ci = EncPKE

pk
vki
i

(m, ri) = (ri||m)Gi +ei. In this case, since we check the Hamming

weight of ci−(ri||m)Gi, the check would obviously fail unless r1 = · · · = rk = r.

87

Remark 6.3 The KeyGen algorithm is slightly different from the Rosen-Segev
case. In particular, 2k keys are generated, then a random verification key vk∗ is
chosen and half of the private keys (the ones corresponding to vk∗) are discarded.
This also implies that decryption only works when vk 6= vk∗. This technique is
used in the context of the proof of Theorem 6.1, specifically in the second part
while constructing an efficient distinguisher for the hard-core predicate. While,
as we will see in the following, this is necessary for the proof (both for the original
paper and for the proposed scheme), it is certainly a redundant requirement in
the KeyGen process.

In light of the previous observations, a more correct description of the scheme
would then be:

KeyGenDMQN : Invoke KeyGenPKE for 2k times independently and obtain the col-
lection of public keys (pk0

1 , pk1
1 , . . . , pk0

k, pk1
k) and the corresponding private keys

(sk0
1 , sk

1
1 , . . . , sk

0
k, sk

1
k). The former is distributed as the public key pk, while the

latter is the private key sk.

EncDMQN : To encrypt a plaintext m with the public key pk, sample a key (vk, sgk)
from the signature scheme and a randomness r, then:

1. Evaluate ci = EncPKE

pk
vki
i

(m, r)1 for i = 1, . . . , k.

2. Compute σ = SignSS
sgk(c1, . . . , ck).

3. Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN : Upon reception of a ciphertext ψ:

1. If VerSS
vk((c1, . . . , ck), σ) = 0 output ⊥.

2. Otherwise compute (m, r) = DecPKE

sk
vki
i

(ci) for some i.

3. Verify that ci is a possible output of EncPKE

pk
vki
i

(m, r) for all i = 1, . . . , t. If

the verification is successful return the plaintext m, otherwise output ⊥.

The construction is proved to be CCA2-secure in [36, Th. 1]. We now
reproduce a more careful proof of security.

Theorem 6.2 ([36]) Assuming that PKEk is IND-CPA secure and verifiable
under k-correlated inputs, and that the signature scheme is one-time strongly
unforgeable, the above encryption scheme is IND-CCA2-secure.

Let A be an IND-CCA2 adversary. During the attack game, A submits
m0,m1 and gets back the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c

∗
k, σ
∗). Indicate

with Forge the event that, for one ofA’s decryption queries ψ = (vk, c1, . . . , ck, σ),
it holds vk = vk∗ and VerSS

vk((c1, . . . , ck), σ) = 1. The theorem is proved by means
of the two following lemmas.

1Note that the randomness we are expliciting here is the one necessary to realize the IND-
CPA security of PKE, hence Enc is still a randomized algorithm. In particular, for the McEliece
instantiation we would have ci = (r||m)Gi + ei.

88

Lemma 6.1 Pr[Forge] is negligible.

Proof Assume that there exists an adversary A for which Pr[Forge] is not negligi-
ble. We build an adversary A′ that breaks the security of the one-time strongly
unforgeable scheme. A′ works as follows:

Key Generation: Invoke KeyGenDMQN as above and return pk to A.

Decryption queries: Upon a decryption query ψ = (vk, c1, . . . , ck, σ):

1. If vk = vk∗ and VerSS
vk((c1, . . . , ck), σ) = 1 output ⊥ and halt.

2. Otherwise, decrypt using DecDMQN and return the resulting plaintext m.

Challenge queries: Upon a challenge query m0,m1:

1. Choose random b ∈ {0, 1}.

2. Use EncDMQN to compute c∗i = EncPKE

pk
vk∗

i
i

(mb, r) for i = 1, . . . , k.

3. Obtain2 the signature σ∗ on (c∗1 , . . . , c
∗
k) with respect to vk∗.

4. Return the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗).

Note that, if Forge doesn’t occur, the simulation of the CCA2 interaction is
perfect. Therefore, the probability that A′ breaks the security of the one-time
signature scheme is exactly Pr[Forge]. The one-time strong unforgeability implies
that this probability is negligible. 4

Lemma 6.2
∣∣∣Pr[b = b∗ ∧ ¬Forge]− 1

2

∣∣∣ is negligible.

Proof Assume that there exists an adversary A for which
∣∣∣Pr[b = b∗∧¬Forge]− 1

2

∣∣∣
is not negligible. We build an adversary A′ that breaks the IND-CPA security
of PKEk. A′ works as follows:

Key Generation: On input the public key (pk1, . . . , pkk) for PKEk:

1. Execute KeyGenSS and obtain a key (vk∗, sgk∗).

2. Set pkvk∗
i = pki for i = 1, . . . , k.

3. Run KeyGenPKE for k times and denote the resulting public keys by (pk
1−vk∗1
1 ,

. . . , pk
1−vk∗k
k) and private keys by (sk1−vk∗1

1 , . . . , sk
1−vk∗k
k).

4. Return the public key pk = (pk0
1 , pk1

1 , . . . , pk0
k, pk1

k) to A.

2Remember that in the one-time strong unforgeability game the adversary is allowed to ask
to a signing oracle for the signature on one message.

89

Decryption queries: Upon a decryption query from A:

1. If Forge occurs output ⊥ and halt.

2. If VerSS
vk((c1, . . . , ck), σ) = 0 output ⊥ and halt.

3. Otherwise, there will be some i such that vki 6= vk∗i . Decrypt using DecPKE

with the key skvki
i previously generated and check all the other encryptions,

then return either the resulting plaintext m or ⊥ if the check fails.

Challenge queries: Upon a challenge query m0,m1:

1. Send m0,m1 to the challenge oracle for the IND-CPA game of A′ and
obtain the corresponding challenge ciphertext (c∗1 , . . . , c

∗
k).

2. Sign (c∗1 , . . . , c
∗
k) using sgk∗ to get the signature σ∗.

3. Return the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗).

Output: When A outputs b∗ also A′ outputs b∗.

As long as Forge doesn’t occur, it is clear that the IND-CPA advantage of A′
against PKEk is the same as the IND-CCA2 advantage of A against the above
scheme. Since we are assuming the IND-CPA security of PKEk, we have the
IND-CCA2 security as desired. 4

Remark 6.4 It is clear that, as already mentioned by the authors in [89], the
IND-CPA security of the “randomized McEliece” scheme is not absolute, but
depends on the choice of the sizes of the message m and randomness r in the
encryption procedure (r||m)G + e. In the context of a IND-CPA attack game,
in fact, this ciphertext is subject to general decoding attacks with partial infor-
mation about the plaintext. As illustrated in [89, Table 1], if the randomness r
is not large enough, the IND-CPA security of the scheme can be easily broken.

6.4 A Direct Translation

We now explain how to realize the Rosen-Segev scheme using McEliece3. The
construction arises naturally if we want to be as close as possible to the original
McEliece formulation. We hence follow the usual approach of the McEliece
cryptosystem, that is to choose a different random error vector every time we call
the evaluation algorithm; this implies that we are not using functions anymore.
The construction is proved to be secure under k-correlated inputs in Theorem 6.3.

It proceeds as follows:

3A similar work has been done by Peikert in [96] for the case of LWE-based lattice encryption.

90

Describe McEliece as a pair McE = (G,F) composed by two algorithms: G is a
generation algorithm that samples a description, and F is an evaluation algorithm
that provides the evaluation on a given input.

Generation: on input n, k the algorithm G generates a random generator matrix
Ĝ for an [n, k] linear code over Fq with an efficient decoding algorithm given
by the code description Γ , a k × k random invertible matrix S and an n × n
permutation matrix P , then publishes the public key G = SĜP and the private
key (S, P,Γ).

Evaluation: on input G,m the algorithm F generates a random error vector e
of fixed weight w in Fnq , computes ψ = mG+ e and outputs the ciphertext ψ.

It is possible to invert F using the trapdoor: on input (S, P,Γ) and ψ, multiply
ψ by P−1, decode to obtain mS and retrieve m by multiplying by S−1.

We claim that, for a certain choice of parameters, this encryption process is
secure under k-correlated inputs. This is proved in the following theorem, which
closely follows the proof of [45, Th. 6.2]. First, we need a lemma:

Lemma 6.3 If the indistinguishability assumption (Assumption 2 of Section
3.1.1) holds for parameters n̂, k and ŵ, then the ensembles {(G,mG+ e) : G ∈
Fk×n̂q ,m ∈ Fkq , e ∈ Wq,n̂,ŵ} and {(G,y) : G ∈ Fk×n̂q ,y

$←− Fn̂q } are computation-
ally indistinguishable.

Proof An equivalent lemma was proved by Fischer and Stern in [43] for the syn-
drome decoding (Niederreiter) case. We know [69] that the two formulations are
equivalent; in particular, any adversary able to distinguish the above ensembles
can be used to build an adversary for the Niederreiter case. Consider then the
problem of distinguishing the ensembles {(H,HeT) : H ∈ F(n̂−k)×n̂

q , e ∈Wq,n̂,ŵ}
and {(H,y) : H ∈ F(n̂−k)×n̂

q ,y
$←− Fn̂−kq } as in [43] and suppose A is a proba-

bilistic polynomial-time algorithm that is able to distinguish the ensembles of
Lemma 6.3. In particular, say A outputs 1 if the challenge ensemble is of the
form (G,mG+ e) and 0 otherwise. We show how to construct an adversary A′
that solves the above problem.

Let (H,z) be the input to A′, where z is either HeT for a certain error vector
e ∈ Wq,n̂,ŵ or a random vector of Fn̂−kq . By linear algebra, is easy to find a
vector x ∈ Fn̂q with wt(x) ≥ ŵ such that z = HxT. It is then enough to choose
x uniformly at random in the corresponding coset, and submit (G̃,x) to A,
where G̃ is the generator matrix associated to H. Now, if z = HeT we can write
x = m̃G̃+ e; in this case, in fact, we have HxT = z = HeT =⇒ H(x− e)T = 0
and clearly this implies that (x− e)T is a codeword. Then A will output 1 and
so will A′. Otherwise, A will output 0 and so will A′. In both cases, A′ is able
to distinguish correctly and this terminates the proof. 4

91

We then state an assumption regarding the computational indistinguishabil-
ity of some distributions.

Assumption 4 Let U1, . . . , Uk be k uniform k× n matrices and F be the evalu-
ation algorithm defined above. Then the distributions (U1, . . . , Uk,F(U1,m), . . . ,
F(Uk,m)) and (U,F(U,m)) are computationally indistinguishable4.

Note that in the latter distribution the error vector used has length nk and
weight wk. A formal argument is provided in Remark 6.5.

We are now ready to state the theorem.

Theorem 6.3 Fix an integer k. If the parameters n, k, w are chosen such that
decoding a random linear code with parameters nk, k and wk is hard and As-
sumption 4 holds, then the above encryption process is secure under k-correlated
inputs.

Proof Let A be an adversary for the one-wayness under k-correlated inputs. We
define the advantage of A to be

Adv(A, λ) = Pr[A(G1, . . . , Gk,F(G1,m), . . . ,F(Gk,m)) = m]

where G1, . . . , Gk are k independent public keys generated by G.
We assume the indistinguishability assumption holds: we can then exchange all
the matrices Gi with uniform matrices Ui with a negligible advantage for the
attacker. Now, let’s define the k × nk matrix U by concatenating the rows of
the matrices Ui, i.e. U = (U1| . . . |Uk). By Assumption 4, the distributions
(U1, . . . , Uk, F(U1,m), . . . ,F(Uk,m)) and (U,F(U,m)) are interchangeable with-
out a significant advantage for the attacker. We now invoke Lemma 6.3 with
n̂ = nk and ŵ = wk. Hence

Adv(A, λ) = Pr[A(U,F(U,m)) = m]− Pr[A(U,y) = m] ∈ negl(n)

and since this last one is of course negligible, we conclude the proof. 4

Remark 6.5 Similarly to the case of the IND-CPA security of the McEliece
variant (as pointed out in Remark 6.4), the security we are trying to achieve is not
absolute, but depends on a suitable choice of parameters. Assumption 4 consists
of replacing the vector (mU1+e1|| . . . ||mUk+ek) with the vector mU+e, where
U = (U1| . . . |Uk) and e is a random error vector of weight wk; in other words, we
would like to argue that e′ = (e1|| . . . ||ek) is computationally indistinguishable
from e. Note that wt(e′) = wt(e) but while the distribution of the error positions
on e is truly pseudorandom, e′ is formed by k blocks of weight w each. It is
plausible that the number of vectors of this kind (that we denote #e′) is not too
small compared to the total of error vectors with same length and weight. We
can use the well-known bound

(
n
w

)
≈ 2nh2(w) + ε, where h2 : R→ R is the usual

binary entropy function defined by h2(x) = −x log2 x− (1− x) log2(1− x) and ε
is a small approximation error. We then have the following estimate:

4For a formal definition, see for example Yao [126].

92

#e′

|Wq,nk,wk|
=

(
n

w

)k

(
nk

wk

) ≈ (2nh2(w) + ε)k

2nkh2(wk) + ε
. (6.2)

so that as ε approaches 0, the above ratio approaches 1 as desired.

One can then implement the Rosen-Segev scheme using this choice of F and G.
For completeness we present the details below.

KeyGenNEW : Invoke G for 2k times independently and obtain the collections
of public keys pk = (pk0

1 , pk1
1 , . . . , pk0

k, pk1
k) and private keys sk = (sk0

1 , sk
1
1 ,

. . . , sk0
k, sk

1
k), where pkij = Gij and skij = (S, P,Γ)ij as above.

EncNEW : To encrypt a plaintext m with the public key pk, sample a key (vk, sgk)
and a random x ∈ {0, 1}k, then:

1. Evaluate ci = F(pkvki
i , x) for i = 1, . . . , k.

2. Set y = m⊕ h(pkvk1
1 , . . . , pkvkk

k , x).

3. Compute σ = SignSS
sgk(c1, . . . , ck, y).

where vki represents the i-th bit of vk. As in [106] we can assume m to be a single
bit, in which case h describes a hard-core predicate for McEliece; the protocol
extends easily to multiple bits plaintexts.
Finally, output the ciphertext ψ = (vk, c1, . . . , ck, y, σ).

DecNEW : Upon reception of a ciphertext ψ:

1. Verify the signature; if VerSS
vk((c1, . . . , ck, y), σ) = 0 output ⊥.

2. Otherwise compute5 xi = F−1(skvki
i , ci) for i = 1, . . . , k.

3. If x1 = · · · = xk then set m = y ⊕ h(pkvk1
1 , . . . , pkvkk

k , x1) and return the
plaintext m, otherwise output ⊥.

The security is assessed in the following corollary:

Corollary 6.4 The above encryption scheme is IND-CCA2 secure in the stan-
dard model.

Proof By Theorem 6.3, the collection of McEliece encryption schemes McE is
k-correlation secure. Then this is analogous to Theorem 6.1, noting that the
same argument applies when F = McE, i.e. f describes a randomized algorithm
rather than a function. The proof uses the same steps as in Theorem 6.2, with
the exception that in our case Lemma 6.2 is proved by constructing an adversary
A′ that works as a predictor for the hard-core predicate h. 4

5By analogy with the Rosen-Segev scheme. Clearly in practice it would be much more
efficient, rather than decoding k ciphertexts, to just decode one and then re-encode and test as
in [36, Th. 3].

93

6.5 Conclusions

The scheme of Dowsley et al. [36] is a first proposal to translate the Rosen-Segev
protocol to the McEliece framework. However, the construction is ambiguous, as
we have shown in Section 6.3.2. Another criticism of the Dowsley, Müller-Quade,
Nascimento idea is the strange and unnecessary “forgetting” of half the private
keys, and forbidding ciphertexts to feature the verification key vk∗. The original
Rosen-Segev scheme has no such requirements.
We therefore present a construction that successfully deals with the problem,
providing a choice of algorithms F and G that can be used directly into the
Rosen-Segev scheme preserving the original framework.

94

Signatures

7.1 Introduction

Digital signatures (Section 2.1.4) are a very important cryptographic protocol
in the modern world. Among the most popular there are schemes based on the
RSA assumptions, discrete logarithm (DSA) and elliptic curves (ECDSA), all
included in the FIPS standard 186-3 [70]. On the other hand, many schemes
based on coding theory have been proposed over the years, either following a
“direct” approach like CFS (Courtois, Finiasz and Sendrier [29]) and KKS (Ka-
batianskii, Krouk and Smeets [62]), or converting a zero-knowledge identification
scheme with the help of the Fiat-Shamir transform [41]. Code-based identifi-
cation schemes are usually built via a 3-pass protocol (Véron [125]) or, more
recently, a 5-pass protocol (Cayrel, Véron and El Yousfi [24]), in turn relying on
the work of Stern [120, 121]. Unfortunately, all of the above are highly inefficient
in practical situations, due mainly to a huge public key, a large signature and
a slow signing algorithm. This usually comes from having to repeat the pro-
tocol many times in order to guarantee correctness or security. In this chapter
we present the state-of-art work in coding signatures, and point out the main
difficulties in designing a secure and efficient scheme based on coding theory.
The chapter is organized as follows: in the next section we present the classical
proposals for code-base schemes that we have already mentioned, including CFS,
KKS and the identification schemes by Stern, Véron and Cayrel et al. In Sec-
tion 7.3 we illustrate some recent proposals for lattice signatures, and we discuss
the feasibility or unfeasibility of such an approach for code-based schemes. We
conclude in Section 7.4.

7.2 Existing Schemes

7.2.1 CFS

A natural approach for code-based signatures would be to follow the usual hash
and sign framework that is the base of the very famous Full Domain Hash (FDH)
signature scheme (Bellare and Rogaway [7, 8]). This is a very efficient signature
scheme based on the RSA assumptions, and it has been proved to be existentially
unforgeable under adaptive chosen-message attacks in the random oracle model,
hence achieving the maximum desirable level of security (see for example Coron
[28]). The framework in its simplest version makes use of a trapdoor one-way
function f and a hash function H whose output is an element of the domain
of f ; the hash function is modelled as a random oracle. The key feature is
the use of the one-way function in a “reverse” way compared to how it would
be used in the related cryptosystem. The procedure is as follows: first, the
message that is to be signed is hashed, then the trapdoor is applied to it. The
signature is σ = f−1(H(µ)). The verification is public and can be performed
with the public key; this is applied directly to the received signature, and the
verifier then computes himself the hash value and checks that f(σ) = H(µ). For
clarification, we present the basic RSA-FDH version below.

97

Table 7.1: The FDH Signature Scheme.

K
Ksign the group Z∗ϕ(N).

Kver the group Z∗ϕ(N).

M The set of binary strings (of arbitrary length) {0, 1}∗.

Σ The ring ZN .

KeyGen Fix an RSA modulus N and a hash function H : {0, 1}∗ → ZN . Choose
at random an encryption exponent e ∈ Z∗ϕ(N) and compute its inverse d
modulo ϕ(N). Return the signing key d ∈ Ksign and the verification key
e ∈ Kver.

Sign On input a signing key d ∈ Ksign and a message µ ∈ M, compute y = H(µ)
and return the signature σ = yd (mod N) ∈ Σ.

Ver On input a verification key e ∈ Kver, a message µ ∈ M and a signature
σ ∈ Σ, compute y = H(µ) and y′ = σe (mod N), then output 1 if y = y′,
else return 0.

Unfortunately, it is easy to see that this approach can’t be applied directly to
the coding theory setting. Consider without loss of generality the Niederreiter
trapdoor function (a similar argument can be given for McEliece) for an [n, k]
linear code over Fq, and suppose H is a random oracle mapping bit strings to
words of Frq, where r = n− k. In general, a randomly chosen syndrome does not
decode uniquely, so the signing algorithm fails. The idea of Courtois, Finiasz
and Sendrier in [29] is to sequentially add an integer c to the input1 of H and
to test if H(µ, c) is a decodable syndrome, iterating the procedure until such a
syndrome is found. This can be done more efficiently, for instance by random
counter sampling in the set {0, . . . , 2r − 1} as pointed out by Dallot [32].
It is clear that in general the process is not efficient: with the original McEliece
parameters n = 1024, k = 524, w = 50, q = 2 there are exactly 2500 distinct
syndromes, of which only

∑w
i=1

(
n
i

)
≈ 2284 are decodable. Thus an average of

2216 decoding attempts would be needed, which is obviously not plausible. Even
if the parameters are adjusted like suggested by the authors (m = 16, w = 9 with
n = 2m, r = mw, for a security level of 280), the scheme is far from practical: in
order to sign it is necessary to repeat the algorithm in average 9! times, with
the additional disadvantage of a very big public key (1152 Kbytes). On the
other hand, the verification is intuitively very fast (similarly to the Niederreiter
encryption process, it is just a matrix-vector multiplication) and the signature
size can be considerably shortened, thanks to an indexing trick, to reach a size
comparable to other schemes; however, the two above flaws are so limiting that
the disadvantage of CFS is still too great in many applications.

Remark 7.1 Note that the use of McEliece in this context would be even worse,
since the above mentioned indexing trick relies on the fact that the signature is
a vector of very low weight, and couldn’t be applied in this case. The signature

1This can be realized, for example, by concatenating µ and the bit string corresponding to
the integer c.

98

would therefore have at least size k = n−mw, which is of course too big for any
suitable set of parameters.

Table 7.2: The CFS Signature Scheme.

Setup Fix public system parameters q, n, r, w ∈ N.

K
Ksign the set of triples formed by a k×k invertible matrix over Fq, an n×n
permutation matrix over Fq and a code description.

Kver the set of k × n matrices over Fq.

M The set of binary strings (of arbitrary length) {0, 1}∗.

Σ The vector space Frq.

KeyGen Generate a random parity-check matrix Ĥ for an [n, n − r] linear code
over Fq with an efficient decoding algorithm given by the code description
Γ , a r × r random invertible matrix S and an n × n permutation matrix
P . Return the signing key (S, P,Γ) ∈ Ksign and the verification key H =
SĤP ∈ Kver.

Sign On input a signing key (S, P,Γ) ∈ Ksign and a message µ ∈ M, find c such
that y = H(µ, c) is a decodable syndrome, decode y to recover e ∈Wq,n,w

and return the signature (e, c) ∈ Σ.

Ver On input a verification key H ∈ Kver, a message µ ∈ M and a signature
σ = (e, c) ∈ Σ, compute y = H(µ, c) and y′ = HeT, then output 1 if y = y′

and wt(e) ≤ w, else return 0.

To give a better picture, we now present an extract of [29, Table 6], including
three variants of the above CFS set of parameters (m = 16, w = 9). These are
simple trade-off techniques optimized for fast verification (CFS1), short signature
(CFS3) or halfway between the two (CFS2); see [29, Section 5.3] for more details.
In the table below, “Data Size” specifies the instance of the scheme, for example
the size of the RSA modulus in FDH, the syndrome length in CFS etc.

Table 7.3: Comparison of some of the most popular signature schemes. The signature
size is given in bits, the public key size in kilobytes and all the timings are measured on
a machine running at 1GHz.

Hard Problem Factoring Disc. Log Ell. Curves Syndrome Decoding
Scheme RSA-FDH DSA ECDSA CFS1 CFS2 CFS3

Data Size (bits) 1024 160/1024 160 144 144 144
Security 280 280 280 280 280 280

Signature (bits) 1024 320 321 132 119 81
Public Key (Kb) 0.2 0.1 0.1 1152 1152 1152

Signing 9 ms 1.5 ms 5 ms 10-30s 10-30s 10-30s
Verification 9 ms 2 ms 6 ms < 1 µs < 1 ms ≈ 1s

A Generalized Birthday Attack (GBA) due to Bleichenbacher was presented by
Finiasz and Sendrier in [42], with the result that the original set of parameters
(m = 16, w = 9) can’t be considered secure anymore. The authors propose
instead (m = 21, w = 10) or (m = 15, w = 12). Barreto, Cayrel, Misoczki

99

and Niebuhr in [2] presented a variant of CFS using the quasi-dyadic framework
(Section 3.3.2). The public key size is considerably reduced and, among the
various trade-offs between key size and signing complexity, intermediate choices
seem the more appropriate: for example (m = 15, w = 12) results in a public key
of 169 Kbytes, although in average 229.8 repetitions are needed to sign, which is
still very high.

Remark 7.2 Note that all the above “CFS-friendly” codes have a very high
rate. Thus, if Goppa codes are used, the scheme is likely to be susceptible to the
distinguishing attack already mentioned in Remark 3.1. Note also that there is
currently no known distinguisher for GS codes, that could thus be considered a
safer choice.

7.2.2 KKS

A diametrically opposed approach was introduced in 1997 by Kabatianskii,
Krouk and Smeets [62]. Their scheme, in fact, realizes signatures without decod-
ing. The approach seems promising since it avoids the main problem of CFS-like
signatures, that is, that a randomly generated syndrome is in general not de-
codable. Moreover, as decoding is not involved, the scheme in principle does
not need to use special families of codes with an efficient decoding algorithm.
However, some issues are still arising from the construction, as we will see later.
The basic scheme is presented below.

Table 7.4: The KKS Signature Scheme.

Setup Fix public system parameters q,N, n, r, k, w1, w2 ∈ N.

K
Ksign the set of pairs formed by a set of integers of cardinality n, and a k×n
matrix over Fq.

Kver the set of pairs formed by an r× k matrix and an r×N matrix, both
over Fq.

M The vector space Fkq .

Σ The vector space FNq .

KeyGen Generate a random parity-check matrix H for an [N,N − r] linear code Ĉ
over Fq and a generator matrix G for an [n, k, w1] linear code C over Fq such
that wt(x) ≤ w2 for all x ∈ C, then choose a size-n subset J ⊂ {1, . . . , N}.
Return the signing key (J,G) ∈ Ksign and the verification key (F,H) ∈ Kver

where F = HJG
T and HJ is the r × n submatrix indexed by J .

Sign On input a signing key (J,G = {gi,j}) ∈ Ksign and a message µ ∈ M, form
G∗ by setting gi,j = 0 ∀j /∈ J , then compute σ = µG∗ and return the
signature σ ∈ Σ.

Ver On input a verification key (F,H) ∈ Kver, a message µ ∈ M and a signature
σ ∈ Σ, output 1 if w1 ≤ wt(σ) ≤ w2 and FµT = HσT, else return 0.

It is easy to see that the verification step works for correctly formed signatures
since HG∗T = HJG

T.

100

The authors’ first proposal is to choose C to be an equidistant code, i.e. a
code whose codewords are all at the same distance from each other. In this
case we would have w1 = w2 = qk−1 and N ≥ n = qk−1

q−1 . Unfortunately, this
straightforward approach isn’t applicable in practice. For the binary case, for
example, the number of distinct signatures is exactly 2k, hence for any desirable
security level (k = 128 or 256) the value of N is too large. Three alternatives
are given in [62].

First Variant

The first variant consists of choosing C to be the dual of a binary BCH code (see
Definition 2.24). The bound on the weight of the codewords is guaranteed by
the following lemma.

Lemma 7.1 (Carlitz-Uchiyama Bound) Let C be the dual of a binary BCH
code of length n = 2m − 1 and designated distance δ = 2s + 1. Then for any
x ∈ C: ∣∣∣wt(x)− n+ 1

2

∣∣∣ ≤ (s− 1)
√
n+ 1. (7.1)

In addition, the scheme features also an invertible k × k matrix A in order to
mask the structure of G, so the matrix F is now defined as HJ(AG)T. The
following choice of parameters is suggested: m = 10, s = 6, k = ms = 60, n =
2m − 1 = 1023, w1 = 352, w2 = 672, r = 2808 and N = 3000.

Second Variant

In the second variant C is chosen as a random binary code. The bound is in
this case satisfied with a large probability, which is estimated in the following
proposition ([62, Prop. 3]).

Proposition 7.1 Let C be a randomly chosen [n, k] binary code given by a gen-
erator matrix in systematic form, and fix δ ∈ R. Let h2 be the binary en-
tropy function as defined in Remark 6.5. Then the probability that wt(x) ∈
[n2 (1− δ), n2 (1 + δ)] for every non-zero codeword x ∈ C is at least

1− 2−r+nh2(δ)+1. (7.2)

This can be easily generalized to the q-ary case by replacing 2 with q and h2

with hq in (7.2), where hq(x) = x logq(q − 1)− x logq x− (1− x) log2(1− x) for
all x ∈ R. For example with the proposed parameters k = 160, n = 900, w1 =
90, w2 = 110, r = 1100 and N = 2000 this probability is at least 1− 2−749.

Third Variant

The idea of this variant is to construct a the code C starting from smaller codes
for which is known that the codewords have low weight. In particular, C is formed
as direct product of P distinct [n∗, k∗, w∗1] linear codes Ci over Fq, each having
codewords with weight less than w∗2 . We will then have n = Pn∗, k = Pk∗,
w1 = Pw∗1 , w2 = Pw∗2 . The construction also makes use of P invertible k∗ × k∗

101

matrices A1, . . . , AP and P non-zero elements β1, . . . , βP of the field Fqk∗ . To
each of these elements is associated a matrix Mβi

representing the linear map
x 7→ xβi. The public key matrix F is then defined as F = (F1, . . . , FQ) for a
certain integer Q, where for j = 1, . . . , P we call Fj the r × k∗ matrix given by

Fj =
P∑
i=1

HJi(Mβj−1
i

AiGi)T, (7.3)

where J1, . . . , JP are disjoint size-n∗ subsets of {1, . . . , n} and Gi is the generator
matrix of the code Ci. Suggested parameters are Q = 14, P = 12, k∗ = 4, n∗ = 15
with the Ci being all equal to a binary equidistant code having w∗1 = w∗2 = 8.

Further discussion on KKS is given by Cayrel, Otmani and Vergnaud in
[23], along with a new set of parameters for the second variant. We report the
numbers in the next table; the public key size is expressed in kilobytes.

Table 7.5: Comparison of parameters for the KKS variants with binary codes (q=2).

Variant N r n k w1 w2 Public Key (Kb)
First 3000 2808 1023 60 352 672 86.4

Second 1250 990 280 60 50 230 38.7
Second (Cayrel et al.) 2000 1100 1000 160 90 110 142.3

Third 1100 765 180 48 96 96 35.8

Remark 7.3 The parameters proposed by Cayrel et al. are tailored to provide
a level of security of 280 against the general decoding attack of Canteaut and
Chabaud [21], which the other proposals fail to achieve. As we know from
Section 3.2.1, there exist more recent general decoding attacks that make also
these new parameters insecure.

It is easy to notice that, despite a reasonable signature size (few hundred
bits), the public key size is still very large. However, the real concern is the
security of the scheme; in fact, most of the original proposals can be broken
after recovering just a few signatures. This is because every message/signature
pair reveals some information on the secret support J (on average half of the
positions); the attack, described in detail in [23], succeeds to recover J with a
workfactor of approximately 280 operations with 13 and 20 signatures for the
first two variants and just 5 signatures for the third variant. There is a slight
improvement with the new parameters by Cayrel et al. (about 40 signatures),
but this is clearly still too vulnerable. The scheme seems therefore to be suitable
only as a one-time signature. In particular, Barreto, Misoczki and Simpĺıcio in
[3] proposed a variant that achieves one-time existential unforgeability against
chosen message attack. This is accomplished by simply using the basic KKS
framework together with a hash function H and with the addition of an error
vector in the signature, in the following way: the signer samples a random error
vector e of weight n, computes the hash value h = H(µ, HeT) and returns the
signature σ = hG∗ + e. The verifier then checks that wt(σ) ≤ 2n and that
h = H(µ, HσT + FhT). Some parameters are presented below.

102

Table 7.6: Example of parameters for the KKS variant of [3].

N r n k w1 w2 Public Key (Kb)
11626 5813 320 160 133 187 8363.3
16294 8147 448 224 192 256 16427.3
18586 9293 512 256 222 290 21374.3
27994 13997 768 384 342 426 48487.2
37274 18637 1024 512 464 560 85964.1

Recently, an attack by Otmani and Tillich [91] managed to break all the pa-
rameters proposed in the literature, including the above one-time scheme, with-
out even needing to know a single message/signature pair. The attack exploits
the fact that, even if H and G are chosen at random, the matrix H̃ = (H|F)
describes a code that does not behave as a random code. In particular:

- The left and the right part are related by the equation F = HJG
T.

- There are many low-weight codewords.
- The support of the codewords is limited to a very small subset of positions

(of size w2 + k or n+ k in the one-time variant).
- Part of the support is already known to the attacker (the rightmost k

positions).

Now, it is clear that low-weight codewords of the code described by H̃ are valid
message/signature pairs for the scheme. The idea is then to use general decoding
algorithms like ISD to look for low-weight codewords. It turns out that these
algorithms work better than usual, because of the above properties; all the pa-
rameters proposed are broken with timings that range from a few milliseconds
(Table 7.5, last row) to approximately 6 minutes (Table 7.6, last row). In par-
ticular, if I is the information set chosen in an iteration of the algorithm and
I ′ = I ∩ J , we expect to have k/|I ′| ≈ ρ/R, where ρ and R are the transmission
rates of, respectively, C and Ĉ. This value is very close to 1 for the original KKS
parameters and is exactly 1 (since both rates are equal to 1/2) for the proposal
by Barreto et al., so the number of required iterations is very small (less than two
in the last case); this explains the fast timings of the attack. On the other hand,
it is the evident that in order to avoid the attack ρ would need to be significantly
smaller than R, leading to even more impractical sets of parameters.

7.2.3 Identification Schemes and Fiat-Shamir

In modern cryptography, a Zero-Knowledge Identification Scheme is a protocol
that allows one party, called the Prover, to prove to another party, the Verifier,
that he possesses secret information, without revealing to the verifier what that
secret information is. The paradigm works as follows: suppose that the prover
P wants to prove to the verifier V the knowledge of some secret information s;
V is equipped with a public key pk and the public data D. To start, P chooses
some random data y and commits to it by sending Y = f(y) to V, where f

103

is usually a trapdoor one-way function or a hash function. V then chooses a
random challenge c and sends it to P. After receiving c, P computes a response
z as a function of s, c and y and transmits z. Finally, V checks that z is correctly
formed with the help of pk and D.

Table 7.7: Paradigm of 3-pass Zero-Knowledge Identification Scheme.

Public Data D.

Private Key s.

Public Key pk.

PROVER VERIFIER

Choose random y and compute Y = f(y). Y−→
c←− Choose random challenge c.

Compute the response z = z(s, c, y). z−→ Verify z using pk and D.

A classical example is the Feige-Fiat-Shamir identification scheme [40], based
on the Quadratic Residuosity (QR) hard problem, which we describe below.

Table 7.8: Feige-Fiat-Shamir Identification Scheme.

Public Data An RSA modulus N = pq.

Private Key s1, . . . , sk with (si, N) = 1.

Public Key v1, . . . , vk with vi = s2i (mod N).

PROVER VERIFIER

Choose y $←− Z and r
$←− {−1, 1}, then

set Y = ry2 (mod N).

Y−→

c←− c = (c1, . . . , ck) with ci
$←− {0, 1}.

Compute z = ysc11 s
c2
2 . . . sck

k (mod N). z−→ Accept if
z2 = ±Y vc11 v

c2
2 . . . vck

k (mod N).

Security is assessed with regard to two different types of adversaries. A zero-
knowledge attacker tries to extract information the protocol, in order to recover
the secret s; in this sense, even an honest verifier is considered as an adversary
for the scheme. An impersonator, instead, tries to replace the prover and to
produce a response that is accepted as valid without the knowledge of s. Both
adversaries are allowed to have access not only to the public key and the public
data, but also to the information exchanged during any number of interactions
between the prover and the verifier.
A correctly designed zero-knowledge identification scheme always features a zero-
knowledge proof that deals with the first kind of attacks, while for the second
kind, it should be at least computationally hard for an impersonator to produce
a valid response. For example, in the above scheme, the authors provide a zero-

104

knowledge proof that relies upon the hardness of QR. As for forgeries, note that
an impersonator would succeed if able to predict the k bits of c in advance. If
that is the case, in fact, to pass the verification it would be enough to choose
a random y, commit Y = y2v−c11 v−c22 . . . v−ckk (mod N) and, after receiving c,
reply with z = y. However, the probability of guessing k bits is 1

2k , so the
scheme is secure for large enough k.

Identification schemes are of particular interest because it is possible to con-
vert them into efficient signature schemes via the very famous Fiat-Shamir trans-
form [41]. The signer simply runs the protocol, where, for the purpose of gener-
ating the challenge, the verifier is replaced by a random oracle H. The signature
is then accepted according to the validity of the response in the identification
scheme.

Table 7.9: The Fiat-Shamir Signature Scheme.

Setup Select a zero-knowledge identification scheme I.

Sign On input the private key of I and a message µ, commit Y , set c = H(Y, µ),
compute a response z and return the signature σ = (Y, z).

Ver On input the public key of I, a message µ and a signature σ, set c = H(Y, µ)
then output 1 if z is accepted in I, else return 0.

The first code-based identification scheme relies on the hardness of syndrome
decoding, and was introduced in 1993 by Stern [120]. This is still a 3-pass
protocol like the Feige-Fiat-Shamir scheme, but it follows a slightly different
framework that makes use of multiple commitments. The scheme was then
converted by Véron [125] to an equivalent protocol that relies on GDP.

Table 7.10: Stern Identification Scheme.

Public Data The parameters n, k, w ∈ N, an (n− k)× n parity-check matrix H
over F2 and a hash function H.

Private Key s ∈W2,n,w.

Public Key S = HsT.

PROVER VERIFIER

Choose y $←− Fn2 and a permutation
π

$←− Sym(n), then set c1 = H(π,HyT),
c1,c2,c3−−−−−→

c2 = H(π(y)), c3 = H(π(y + s)).
b←− b

$←− {0, 1, 2}.

If b = 0 set z = (y, π). Accept if c1 and c2 are correct.

If b = 1 set z = (y + s, π). z−→ Accept if c1 and c3 are correct.

If b = 2 set z = (π(y), π(s)). Accept if c2 and c3 are correct
and wt(π(s)) = w.

105

It is easy to see that an honest prover is always accepted. In this case the
protocol is said to be complete.
In terms of zero-knowledge, the scheme admits a simple proof. Very informally,
the only data revealed during a run of the protocol is the two random objects y
and π, the permuted strings π(y) and π(s) and the padding y+ s. Clearly, y, π
and π(y) provide no information on s; the permuted string π(s) doesn’t leak
anything apart from the weight of s (which is already known), while y + s acts
like a one-time pad. This is because y is randomly chosen, hence on average we
will have wt(y) = n/2 and this is large enough to mask the support of s. We
will see in the next section how choosing these last two actions in a different way
can become dangerous for the scheme.

The biggest flaw of the scheme is that it is very easy for an impersonator
to provide a forgery. More specifically, an impersonator would be able to reply
correctly to two of the three challenges, arbitrarily, in the following way:

- The impersonator chooses random y and π plus another string x ∈ Fn2
(not necessarily of low weight) such that HxT = HyT + S, then builds c1
and c2 normally and c3 = H(π(x)). It replies to the challenge with (y, π)
if b = 0, or (x, π) if b = 1. The strategy fails for b = 2.

- The impersonator chooses random y and π plus another random string
x ∈ W2,n,w, then builds c1 and c2 normally and c3 = H(π(y + x)). It
replies to the challenge with (y, π) if b = 0 or (π(y), π(x)) if b = 2. The
strategy fails for b = 1.

- The impersonator chooses random y and π plus another random string
x ∈ W2,n,w, then builds c1 = H(π,H(y + x)T + S), c2 = H(π(y)) and
c3 = H(π(y + x)). It replies to the challenge with (y + x, π) if b = 1 or
(π(y), π(x)) if b = 2. The strategy fails for b = 0.

Overall the probability of cheating is exactly 2/3. This means that an hon-
est prover, in order to be accepted, needs to repeat the protocol many times.
The author in [120] suggests 35 repetitions, leading to a cheating probability of
10−6 ≈ 2−20, a weak authentication level. Still, even with this relatively small
number of repetitions, communication costs per round amount to nearly 1146
bits for the original set of parameters [512, 256, 56], for a total of more than
40110 bits. This results in a very long signature (> 150Kb) when the scheme
is instantiated in the Fiat-Shamir protocol. Moreover, the proposed parameters
are susceptible to general decoding attacks and the public key is very large, as
for all code-based schemes. It is easy to imagine that, with parameters secure
against modern criteria (e.g. at least 2128 security level for general decoding
attacks and a minimum authentication level of 2−32), the scheme would be even
less practical.

106

Many proposals have been designed to deal with the problem, both by re-
ducing the communication costs and by lowering the probability of cheating. In
the same paper [120] Stern describes a 5-pass protocol that replaces s with a
collection of vectors s1, . . . , s`, with cheating probability equal to 1+2`−1

2` ≈ 1/2.
Communication costs are, however, higher. Véron’s scheme [125], on the other
hand, reduces the communication costs slightly, but the cheating probability is
still 2/3. The same holds for the scheme of Gaborit and Girault [50], even though
their proposal, based on double circulant codes, is a first step to a concrete re-
duction in the public key size.

Recently, Cayrel, Véron and El Yousfi [24] proposed a variant that makes use
of linear codes over Fq, for q 6= 2. The scheme is a 5-pass protocol that relies on
the hardness of the q-ary syndrome decoding problem. The cheating probability
is shown to be exactly q

2(q−1) ; this is reasonably close to 1/2 for big enough q.
In addition, quasi-cyclic codes are used as in [50], to achieve smaller public key
sizes. In the table below, we indicate with ∗ the coordinate-wise multiplication
of vectors.

Table 7.11: Cayrel-Véron-El Yousfi Identification Scheme.

Public Data The parameters q, n, k, w ∈ N, an (n− k)× n parity-check matrix H
over Fq and a hash function H.

Private Key s ∈Wq,n,w.

Public Key S = HsT.

PROVER VERIFIER

Choose y,u $←− Fnq with u 6= 0n

and a permutation π $←− Sym(n),
c1,c2−−−→

then set c1 = H(π,u, HyT) and
c2 = H(π(u) ∗π(y), π(u) ∗π(s)).

α←− α
$←− Fq \ {0}.

Compute v = π(u) ∗ π(y + αs). v−→
b←− b

$←− {0, 1}.

If b = 0 set z = (u, π). z−→ Accept if
c1 = H(π,u, H(π−1(u) ∗ π−1(v))T − αS).

If b = 1 set z = (π(u) ∗ π(s)). z−→ Accept if c2 = H(v − αz, z)
and wt(z) = w.

Again, it is easy to check that the protocol is complete. The zero-knowledge is
proved in the random oracle model, through the use of a simulator that is able
to output a communication tape indistinguishable from a real prover-verifier
interaction. Let’s now consider an impersonator for the scheme. This would be
able to cheat with either of the following procedures:

107

- The impersonator chooses random y,u and π plus another string r ∈
Wq,n,w. It computes x ∈ Fnq such that HxT = S (but without satisfying
wt(x) = w), and guesses a value for α, say β ∈ Fq \ {0}. It then builds c1
normally and c2 = H(π(u) ∗ π(y + βx) − βr, r). Finally, it replies to the
challenge with (u, π) if b = 0 or r if b = 1. The strategy succeeds if b = 0
or if b = 1 and α = β.

- If b = 1 the impersonator chooses random y,u and π plus another random
string x ∈ Wq,n,w, and guesses a value for α, say β ∈ Fq \ {0}. It then
builds c1 = H(π,u, HyT+β(hxT−S)) and c2 = H(π(u)∗π(y), π(u)∗π(x)).
Finally, it replies to the challenge with either (u, π) if b = 0 or (π(u)∗π(x))
if b = 1. The strategy succeeds if b = 0 and α = β or if b = 1.

Overall, since the probability of guessing α is 1
q−1 , we have that a cheater succeeds

with probability q
2(q−1) as mentioned above.

A drawback of the scheme is that the data exchange consists now of Fq operations
and the public matrix is defined over Fq, so, since q needs to be chosen reasonably
large, both communication costs and public key size suffer a performance loss.

In a preprint by Aguilar Melchor, Gaborit and Schrek [81], a variant of
Véron’s scheme is proposed, consisting of a 5-pass protocol that makes use of
the double circulant construction. The paper also features a comparison of pa-
rameters for the previous schemes in the literature. We present it below.

Table 7.12: Comparison of the most popular zero-knowledge identification schemes,
for the same cheating probability of 2−16. All the sizes are expressed in bits and the
prover’s computation counts bit operations, except for CVE (F28-multiplications).

Stern 3 Stern 5 Véron CVE AGS
Rounds 28 16 28 16 18

Public Data2 122500 122500 122500 32768 350
Private Key 700 4900 1050 1024 700
Public Key 350 2450 700 512 700

Total Communication Cost 42019 62272 35486 31888 20080
Prover’s Computation 222.7 221.92 222.7 216 221

While the size of the public matrix is considerably smaller, the signature size,
even if reduced to 93Kb in the AGS scheme, is still very large, and the commu-
nication costs high. Moreover, for signatures, one would expect computational
costs to produce a forgery to be no less than 280; this would require, as claimed
by the authors in [81], to multiply all the above data by 5. Clearly, such a scheme
is completely impractical in many applications.

2The public matrix H.

108

Rank-based schemes

Classical coding theory problems rely on the well-known Hamming metric (Def-
initions 2.16, 2.17). An alternative is given by codes for the rank metric.

Definition 7.1 Let C be an [n, k] linear code over Fqm and let B = {v1, . . . ,vm}
be a basis of Fqm as a vector space over Fq. Let x = (x1, . . . , xn) ∈ C be a
codeword; we associate to x the matrix Mx = {xi,j} ∈ Fm×nq such that xi,j
is the i-th coordinate of xj with respect to B. The Rank Weight rk(x) of the
codeword is the rank of the associated matrix Mx. The Rank Distance drk(x,y)
between two codewords x and y is defined as rk(x− y).

As we have briefly mentioned in Section 3.1.3, the rank metric has been
used without much success for designing encryption schemes [47, 48]. The main
problem is that there is only one family of efficiently decodable codes in the rank
metric, the Gabidulin codes, for which the underlying algebraic structure reveals
too much information about the private key. In principle, though, no problems
of this sort should arise if the codes in use are random codes, that don’t need to
be decodable. This is the case for Chen’s scheme [26], introduced in 1996. The
protocol is the first proposal for an identification scheme that relies on the rank
metric, and, unlike all other schemes, has the interesting feature of not requiring
the use of a hash functions.

Table 7.13: Chen Identification Scheme.

Public Data The parameters q,m, n, k, w ∈ N and an (n− k)× n parity-check ma-
trix H over Fqm .

Private Key s ∈ Fnqm with rk(s) ≤ w.

Public Key S = HsT.

PROVER VERIFIER

Choose y $←− Fnqm and P
$←− GLn(Fq),

then set c1 = HP TyT and c2 = HyT.
c1,c2−−−→
α←− α

$←− Fqm \ {0}.

Compute v = y + αsP−1. v−→
b←− b

$←− {0, 1}.

If b = 0 set z = P . z−→ Accept if
HzTvT = c1 + αS.

If b = 1 set z = y. z−→ Accept if HzT = c2
and3 rk(v − z) = w.

The security comes from a version of the Syndrome Decoding problem based
for the rank metric. Unlike its Hamming metric correspondent, this is not proven

3The original scheme includes the possibility of α being 0, in which case the check would
become rk(v − z) = 0.

109

to be NP-hard, but only believed to be hard in general. It is also possible to
formulate a rank metric version of the GV bound (Definition 2.35); just like for
codes in Hamming metric, Loidreau [71] shows that random rank metric codes
lie on the bound with high probability. The parameter w is then chosen to
be less or equal to d/3, where d is the minimum (rank) distance of the chosen
code. With an argument similar to the CVE scheme, it is possible to prove that
cheating probability is exactly qm+1

2qm ≈ 1/2.
An interesting feature is that rank metric codes are in general much harder
to decode, so general decoding attacks (Chabaud and Stern [25], Ourivski and
Johansson [92]) have higher complexity. This means that even very small codes
may provide sufficient security: the original parameters proposed in [26] are
q = 2, n = 32, k = m = 16, w = 4.

The scheme is complete since the invertible matrix P is an invariant for the
rank metric (Berger, [10]). Unfortunately, the action of P alone is not enough
to map a word x of a given rank to any other word of the same rank (unlike the
case of permutation matrices in the Hamming metric). This is because P has
elements in Fq, hence does not change the basis generated by the coordinates of
x. As we already mentioned, this is a dangerous choice: Gaborit, Schrek and
Zémor in [51] describe an attack that exploits this flaw and allows to recover s
fully. In fact, since s and sP−1 generate the same vector space, it is enough to
compute sP−1 as α−1(v− y) and choose an arbitrary basis for the vector space
generated by it, then solve the system of equations given by S = HsT with
coordinates in this basis. The system has nw unknowns and (n−k)m equations,
which is directly solvable for any practical choice of parameters.
Another attack is also presented in [51], and takes advantage of the fact that
hash functions are not used in the protocol, so it is easier to extract information
from the exchange of data. In particular, when b = 0, the only unknown in the
expression HvT = c2+αH(sP−1)T is s (since P is revealed), hence the expression
provides additional equations that, together with S = HsT, allow to recover s
with only a few repetitions.

The authors also propose a “fix” of the scheme. The first issue is addressed
by including a left multiplication by a matrix Q ∈ GLm(Fq): this is also an
invariant for the metric, but, together with P , succeeds in changing the basis
generated by the coordinates of s while preserving the same rank. The second
issue is instead addressed by replacing the commitments with hash values, just
like in Stern’s scheme. In fact, the new protocol is essentially a translation of
Stern’s scheme to the rank metric case, and the cheating probability is again 2/3.
The authors suggest the following choice of parameters for their scheme: q = 2,
n = m = 20, k = 11, w = 6. With these values, the public matrix H has size
1980 bits and the public key is only 180 bits long. The number of bits exchanged
in a single round is approximately 800, resulting in a total communication cost
(for 28 rounds as in Stern’s scheme) of 22400 bits. Overall, the performance
of the scheme is similar to the AGS proposal [81], suggesting that rank metric
could be an interesting research direction.

110

7.3 An Alternative Approach for Signatures

7.3.1 Number Theory and Lattices

There is an easy way to construct efficient signature schemes based on classical
number theory problems, such as of factoring or computing discrete logarithm.
The approach consists of successive reductions building on the original hard prob-
lem, in the following way. A collision-resistant hash function (see Definition 2.7)
can be derived directly from the hard problem: for example, finding collisions for
the function H(x) = gx (mod N), where N is an RSA modulus, implies being
able to factor N . The hash function can be converted into a one-time signa-
ture where the private key is a pair of integers (x, y), the public key is the pair
(H(x),H(y)), and the signature of a message c is simply cx + y. The one-time
signature can then be converted into a zero-knowledge identification scheme as
described below: c is a challenge chosen by the verifer and y is the commitment
(a distinct y is used in every run of the protocol). Finally, the identification
scheme can be converted to a signature scheme by using the Fiat-Shamir trans-
form as described in Table 7.9. A similar scheme can be instantiated with a hash
function based on discrete logarithm, such as H(x1, x2) = gx1

1 gx2
2 (mod p). See

Okamoto [90] for more details.

Table 7.14: Factoring-based Identification Scheme.

Public Data An RSA modulus N = pq and a group element g.

Private Key s ∈ Ds.

Public Key S = gs (mod N).

PROVER VERIFIER

Choose y $←− Dy and set Y = gy (mod N). Y−→
c←− c

$←− Dc.

Compute z = y + cs. z−→ Accept if gz = Y Sc (mod N).

Lyubashevsky in [74] showed how to translate the framework to the lattice case.
The translation is direct, except for an issue which is inherent to the nature of
the lattice schemes: unlike factoring or discrete logarithm, in fact, the hardness
of lattice problems comes from finding elements that live in a specific subset of
a ring, namely elements with small Euclidean norm. This results in a leakage
of some parts of the private key. To overcome this limitation, Lyubashevsky
makes use of a technique, already introduced in [73], called aborting. Briefly,
this consists of refusing to answer to the challenge if in doing so the security of
the scheme would be compromised. In practice, this is realized by limiting the
set of possible answers to a smaller “safe” subset, consisting of elements whose
norm satisfies a certain bound. Details are given below. The hash functions in
this case are sampled from the family H(R,D,m) = {Ha : a ∈ Rm} where R is
the ring Zp[x]/(xn + 1), D ⊆ R and, for every z ∈ Dm, we define Ha(z) = a · z.

111

Table 7.15: Lattice-based Identification Scheme.

Public Data A hash function H $←− H(R,D,m).

Private Key s ∈ Dm
s .

Public Key S = H(s).

PROVER VERIFIER

Choose y $←− Dm
y and set Y = H(y). Y−→

c←− c
$←− Dc.

Compute z = y + cs. If z /∈ Gm set
z = ⊥. z−→ Accept if z ∈ Gm and

H(z) = Y + cS.

The subset G is exactly the “safe” subset described above. To further clarify the
scheme, we present below the proposed parameters for the scheme ([74, Fig. 2]).
In the following table, we denote with || · ||∞ the usual `∞ norm for vectors, that
is ||x||∞ = max

i
(|xi|).

Table 7.16: Parameter Definitions and Sample Instantiations.

Parameter Definition Sample Instantiations
n a power of 2 512 512 512 1024
m any integer 4 5 8 8
σ any integer 127 2047 2047 2047
κ integer such that 2κ

(
n
κ

)
≥ 2160 24 24 24 21

p integer ≈ (2σ + 1)m · 2− 128
n 231.7 259.8 295.8 295.9

R the ring Zp[x]/(xn + 1)
D {g ∈ R : ||g||∞ ≤ mnσκ}
Ds {g ∈ R : ||g||∞ ≤ σ}
Dc {g ∈ R : ||g||∞ ≤ κ}
Dy {g ∈ R : ||g||∞ ≤ mnσκ}
G {g ∈ R : ||g||∞ ≤ mnσκ− σκ}

Signature ≈ mn log 2mnσκ bits 49000 72000 119000 246000
Public Key ≈ n log p bits 16000 31000 49000 98000
Private Key ≈ mn log 2σ + 1 bits 16000 31000 49000 98000

Hash ≈ mn log p bits 65000 153000 392000 786000
Length of vector needed to break signature 223.5 227.9 228.6 229.4

Length of shortest vector that can be found 225.5 236.7 247.6 269.4

The last two lines refer to cryptanalytic parameters which are specific for lattice
cryptography (such as the LLL algorithm [67]).
Recently, Galbraith and Dwarakanath [52] showed that, despite its simplicity
and theoretical elegance, the scheme presents some implementation difficulties,
at least for constrained devices. Namely, sampling objects from Gaussian distri-
butions with very large standard deviation is not trivial, and rejection sampling
doesn’t seem applicable in practice; moreover, the signature size is very large.

112

7.3.2 A Coding Theory Scenario

We now discuss the possibility of creating an identification scheme following the
simple framework described in the previous section; we will show that such a
construction is not feasible.
One could think to translate the framework directly, that is, following the
paradigm described in Table 7.7. This would be based on Syndrome Decod-
ing, hence featuring a public matrix H, a secret s and the public key S = HsT.
The scheme would need to satisfy precise requirements:

- The secret s should have weight below the GV bound. This is to ensure
that the secret is unique and that SD is hard.

- The final verification should include an algebraic formula consisting of H,
the commitment Y and S, plus a check on the weight of the response z.

- The challenge c should be such that cs is defined, z = y + cs is defined
and c is compatible with the final verification4.

By analogy with the previous part of this section, we could think about
the syndrome computation as a hash function H(x) = HxT. Of course, this is
preimage-resistant only if the weight of x is small. It follows that the scheme is
subject to additional constraints. For example, the random element y and the
challenge c should be chosen such that wt(z) ≤ w, where w is the value of the GV
distance. A natural choice for c is to be an element of Fq. Since multiplication
by a field element is an invariant for the Hamming weight, this means that s
and y must satisfy wt(s) = γ1w,wt(y) = γ2w, for certain constants γ1, γ2 ≤ 1
such that γ1 + γ2 = 1.
A sample instantiation is described below (for the case γ1 = γ2 = 1/2).

Table 7.17: Syndrome-based Identification Scheme.

Public Data The parameters q, n, k, w ∈ N and an (n− k)× n parity-check matrix
H over Fq.

Private Key s ∈Wq,n,w/2 .

Public Key S = HsT.

PROVER VERIFIER

Choose y $←−Wq,n,w/2 and set Y = HyT. Y−→
c←− c

$←− Fq \ {0}.

Compute z = y + cs. z−→ Accept if HzT = Y + cS and
wt(z) ≤ w.

The protocol is complete and well-defined. However, the conditions on the weight
of s,y and z make the scheme vulnerable to an attacker who tries to learn the
secret. We will see how in the next theorem.

4This means Hc = c′H for some c′ not necessarily equal to c.

113

Theorem 7.1 Any identification scheme that satisfies the above requirements
cannot be a zero-knowledge protocol.

Proof We build an attacker A that will compute the private key. A is a passive
attacker, that is, A has only evidence of the exchanges between P and V: this
is the weakest possible adversarial model. To recover the secret information
s, A runs the protocol several times. At every run of the protocol, it stores
the challenge c and the corresponding response z = y + cs, then computes
z′ = c−1y+ s. Note that this is always possible, since c is a field element and is
non-zero. Without loss of generality, we can consider z′ to be of the form y′+s.
If y is randomly generated, so is y′; moreover, wt(y′) = wt(y) = w/2 << n/2 by
construction, so each of the coordinates y′i is biased to be more likely 0 than non-
zero. Therefore, A can perform successfully a very simple statistical analysis:
it fixes a particular i and observes the behavior of y′i for multiple runs. If y′i
is non-zero most of the times, then i ∈ supp(s). Eventually, A is able to fully
recover the support of s. This completes the attack in the binary case, and gives
enough information to recover s even in the non-binary case (for example with
a general decoding algorithm). 4

The crucial point is that y is constrained to be of small weight, hence the
expression y + cs is not enough to properly hide the support of s. This clashes
with the other security requirement, that is, to avoid forgeries. If one drops the
condition on wt(z), in fact, it is easy to find a vector that satisfies the verification
equation. We conclude that it is infeasible to create a scheme in such a direct
way.

Other more elaborate proposals involving permutation matrices and hash
functions have been analyzed and are still vulnerable. The issue seems to come
from the Hamming metric, which is too constraining to be able to hide the secret.
Unlike the lattice case, in fact, vectors in the Hamming metric are measured on
a position-dependent basis rather than on Euclidean norm. This seems to be
leaking too much information to provide zero-knowledge (unless using a Stern-
like protocol).
A natural approach would then be to investigate other metrics. We have seen
in the previous section that rank metric schemes have been proposed in the
literature. It is possible to imagine a rank-based scheme following the above
guidelines, by simply replacing the Hamming weight with rank weight and q
with qm for a certain m > 1. Note that multiplication by c ∈ Fqm is an invariant
for the rank weight. The change of metric would have the advantage that now a
vector is no longer measured by the number of its non-zero positions but rather
by the dimension of the vector space generated by its coordinates when seen as
Fq-vectors. It follows that a statistical analysis as above would not be applicable
in this setting. A further advantage would be the small size of the codes in
use, resulting in a very practical scheme. Unfortunately, rank metric schemes
are vulnerable to another kind of threat, related to basis of vector spaces, as
we have already seen for Chen’s identification scheme (Table 7.13). It is then
possible to prove a theorem analogous to Theorem 7.1 for the rank metric case.

114

Theorem 7.2 Any rank metric identification scheme that satisfies the above
requirements cannot be a zero-knowledge protocol.

Proof We build a passive zero-knowledge attacker A. Suppose that the response
z is such that rk(z) = rk(y) + rk(s). Then the vector space Vz generated by the
columns of z (seen as a matrix over Fq) will coincide with the space generated
by the union of the columns of y and cs, that is

Vz = span({z1, . . . ,zn}) = span({y1, . . . ,yn} ∪ {cs1, . . . , csn}). (7.4)

To recover s, A runs the protocol several times and proceeds as before, collecting
t samples z(1), . . . ,z(t) of the form y′ + s that satisfy the above property. Next,
A intersects the corresponding vector spaces Vz(i) . Even for a very small t, we
will have with overwhelming probability

t⋂
i=1

Vz(i) = span({s1, . . . , sn}). (7.5)

We therefore assume that span({s1, . . . , sn}) is efficiently computable. Once A
has evidence of this space, it is enough to fix an arbitrary basis for it and solve
the system of equations given by S = HsT with respect to this basis. The system
has nw/2 unknowns and (n− k)m equations, hence A is able to recover s for all
practical choice of parameters. This concludes the attack. 4

Just like for the Hamming case, the main issue is the clash between two
opposite requirements. If y is of small rank, the vector z leaks information about
the vector space generated by the columns of s; if not, we lose the condition on
rk(z) and the scheme becomes vulnerable to impersonation. We conclude that
it is infeasible to create a scheme in such a direct way.

7.4 Conclusions

In the first part of this chapter, we have thoroughly reviewed the literature
about code-based signature schemes. None of the current protocols is completely
satisfying, because of very large keys and signatures, slow signing algorithms or
security issues. This makes code-based schemes a very impractical choice for
many applications. The work of Lyubashevsky [74] suggests a potential new
direction for designing efficient signature schemes. We show in Section 7.3.2
that this approach fails if translated directly to the case of coding theory; the
syndrome decoding problem is in fact too constraining both for the Hamming
metric and the rank metric. We conclude that the design of an efficient signature
schemes based on coding theory remains an open problem.

115

116

Conclusions and Future Work

Code-based cryptography is one of the more accredited candidates for public-
key cryptography in a “post-quantum” scenario. So far, though, some flaws have
prevented its use in many applications, in particular the huge size of the public
key. In this thesis, we have thoroughly investigated the area of code-based
cryptography, with the aim of addressing its main issues. The contributions of
this thesis can be summarized as follows:

Public Key Size

In Chapter 4, we present a proposal for a variant of the McEliece cryptosys-
tem. This is an individual work by the author, and follows on from the proposal
by Misoczki and Barreto based on quasi-dyadic codes [85]. The main novelty of
the scheme is replacing Goppa codes with Generalized Srivastava codes; to the
best of our knowledge, this is the first time that this family of codes is proposed
in cryptography. The particular structure of the family brings numerous bene-
fits: in particular, the extra parameter t allows us to modulate the construction
in a much more flexible way. It is in fact possible to use codes over relatively
small extension fields without losing in security. Moreover, t quantifies trade-
offs both for security (the ratio (extension degree)/(number of free variables) is
crucial for the FOPT attack of [38]), and for reduction in the public key size.
This results in a flexible and practical scheme which produces very small keys
and resists all the attacks presented so far.
The practicality of the scheme is highlighted in a subsequent work by Cayrel,
Hoffmann and the author, which is presented in the second part of Chapter 4.
An implementation of the scheme is provided, both for C++ language and for an
embedded device. The timings reported show how the scheme is more suitable
for a practical implementation than its Goppa codes-based counterpart (imple-
mented by Heyse in [58]): for example, the log/antilog tables for the finite field
used by our construction fit completely in the flash memory of the device, hence
there is no need for external memory and tower field arithmetic. It is also evident
that adding a CCA2 conversion such as the Fujisaki-Okamoto transform [46] re-
sults in a rather small computational overhead. The transform is implemented
thanks to a simple tweak, consisting of exchanging the role of the message and
the randomness in the McEliece encryption process, which is an original contri-
bution. Finally, the choice of the Keccak for both our hash functions and as a
random number generator is certainly a major advantage since this has recently
been chosen as the new SHA-3.

IND-CCA2 Security

IND-CCA2 is rightly considered the most desirable security property for
public-key encryption schemes. While the original McEliece and Niederreiter
schemes are clearly not secure in this sense, there are a number of possible ways
to obtain IND-CCA2 security for code-based schemes. In the random oracle
model, a very general one is represented by the Fujisaki-Okamoto transform
that we just mentioned; there exist also other, more specific transforms such as

119

the one by Kobara and Imai [64]. In Chapter 5, we propose a new construction,
based on the KEM-DEM paradigm for hybrid encryption. A KEM based on the
Niederreiter scheme is described, and its security is rigorously proved. The work
stems from the RSA-KEM of Cramer [115] and a suggestion by Bernstein, and
the main contribution is a slight modification of the original KEM structure, in
order to take care of non-decryptable ciphertexts without leaking information.
In the standard model, we carefully analyze (Chapter 6) a work by Dowsley,
Müller-Quade and Nascimento [36], in which the authors try to apply the general
framework of correlated products presented by Rosen and Segev in [106]. In the
paper there are several inaccuracies that lead to an ambiguous description of the
proposed scheme. All of these are addressed and corrected, and a more rigorous
description is presented together with a proposal for applying the original Rosen-
Segev framework in the coding theory environment.

Signatures

Digital signatures are arguably one of the most important cryptographic
primitives in modern society. Unfortunately, unlike the case of encryption schemes,
coding theory schemes have so far failed to provide an efficient solution for digital
signatures. In Chapter 7 we present a very accurate literature review, featuring
the main proposals for code-based signature schemes. All of the schemes pre-
sented over the years end up being either insecure or highly inefficient, due to
large public keys, long signatures and slow signing algorithms. We discuss some
recent proposals for lattice signatures, based on zero-knowledge identification
schemes. We show that it is impossible to translate this approach directly to the
coding theory scenario. This is mainly due to the strongly constraining nature
of the syndrome decoding problem, both for the Hamming metric and the rank
metric. Thus, the design of an efficient code-based signature scheme is still an
open problem.

Future Work

It is clear that much work is still needed to truly allow code-based cryptog-
raphy to be considered for practical applications. For example, it would be very
helpful to have a precise assessment of the security of the quasi-dyadic schemes.
In particular, the FOPT attack doesn’t have an accurate complexity analysis
(only partially addressed in [39]).
As for IND-CCA2 security, a few promising recent results have been published,
for instance by Preetha Mathew, Vasant, Venkatesan and Pandu Rangan [78]
at ACISP 2012. We also plan to publish our work on the Niederreiter KEM,
together with an assessment of other interesting properties such as anonymity.
Most of all, future work needs to carefully consider the current state of code-base
signature schemes. In this case, it seems harder to reach a satisfactory conclu-
sion. Recent results like the work of Preetha Mathew, Vasant and Pandu Rangan
on CFS [77], while undoubtedly constituting an improvement, still fail to address
the main issues of the scheme, in this case the very slow signing algorithm.

120

Bibliography

[1] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni. Quasi-Cyclic Low-
Density Parity-Check Codes in the McEliece Cryptosystem. In ICC, pages
951–956. IEEE, 2007.

[2] P. S. L. M. Barreto, P.-L. Cayrel, R. Misoczki, and R. Niebuhr. Quasi-
Dyadic CFS Signatures. In X. Lai, M.i Yung, and D. Lin, editors, In-
scrypt, volume 6584 of Lecture Notes in Computer Science, pages 336–349.
Springer, 2010.

[3] P. S. L. M. Barreto, R. Misoczki, and M. A. Simpĺıcio Jr. One-time signa-
ture scheme from syndrome decoding over generic error-correcting codes.
Journal of Systems and Software, 84(2):198–204, 2011.

[4] A. Becker, A. Joux, A. May, and A. Meurer. Decoding Random Binary
Linear Codes in 2n/20: How 1 + 1 = 0 Improves Information Set Decoding.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237
of Lecture Notes in Computer Science, pages 520–536. Springer, 2012.

[5] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In FOCS, pages 394–403. IEEE Com-
puter Society, 1997.

[6] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among
Notions of Security for Public-Key Encryption Schemes. In H. Krawczyk,
editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer, 1998.

[7] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In D. E. Denning, R. Pyle, R. Ganesan,
R. S. Sandhu, and V. Ashby, editors, ACM Conference on Computer and
Communications Security, pages 62–73. ACM, 1993.

[8] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures - How
to Sign with RSA and Rabin. In U. M. Maurer, editor, EUROCRYPT, vol-
ume 1070 of Lecture Notes in Computer Science, pages 399–416. Springer,
1996.

[9] M. Bellare and P. Rogaway. Introduction to Modern Cryptography. In
UCSD CSE 207 Course Notes, 2005.

[10] T. P. Berger. Isometries for rank distance and permutation group of
Gabidulin codes. IEEE Transactions on Information Theory, 49(11):3016–
3019, 2003.

121

[11] T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing
Key Length of the McEliece Cryptosystem. In B. Preneel, editor,
AFRICACRYPT, volume 5580 of Lecture Notes in Computer Science,
pages 77–97. Springer, 2009.

[12] E. Berlekamp. Nonbinary BCH decoding. IEEE Transactions on Infor-
mation Theory, 14(2):242, march 1968.

[13] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent in-
tractability of certain coding problems. IEEE Transactions on Information
Theory, 24(3):384 – 386, may 1978.

[14] D. J. Bernstein. Personal communication, May 2012.

[15] D. J. Bernstein. Grover vs. McEliece. In N. Sendrier, editor, PQCrypto,
volume 6061 of Lecture Notes in Computer Science, pages 73–80. Springer,
2010.

[16] D. J. Bernstein, T. Lange, and C. Peters. Attacking and Defending the
McEliece Cryptosystem. In J. Buchmann and J. Ding, editors, PQCrypto,
volume 5299 of Lecture Notes in Computer Science, pages 31–46. Springer,
2008.

[17] D. J. Bernstein, T. Lange, and C. Peters. Smaller Decoding Exponents:
Ball-Collision Decoding. In P. Rogaway, editor, CRYPTO, volume 6841 of
Lecture Notes in Computer Science, pages 743–760. Springer, 2011.

[18] D. J. Bernstein, T. Lange, C. Peters, and H. C. A. van Tilborg. Explicit
bounds for generic decoding algorithms for code-based cryptography. In
A. Kholosha, E. Rosnes, and M. Parker, editors, Pre-proceedings of WCC
2009, pages 168–180, Bergen, 2009.

[19] B. Biswas and N. Sendrier. McEliece Cryptosystem Implementation: The-
ory and Practice. In J. Buchmann and J. Ding, editors, PQCrypto, volume
5299 of Lecture Notes in Computer Science, pages 47–62. Springer, 2008.

[20] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Information and Control, 3(1):68–79, 1960.

[21] A. Canteaut and F. Chabaud. A New Algorithm for Finding Minimum-
Weight Words in a Linear Code: Application to McEliece’s Cryptosystem
and to Narrow-Sense BCH Codes of Length 511. IEEE Transactions on
Information Theory, 44(1):367–378, 1998.

[22] P.-L. Cayrel, G. Hoffmann, and E. Persichetti. Efficient Implementation of
a CCA2-Secure Variant of McEliece Using Generalized Srivastava Codes.
In M. Fischlin, J. Buchmann, and M. Manulis, editors, Public Key Cryptog-
raphy, volume 7293 of Lecture Notes in Computer Science, pages 138–155.
Springer, 2012.

122

[23] P.-L. Cayrel, A. Otmani, and D. Vergnaud. On Kabatianskii-Krouk-Smeets
Signatures. In C. Carlet and B. Sunar, editors, WAIFI, volume 4547 of
Lecture Notes in Computer Science, pages 237–251. Springer, 2007.

[24] P.-L. Cayrel, P. Véron, and S. M. El Yousfi Alaoui. A Zero-Knowledge
Identification Scheme Based on the q-ary Syndrome Decoding Problem.
In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas in
Cryptography, volume 6544 of Lecture Notes in Computer Science, pages
171–186. Springer, 2010.

[25] F. Chabaud and J. Stern. The Cryptographic Security of the Syndrome
Decoding Problem for Rank Distance Codes. In K. Kim and T. Matsumoto,
editors, ASIACRYPT, volume 1163 of Lecture Notes in Computer Science,
pages 368–381. Springer, 1996.

[26] K. Chen. A New Identification Algorithm. In E. Dawson and J. D. Golic,
editors, Cryptography: Policy and Algorithms, volume 1029 of Lecture
Notes in Computer Science, pages 244–249. Springer, 1995.

[27] R. Chien. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem
codes. IEEE Transactions on Information Theory, 10(4):357 – 363, Octo-
ber 1964.

[28] J.-S. Coron. On the Exact Security of Full Domain Hash. In M. Bellare, ed-
itor, CRYPTO, volume 1880 of Lecture Notes in Computer Science, pages
229–235. Springer, 2000.

[29] N. Courtois, M. Finiasz, and N. Sendrier. How to Achieve a McEliece-
Based Digital Signature Scheme. In C. Boyd, editor, ASIACRYPT, volume
2248 of Lecture Notes in Computer Science, pages 157–174. Springer, 2001.

[30] R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key
Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack.
SIAM J. Comput., 33(1):167–226, January 2004.

[31] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[32] L. Dallot. Towards a Concrete Security Proof of Courtois, Finiasz and
Sendrier Signature Scheme. In S. Lucks, A.-R. Sadeghi, and C. Wolf,
editors, WEWoRC, volume 4945 of Lecture Notes in Computer Science,
pages 65–77. Springer, 2007.

[33] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[34] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography (Ex-
tended Abstract). In C. Koutsougeras and J. Scott Vitter, editors, STOC,
pages 542–552. ACM, 1991.

123

[35] D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cryptography. SIAM J.
Comput., 30(2):391–437, 2000.

[36] R. Dowsley, J. Müller-Quade, and A. C. A. Nascimento. A CCA2 Secure
Public Key Encryption Scheme Based on the McEliece Assumptions in the
Standard Model. In M. Fischlin, editor, CT-RSA, volume 5473 of Lecture
Notes in Computer Science, pages 240–251. Springer, 2009.

[37] J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret, and J.-P. Tillich.
A distinguisher for high rate McEliece cryptosystems. In Information The-
ory Workshop (ITW), 2011 IEEE, pages 282 –286, oct. 2011.

[38] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Crypt-
analysis of McEliece Variants with Compact Keys. In H. Gilbert, editor,
EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages
279–298. Springer, 2010.

[39] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Crypt-
analysis of McEliece Variants with Compact Keys – Towards a Complexity
Analysis. In SCC ’10: Proceedings of the 2nd International Conference on
Symbolic Computation and Cryptography, pages 45–55, RHUL, June 2010.

[40] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Jour-
nal of Cryptology, 1:77–94, 1988.

[41] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems. In A. M. Odlyzko, editor, CRYPTO,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer,
1986.

[42] M. Finiasz and N. Sendrier. Security Bounds for the Design of Code-
Based Cryptosystems. In M. Matsui, editor, ASIACRYPT, volume 5912
of Lecture Notes in Computer Science, pages 88–105. Springer, 2009.

[43] J.-B. Fischer and J. Stern. An Efficient Pseudo-Random Generator Prov-
ably as Secure as Syndrome Decoding. In U. M. Maurer, editor, EU-
ROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages
245–255. Springer, 1996.

[44] E. Fleischmann, C. Forler, and M. Gorski. Classification of the SHA-3 Can-
didates. http://drops.dagstuhl.de/volltexte/2009/1948/pdf /09031.Forler-
Christian.Paper.1948.pdf.

[45] D. Mandell Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev.
More Constructions of Lossy and Correlation-Secure Trapdoor Functions.
In P. Q. Nguyen and D. Pointcheval, editors, Public Key Cryptography, vol-
ume 6056 of Lecture Notes in Computer Science, pages 279–295. Springer,
2010.

124

[46] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Sym-
metric Encryption Schemes. In M. J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

[47] E. M. Gabidulin, A. V. Ourivski, B. Honary, and B. Ammar. Reducible
rank codes and their applications to cryptography. IEEE Transactions on
Information Theory, 49(12):3289–3293, 2003.

[48] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a
Non-Commutative Ring and thier Applications in Cryptology. In D. W.
Davies, editor, EUROCRYPT, volume 547 of Lecture Notes in Computer
Science, pages 482–489. Springer, 1991.

[49] P. Gaborit. Shorter keys for code-based cryptography. In Proceedings of
Workshop on Codes and Cryptography, WCC 2005, pages 81–90, France,
2005.

[50] P. Gaborit and M. Girault. Lightweight code-based identification and sig-
nature. In IEEE International Symposium on Information Theory, 2007.
ISIT 2007, pages 191 –195, June 2007.

[51] P. Gaborit, J. Schrek, and G. Zémor. Full Cryptanalysis of the Chen
Identification Protocol. In B.-Y. Yang, editor, PQCrypto, volume 7071 of
Lecture Notes in Computer Science, pages 35–50. Springer, 2011.

[52] S. D. Galbraith and N. C. Dwarakanath. Efficient sampling from discrete
Gaussians for lattice-based cryptography on a constrained device. Preprint,
2012.

[53] S. Goldwasser and S. Micali. Probabilistic Encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984.

[54] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[55] V. D. Goppa. A new class of linear correcting codes. Problemy Peredači
Informacii, 6(3):24–30, 1970.

[56] V. D. Goppa. Algebraico-Geometric Codes. Izvestiya: Mathematics, 21:75–
91, February 1983.

[57] H. J. Helgert. Srivastava codes. IEEE Transactions on Information The-
ory, 18(2):292 – 297, March 1972.

[58] S. Heyse. Implementation of McEliece Based on Quasi-dyadic Goppa Codes
for Embedded Devices. In B.-Y. Yang, editor, PQCrypto, volume 7071 of
Lecture Notes in Computer Science, pages 143–162. Springer, 2011.

[59] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres, 2:147–156, 1959.

125

[60] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based Public
Key Cryptosystem. In J. Buhler, editor, ANTS, volume 1423 of Lecture
Notes in Computer Science, pages 267–288. Springer, 1998.

[61] H. Janwa and O. Moreno. McEliece Public Key Cryptosystems Using
Algebraic-Geometric Codes. Des. Codes Cryptography, 8(3):293–307, 1996.

[62] G. Kabatianskii, E. Krouk, and B. J. M. Smeets. A Digital Signature
Scheme Based on Random Error-Correcting Codes. In M. Darnell, editor,
IMA Int. Conf., volume 1355 of Lecture Notes in Computer Science, pages
161–167. Springer, 1997.

[63] T. Kasami, S. Lin, and W. Peterson. New generalizations of the Reed-
Muller codes–I: Primitive codes. IEEE Transactions on Information The-
ory, 14(2):189 – 199, mar 1968.

[64] K. Kobara and H. Imai. Semantically Secure McEliece Public-Key
Cryptosystems-Conversions for McEliece PKC. In K. Kim, editor, Pub-
lic Key Cryptography, volume 1992 of Lecture Notes in Computer Science,
pages 19–35. Springer, 2001.

[65] L. Lamport. Constructing digital signatures from a one-way function.
Technical report, October 1979.

[66] P. J. Lee and E. F. Brickell. An Observation on the Security of McEliece’s
Public-Key Cryptosystem. In C. G. Günther, editor, EUROCRYPT, vol-
ume 330 of Lecture Notes in Computer Science, pages 275–280. Springer,
1988.

[67] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[68] J. S. Leon. A probabilistic algorithm for computing minimum weights of
large error-correcting codes. IEEE Transactions on Information Theory,
34(5):1354–1359, 1988.

[69] Y. X. Li, R. H. Deng, and X. M. Wang. On the equivalence of McEliece’s
and Niederreiter’s public-key cryptosystems. IEEE Transactions on Infor-
mation Theory, 40(1):271–273, 1994.

[70] G. Locke and P. Gallagher. FIPS PUB 186-3: Digital Signature Standard
(DSS). National Institute of Standards and Technology, 2009.

[71] P. Loidreau. Properties of codes in rank metric. In Eleventh International
Workshop on Algebraic and Combinatorial Coding Theory ACCT2008,
Pamporovo, Bulgarie, June 2008.

[72] P. Loidreau and N. Sendrier. Weak keys in the McEliece public-key cryp-
tosystem. IEEE Transactions on Information Theory, 47(3):1207–1211,
2001.

126

[73] V. Lyubashevsky. Lattice-Based Identification Schemes Secure Under Ac-
tive Attacks. In R. Cramer, editor, Public Key Cryptography, volume 4939
of Lecture Notes in Computer Science, pages 162–179. Springer, 2008.

[74] V. Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and
Factoring-Based Signatures. In M. Matsui, editor, ASIACRYPT, volume
5912 of Lecture Notes in Computer Science, pages 598–616. Springer, 2009.

[75] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes, volume 16. North-Holland Mathematical Library, 1977.

[76] J. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions
on Information Theory, 15(1):122 – 127, January 1969.

[77] K. Preetha Mathew, S. Vasant, and C. Pandu Rangan. ON PROV-
ABLY SECURE CODE-BASED SIGNATURE AND SIGNCRYPTION
SCHEME. IACR Cryptology ePrint Archive, 2012:585, 2012.

[78] K. Preetha Mathew, S. Vasant, S. Venkatesan, and C. Pandu Rangan. An
Efficient IND-CCA2 Secure Variant of the Niederreiter Encryption Scheme
in the Standard Model. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, ACISP, volume 7372 of Lecture Notes in Computer Science, pages
166–179. Springer, 2012.

[79] A. May, A. Meurer, and E. Thomae. Decoding Random Linear Codes in
O(20.054n). In D. H. Lee and X. Wang, editors, ASIACRYPT, volume 7073
of Lecture Notes in Computer Science, pages 107–124. Springer, 2011.

[80] R. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding
Theory. Technical report, NASA, 1978.

[81] C. Aguilar Melchor, P. Gaborit, and J. Schrek. A new zero-knowledge
code based identification scheme with reduced communication. CoRR,
abs/1111.1644, 2011.

[82] D. Micciancio. Improving Lattice Based Cryptosystems Using the Hermite
Normal Form. In J. H. Silverman, editor, CaLC, volume 2146 of Lecture
Notes in Computer Science, pages 126–145. Springer, 2001.

[83] L. Minder. Cryptography based on error correcting codes. PhD thesis, École
Polytechnique Fédérale de Lausanne (Switzerland), 2007.

[84] L. Minder and A. Shokrollahi. Cryptanalysis of the Sidelnikov Cryptosys-
tem. In M. Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in
Computer Science, pages 347–360. Springer, 2007.

[85] R. Misoczki and P. S. L. M. Barreto. Compact McEliece Keys from Goppa
Codes. In M. J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini, editors,
Selected Areas in Cryptography, volume 5867 of Lecture Notes in Computer
Science, pages 376–392. Springer, 2009.

127

[86] C. Monico, J. Rosenthal, and A. Shokrollahi. Using low density parity
check codes in the McEliece cryptosystem. In IEEE International Sympo-
sium on Information Theory, ISIT 2000, page 215. IEEE, 2000.

[87] M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against
Chosen Ciphertext Attacks. In H. Ortiz, editor, STOC, pages 427–437.
ACM, 1990.

[88] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159–166, 1986.

[89] R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the
McEliece cryptosystem without random oracles. Des. Codes Cryptography,
49(1-3):289–305, 2008.

[90] T. Okamoto. Provably Secure and Practical Identification Schemes and
Corresponding Signature Schemes. In E. F. Brickell, editor, CRYPTO,
volume 740 of Lecture Notes in Computer Science, pages 31–53. Springer,
1992.

[91] A. Otmani and J.-P. Tillich. An Efficient Attack on All Concrete KKS
Proposals. In B.-Y. Yang, editor, PQCrypto, volume 7071 of Lecture Notes
in Computer Science, pages 98–116. Springer, 2011.

[92] A. V. Ourivski and T. Johansson. New Technique for Decoding Codes in
the Rank Metric and Its Cryptography Applications. Problems of Infor-
mation Transmission, 38:237–246, 2002.

[93] R. Overbeck. A New Structural Attack for GPT and Variants. In E. Daw-
son and S. Vaudenay, editors, Mycrypt, volume 3715 of Lecture Notes in
Computer Science, pages 50–63. Springer, 2005.

[94] R. Overbeck and N. Sendrier. Code-based cryptography. In D. J. Bernstein,
J. Buchmann, and E. Dahmen, editors, Post-Quantum Cryptography, pages
95–145. Springer Berlin Heidelberg, 2009.

[95] N. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions
on Information Theory, 21(2):203 – 207, March 1975.

[96] C. Peikert. Public-key cryptosystems from the worst-case shortest vec-
tor problem: extended abstract. In Proceedings of the 41st annual ACM
symposium on Theory of computing, STOC ’09, pages 333–342, New York,
NY, USA, 2009. ACM.

[97] C. Peikert and B. Waters. Lossy trapdoor functions and their applications.
In C. Dwork, editor, STOC, pages 187–196. ACM, 2008.

[98] E. Persichetti. Compact McEliece keys based on Quasi-Dyadic Srivastava
codes. IACR Cryptology ePrint Archive, 2011:179, 2011.

128

[99] C. Peters. Information-Set Decoding for Linear Codes over Fq. In
N. Sendrier, editor, PQCrypto, volume 6061 of Lecture Notes in Computer
Science, pages 81–94. Springer, 2010.

[100] C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of
Knowledge and Chosen Ciphertext Attack. In J. Feigenbaum, editor,
CRYPTO, volume 576 of Lecture Notes in Computer Science, pages 433–
444. Springer, 1991.

[101] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[102] B. Riemann. Theorie der Abel’schen Functionen. Journal für die reine
und angewandte Mathematik, 54:115–155, 1857.

[103] R. L. Rivest. Cryptography. In Handbook of Theoretical Computer Sci-
ence, Volume A: Algorithms and Complexity, pages 717–755. MIT Press,
Cambridge, MA, USA, 1990.

[104] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[105] G. Roch. Über die Anzahl der willkurlichen Constanten in algebraischen
Functionen. Journal für die reine und angewandte Mathematik, 64:372–
376, 1865.

[106] A. Rosen and G. Segev. Chosen-Ciphertext Security via Correlated Prod-
ucts. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes in Com-
puter Science, pages 419–436. Springer, 2009.

[107] D. Sarwate. On the complexity of decoding Goppa codes. IEEE Transac-
tions on Information Theory, 23(4):515 – 516, jul 1977.

[108] S. Schechter. On the inversion of certain matrices. Mathematical Tables
and Other Aids to Computation, 13(66):73–77, 1959.

[109] N. Sendrier. On the Concatenated Structure of a Linear Code. Appl.
Algebra Eng. Commun. Comput., 9(3):221–242, 1998.

[110] N. Sendrier. Finding the permutation between equivalent linear codes: The
support splitting algorithm. IEEE Transactions on Information Theory,
46(4):1193–1203, 2000.

[111] N. Sendrier. The tightness of security reductions in code-based cryptogra-
phy. IEEE Information Theory Workshop (ITW), pages 415–419, October
2011.

[112] Nicolas Sendrier. Decoding One Out of Many. In Bo-Yin Yang, editor,
PQCrypto, volume 7071 of Lecture Notes in Computer Science, pages 51–
67. Springer, 2011.

129

[113] C. E. Shannon. Communication Theory of Secrecy Systems. Bell System
Technical Journal, 28(4):656–715, 1949.

[114] P. W. Shor. Polynomial time algorithms for discrete logarithms and fac-
toring on a quantum computer. In L. M. Adleman and M.-D. A. Huang,
editors, ANTS, volume 877 of Lecture Notes in Computer Science, page
289. Springer, 1994.

[115] V. Shoup. A proposal for an ISO standard for public key encryption (ver-
sion 2.1). IACR Cryptology ePrint Archive, 112, 2001.

[116] V. M. Sidelnikov. A public-key cryptosystem based on binary Reed-Muller
codes. Discrete Mathematics and Applications, 4(3):191 – 208, 1994.

[117] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems
based on generalized Reed-Solomon codes. Discrete Mathematics and Ap-
plications, 2(4):439 – 444, 1992.

[118] J. R. Silvester. Determinants of Block Matrices. The Mathematical
Gazette, 84(501):460–467, 2000.

[119] J. Stern. A method for finding codewords of small weight. In G. D. Cohen
and J. Wolfmann, editors, Coding Theory and Applications, volume 388 of
Lecture Notes in Computer Science, pages 106–113. Springer, 1988.

[120] J. Stern. A New Identification Scheme Based on Syndrome Decoding. In
D. R. Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer
Science, pages 13–21. Springer, 1993.

[121] J. Stern. Designing Identification Schemes with Keys of Short Size. In
Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer
Science, pages 164–173. Springer, 1994.

[122] F. Strenzke. A Timing Attack against the Secret Permutation in the
McEliece PKC. In N. Sendrier, editor, PQCrypto, volume 6061 of Lec-
ture Notes in Computer Science, pages 95–107. Springer, 2010.

[123] F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan. Side
Channels in the McEliece PKC. In J. Buchmann and J. Ding, editors,
PQCrypto, volume 5299 of Lecture Notes in Computer Science, pages 216–
229. Springer, 2008.

[124] K. Tzeng and K. Zimmermann. On extending Goppa codes to cyclic codes.
IEEE Trans. Inf. Theor., 21(6):712–716, November 1975.

[125] P. Véron. Improved identification schemes based on error-correcting codes.
Appl. Algebra Eng. Commun. Comput., 8(1):57–69, 1996.

[126] A. C. Yao. Theory and Applications of Trapdoor Functions. In FOCS,
pages 80–91. IEEE Computer Society, 1982.

130

