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Goals of this talk

I Survey Pollard’s ideas of using pseudo-random walks to solve
the DLP.

I Present some recent results on the discrete logarithm problem
in an interval and other variants of the DLP.

I Present a generalisation of the birthday paradox.

I Discuss some computational problems in isogeny graphs.

Please interrupt me and ask questions.
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Discrete logarithm problem

I Let G be a group of prime order r , e.g., an elliptic curve over
a finite field.
I will write all groups multiplicatively in this talk.

I Let g ∈ G .
The discrete logarithm problem (DLP) is: Given h ∈ G to find
a such that h = ga.

I Exhaustive search: O(r) group operations.

I Baby-step-giant-step: O(
√

r) group operations and storage of
O(
√

r) group elements.

I Pollard rho (1970s): expected O(
√

r) group operations.
Using distinguished points, following van Oorschot and Wiener
(1990s), (1 + o(1))

√
πr/2 ≈ 1.25

√
r group operations.
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Pollard row
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Random walk algorithms

I DLP: Given g , h, find a such that h = ga.
I Idea: Suppose we can find integers a1, a2, b1, b2 such that

ga1hb1 = ga2hb2 .

We hope to solve the DLP as a = (a2 − a1)(b1 − b2)−1

(mod r).
I The idea is to generate pseudorandom sequences of values

xi = gai hbi

such that (ai , bi ) are also known.
I A collision is when xi = xj .
I Pollard’s big idea: use pseudorandom walks where the next

step only depends on the current position.
Hence, if xi = xj then xi+1 = xj+1.

I It follows that one can detect collisions without storing all
points, by only storing “distinguished” points.
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Two basic types of walk

I DLP: Given g , h, find a such that h = ga.

I First type: Elements of walks are

xi = gai hbi

where ai and bi are “pseudorandom”.
Any collision xi = xj is potentially useful. Such algorithms are
analysed using the birthday paradox.

I Second type: Walks are either tame xi = gai or wild
yj = hgbj .

I A collision xi = yj allows to solve the DLP as h = gai−bj .
Collisions xi = xj or yi = yj are useless.
Such algorithms are analysed using several notions in
probability theory.
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Birthday paradox

I Suppose we sample uniformly at random from a set of size N.
The expected number of trials until an element is sampled
twice is

√
πN/2.

I When N = 365 this expected number is ≈ 23.94.

I Now sample uniformly at random from a set of size N and
record each element in one of two lists.
The expected number of trials until an element appears in
both lists is

√
πN.

I The expected number of people in a room before there is a
boy and a girl with the same birthday is ≈ 33.86.

I Puzzle: In my hotel there is a meeting of the “boys born in
January” club, and a meeting of the “random girls” club.
How many of each should I put in a room until I expect a boy
and girl with the same birthday?
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The DLP in an Interval

I Given g , h,N find a, if it exists, such that h = ga and
0 ≤ a < N.

I This problem arises in practice: pseudorandom generator by
Gennaro, decryption in the Boneh-Goh-Nissim scheme,
analysis of the static/strong Diffie-Hellman problem, etc.

I Pollard kangaroo method using distinguished points (van
Oorschot and Wiener 1996/1999) solves problem in average
case expected (2 + o(1))

√
N group operations.

I Important: kangaroo method is not analysed using the
birthday paradox.
Instead, steps in the walk are “short”, meaning xi = gai and
xi+1 = gai+1 is such that ai+1 ≈ ai + m.
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Pollard kangaroo algorithm

I The tame kangaroo starts in the middle of the interval.
I Steps in the walk are, on average, distance m.
I The rear kangaroo “catches up” with the starting point of the

front kangaroo in average time N/(4m).
I There is now approximately one footprint by the front

kangaroo in every interval of length m, so we expect the rear
kangaroo to land on a footstep of the front kangaroo after m
steps.

I Running time 2(N/(4m) + m + 1/θ).
I Taking m =

√
N/2 and 1/θ = o(

√
N) gives running time

(2 + o(1))
√

N group operations.
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Improved DLP in an Interval (G.-Pollard-Ruprai, to appear)

Two ways to improve:

I Three (actually, four) kangaroos method in ≈ 1.71
√

N group
operations.
Idea is to start wild kangaroos at both h and h−1.
Walks are now of three types: xi = gai , yj = hgbj or
zk = h−1g ck .
A collision between walks of any two types solves the DLP.
(Assume group order odd.)

I Gaudry-Schost algorithm (cockroaches) in ≈ 1.66
√

N group
operations.

I Paper available on my webpage.
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Gaudry-Schost Algorithm

I A way to tackle constrained problems using a variant of the
birthday paradox.

I One has a “tame set” T and a “wild set” W and seeks
collisions in T ∩W .

I The random walks are “cockroaches”: staying in an
appropriate-sized neighbourhood of the starting point.

I Basic idea for DLP in an interval:

T = {g x : 0 ≤ x < N}, and W = {hg x : −N/2 < x < N/2}.

Then N/2 ≤ #(T ∩W ) ≤ N.
I We model the cockroaches as pseudorandom sampling from

T ∩W and apply a variant of the birthday paradox. This gives
an average case expected running time of (2.08 + o(1))

√
N

group operations – worse than Pollard kangaroo.
I There are some inconvenient aspects: e.g., boundaries of T

and W .
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Gaudry-Schost Algorithm

I There is great flexibility in the choice of sets T and W , and
how one samples from them.

I Combining the ideas of using smaller sets with the “four
kangaroos” idea gives an algorithm for the DLP in an interval
with average case expected time of around 1.66

√
N group

operations.

I In principle, this beats the 1.71
√

N coming from the four
kangaroo algorithm.
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Equivalence Classes

I Many groups have efficiently computable automorphisms ψ.
For example, the map ψ : g 7→ g−1 is easy for elliptic curves
and the torus T2.

I Gallant-Lambert-Vanstone/Wiener-Zuccherato solve the DLP
by defining a random walk on G/ψ (sets of orbits in the group
G under ψ).

I For Pollard rho, using equivalence classes with respect to
inversion “should” speed-up the algorithm by a factor of

√
2.

I A catch: lots of nasty little cycles in the pseudorandom walks.
Handling these adds some overhead.
See Bernstein, Lange, Schwabe (PKC 2011).

I All recent records for the ECDLP have not used equivalence
classes (except for the case of Koblitz curves).
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DLP in an Interval Using Equivalence Classes

I It seems impossible to combine Pollard’s kangaroo algorithm
with equivalence classes.

I Consider DLP in an interval: g , h,N to find a, if it exists,
such that h = ga and −N/2 ≤ a ≤ N/2.

I Use Gaudry-Schost method: Define the tame set, of
equivalence classes,

T = {{g x , g−x} : 0 ≤ x ≤ N/2}

and

W = {{hg x , (hg x)−1} = {ga+x , g−(a+x)} : −N/2 ≤ x ≤ N/2}.

I We have #T ≈ N/2, but #W and #(T ∩W ) depend on a.
I Further subtlety: if one chooses a unique representative for

each class, one finds that sampling elements hg x where x is
chosen uniformly in −N/2 ≤ x ≤ N/2 does not necessarily
correspond to sampling uniformly in W .
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A Generalisation of the Birthday Paradox

(Building on work of Selivanov.)
Theorem (G.-Holmes) Let C ∈ N. Balls will be chosen of colour
1 ≤ c ≤ C with probability qc .
Let N ∈ N (we consider this as variable). A ball of colour
1 ≤ c ≤ C is assigned to urn 1 ≤ a ≤ N with probability qc,a.
Suppose that some technical conditions hold.
Let

AN =
C∑

c=1

qc

 C∑
c ′=1,c ′ 6=c

qc ′

(
N∑

a=1

qc,aqc ′,a

) .

Then the expected number of trials before an urn contains balls of
at least 2 different colours is√

π

2AN
+ O(N1/4)

as N →∞.
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DLP in an Interval Using Equivalence Classes

Theorem: (G.-Ruprai; PKC 2010) There is an algorithm to solve
the DLP in an interval of size N in groups with fast inversion that
requires (ignoring the troubles with cycles) average expected
(1.36 + o(1))

√
N group operations.

Possibly can be slightly improved?
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Higher Dimensional Versions

I The original Gaudry-Schost algorithm was introduced for
solving problems like: Given g1, g2, h,N1,N2 find (a1, a2) if it
exists such that

h = ga1
1 ga2

2

and
0 ≤ a1 ≤ N1, 0 ≤ a2 ≤ N2.

I Applications: point counting on hyperelliptic curves; Brands
protocol; Cramer, Gennaro and Schoenmakers; DLP coming
from GLV method.

I Let N = N1N2. G.-Ruprai (Cirencester 2009): one can solve
the 2-dim DLP in (2.36 + o(1))

√
N group operations.

I Wei Liu considers equivalence classes of size 4 that naturally
arise in ECDLP instances arising from the GLV method.
She showed this 2-dimensional ECDLP (corresponding to a set
of N possible DLP instances) can be solved in
(1.03 + o(1))

√
N group operations.
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Isogenies

I Let E1 and E2 be elliptic curves over Fq. An isogeny is a
morphism φ : E1 → E2 of elliptic curves that is a group
homomorphism.

I Isogenies transfer the ECDLP from E1(Fq) to E2(Fq).

I If #E1(Fq) = #E2(Fq) then there is an isogeny (defined over
Fq) from E1 to E2.

I A natural problem is: Given E1 and E2 as above, to find an
isogeny between them.

I The isogeny problem is the problem of finding collisions in the
Charles-Goren-Lauter hash function.
(In this case E1 and E2 are supersingular.)

I There are many other applications of computing isogenies:
See Drew Sutherland’s talk and his survey paper in the ANTS
2012 conference proceedings.
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Ordinary case

I Let E be an elliptic curve over Fq and let L be a set of primes.
Define a graph X whose vertices are labelled by all j(E ′) such
that #E (Fq) = #E ′(Fq) and with edges corresponding to
`-isogenies for ` ∈ L.
Let N be the number of vertices in X .

I Building heavily on work of Kohel, I gave an algorithm in 1999
to compute an isogeny from E1 to E2 (for arbitrary
j(E1), j(E2) ∈ X ).
The algorithm grows two trees out from E1 and E2. In the
graph theory literature it is called “bi-directional search” and
is due to Pohl in 1969.

I Ignoring steep volcanos, it runs in time and space O(
√

N)
field operations/elements.
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Ordinary case

I For ordinary elliptic curves there is a low memory algorithm
for this problem due to G.-Hess-Smart.
This algorithm uses random walks and distinguished points. It
is analogous to the kangaroo algorithm as there are two types
of walks. The probability analysis uses the birthday paradox.
The running time is O(

√
N) field operations.

I Anton Stolbunov has noted a bug in the description of that
algorithm, and a way to greatly improve the constant in the
running time. This work will appear in a joint paper.

I One feature is that the algorithm first generates a “long”
isogeny chain that can be “smoothed” using notions from
index calculus algorithms for ideal class groups.
Also see Bröker-Charles-Lauter and Jao-Soukharev.
Bisson and Sutherland give an exponential time method (also
using random walks) to generate a very smooth isogeny. See
“A Pollard-type algorithm for finding short product
representations in finite groups”.

Steven Galbraith Random walks in cryptography



Supersingular case

I An elliptic curve E over Fpn is supersingular if #E (Fpn) ≡ 1
(mod p).

I If E is supersingular then j(E ) ∈ Fp2 .
I Let L be a set of primes, e.g., L = {2}.

Define the supersingular isogeny graph X to have vertices
j(E ) where E/Fp2 is supersingular and edges being isogenies

of degree ` (over Fp) for ` ∈ L.
This is an expander graph.

I The isogeny graph has N ≈ p/12 vertices.
When L = {2} it is a 3-regular graph.

I The basic bi-directional search solves the isogeny problem in
time and space O(

√
N) = O(

√
p) field operations/elements.

I One can consider a low-storage algorithm for the problem,
that uses random walks and the birthday paradox.
However, when L = {2} there are serious difficulties with
small cycles in the random walks.

Steven Galbraith Random walks in cryptography



Supersingular case

Chang-An Zhao and I have studied how to design random walks
that avoid small cycles.
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Supersingular case over Fp

I Let L be a set of primes.
Define the supersingular isogeny graph X to have vertices E
where E/Fp is supersingular and edges being isogenies of
degree ` (over Fp) for ` ∈ L.

I If E/Fp is supersingular then
√
−p ∈ End(E ).

I The theory of complex multiplication implies that E is the
reduction of an elliptic curve E ′ in characteristic zero with
End(E ′) equal to either Z[

√
−p] or Z[(1 +

√
−p)/2].

I Hence the isogeny graph has a volcano structure with floor of
size h(−4p) corresponding to ideal classes in Z[

√
−p] and, if

p ≡ 3 (mod 4), a crater of size h(−p) corresponding to ideal
classes in Z[(1 +

√
−p)/2].

I Each j-invariant appears twice, as the non-trivial quadratic
twist of a curve with p + 1 points also has p + 1 points.
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Supersingular case over Fp

I The isogeny graph has N = O(
√

p log(p)) vertices.

I A natural task is to solve the isogeny problem in this graph in
time O(

√
N).

I The basic bi-directional search solves the isogeny problem in
time and space Õ(

√
N) = Õ(p1/4) field operations/elements.

I One can consider a low-storage algorithm for the problem,
that uses random walks and the birthday paradox, analogous
to the algorithm for the ordinary isogeny graph.
One can also use the concept of smoothing.

I This is work in progress with Christina Delfs.
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Conclusion

I Pseudorandom walks enable low-storage and distributed
algorithm for various computational problems related to ECC.

I The Gaudry-Schost algorithm is a really useful idea that
perhaps can be used to solve some currently unsolved
problems.

I We have used the Gaudry-Schost idea to combine the DLP in
an interval (or higher-dimensional box) with equivalence
classes.

I We have developed a powerful generalisation of the birthday
paradox that will be a useful tool when working with the
Gaudry-Schost algorithm.
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Thank you very much

Volcanos and pyramids . . .
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Open Question

Low Hamming weight DLP: Given g , h,w to find 0 ≤ a < r , if it
exists, such that h = ga and the Hamming weight of a is ≤ w .
Let N =

(blog2(r)c+1
w

)
.

I Time/memory tradeoff in O(
√

N) group operations and
storage.

I Van Oorschot and Wiener have a general method to transform
a time/memory tradeoff into a low memory algorithm, but it
only gives an algorithm with expected cN3/4 group operations.

I It is an open problem to give a low memory algorithm for this
problem with expected running time of O(N1/2) group
operations.
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