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Abstract

We discuss arithmetic in the Jacobian of a hyperelliptic curve C of genus g.

The traditional approach is to fix a point P at infinity in C and represent

divisor classes in the form E − dP . We propose a different representation

which is balanced at infinity. The resulting arithmetic is more efficient than

previous approaches when there are 2 points at infinity.

The geometric framework presented in this analysis is then used to give

a new interpretation of the infrastructure associated to a hyperelliptic curve.

We prove that there is a natural injection from the set of infrastructure ideals

to the class group of the corresponding curve, and use this result to give very

precise results relating the difficulty of computing the distance of an arbitrary

infrastructure ideal to the discrete logarithm problem in the curve.

The efficient arithmetic on hyperelliptic curves afforded by our proposal is

used to efficiently implement pairings. We present several optimisation ideas

that allow us to conclude that pairings can be efficiently computable in real

models of hyperelliptic curves.

We present an attack on one of the hidden pairing schemes proposed by

Dent and Galbraith. We drastically reduce the number of variables necessary

to perform a multivariate attack and in some cases we can completely recover

the private key. Our attack relies only on knowledge of the public system

parameters.

Finally, we present ideas relating the pairing inversion problem and the

discrete logarithm problem on an elliptic curve. This is done using the re-

duction from the DLP to the Diffie-Hellman problem developed by Boneh,

Lipton, Maurer and Wolf. This approach fails when only one of the pairing

inversion problems can be solved. In this case we use Cheon’s algorithm to

get a reduction.
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Chapter 1

Introduction

1.1 Pairings

A very interesting consequence of the use of elliptic curves as building blocks

for discrete log based cryptosystems has been the adoption by cryptographers

of concepts once exclusive to the realms of number theory and algebraic ge-

ometry.

Among these concepts adopted by the cryptography community, the use

of bilinear pairings has had impressive implications. Pairings first appeared in

cryptography with the work of Menezes, Okamoto and Vanstone in [70]. The

authors of [70] use the Weil pairing to reduce the discrete logarithm problem

in the group of points of an elliptic curve E over Fq, to the discrete logarithm

problem in the group F∗
qk for some k. Since there exists a sub-exponential

algorithm to compute discrete logarithms in F∗
qk , if the value of k is not too

large, this construction simplifies the computation of discrete logarithms in

E(Fq).

The authors of [70] also prove that if E is a supersingular elliptic curve,
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then the value of k (known as the embedding degree, see Definition 2.3.2)

is bounded by k ≤ 6, which automatically implied that the mov reduction

could be applied on all supersingular elliptic curves. This sent supersingular

elliptic curves (and in general all pairing friendly curves) to the backwaters of

cryptography, since they were considered weak.

The rehabilitation of pairing friendly curves into mainstream cryptography

started with the work of Joux [57], where a one round tripartite Diffie-Hellman

algorithm is proposed. After the work of Joux, the number of constructive

applications of pairings in cryptography has exploded. Perhaps the most fa-

mous application is the construction of an ID-based cryptosystem by Sakai,

Ohgishi, and Kasahara [83] and Boneh and Franklin [7]. The concept of ID-

based cryptography was introduced by Shamir in [89], but no efficient ID-based

cryptosystem had been found until the publication of [83, 7].

The newly found applications of pairings to cryptography have kept cryp-

tographers with a flair for number theory (and number theorists with a flair for

cryptography) rather busy. For example, finding suitable curves and parame-

ters for a given application is a lot harder. A good account of the pitfalls in

the selection of curves is given in [34], and [28] presents parameters to achieve

certain security levels.

Two very active areas of research have been the search for pairing-friendly

curves construction algorithms, and the development of optimised pairing com-

putation techniques, usually focused in computing pairings using short Miller

loops.

According to [28], the constructions of pairing-friendly curves can be broadly

divided into curves in families and curves not in families. Examples of con-

structions of curves in families are given by the work of Miyaji, Nakabayashi
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and Takano [75], and its generalisations by Scott and Barreto [88] and Gal-

braith, McKee and Valença [40]. Examples of algorithms to find curves not in

families are given by the Cocks-Pinch method (see Chapter IX of [5]) and the

construction by Dupont, Enge and Morain [23].

The development of loop-shortening techniques has been equally successful.

The original idea was presented by Duursma and Lee in [24], and was later

extended by Barreto et.al. in [3], and by Hess et.al. in [49]. The existence of

these loop-shortening techniques has prompted some questions regarding the

difficulty of the discrete logarithm problem in curves where pairings can be

computed with very short loops as described in [37].

1.2 Higher genus curves

Another trend in mathematical cryptography has been an attempt to extend

results and algorithms available for elliptic curves to higher genus hyperelliptic

curves. One of the reasons to use hyperelliptic curves is that the number of

Fq-rational points on the Jacobian J of a hyperelliptic curve C of genus g

defined over Fq grows as qg, so in principle a smaller based field is necessary

to achieve a similar security level as one would achieve with an elliptic curve.

For pairing-based cryptosystems, hyperelliptic curves offer a wider range of

parameters.

An important difference between elliptic and hyperelliptic curves is that

there exist algorithms to solve the discrete logarithm problem in the Jacobian

of a hyperelliptic curve that are faster than generic group algorithms [1, 43],

whereas no such algorithm is known for elliptic curves. For these reason,

hyperelliptic curves with high genus are considered weak for cryptography.
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Cantor [13] and Koblitz [61] developed algorithms to compute in the Ja-

cobian of a hyperelliptic curve given by a real model, and Paulus and Rück

extended these algorithms to cover all hyperelliptic curves. Optimised explicit

addition formulae have been found for genus 2 imaginary curves [17]. We will

describe our work with hyperelliptic curves given by a real model in Chapter 3.

Some progress has also been done trying to find good point-counting al-

gorithms for higher genus curves. Pila [81] extends Schoof’s algorithm [87]

to high dimension abelian varieties. Unfortunately, Pila’s algorithm requires

knowledge of certain explicit polynomials associated to the abelian variety,

and computing these polynomials is still an open problem. Further progress

in point-counting algorithms includes the work by Huang and Ierardi [52],

Adleman and Huang [2] and Gaudry and Harley [44]. Additional techniques

are available if the base field has small characteristic, as shown by Kedlaya [60].

There has also been considerable progress extending the theory of pairings

to hyperelliptic curves. Frey and Rück [32] extend the MOV attach to hy-

perelliptic curves, and Galbraith [35] proved that the embedding degree of all

supersingular curves of a given genus is bounded. The articles that laid the

foundations for the loop-shortening techniques [24, 3, 49] all dealt with hy-

perelliptic curves, so no further work was necessary to adapt these techniques

to higher genus. Pairings have been efficiently implemented in hyperelliptic

curves given by an imaginary model [3, 77], we will discuss the implementa-

tion of pairings on hyperelliptic curves given by a real model in the following

section.

The construction of pairing-friendly hyperelliptic curves with a given num-

ber of points has focused on the construction of genus 2 curves. This is a

consequence of the existence of a theory for genus 2 curves analogous to the
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theory of complex multiplication for elliptic curves [92]. This theory was devel-

oped by Igusa [53, 54], who described three polynomials, known as the Igusa

polynomials, analogous to the Hilbert class polynomial, and associated three

arithmetic invariants to every genus 2 hyperelliptic curve that are analogous

to the j-invariant of an elliptic curve. Just as in the case of elliptic curves, one

needs to compute the Igusa polynomials in order to construct hyperelliptic

curves with a given number of points using an extension of the CM-method.

There are several approaches to the problem of computing the Igusa class poly-

nomials [25, 45, 97], and once the Igusa invariants of a curve are known, an

algorithm of Mestre [71] shows that one can recover an equation of the curve.

An algorithm extending the Cocks-Pinch method to genus 2 curves was given

by Freeman [27], and by Freeman, Stevenhagen and Streng [29].

1.3 Dissertation outline

The motivation for the results in this dissertation comes from the intersection

of the two trends described in the previous sections. The original observation

was the fact that no-one had implemented pairings on real hyperelliptic curves,

despite the fact that with very high probability all the hyperelliptic curves

produced with the CM-method over a field k would only have a k-rational real

model and no k-rational imaginary model.

While studying the possibilities for the implementation of pairings on hy-

perelliptic curves given by a real model, it became clear that the representation

of elements in the Jacobian of the curve used in the literature [26, 55, 79, 80]

was not optimal. This led us to the representation of elements in the Jacobian

(or equivalently, in the class group) presented in Chapter 3, and published
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in [36].

This representation allows for faster arithmetic in the class group of a

hyperelliptic curve given by a real model, with the advantage that all the

explicit formulae developed to deal with real hyperelliptic curves [26] can still

be used. Finally, we give a divisor inversion algorithm, a fundamental tool in

any efficiently computable group that had surprisingly been overlooked in the

literature.

Once the theoretical framework for arithmetic in the Jacobian of a hy-

perelliptic curve given by a real model had been developed, we set out to

implement pairings efficiently in a case amenable to comparison with pairings

in an elliptic curve. The hyperelliptic curve was provided by [41], and the

implementation was made in collaboration with S. Galbraith and X. Lin. Our

pairing implementation uses a recently developed loop-shortening technique,

the R-ate pairing, developed by Lee, Lee and Park in [64]. Our implementa-

tion includes some novel optimisation techniques and a new algorithm to find

appropriate curve parameters. All the details are presented in Chapter 5 and

will be published as [39].

The geometric insight gained while working in the material of Chapter 3

then allowed us to give a geometric interpretation of the set of infrastructure

ideals in a real function field. This interpretation is presented in Chapter 4

and the article outlining these ideas has been submitted for publication [72].

One of the most important consequences of the interpretation of infrastructure

that we develop is that we can prove the equivalence between the problem of

finding the distance of a given infrastructure ideal and the discrete logarithm

problem in the class group of the corresponding curve. We have also been
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able to explain precisely why the infrastructure has ‘holes’, and we can de-

scribe exactly where these ‘holes’ will appear. As a further consequence of our

work, we can prove in a very precise way that using hyperelliptic curves with

the representation we describe in Chapter 3 is more efficient than the use of

infrastructure for group-based cryptography.

Chapters 6 and 7 also deal with questions related to pairing based cryp-

tography, although the results they present are independent from the rest of

this thesis. In Chapter 6, we describe an attack on a cryptosystem proposed

by Dent and Galbraith in [19]. Our proposal applies to schemes with minimal

functionality, and in the general case dramatically reduces the number of vari-

ables necessary to perform an attack on the scheme. In some special cases our

attack recovers the secret key of the scheme using only linear algebra. This

second attack can be seen as a warning against careless implementations. The

results of Chapter 6 have been published in [74].

Chapter 7 analyses the consequences of the existence of pairing-inversion

algorithms. This is motivated by the results of [37], who prove that for ellip-

tic curves with a very reduced Miller loop, the ‘Miller inversion’ problem can

be solved efficiently. In Chapter 7, we analyse the theoretical and practical

implications that the existence of an efficient (or relatively efficient) pairing in-

version algorithm would have. The results of this chapter are available as [73].
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Chapter 2

Mathematical Background

In this chapter we present the mathematical concepts that will be used in

the later chapters of this thesis. We begin with a section describing the basic

properties of algebraic curves, in Section 2.1 we focus on results regarding the

divisor class group and the Riemann-Roch theorem. In Section 2.2 we present

the basic properties of hyperelliptic curves. We conclude with Section 2.3,

where the Tate- and Weil-pairings are defined, we prove some of their basic

properties and present results allowing for the computation of pairings using

short Miller loops.

2.1 Curves

Throughout this thesis, a curve will be a nonsingular projective curve defined

over a perfect field k. A point on a curve C is a geometric point on C defined

over k.
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2.1.1 The Group of Divisors

Definition 2.1.1. Let C be an algebraic curve defined over a field k. The

group of divisors on C is the free abelian group generated by the points of

C(k). It is denoted as Div(C).

In other words, Div(C) is the group of finite formal sums D =
∑
niPi, for

integers ni and points Pi on C(k).

Definition 2.1.2. A divisor D =
∑
niPi is said to be effective if every co-

efficient ni is non-negative. Given two divisors D1 and D2, we will say that

D1 ≥ D2 if D1 −D2 is an effective divisor.

Definition 2.1.3. The support of the divisor D =
∑
niPi is the set of points

Pi for which the coefficient ni is nonzero. Note that the support of a divisor is

a finite set.

Given a divisorD =
∑

i niPi, we say that the divisorDz =
∑

i max(ni, 0)Pi,

is the divisor of zeros of D. Analogously, the divisor Dp =
∑

i min(ni, 0)Pi,

is the divisor of poles of D. Definition 2.1.7 in the next section explains the

origin of this nomenclature.

Definition 2.1.4. Given a divisor D, we define its degree degD as

deg : Div(C) −→ Z∑
niPi 7→

∑
ni.

The degree function is a homomorphism from the group of divisors into Z.

The set of degree 0 divisors, denoted Div0(C), is a subgroup of Div(C), as

it is the kernel of this morphism.

16



2.1.2 Principal Divisors

Given a curve C defined over the field k, let k(C) define the field of k-valued

rational functions on C.

Definition 2.1.5. Let P be a point on the curve C. Let OP denote the ring

of elements of k(C) which are well defined at P . This is the local ring of P

on C. It is a discrete valuation ring (see [33]), with maximal ideal mP = {f ∈

OP |f(P ) = 0}.

We denote ordP : OP − {0} −→ Z for the normalized valuation on OP ,

assigning to every function f in O the (non-negative) integer n such that

f ∈ mn
P{}mn+1

P (such an integer exists because O is a discrete valuation ring).

We naturally extend this valuation to the function field k(C)∗. The properties

of this valuation are given by the following lemma.

Lemma 2.1.6. The function ordP has the following properties:

1. ordP (fg) = ordP (f) + ordP (g) for all f, g ∈ k(C).

2. For a fixed function f ∈ k(C), there are only finitely many points P on

C with ordP (f) 6= 0.

3. Let f ∈ k(C). Then ordP (f) ≥ 0 if and only if f ∈ OP . Similarly,

ordP (f) > 0 if and only if f ∈ mP .

4. For f ∈ OP , the following are equivalent:

• ordP (f) ≥ 0 for all P .

• ordP = 0 for all P .

17



• f ∈ k∗.

Definition 2.1.7. Let C be a curve, and let f ∈ k(C)∗ be a nonzero rational

function. The divisor associated to f is the divisor

div(f) =
∑

P∈C(k)

ordP (f).

This is a well defined divisor since Lemma 2.1.6 shows that for a fixed

function f there are only finitely many points P on C such that ordP (f) 6= 0.

Definition 2.1.8. We say that a divisor D is principal if it is the divisor

associated to a function D = div(f). We will denote the group of principal

divisors on C as Prin(C).

Lemma 2.1.9. Every principal divisor has degree 0.

Proof. See Hartshorne [47][Corollary II.6.10].

Definition 2.1.10. Two divisors D0 and D1 are linearly equivalent, denoted

D0 ≡ D1, if there is a function f ∈ k(C)∗ such that

div(f) = D1 −D0.

Remark 2.1.11. The concept of linear equivalence on divisors is fundamental

in the study of curves. We will briefly explain the origin of the term. Let D1

and D2 be two divisors such that D1 = D2 + div(f). For each point (x : y)

on the projective line P1, define a divisor D(x:y) = D2 + div(x + yf). Then

D(1:0) = D2 and D(0:1) = D1. Our construction shows a family of divisors

parametrized by the points of a line that deforms D1 to D2.
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2.1.3 The Divisor Class Group

Definition 2.1.12. The divisor class group of C is the group of divisor classes

modulo linear equivalence. We will denote it as Cl(C). The class of a divisor

D in Cl(C) will be denoted by [D].

By Lemma 2.1.9, every principal divisor has degree 0. It follows that the

degree function is well defined on divisor classes. We define Cl0(C) as the

degree zero subgroup of Cl(C). Equivalently, Cl0(C) can be defined as the set

of degree zero divisors Div0(C) modulo principal divisors.

Example 2.1.1. Let E : y2 = x3 + Ax + B be an elliptic curve given in

Weierstrass form. Given two points P and Q on E, let lP,Q denote the line

passing through them. Denote the third intersection point of lP,Q with E as R,

and let vR be the vertical line passing through R. If O is the point at infinity

of E, the divisor associated to the function lP,Q/vR is

div

(
lP,Q
vR

)
= P +Q−R−O, (2.1.1)

where R is the elliptic conjugate of R. The standard chord-and-tangent addi-

tion algorithm on E says that P +Q = R. If we define a function

φ :E −→ Cl0(E)

P 7→ [P −O]

Equation (2.1.1) can be rewritten as

[P −O] + [Q−O] = [R−O],
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proving that φ is a group homomorphism. This shows that the chord-and-

tangent group law on E coincides with the group operation in the class group

of E.

Definition 2.1.13. If the curve C is defined over a non algebraically closed

field k, we say that a divisor D is k-rational if it is invariant under the action

of the Galois group Gal(k/k). The group of k-rational divisors is denoted as

Divk(C).

Note that points in the support of a k-rational divisor D might not be k-

rational. Analogously, we say that a divisor class is k-rational if it is Gal(k/k)-

stable. We denote the group of k-rational divisor classes as Clk(C).

Lemma 2.1.14. Let D = div(f) be the divisor of a function f ∈ k(C).

If the divisor D is k-rational, there exists a function f ′ ∈ k(C) such that

D = div(f ′).

Proof. Let K be a finite Galois extension of k such that f is K-rational. Let

GK/k = Gal(K/k) denote the Galois group of K over k.

Since D is k-rational, given σ ∈ GK/k, the function σ(f)/f has divisor

div(σ(f)/f) = 0. Lemma 2.1.6 implies that σ(f)/f ∈ K∗. A simple calcula-

tion shows that the function

φ : GK/k −→ K∗

σ 7→ σ(f)/f,

is a 1-cocycle. Hilbert’s Theorem 90 implies that it is a 1-coboundary. Hence,

there exists a ∈ K∗ such that

σ(f)/f = σ(a)/a for every σ ∈ GK/k,
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which can be rewritten as

σ(f/a) = f/a for every σ ∈ GK/k,

proving that f/a is a k-rational function with associated divisor D.

We defined linear equivalence for divisors on a curve C using k-valued

functions. Lemma 2.1.14 shows that linear equivalence of k-rational divisors

can be defined using only k-rational functions. In other words, the natural

map

i : Divk(C)/ div(k(C)∗) −→ Cl(C),

is an injection.

Proposition 2.1.15. Let C be a curve defined over the field k. A divisor class

[D] ∈ Cl(C) is k-rational if and only if it contains a k-rational divisor.

Proof. Let Gk/k = Gal(k/k) denote the absolute Galois group of k. Clearly, if

a divisor class contains a k-rational divisor it will be stable under the action

of Gk/k.

To prove the converse let D be the representative of a Gk/k-stable divisor

class. Since D has only finitely many points in its support, let K be a finite

Galois extension of k over which all the points in the support of D are defined.

Again, we denote GK/k = Gal(K/k) for the Galois group of K over k. Let P

be a point on C that doesn’t belong to the support of σ(D) for every σ ∈ GK/k.
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We define the map

ψ : GK/k −→ K(C)

σ 7→ f,

which given σ, assigns it the unique function f in K(C) with associated divisor

div(f) = D − σ(D) and such that f(P ) = 1. Such a function exists because

the divisor class [D] is GK/k-stable. The map ψ is a 1-coboundary, so Hilbert’s

Theorem 90 implies that it is a 1-cocycle, i.e. there exists a function fψ in

K(C) such that

ψ(σ) = σ(fψ)/fψ for every σ ∈ GK/k.

This last relation can be rewritten as

div(σ(fψ)/fψ) = D − σ(D),

for every σ ∈ GK/k. This is equivalent to

D + div(fψ) = σ(D + div(fψ)),

for every σ ∈ GK/k. In other words, the divisor D+ div(fψ) is k-rational, and

by definition it belongs to the class [D].

If the curve C is defined over a finite field Fq with q elements, the qth power

Frobenius automorphism πq acts on C. This action can be naturally extended

to the group Div(C) and is well defined in the quotient Cl(C). Throughout

this thesis we will abuse notation and denote this action as πq.
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2.1.4 The Riemann-Roch Theorem

Definition 2.1.16. Let C be a curve defined over a field k, and let D be a

divisor on C. The set Lk(D) is defined as

Lk(D) = {f ∈ k(C)∗|D + div(f) ≥ 0} ∪ {0}.

The set Lk(D) is a finite dimensional k-vector space, we will denote its di-

mension as l(D).

If the divisor D is k-rational, the dimension of the vector space Lk(D) is the

same as the dimension of the vector space Lk(D) [50][Proposition A.2.2.10].

Hence, there is a natural identification Lk(D) = k ⊗ Lk(D). Since the dimen-

sion of the space Lk(D) is independent of the field k (provided the divisor D

is k-rational), we do not need to specify the field k in the following theorem.

Theorem 2.1.17 (Riemann-Roch theorem). Let C be a curve. There exists a

divisor KC on C and an integer g ≥ 0 such that for all divisors D ∈ Div(C),

l(D)− l(KC −D) = deg(D)− g + 1.

Proof. See Hartshorne [47][Theorem IV.1.3].

The divisor KC is called the canonical divisor on C. This definition applies

to every divisor linearly equivalent to KC .

Definition 2.1.18. The integer g is called the genus of the curve C.

Corollary 2.1.19. Let C be a curve of genus g. Then l(KC) = g and

deg(KC) = 2g − 2.
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Proof. Using Riemann-Roch with the divisor D = 0 we get 1−l(KC) = −g+1,

which proves the first formula. Now, if we use Riemann-Roch with D = KC

we get l(KC)− 1 = deg(KC)− g + 1.

Example 2.1.2. We will use the Riemann-Roch Theorem to prove a classic

result. Let C be a curve of genus g and fix a degree g divisor Dg on C. Take

any divisor class [D] in Cl0(C) with representative D. The Riemann-Roch

Theorem implies that l(Dg − D) ≥ 1, so there exists a function f such that

the divisor D0 := Dg − D + div(f) is an effective divisor. This can also be

expressed as [D0 − Dg] = [D]. In other words, we have proved that every

divisor class in Cl0(C) has a representative of the form D0 −Dg, where D0 is

an effective divisor.

Let f be a function on the curve C, and let D =
∑

i∈I niPi be a divisor. If

the supports of D and div(f) are disjoint, we define

f(D) =
∏
i∈I

f(Pi)
ni .

Theorem 2.1.20 (Weil reciprocity). Let f and g be functions on C whose

divisors have disjoint supports. Then

f(div(g)) = g(div(f))

2.2 Hyperelliptic Curves

Definition 2.2.1. A curve C of genus g ≥ 2 is a hyperelliptic curve if it is a

double covering of the projective line.

Not every curve of genus g ≥ 2 is hyperelliptic. One can prove however
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that all genus 2 curves are hyperelliptic.

Theorem 2.2.2. Every genus two curve C is hyperelliptic.

Proof. Take an effective canonical divisor KC . By the Riemann-Roch The-

orem, the space L(KC) has dimension 2, hence it contains a non-constant

function x with divisor of poles KC . Hence, the map

φ :C −→ P1

P 7→ (x(P ) : 1)

is a double cover from C to the projective line, showing that C is hyperelliptic.

Since the function field of every hyperelliptic curve defined over a field k is

a quadratic extension of the field k(x), it is possible to give plane models for

all hyperelliptic curves.

Theorem 2.2.3. Every genus g hyperelliptic curves C defined over a field k

has a plane model

F (x) = y2 + h(x)y,

where F (x) =
∑2g+2

i=0 Fix
i, and h(x), F (x) ∈ k[x] satisfy deg(F ) ≤ 2g + 2 and

deg(h) ≤ g + 1, and the equation y2 + h(x)y − F (x) is absolutely irreducible.

Proof. See Cassels-Flynn [14]

Definition 2.2.4. If P = (x, y) is a point on a hyperelliptic curve C given by

a plane model as in Theorem 2.2.3, the point (x,−h(x) − y) also lies on C,

we will call this point the hyperelliptic conjugate of P and we will denote it

by P .
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Definition 2.2.5. Let C be a genus g hyperelliptic curve defined over the field

k given by a plane model y2 + h(x)y = F (x) over the field k, as described in

Theorem 2.2.3. If char(k) 6= 2, we will assume that h(x) = 0. If char(k) = 2

we will assume that deg(h(x)) ≤ g + 1, and that h(x) is a monic polynomial.

1. We say that this is an imaginary model for C if deg(F ) = 2g+1. When

char(k) = 2 we also require deg(h) ≤ g.

2. We say that this is a real model for C if deg(F ) = 2g+2. If char(k) = 2,

then we further require that deg(h) = g + 1.

Lemma 2.2.6. If the curve C is given by an imaginary model over k, then it

will have one k-rational point at infinty. If C is given by a real model, then it

will have two points at infinity, possibly defined over a quadratic extension of

k.

Proof. We only prove the lemma for fields k with char(k) 6= 2. Let

φ :C −→ P1,

(x, y) 7→ (x : 1).

This is a degree 2 endomorphism from a curve of genus g to a curve of genus 0.

If eP denotes the ramification index of φ at the point P , the Riemman-Hurwitz

formula (see [50][Theorem A.4.2.5]) says that
∑

P∈C(eP − 1) = 2g + 2. It can

be proved that the affine ramified points are points of the form (x, 0), and that

the ramification index at each of these points is 2.

If C is given by a real model, then we have 2g+2 affine ramification points,

and it follows that the points at infinity of C, corresponding to φ∗((1 : 0)), are

not ramified, and since the degree of the morphism is 2, there are exactly two
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of them.

If C is given by an affine model, then we only have 2g+1 affine ramification

points. It follows that there is at least one ramified point at infinity, which is

unique because the degree of φ is 2.

Finally, the divisor φ∗(1 : 0) is k-rational, proving that the point at infinity

is rational when C is given by an imaginary model, and that the points at

infinity are defined at most over a quadratic extension of k if C is given by a

real model.

Example 2.2.1. Let C be a hyperelliptic genus 2 curve given by the plane

model C : y2 = F (x), where F (x) =
∑6

i=0 aix
i and a6 6= 0. Cassels and Flynn

give a nonsingular model for C over P4

y2 = a0x
2
0 + a1x0x1 + a2x

2
1 + a3x1x2 + a4x

2
2 + a5x2x3 + a6x

2
3,

x0x2 − x2
1 = 0,

x0x3 − x1x2 = 0,

x1x3 − x2
2 = 0.

The affine points on the plane model of C correspond to the points in the

nonsingular model with x0 6= 0. This correspondence is given by

xi = xi, y = y.

2.2.1 Mumford representation

Definition 2.2.7. We say that an effective divisor D =
∑

i Pi on a hyperellip-

tic curve C is semi-reduced if i 6= j implies Pi 6= P j. If the hyperelliptic curve

C has genus g, we say that a divisor D on C is reduced if it is semi-reduced,
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and has degree d ≤ g. We will denote the degree of a divisor Di as di.

Let C be a hyperelliptic curve given by the equation y2 + h(x)y = F (x).

To every pair of polynomials (u(x), v(x)) such that

u(x) divides F (x)− h(x)v(x)− v(x)2, (2.2.1)

we associate a divisor as follows

If u(x) =
∏
i

(x− ri), then (u(x), v(x)) 7→
∑
i

(ri, v(ri)).

Condition (2.2.1) guarantees that the point (ri, v(ri)) lies on C. Note that the

divisor associated to the pair (u(x), v(x)) is always an effective affine semi-

reduced divisor.

We have seen how to associate an effective affine semi-reduced divisor to ev-

ery pair of polynomials satisfying condition (2.2.1). Conversely, ifD =
∑n

i=1 Pi

is an effective, affine, semi-reduced divisor, and the point Pi has coordinates

Pi = (xi, yi), let u(x) =
∏n

i=1(x − xi), and let v(x) be the unique polynomial

of degree at most n− 1 passing through the points Pi (if a point P appears m

times in the divisor D, we require that v(x) intersects C to order m at P ). By

construction, the pair of polynomials (u(x), v(x)) satisfies condition (2.2.1),

and the divisor D is the divisor associated to (u(x), v(x)).

Definition 2.2.8. In the notation of the previous paragraph, we say that

(u(x), v(x)) is a Mumford representation for the divisor D, and we will de-

note this as D = div(u(x), v(x)).

Example 2.2.2. Let C be the curve defined over Q given by the equation

y2 = x5−14x4 + 65x3−112x2 + 60x. The pair of polynomials (x2−301/36x+
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169/12, 287/216x − 455/72) satisfy condition (2.2.1), so they define a divisor

D on C. The polynomial x2 − 301/36x+ 169/12 is irreducible over Q, so the

individual points on the support of D are not Q-rational. The fact that both

polynomials in the Mumford representation of D are Q-rational proves that

D is however, a Q-rational divisor.

Proposition 2.2.9. Let C be a hyperelliptic curve defined over the field k.

Let D∞ be a k-rational degree g divisor, and let [D] ∈ Cl0(C) be a k-rational

divisor class on the hyperelliptic curve C. Then [D] has a unique representative

in Cl0(C) of the form [D0 −D∞], where D0 is an effective k-rational divisor

of degree g whose affine part is reduced.

Proof. The case D∞ = g∞+ is Proposition 4.1 of [79]. To prove uniqueness,

suppose that D1 and D2 are two effective degree g divisors with affine reduced

support, and D1 − D∞ ≡ D2 − D∞. Adding D∞ − g∞+ to both sides gives

D1 − g∞+ ≡ D2 − g∞+. Proposition 4.1 from [79] implies that D1 = D2.

The existence of the divisor D0 was proved in Example 2.1.2.

Definition 2.2.10. Given a hyperelliptic curve C, we define its base divisor

D∞ as:

• If C has a unique point at infinity ∞, then D∞ = g∞.

• If C has two points at infinity ∞+ and ∞− and even genus, then D∞ =

g
2
(∞+ +∞−).

• If C has two points at infinity ∞+ and ∞− and odd genus,then D∞ =

g+1
2
∞+ + g−1

2
∞−. In this case we will further assume that ∞+ and ∞−

are K-rational points.
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A small problem from a computational point of view is that Proposi-

tion 2.2.9 does not guarantee that the supports of D0 and D∞ are disjoint,

and indeed, in some cases they will have points in common which should be

“cancelled out”. However, divisors of the form D0−D∞ with D0 and D∞ hav-

ing disjoint support are generic, so it is enough to describe their arithmetic for

many applications. In Chapter 3 we will give a complete addition algorithm

for hyperelliptic curves; this algorithm becomes very efficient in the generic

case.

2.2.2 Points at infinity

Lemma 2.2.11. Let C be a hyperelliptic curve given by a real model as de-

scribed in Definition 2.2.5. Denote the two points at infinity on C as ∞+ and

∞−. Then the function y/xg+1 is well defined and not zero at each of ∞+ and

∞−. Furthermore

y

xg+1
(∞+) 6= y

xg+1
(∞−).

Proof. We have that ord∞+(x) = ord∞−(x) = −1 and ord∞+(y) = ord∞−(y) =

−g−1. Hence ord∞+(y/xg+1) = ord∞−(y/xg+1) = 0, proving that the function

y/xg+1 is well-defined and not zero at each of ∞+ and ∞−.

To prove the second part of the lemma, define the function g on C as

g(P ) =
y(P )

(y − h)(P )
.

Since y(P ) = (h− y)(P ) for every point P , the function g is constant, g(P ) =

−1 for every P . If char(k) 6= 2, then we have that h(x) = 0, and since
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x(P ) = x(P ) and ∞+ =∞− , it follows that

(y/xg+1)(∞+) = −(y/xg+1)(∞−).

If char(k) = 2, then h(x) is monic of degree g + 1, and we get

(y/xg+1)(∞+) = ((y + h)/xg+1)(∞−),

but the leading term of h is xg+1, so (h/xg+1)(∞−) = 1, in this case

(y/xg+1)(∞+) = (y/xg+1)(∞−) + 1,

and the lemma follows.

Using Lemma 2.2.11 define

a+ = (y/xg+1)(∞+), a− = (y/xg+1)(∞−),

it follows that a+ 6= a−. Hence, for p(x) a polynomial of the form p(x) =

(a+x
g+1 +

∑
0≤i≤g bix

i), the function y−p(x) will have valuation strictly larger

than −(g + 1) at ∞+ and valuation −(g + 1) at ∞−.

Definition 2.2.12. In the notation of the previous paragraph, among all degree

g+1 polynomials p(x) with leading coefficient a+, there is a unique polynomial

in k[x] for which the valuation of the function y− p(x) at ∞+ is maximal; we

will denote this polynomial by H+. Define the polynomial H− analogously.

If C(x, y) is the equation of the curve, then H+(x) and H−(x) are the

polynomials with leading coefficient a+ and a− such that C(x,H±(x)) has
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minimal degree. Their coefficients can thus be found recursively. The poly-

nomials H±(x) are just a technical tool to specify a point at infinity, similar

to the choice of sign when computing the square root of a complex number.

Note that the polynomials H± are defined over k if and only if the points ∞+

and ∞− are k-rational.

Example 2.2.3. Take the hyperelliptic curve C defined over Q given by equa-

tion y2 = x6+4x5+10x4+20x3+30x2+19x+16. It is easy to show that a+ = 1

and a− = −1. In this case, H+(x) = x3 +2x2 +3x+4, and H−(x) = −H+(x).

Definition 2.2.13. Given two divisors D1 and D2, we will denote the set of

pairs of integers (ω+, ω−) such that

D1 ≡ D2 + ω+∞+ + ω−∞−,

as ω(D1, D2). We say that the numbers ω+ and ω− are counterweights for D1

and D2 if (ω+, ω−) ∈ ω(D1, D2).

The set ω(D1, D2) may be empty. If [∞+ − ∞−] is a torsion point on

Cl0(C), and the set ω(D1, D2) is not empty, then it is infinite; however this

will not affect our algorithms. Given two divisors D1 and D2, calculating the

values of the counterweights relating them is a difficult problem. When these

values are needed in our algorithms, there will be a simple way to calculate

them.

2.3 Pairings

Let C be a curve defined over a field k. In this section we describe the Tate-

and Weil-pairings on Cl0(C) and present Miller’s algorithm to compute them.
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We conclude with some techniques developed to compute pairings using short

Miller loops.

2.3.1 Pairing definition

Let [D1] ∈ Cl0k(C)[r] and D2 ∈ Cl0k(C) be two divisors with disjoint sup-

port. Since rD1 is principal, there is a function fr,D1 defined over k such that

div(fr,D1) = rD1. The Tate-pairing is defined as

〈D1, D2〉r = fr,D1(D2).

Theorem 2.3.1. The Tate-pairing

〈·, ·〉 : Cl0k(C)[r]× Cl0k(C)/rCl0k(C) −→ k∗/(k∗)r,

is a non-degenerate, Galois-equivariant, bilinear pairing.

Proof. Galois-equivariance follows from the definition of the Tate-pairing. We

will first prove that the Tate-pairing is well defined in divisor classes. To prove

this for the first entry, let D′1 = D1 + div(g1). Then fr,D′1 = fr,D · gr1.

To prove that the pairing is well defined on divisor classes on the right, let

D′2 = D2 + div(g2). Then

fr,D1(D
′
2) = fr,D1(D2 + div(g2))

= fr,D1(D2) · fr,D1(div(g2))

= fr,D1(D2) · g2(D1)
r,

where the last equality is given by Weil-reciprocity.
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To prove linearity on the left, let [D1], [D2] ∈ Cl0k(C)[r], and [D3] ∈ Cl0k(C).

Let [D1,2] = [D1] + [D2]. We have

〈D1, D3〉r〈D2, D3〉r
〈D1,2, D3〉r

=
fr,D1(D3) · fr,D2(D3)

fr,D1,2(D3)

= gD1,D2(D3)
r,

where gD1,D2 is a function with associated divisor D1 +D2 −D1,2.

To prove linearity on the right, let [D3] ∈ Cl0k(C)[r] and [D1], [D2], [D1,2] ∈

Cl0k(C) such that D1 + D2 − D1,2 is the divisor of the function gD1,D2 . By

definition

〈D3, D1〉r〈D3, D2〉r
〈D3, D1,2〉r

=
fr,D3(D1)fr,D3(D2)

fr,D3(D1,2)

= fr,D3(D1 +D2 −D1,2)

= gD1,D2(D3)
r

where the last equality is given by Weil-reciprocity.

We will not prove non-degeneracy of the Tate-pairing. A prove of this fact

can be found in [32]

If the field k is finite, and contains the group of rth roots of unity µr, then

it is possible to obtain a unique pairing result simply by defining

e(D1, D2) = 〈D1, D2〉(|k|−1)/r
r .

This bilinear pairing is known as the reduced Tate-pairing.
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Definition 2.3.2. If the curve C is defined over the finite field Fq, and its

class group Cl0Fq
(C) has an element of prime order r, we define the embedding

degree of C with respect to r as the smallest positive integer k such that the

field Fqk contains the group of rth roots of unity. In other words, k is the

smallest positive integer such that r | (qk − 1). If the embedding degree k is

small, we say that C is a pairing friendly curve.

Definition 2.3.3. Let D1, D2 ∈ Cl0(C)[r] be two r-torsion divisors with dis-

joint supports. We define the Weil-pairing of D1 and D2 as

ẽ(D1, D2) = 〈D2, D1〉r/〈D1, D2〉r.

Remark 2.3.4. There are alternative definitions of the Weil pairing. See for

example Section III.8 in Silverman [91].

Theorem 2.3.5. The Weil-pairing is a Galois-equivariant, non-degenerate,

bilinear pairing

e : Cl0(C)[r]× Cl0(C)[r] −→ µr,

where µr is the group of rth roots of unity.

Proof. We first prove that the image of the Weil-pairing lies in µr. We have

that

e(D1, D2)
r = fr,D2(rD1)/fr,D1(rD2),

since div(fr,D1) = rD1 and div(fr,D2) = rD2, Weil-reciprocity implies that

fr,D1(rD2) = fr,D2(rD1); hence e(D1, D2)
r = 1, so e(D1, D2) ∈ µr. Galois-

equivariance and bilinearity follow from the analogous properties for the Tate-

pairing. Again, we do not prove non-degeneracy. A proof can be found

in [91][Section III.8].
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2.3.2 Miller’s algorithm

Definition 2.3.6. Let C be a curve for which there exists a way to select a

canonical representative for every element of Cl0(C). Given a degree 0 divi-

sor D on C and an integer n, let Dn be the canonical representative of the

class [nD]. We will denote the unique function (up to scalar multiples) with

associated divisor nD −Dn as fn,D.

The function fn,D is usually chosen to be normalised at infinity (i.e., that

the leading coefficient with respect to a fixed uniformizer at infinity is 1; see

[49]). Rather than making such a strong restriction we will just assume that

our functions fn,D are defined over the same field as D. Proposition 2.2.9

proves that there is always such a unique representative in the class group of

a hyperelliptic curve.

By definition, given two degree 0 divisors D1 and D2 on C, if D3 is the

canonical representative of [D1 + D2], there is a function whose associated

divisor is D1 +D2−D3. Denote this function as gD1,D2 . Miller’s fundamental

observation is that

fn1+n2,D = fn1,D · fn2,D · gn1D,n2D, (2.3.1)

which allows us to compute fr,D (and hence the Tate-pairing) using a square

and multiply calculation with O(log r) steps. Miller’s idea idea is presented in

Algorithm 2.1.

In several cryptographic applications, a bilinear pairing e and a divisor D

are needed such that e(D,D) 6= 1. This is typically not possible if e is the

Weil- or Tate-pairing and D is defined over the base field of the curve. The

following definition tries to circumvent these limitations.
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Algorithm 2.1 Miller’s Algorithm

Input: Divisors D1 such that [D1] ∈ Cl0(C)[r], and D2 ∈ Cl0(C) with disjoint
support.

Output: fr,D1(D2).
1: Let r = 2n +

∑n−1
i=0 ai2

i, where ai ∈ {0, 1}.
2: Set v = 1 , D3 = D1.
3: for 1 ≤ i ≤ n do
4: v := v2 · gD3,D3(D2).
5: D3 := 2 ·D3.
6: if an−i = 1 then
7: v := v · gD3,D1(D2).
8: D3 := D3 +D1.

9: return v.

Definition 2.3.7. Let e : G1 × G2 −→ GT be a non-degenerate bilinear

pairing. A morphism ψ : G1 −→ G2 is called a distortion map for D1 ∈ G1

if e(D1, ψ(D1)) 6= 1.

2.3.3 Elliptic Ate and twisted Ate pairing

Several techniques to compute pairings using short Miller loops have been de-

veloped. Here we present results obtained by Hess, Smart and Vercauteren

in [49]. Let E be an elliptic curve defined over the finite field Fq, with

#E(Fq) = q − t + 1, where t is the trace of Frobenius. Let r be a prime

that divides #E(Fq), denote T = t− 1 and

G1 = E[r] ∩Ker(πq − id), and G2 = E[r] ∩Ker(πq − q).

Let k denote the embedding degree, define N = gcd(T k − 1, qk − 1) and let

T k − 1 = LN .

Theorem 2.3.8 (Theorem 1 of [49]). Given two points P ∈ G1 and Q ∈ G2,

the function e(Q,P ) = fT,Q(P )(qk−1)/N defines a bilinear pairing. If r does not
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divide L, then this pairing is non-degenerate. We call it the Ate pairing.

Remark 2.3.9. The Hasse-Weil Theorem says that the number of points of

an elliptic curve E defined over the field Fq is an element of the interval

[q − 2
√
q + 1, q + 2

√
q + 1]. For cryptographic applications, it is customary to

choose a curve whose order has a prime divisor r close to q (that is, such that

#E/r is small). Note that in this case, the trace of Frobenius t is bounded by

2
√
q, so T has approximately half the bit-length of r. In this case, computing

the function fT,Q using Miller’s algorithm sould be twice as fast as calculating

fr,Q. There are families of pairing friendly curves where the trace of Frobenius

is very small, see for example [37].

Example 2.3.1. We present a construction of pairing-friendly curves due to

Barreto and Naehrig, presented in [4]. Define the polynomials

t(x) = 6x2 + 1,

n(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

Barreto and Naehrig prove that if x0 is an integer such that p0 := p(x0) and

n0 := n(x0) are both prime numbers, then there is an elliptic curve E defined

over the field Fp0 with n0 points and trace of Frobenius t(x0). Furthermore,

the curve E has embedding degree 12 with respect to n0 and an equation of

the form y2 = x3 + b, where b can be easily computed.

In [49, Section 6], Hess, Smart and Vercauteren prove that if E has a twist

of degree d, embedding degree k, and we set m = gcd(d, k) and e = k/m, then
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Theorem 2.3.10. In the notation of Theorem 2.3.8, the function

e(P,Q) = fT e,P (Q)(qk−1)/r, (2.3.2)

defines a bilinear function on G1 ×G2, called the twisted Ate pairing.

2.3.4 Hyperelliptic Ate pairings

We have seen that in some cases it is possible to compute pairings using a

function fn,D where n is much smaller than required for the Tate-pairing. We

will revisit some of these techniques in the case of hyperelliptic curves.

Let C be a hyperelliptic curve defined over a finite field Fq. Denote the

Frobenius automorphism of C as πq. Let

G1 = Cl0F
qk

(C)[r] ∩Ker(πq − id) and G2 = Cl0F
qk

(C)[r] ∩Ker(πq − q),

denote the 1- and q-eigenspaces of πq in the r-torsion subgroup of Cl0F
qk

(C).

If D1 ∈ G1 and D2 ∈ G2 are divisors on C, the authors of [46] proved:

Theorem 2.3.11. The function eq : G1 ×G2 −→ µr, given by

eq(D1, D2) = fq,D1(D2)
(qk−1)/r,

defines a non-degenerate bilinear pairing on G1 ×G2.

2.3.5 R-ate pairings

Let G1 and G2 be subgroups of the class group of a curve C (please note that

G1 and G2 needn’t be Frobenius eigenspaces in this section). If D1 ∈ G1 and
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D2 ∈ G2, Lee, Lee and Park prove in [64] the following:

Theorem 2.3.12. [Theorem 3.2 in [64]] Let A,B, a, b be integers such that

A = aB+b, where the functions fA,D and fB,D define bilinear maps in G1×G2.

Then the function

fa,BD(E) · fb,D(E) · gaBD,bD(E),

defines a bilinear map in G1 ×G2.

Remark 2.3.13. Note that if B is the order of D, then the functions fa,BD and

gaBD,bD are constant, so the function fb,D(E) will define a bilinear map.
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Chapter 3

Arithmetic on Hyperelliptic

Curves

In this chapter we will present addition algorithms for the class group of a

hyperelliptic curve. Firstly, we will present Cantor’s algorithm; this is a classic

addition algorithm for curves given by an imaginary model. We will then

describe our proposal for addition on curves given by a real model and compare

it with previous proposals.

Algorithms analogous to the ones presented in this chapter were developed

by Mike Harrison and implemented as part of the computer algebra system

Magma. The algorithms corresponding to the results in this chapter were first

released in Magma V2.12 in July 2005. Our research was done independently.

The results of this chapter are published jointly with Mike Harrison in the

article [36].

Proposition 2.2.9 shows that for a genus g hyperelliptic curve C, given any

degree g divisor D∞, every divisor class has a unique representative of the

form D − D∞, where D is an effective divisor with reduced affine part. The
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problem of finding explicit addition algorithms on Cl0(C) can be restated as:

Problem 3.1. Let C be a genus g hyperelliptic curve with a fixed degree

g divisor D∞ on C. Given two effective degree g divisors D1 and D2 with

reduced affine part, find an effective degree g divisor D3 with reduced affine

part such that

[D1 −D∞] + [D2 −D∞] = [D3 −D∞].

Under this perspective, finding an efficient addition algorithm on the class

group of a hyperelliptic curve is a problem in two stages. First, one needs

to find an appropriate divisor D∞, and then the algorithms to compute with

this base divisor need to be developed. In this chapter we prove that using a

divisor D∞ which is more balanced at infinity, arithmetic in the class group

may be performed more efficiently than done by [26, 55, 79, 80]. In the case

of genus 2 curves, all explicit addition formulae presented so far [26] can be

used with our representation, giving improved results (see Table 3.1).

3.1 Arithmetic on Curves Given by Imaginary

Models

Let C be a degree g hyperelliptic curve defined over the field k by the equation

C : y2 +h(x)y = F (x), where F is a polynomial of degree 2g+ 1. If we denote

the unique point at infinity of C as ∞, and let D∞ = g∞, Proposition 2.2.9

says that every divisor class on Cl0(C) has a unique representative of the form

D − D∞, where D is an effective divisor with reduced affine part. This can

also be interpreted as follows

Proposition 3.1.1. With C a curve as described above, there is a natural
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bijection between Cl0(C) and the set of reduced affine divisors RedDiv(C) on

C. This bijection is given by

divC : RedDiv(C) −→ Cl0(C)

D 7→ [D − d∞],

where d = deg(D).

This proposition allows us to restrict to reduced affine divisors in order

to describe an addition algorithm in Cl0(C). Since every such divisor can be

given by its Mumford representation, our algorithms will operate on Mumford

representations.

Algorithm 3.1 Composition

Input: Semi-reduced affine divisors D1 = div(u1, v1) and D2 = div(u2, v2).
Output: A semi-reduced affine divisor D3 = div(u3, v3).

1: Compute s (monic), f1, f2, f3 ∈ k[x] such that

s = gcd(u1, u2, v1 + v2 + h) = f1u1 + f2u2 + f3(v1 + v2 + h).

2: Set u3 := u1u2/s
2 and v3 := (f1u1v2 + f2u2v1 + f3(v1v2 + F )) /s mod u3

3: return div(u3, v3).

The result D3 of Algorithm 3.1 will be denoted D3 = comp(D1, D2). The

divisor of the function s from Algorithm 3.1 is

div(s) = D1 +D2 −D3 − (d1 + d2 − d3)(∞), (3.1.1)

which proves that

[D1 − d1∞] + [D2 − d2∞] = [D3 − d3∞]
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Algorithm 3.1 is also known as divisor composition.

Example 3.1.1. Let C be a hyperelliptic curve defined over the field F101

given by the equation y2 + (x + 12)y = x7 + 43x + 19. Let D1 = div(x3 +

85x2+23x+49, 64x2+100x+9) and D2 = (x3+79x2+96x+73, 25x2+70x+55).

Then

D3 = comp(D1, D2) = div(x4 +85x3 +99x2 +73x+93, 94x3 +24x2 +93x+86).

Note that D3 has degree 4 because D1 has the point (11, 66) in its divisor of ze-

ros, and D2 has its hyperelliptic conjugate (11, 12). In this case the polynomial

s(x) from Algorithm 3.1 is s(x) = x− 11, and (f1, f2, f3) = (93, 8, 97).

Given an affine semi-reduced divisor D0 of degree d0 ≥ g+1, Algorithm 3.2

finds another affine semi-reduced divisor D1 with smaller degree d1, such that

[D0 − d0∞] = [D1 − d1∞] (3.1.2)

Algorithm 3.2 is known as divisor reduction.

Algorithm 3.2 Reduction

Input: A semi-reduced affine divisor D0 = div(u0, v0), with d0 ≥ g + 1.
Output: A semi-reduced affine divisor D1 = div(u1, v1) such that Equation

(3.1.2) holds.
1: Set u1 := (v2

0 + hv0 − F )/u0 made monic.
2: Let v1 := (−v0 − h) mod u1.
3: return div(u1, v1).

The result D1 of Algorithm 3.2 will be denoted as D1 = red(D0). The

geometric interpretation of Algorithm 3.2 is very simple: given the effective

affine divisor D0 = div(u0, v0), we know (by definition of the Mumford repre-

sentation) that the divisor of zeros Dz of the function y − v0(x) has (in the
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notation of Algorithm 3.2) Dz = D0 + D1, and if deg(u0) ≥ g + 1, then the

degree of Dz satisfies deg(Dz) < 2 deg(D0), hence deg(D1) < deg(D0), and we

have

div

(
y − v0(x)

u0

)
= D0 −D1 − (d0 − d1)(∞). (3.1.3)

It follows that

[D0 − d0∞] = [D1 − d1∞].

Example 3.1.2. If we continue with Example 3.1.1, and we compute D4 =

red(D3), we get

D4 = div(x3 + 68x2 + 12x+ 79, 5x2 + 24x+ 56).

Algorithm 3.3 Cantor’s Algorithm

Input: Reduced affine divisors D1 = div(u1, v1) and D2 = div(u2, v2).
Output: A reduced affine divisor D3 = div(u3, v3) such that [D1 − d1∞] +

[D2 − d2∞] = [D3 − d3∞].
1: Let D := comp(D1, D2).
2: while deg(D) > g do
3: D := red(D).

4: return D.

Example 3.1.3. Using Examples 3.1.1 and 3.1.2, it follows that if D1 =

div(x3 + 85x2 + 23x + 49, 64x2 + 100x + 9) and D2 = (x3 + 79x2 + 96x +

73, 25x2 + 70x + 55) are two divisors on the curve C. Then the divisor D4 =

div(x3 + 68x2 + 12x+ 79, 5x2 + 24x+ 56) is such that

[D1 − 3∞] + [D2 − 3∞] = [D4 − 3∞].
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3.2 Algorithms on Real Models

In this section we modify the algorithms presented in the last section to com-

pute with divisor classes of hyperelliptic curves. We will analyse these algo-

rithms as operations on the Mumford representation of an affine semi-reduced

divisor. Our main contribution is to give a geometric interpretation of these

algorithms.

Algorithm 3.4 Modified Composition

Input: Semi-reduced affine divisors D1 = div(u1, v1) and D2 = div(u2, v2).
Output: A semi-reduced affine divisor D3 = div(u3, v3) and a pair (ω+, ω−),

such that (ω+, ω−) ∈ ω(D1 +D2, D3).
1: Compute s (monic), f1, f2, f3 ∈ k[x] such that

s = gcd(u1, u2, v1 + v2 + h) = f1u1 + f2u2 + f3(v1 + v2 + h).

2: Set u3 := u1u2/s
2 and v3 := (f1u1v2 + f2u2v1 + f3(v1v2 + F )) /s mod u3

3: return div(u3, v3) and (deg(s), deg(s)).

The resultD3 of Algorithm 3.4 will be denotedD3, (ω
+, ω−) = comp(D1, D2).

The divisor of the function s from Algorithm 3.4 is

div(s) = D1 +D2 −D3 −
d1 + d2 − d3

2
(∞+ +∞−), (3.2.1)

which proves that

(ω+, ω−) ∈ ω(D1 +D2, D3).

Algorithm 3.4 is also known as divisor composition.

Example 3.2.1. Let C be a genus 3 hyperelliptic curve defined over the field

F127 by the equation y2 = x8 + 2x5 + x4 + 4x2 + 88x+ 45. Let D1 and D2 be
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divisors given by

D1 = div(x3 + 35x2 + 47x+ 51, 68x2 + x+ 41),

D2 = div(x2 + 121x+ 100, 37x+ 113).

The result D3, (ω
+, ω−) = comp(D1, D2) of the composition of D1 and D2 is

given by (ω+, ω−) = (0, 0) and

D3 = div(x5 + 29x4 + 64x3 + 94x2 + 76x+ 20, 6x4 + 40x3 + 115x2 + 64x+ 7).

Given an affine semi-reduced divisor D0, of degree d0 ≥ g+2, Algorithm 3.5

finds another affine semi-reduced divisor D1 with smaller degree d1, and a pair

of integers (ω+, ω−) such that

(ω+, ω−) ∈ ω(D0, D1) (3.2.2)

Algorithm 3.5 is a modification of the divisor reduction algorithm (Algo-

rithm 3.2), the only difference is that Algorithm 3.5 also returns a pair of

counterweights.

The result D1 of Algorithm 3.5 will be denoted as D1, (ω
+, ω−) = red(D0).

The geometric interpretation of Algorithm 3.5 is very simple: given the effec-

tive affine divisor D0 = div(u0, v0), we know (by definition of the Mumford

representation) that the divisor of zeros Dz of the function y − v0(x) has (in

the notation of Algorithm 3.5) Dz = D0 +D1, and if deg(u0) ≥ g+2, then the

degree of Dz satisfies deg(Dz) < 2 deg(D0), hence deg(D1) < deg(D0), and if
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Algorithm 3.5 Modified Reduction

Input: A semi-reduced affine divisor D0 = div(u0, v0), with d0 ≥ g + 2.
Output: A semi-reduced affine divisor D1 = div(u1, v1) and a pair (ω+, ω−),

such that d1 < d0 and Equation (3.2.2) holds.
1: Set u1 := (v2

0 + hv0 − F )/u0 made monic.
2: Let v1 := (−v0 − h) mod u1.
3: if the leading term of v0 is a+x

g+1 (in the notation of Definition 2.2.12)
then

4: Let (ω+, ω−) := (d0 − g − 1, g + 1− d1).
5: else if the leading term of v0 is a−x

g+1 then
6: Let (ω+, ω−) := (g + 1− d1, d0 − g − 1).
7: else
8: Let (ω+, ω−) := (d0−d1

2
, d0−d1

2
).

9: return div(u1, v1), (ω
+, ω−).

the leading term of v0 is different to that of H± we have

div

(
y − v0(x)

u0

)
= D0 −D1 −

d0 − d1

2
(∞+ +∞−). (3.2.3)

It follows that

D0 −D1 ≡
d0 − d1

2
(∞+ +∞−).

A similar analysis when the leading coefficient of v0 coincides with that of

H± shows that if D1, (ω
+, ω−) = red(D0), then we always have (ω+, ω−) ∈

ω(D0, D1).

Example 3.2.2. We will continue with Example 3.2.1. We want to compute

D4, (ω
+, ω−) = red(D3). It is straightforward to verify that (ω+, ω−) = (1, 1)

and

D4 = div(x3 + 21x2 + 29x+ 45, 31x2 + 125x+ 60).

Algorithm 3.6 is only defined for affine semi-reduced divisors on curves

given by a real model. If it were applied on a divisor of degree at least g + 2,

Algorithm 3.6 would coincide with Algorithm 3.5. When applied on a divisor
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Algorithm 3.6 Composition at Infinity and Reduction

Input: A semi-reduced affine divisor D0 = div(u0, v0) of degree d0 ≤ g + 1.
Output: A reduced affine divisor D1 = div(u1, v1) and a pair of integers

(ω+, ω−) such that (ω+, ω−) ∈ ω(D0, D1).
1: v′1 := H± + (v0 −H± mod u0),
2: u1 := (v′21 + hv′1 − F )/u0 made monic.
3: v1 := −h− v′1 mod u1.
4: if H+ was used then
5: Let (ω+, ω−) := (d0 − g − 1, g + 1− d1).
6: else if H− was used then
7: Let (ω+, ω−) := (g + 1− d1, d0 − g − 1).

8: return div(u1, v1), (ω
+, ω−).

D0 degree at most g + 1, Algorithm 3.6 can be interpreted as composing the

divisor D0 with some divisor at infinity, followed by Algorithm 3.5. The poly-

nomial v′1 in this algorithm is the equivalent to polynomial v3 in Algorithm 3.4.

The result D1 of this algorithm will be denoted as D1, (ω
+, ω−) = red∞(D0).

Formally, the action of this algorithm is given by the following.

Proposition 3.2.1. Given an effective semi-reduced divisor with affine sup-

port D0, with Mumford representation div(u0, v0) and degree d0 ≤ g + 1. If

D1, (ω
+, ω−) = red∞(D0), then

(ω+, ω−) ∈ ω(D0, D1).

Proof. We will only prove this when the algorithm is applied using H+. Notice

that the polynomial v′1(x) has the property that the function f = y − v′1(x)

has all the points in D0 in its divisor of zeros.

The (g + 1)− d0 highest degree coefficients of v′1(x) coincide with those of

H+(x), so the function

(v′1(x))2 + hv′1(x)− F (x),
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which finds the affine support of f , has degree at most g + d0, and it follows

that the affine support of f has at most g + d0 points.

We know that the function y − v′1(x) will have valuation −(g + 1) at ∞−.

The divisor of f is then:

div(f) = D0 +D2 − (d0 + d2 − (g + 1))∞+ − (g + 1)∞− (3.2.4)

If we denote by D1 the hyperelliptic conjugate of D2, we know that

div(u1) = D2 +D1 − d2(∞+ +∞−)

which together with Equation (3.2.4) implies

div

(
y − v′1(x)

u1

)
= D0 −D1 − (d0 − (g + 1))∞+ − (g + 1− d2)∞− (3.2.5)

which trivially becomes

D0 ≡ D1 + (d0 − (g + 1))∞+ + (g + 1− d1)∞−. (3.2.6)

The proposition follows at once.

Example 3.2.3. We continue with the calculations from Examples 3.2.1

and 3.2.2. We want to compute D5, (ω
+, ω−) = red∞(D4). In this case we

will use the polynomial H+ = x4 +x+ 64. Again, following Algorithm 3.6, we

get (ω+, ω−) = (−1, 2) and

D5 = div(x2 + 8x+ 57, 39x+ 14).
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Remark 3.2.2. When dealing with explicit computations, the divisors D0 and

D1 will very often have degree g, in which case we can re-write Equation (3.2.6)

as

D0 + (∞+ −∞−) ≡ D1.

Choosing any degree g base divisor D∞ to represent the points on the class

group of C, this equation tells us that

(D0 −D∞) + (∞+ −∞−) ≡ (D1 −D∞),

in other words, Algorithm 3.6 is nothing but addition of∞+−∞−; this turns

out to be such a simple operation because the divisor composition is elementary

and can easily be incorporated in the divisor reduction process, which is itself

very simple.

We would like to emphasize that Algorithm 3.6 is independent of the choice

of base divisor, so one has the freedom to choose a divisor D∞ optimal in each

specific case.

Remark 3.2.3. Previous authors have used the terms “baby steps” and “gi-

ant steps”. We explain these using our notation. Given two divisors D1 =

div(u1, v1) and D2 = div(u2, v2) on C, a “giant step” on D1 and D2 is the

result of computing D3 = comp(D1, D2) and successively applying reduction

steps (using a red∞ reduction) on the result until the degree of redi∞(D3) is

at most g. “Baby steps” are only defined on reduced affine effective divisors,

and the result of a “baby step” on a reduced divisor D is the divisor red∞(D).

Remark 3.2.4. We have just seen that Algorithm 3.6 generically corresponds

to addition of∞+−∞−, however, it has long been claimed that this operation

has no analogue in the imaginary curve case. Using the previous remark, we
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propose the following.

Let C : y2 = G(x), where deg(G(x)) = 2g+1, be a non-singular imaginary

model for a hyperelliptic curve of genus g. Take a point P = (xP , yP ) on

C. Given an effective affine divisor D = div(u0, v0) on C, where deg(v0) <

deg(u0), define a P -baby step on D as follows:

a = (yP − v0(xP ))/u0(xP )

ṽ1(x) = au0(x) + v0(x)

u1(x) =
(ṽ1)

2 −G(x)

(x− xP )u0(x)

v1(x) = −ṽ1 mod u1(x)

The result of applying a P -baby step on the divisor D0 is, generically, a

divisor D1 such that D0 + (P −∞) = D1. This algorithm will fail when P is

in the support of D0. Doing some precomputations and using an appropriate

implementation, this operation should be as efficient as Algorithm 3.6. A good

choice of P (for instance, having a very small xP , or even xP = 0) could have

a big impact on the efficiency of this algorithm. In the last section of this

chapter, Algorithm 3.9 gives explicit formulae to calculate a P -baby step in

genus 2 curves, where the point P has the form P = (0, y). The operation

count of Algorithm 3.9 is (1I,1S,5M), which is very competitive compared with

the (1I,2S,4M) required by its analogue in curves given by a real model [26].

The following technical lemma will be used in the next section to prove

that our proposed addition algorithm finishes.

Lemma 3.2.5. Let D0 be an effective divisor of degree d0 = 2g and D1 be an
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effective affine divisor of degree d1 ≤ g . If (ω+
1 , ω

−
1 ) ∈ ω(D0, D1),

D2, (ω
+
r , ω

−
r ) = red∞(D1) (using H+),

and we denote (ω+
2 , ω

−
2 ) = (ω+

1 + ω+
r , ω

−
1 + ω−r ), then (ω+

2 , ω
−
2 ) ∈ ω(D0, D2)

and

ω+
1 − ω−1 > ω+

2 − ω−2 .

If ω−1 < (g − 1)/2 then ω+
2 ≤ g/2.

Proof. From the hypotheses we know that ω+
1 +ω−1 = 2g−d1. Proposition 3.2.1

says that

(ω+
r , ω

−
r ) = (d1 − (g + 1), g + 1− d2), (3.2.7)

this implies that

ω+
1 − ω−1 = ω+

2 − ω−2 + (2g + 2− d0 − d1),

which proves the first assertion. Equation (3.2.7) together with ω+
1 = 2g −

d1 − ω−1 implies

ω+
2 = ω+

1 + d1 − g − 1

= (2g − d1 − ω−1 ) + d1 − g − 1

= g − 1− ω−1

by hypothesis ω−1 < (g − 1)/2, so that ω+
2 > (g − 1)/2, and since ω+

2 is an

integer, the result follows.
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Explicit formulae implementing the algorithms presented in this section for

the genus 2 case have been given in [26, 55]. All the explicit addition formulae

presented so far (specially for g = 2) that we have knowledge of (including

those of [26, 55]) first compute the composition of the two affine divisors in the

summands, then find the divisor with degree at most g+ 1 which is the result

of successively applying reduction steps, and finally give an explicit form of

Algorithm 3.6. For example, in [55] an algorithm is given to efficiently compute

a giant step. It can then be used in any arithmetic application that requires

such an operation, regardless of the representation of divisors in Cl0(C) being

used. Hence, it is possible to use these formulae to compute divisor addition

using our proposal with no alterations.

3.3 Addition on Real Models

Throughout this section C will denote a genus g hyperelliptic curve defined

over a field k, given by the equation

C : y2 + h(x)y = F (x),

where F (x) is a degree 2g+ 2 polynomial. If char(k) 6= 2, then we will further

assume that h = 0. If char(k) = 2, then h will be monic and deg(h) = g + 1.

We will also assume that the divisorD∞ from Definition 2.2.10 is k-rational.

This condition holds automatically for even g. For odd values of g one needs to

further assume that the leading coefficient of F is a square in k if char(k) 6= 2

or that the leading coefficient of F is of the form ω2 + ω if char(k) = 2.

Definition 3.3.1. Every element [a0] of Cl0(C) has a unique representative of
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the form a0 = D0 −D∞, where D0 is a degree g effective divisor with reduced

affine part. Any effective, degree g divisor D0 can be uniquely written as D0 =

D′0 +n0∞+ +m0∞−, where D′0 is the affine support of D0, and n0,m0 ∈ Z≤0;

in this case we will denote the divisor D0 − D∞ as div((u0, v0), n0), where

div(u0, v0) = D′0 is the Mumford representation of D′0. This representation of

a divisor is unique.

We would like to remark that in the notation we have just described for

divisors, we always have deg v0 < deg u0 and n0 is an integer such that 0 ≤

n0 ≤ g − deg(u0).

Problem 3.2. Given two divisors a1 = div((u1, v1), n1) and a2 = div((u2, v2), n2)

of Cl0(C), we want to find a3 = div((u3, v3), n3) such that

[a1] + [a2] = [a3].

To fix notation, let

ai = div(ui, vi) + ni∞+ +mi∞− −D∞,

D̃i = div(ui, vi) + ni∞+ +mi∞−,

Di = div(ui, vi)

for i ∈ 1, 2.

Throughout Algorithm 3.7 we always have that (ω+, ω−) ∈ ω(D̃1 +D̃2, D).

We have mentioned that if deg(D) ≥ g+2 then deg(red(D)) < deg(D), so step

3 always finishes. Lemma 3.2.5 proves that step 4, and hence the algorithm,

always finish.

Finally, the condition (ω+ < g/2 or ω− < (g − 1)/2) from Step 4 can be
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Algorithm 3.7 Divisor Addition

Input: Divisors ai = div((ui, vi), ni) for i ∈ {1, 2}.
Output: a3 = div((u3, v3), n3), [a3] = [a1] + [a2].

1: Set (ω+, ω−) := (n1 + n2,m1 +m2).
2: Let D, (a, b) := comp(D1, D2). Update (ω+, ω−) := (ω+ + a, ω− + b).
3: while deg(D) > g + 1 do
4: D, (a, b) := red(D). Update (ω+, ω−) := (ω+ + a, ω− + b).

5: while ω+ < g/2 or ω− < (g − 1)/2 do
6: D, (a, b) := red∞(D). Update (ω+, ω−) := (ω+ + a, ω− + b).
7: Use H+ in red∞ if ω+ > ω−, else use H−.

8: Let E := D + ω+∞+ + ω−∞− −D∞.
9: Now E is an effective degree g divisor. Write E = D + n3∞+ + m3∞−,

where D is an effective affine divisor.
10: return div(D,n3).

easily explained. At every step in the algorithm we have that D̃1 + D̃2 ≡

D + ω+∞+ + ω−∞−. Since formally we are interested in elements of Cl0(C)

(that is, even though in our algorithms we only ever deal with reduced divisors,

it is the class in Cl0(C) that they represent that interests us), this relation

becomes

D̃1 −D∞ + D̃2 −D∞ ≡ (D + ω+∞+ + ω−∞− −D∞)−D∞,

and the condition from Step 4 guarantees that when D∞ is given by Defini-

tion 2.2.10, the divisor

E = D + ω+∞+ + ω−∞− −D∞,

is effective, ensuring that our algorithm returns the canonical representative

of the divisor class.

Example 3.3.1. Let C be the hyperellipitc curve defined over F97 given by

equation C : y2 = x6 + 13x2 + 92x+ 7. Consider divisors D1 = div(x2 + 75x+
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57, x+ 13) and D2 = (x2 + 38x+ 41, x+ 25).

comp(D1, D2) = D3, (0, 0)

D3 = div(x4 + 16x3 + 38x2 + 3x+ 9, 20x3 + 2x2 + 50x+ 84),

red(D3) = D4, (1, 1)

D4 = div(x2 + 53x+ 81, 10x+ 63).

Putting all this information together, we get

D1 +D2 ≡ D4 +∞+ +∞−,

and using D∞ = (∞+ +∞−) as base divisor, we get

[D1 −D∞] + [D2 −D∞] = [D4 −D∞].

Cantor’s addition algorithm for curves given by an imaginary model (see [13]

or Algorithm 3.3) can be seen as a degenerate case of our algorithm. We can

think of Algorithm 3.7 as:

1. Divisor composition.

2. Reduction steps until the degree is at most g + 1.

3. Use red∞ to balance the divisor at infinity.

Since imaginary models have a unique point at infinity, to perform divisor

addition it suffices to compute the composition and reduction steps, making

the balancing step redundant. In the following section we will argue that our
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divisor D∞ is the correct choice to have an algorithm analogous to that of

Cantor.

Remark 3.3.2. If C has even genus, the points ∞+ and ∞− are not k-rational

and the divisors a1 and a2 are k-rational, by a simple rationality argument

the counterweights will always be equal, hence the addition algorithm will

produce a divisor D with equal counterweights such that deg(D) ≤ g in step

3. Algorithm 3.7 will then finish and step 4 will not be necesary. In this case

the (non k-rational) polynomials H± will not be used and no red∞ step will

be computed.

This last observation suggests that, given a hyperelliptic curve C with

even genus, one could move two non k-rational points to infinity and get an

addition law completely analogous to Cantor’s algorithm. This trivial trick

could greatly simplify the arithmetic on C.

One key operation in an efficiently computable group is element inversion.

Algorithm 3.8 describes this operation in Cl0(C).

Algorithm 3.8 Divisor Inversion

Input: A divisor a1 = div((u1, v1), n1).
Output: A divisor a2 = div((u2, v2), n2) such that [a1] = −[a2].

1: if g is even then
2: return div((u1, (−h− v1 mod u1)), g − deg(u1)− n1).
3: else if g is odd and n1 > 0 then
4: return div((u1, (−h− v1 mod u1)), g −m1 − deg(u1) + 1).
5: else
6: Let D1 = red∞(div(u1,−h− v1)).
7: return div(D1, 0).

Given the geometric analysis that we have made of the addition algorithm,

computing pairings on the class group of an arbitrary hyperelliptic curve can

be done following Miller’s algorithm. An analysis of pairing implementations

using the algorithms described in this chapter is presented in Chapter 5.
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3.3.1 Other proposals

Previous proposals for addition algorithms on hyperelliptic curves given by a

real model use D∞ = g∞+ instead of the divisor D∞ we used in the previous

section [79, 80]. In particular, this implies that the points ∞+ and ∞− need

to be k-rational.

A simple modification of Algorithm 3.7 can be used to add divisors in

Cl0(C) using D∞ = g∞+ as base divisor. All one needs to do is change

the finishing condition in step 4 from ((ω+ < g/2) or (ω− < (g − 1)/2)) to

(ω+ > g). Following the analysis made in the previous section, we know that

D̃1 + D̃2 ≡ D + ω+∞+ + ω−∞−,

which using D∞ = g∞+ becomes

D̃1 − g∞+ + D̃2 − g∞+ ≡ (D + (ω+ − g)∞+ + ω−∞−)− g∞+.

The condition (ω+ > g) guarantees that the divisor E = D + (ω+ − g)∞+ +

ω−∞− is effective, and the algorithm returns the canonical representative of

the corresponding divisor class.

Indeed, one can verify that using Algorithm 3.7 with the modified termi-

nating condition coincides with the addition algorithms presented in [79, 80].

We will now compare the two proposals for addition algorithms on Cl0(C).

Since the performance of the algorithms, specially for cryptographic applica-

tions, will depend exclusively on its behaviour when adding generic divisors,

we will restrict our analysis to this case.
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Even genus

Assume for a moment that the curve C has even genus g, and that D1

and D2 are two effective affine divisors of degree g. Generically, the result D3

of applying successive reductions to comp(D1, D2) until the degree is at most

g + 1 is a divisor D3 of degree g. If this is the case, we have

D1 +D2 ≡ D3 + (g/2)(∞+ +∞−), (3.3.1)

Notice that the counterweights between D1 + D2 and D3 are equal, this

is a consequence of Equation (3.2.1). Using Equation (3.3.1) with D∞ =

(g/2)(∞+ +∞−), we get

D1 −D∞ +D2 −D∞ ≡ D3 −D∞,

which means that we have found the result of adding D1−D∞ and D2−D∞,

and no “composition at infinity and reduction” steps were necessary.

If instead we work with a divisor at infinity D′∞ = g∞+, Equation (3.3.1)

becomes

D1 −D′∞ +D2 −D′∞ = D3 −D′∞ − (g/2)(∞+ −∞−),

so typically one will need g/2 extra red∞ steps to find D4 such that

D4 −D′∞ = (D1 −D′∞) + (D2 −D′∞),

it is not difficult to see that the need for the red∞ steps is related to the fact

that the valuations of D′∞ at the two points at infinity are so different.
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Example 3.3.2. We will continue using the data from Example 3.3.1. We

were given two divisors D1 and D2, and we found a divisor D4 such that

[D1 − (∞+ +∞−)] + [D2 − (∞+ +∞−)] = [D4 − (∞+ +∞−)].

To add divisor classes using 2∞+ as base divisor, we need to perform an extra

red∞ step on D4.

red∞(D4) = D5, (1,−1)

D5 = div(x2 + 48x+ 34, 17x+ 89).

We know that

D1 +D2 ≡ D5 + 2∞+,

which implies

[D1 − 2∞+] + [D2 − 2∞+] = [D5 − 2∞+].

The situation presented in this example, where extra composition-and-reduction

steps are needed to add divisors using an unbalanced base divisor is typical,

and represents the expected behaviour of the addition algorithms.

Odd genus

Now consider a curve C of odd genus g, and let again D1 and D2 be degree

g affine divisors. Typically, the result after step 2 in Algorithm 3.7 on the

divisors D1 and D2 will be a divisor D3 of degree g + 1 such that

D1 +D2 ≡ D3 +
g − 1

2
(∞+ +∞−). (3.3.2)
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Again, the counterweights between D1+D2 and D3 are equal as a consequence

of Equation (3.2.1), and if we now compute D4 = red∞(D3), then generically

D3 ≡ D4 +∞−,

which together with Equation (3.3.2) gives us

D1 +D2 ≡ D4 +
g + 1

2
∞+ +

g − 1

2
∞−. (3.3.3)

Using our base divisor D∞ = (g + 1)/2∞+ + (g − 1)/2∞−, we get

[D1 −D∞] + [D2 −D∞] = [D4 −D∞],

and only one red∞ step was needed. Notice that in this case the addition

algorithm consists of composition, a series of standard reduction steps, and

the last step is a single application of red∞.

Using the base divisor D′∞ = g∞+, Equation (3.3.2) becomes

D1 −D′∞ +D2 −D′∞ ≡ D3 −D′∞ − (g − 1)/2(∞+ −∞−),

so one will typically need (g − 1)/2 extra steps to find D4 such that

[D4 −D′∞] = [D1 −D′∞] + [D2 −D′∞].

Again, the need for the red∞ steps stems from the difference in the valuations

of D∞ at both points at infinity.

Example 3.3.3. Let C be the hyperelliptic curve defined over F211 by the
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equation C : y2 = x8 + 53x5 + 158x4 + 12x3 + x+ 187. Let

D1 = div(x3 + 40x2 + 28x+ 134, x4 + 91x2 + 143x+ 92)

D2 = div(x3 + 110x2 + 104x+ 197, x4 + 93x2 + 52x+ 50)

be two divisors on C. We have

comp(D1, D2) = D3, (0, 0)

D3 = div(x6 + 150x5 + 101x4 + 186x3 + x2 + 40x+ 23,

47x5 + 169x4 + 155x3 + 209x2 + 161x+ 166).

red(D3) = D4, (1, 1)

D4 = div(x4 + 149x3 + 129x2 + 152x+ 198,

20x3 + 155x2 + 57x+ 56)

red∞(D4) = D5, (1, 0)

D5 = div(x3 + 195x2 + 181x+ 5, 102x2 + 154x+ 38)

red∞(D5) = D6, (1,−1)

D6 = div(x3 + 93x2 + 138x+ 147, 113x2 + 83x+ 137).

This implies that

D1 +D2 ≡ D5 + 2∞+ +∞−

D1 +D2 ≡ D6 + 3∞+
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If D∞ = (2∞+ +∞−) and D′∞ = 3∞+, then

[D1 −D∞] + [D2 −D∞] = [D5 −D∞]

[D1 −D′∞] + [D2 −D′∞] = [D6 −D′∞].

Which shows that adding divisors using a non-balanced base divisor is more

expensive.

Remark 3.3.3. If the curve C has odd genus g, one could try to recover a

balanced representation of its elements by representing them as D0 − (g +

1)/2(∞+ +∞−), where D0 is a degree g + 1 effective divisor with reduced

affine part. This representation could be useful in the intermediate steps of a

given implementation, since the use of the red∞ algorithm would be limited

to the final step of the calculation. When divisors are represented using this

approach, the number of coefficients needed to describe them increases, and

the composition formulae get more complicated.

We have seen that using a “balanced” divisor at infinity, generically the

number of red∞ steps needed to compute the addition of two divisor classes

in Cl0(C) is 0 when g is even and 1 when g is odd; whereas when using a non-

balanced divisor, the number of red∞ steps needed to compute the addition

of two divisors is generically g/2 for even g and (g − 1)/2 for odd g.

In order to compare the two proposals for arithmetic in Cl0(C), we must

also consider the computation of inverses, a fundamental operation in a com-

putable group which has, surprisingly, been ignored in the literature. Besides

its trivial use to invert divisors, this operation is fundamental to achieve fast

divisor multiplication through signed representations.
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Divisor inversion

We will just analyse inversion in the generic case. To do this let D be a

degree g affine effective divisor on C. Assume for a moment that g is even. The

inverse of the divisor P = D− (g/2)(∞+ +∞−) is the divisor D− (g/2)(∞+ +

∞−), whereas if we now assume that g is odd, the divisor

(D − g + 1

2
∞+ − g − 1

2
∞−) + (D − g − 1

2
∞+ − g + 1

2
∞−)

is principal, which means that D−(g−1)/2∞+−(g+1)/2∞− is the inverse of

P , and in order to fix the divisor at infinity, using Proposition 3.2.1 it is easy to

see that generically only one application of Algorithm 3.6 will suffice. In other

words, using the “balanced” representation at infinity, 0 or 1 applications of

Algorithm 3.6 will be needed, depending on the parity of g.

We now analyse the computation of inverses using D′∞ = g∞+ as base

divisor. Clearly, the divisor

(D − g∞+) + (D − g∞−)

is principal, so we need to find an appropriate representative of the divisor class

[D− g∞−]. Again, this can be done through g applications of Algorithm 3.6,

as can be easily seen using Proposition 3.2.1.

It is now clear that computing the inverse of a divisor class is easier when

the divisor at infinity is as balanced as possible, supporting our claim that a

“balanced” representation is a closer analogue to that of Cantor for imaginary

models, where the inverse of a divisor is its hyperelliptic conjugate, just as in

our case when the genus of C is even.

Table 3.1 gives the cost of addition and doubling in a genus 2 curve using
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Imaginary Balanced Non-balanced
Addition 1I, 2S, 22M [63] 1I, 2S, 26M 2I, 4S, 30M
Doubling 1I, 5S, 22M [63] 1I, 4S, 28M 2I, 6S, 32M
Inversion 0 0 2I, 4S, 8M

Table 3.1: Operation counts for genus 2 arithmetic using formulae of [26] .

the explicit formulae for Algorithms 3.4, 3.5 and 3.6 presented in [26]. If

S = M and I = 4M then balanced representations give a saving of around

15% for addition and 13% for doubling (if I = 30M the savings become 62%

and 58% respectively). The extra operations in the non-balanced case come

from an additional application of Algorithm 3.6 in each case.

3.4 Appendix: Explicit ‘imaginary baby steps’

In Remark 3.2.4 we mentioned that the analogue of a baby step for curves

given by an imaginary model would be the addition of a point of the form

P−∞, where P has a special form. In Algorithm 3.9, we present an optimized

algorithm to compute these ”imaginary baby steps” in a genus 2 curve C

defined over the field k by

C : y2 = x5 +
4∑
i=0

fix
i,

where we further assume that f0 is a square in k, so that the point P =

(0, yb) on C is k-rational. Divisors will be represented by their Mumford

representation (x2 + u1x+ u0, v1x+ v0).

The cost of a “real baby step” in genus 2 is (1I,2S,4M) [26] and Algo-

rithm 3.9 needs (1I,1S,5M), it is therefore a very efficient analogue of Algo-

rithm 3.6 for curves given by an imaginary model.
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Algorithm 3.9 Imaginary Baby Step

Input: D = div(x2 + u1x+ u0, v1x+ v0) .
Output: D2 = div(u2, v2) such that [D2] = [D] + [(0, yb)−∞].

1: µ := (yb − v0)/u0 (1I,1M).
2: b1 := f4 − µ2 − u1 (1S).
3: b0 := f3 − u0 − 2µv1 + u1(u1 − µ2 − f4) (2M).
4: c1 := v1 + µ(u1 − b1) (1M).
5: c0 := v0 + µ(u0 − b0) (1M).
6: return div(x2 + b1x+ b0,−c1x− c0).

We would like to point out that the idea of using degenerate divisors (a

divisor is degenerate if it has less than g affine points in its support) has

been considered before. Katagi et.al. [58, 59] analysed the advantages of using

degenerate divisors in cryptographyc applications, and the use of degenerate

divisors to optimise pairing computations has also been discussed in [3, 31, 38].

However, the use of a point P with a special form in the degenerate divisor

seems to have been overlooked.
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Chapter 4

Infrastructure

In this chapter we will recall the definition of the set of infrastructure ideals in

the function field of a real hyperelliptic curve, we present the applications of

infrastructure to cryptography, and we conclude by relating the set of infras-

tructure ideals with the class group of the corresponding hyperelliptic curve.

Our main result is Theorem 4.5.3, proving that there exists a map from the

set of infrastructure ideals into the class group of the underlying hyperelliptic

curve that preserves the “group-like”structure of the infrastructure. As a

consequence of this result we show that calculating distances in the set of

infrastructure ideals is equivalent to the DLP in the underlying hyperelliptic

curve. This is a significant contribution as this result was previously known

only in genus 1. The results of this chapter have been presented as [72].

4.1 Historical overview

Let K be a quadratic number field and let O be an order in K with discrim-

inant D. If K is an imaginary number field, there is a well-known bijection

between the set of reduced, positive definite quadratic forms F, and the ideal
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class group Cl(O) of O (see Lenstra [66]).

When K is a real quadratic field this bijection no longer exists. Instead,

there is a many-to-one map ψ : F −→ Cl(O) from the group of reduced

quadratic forms F to the ideal class group Cl(O). Shanks realized that the

set R = ψ−1(O) of quadratic forms mapping into the principal class could be

given an algebraic structure, associating a distance to every element [90].

The set R, together with the underlying structure described by Shanks

is known as the infrastructure of O. The fastest algorithms to compute the

regulator of O known to-date use infrastructure.

Buchmann and Williams presented a key exchange algorithm very simi-

lar to the Diffie-Hellman proposal [22] using the infrastructure of an order

O in a real number field K [12]. This proposal had a number of problems,

including the need to deal with approximations to certain algebraic numbers,

high bandwidth and ambiguity problems. These problems were overcome with

the proposal by Scheidler, Stein and Williams in [86] to use the set of infras-

tructure ideals in the function field associated to a hyperelliptic curve given

by a real model over a finite field. It is this proposal, and its successive

adaptations[85, 56, 55], that we study in this chapter.

4.2 Infrastructure

Let C be a genus g hyperelliptic curve given by a real model C : y2 = F (x)

over a field k with char(k) 6= 2. Denote its function field as K = k(C), and

let O be the affine coordinate ring of C, i.e. O = k[x, y]/(y2 − F (x)).

Every ideal a of O has an O-basis of the form a = [SQ, S(y + P )], where

S,Q, P are polynomials in k[x] such that Q divides P 2 − F . The polynomials
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S and Q are uniquely defined up to multiplication by elements of k∗, and the

polynomial P is only defined modulo Q. To have a unique basis for the ideal

a we will assume that deg(P ) < deg(Q).

Remark 4.2.1. Throughout this chapter, when we refer to the basis of an ideal

we will assume that the basis has this form.

Definition 4.2.2. If the ideal a has basis [SQ, S(y + P )] as described in the

previous paragraph, we define the degree of the ideal a as deg(SQ).

Definition 4.2.3. We say that an ideal is primitive if the polynomial S can

be taken to be S = 1.

Definition 4.2.4. We say that an ideal a = [Q,P + y] is reduced if it is

primitive and g ≥ deg(Q).

Definition 4.2.5. Let R be the set of principal reduced ideals of O. We say

that R is the set of infrastructure ideals of O [86].

Definition 4.2.6. Let a be an infrastructure ideal. By definition a = (α)

for some function α. We define the distance δ(a) of the ideal a as δ(a) =

ord∞+(α) [86].

Example 4.2.1. The ring O can be seen as the ideal generated by the element

1. It is an element of R with basis O = [1, 0], and by definition it has distance

0.

If there is a unit β in O with non-zero valuation at ∞+, then there is a

least positive integer R for which there exists a unit βR with valuation R at

∞+. In this case, the distance of an ideal is only defined modulo R. The

integer R is known as the regulator of O.
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Remark 4.2.7. The divisor of a unit β in O has to be supported exclusively at

∞+ and∞−, and have degree 0. It follows that the regulator of O is given by

the order of the element∞+−∞− in Cl0(C). We prove some stronger results

in Theorems 4.5.3 and 4.5.5.

Ideas related to the set of infrastructure ideals have found their main ap-

plications in cryptography. For these applications the curve C is defined over

a finite field and the set R is finite.

Definition 4.2.8. Given ideals a1, a2 ∈ R, we define the distance between a1

and a2 to be

δ(a1, a2) = δ(a1)− δ(a2).

Given two random infrastructure ideals a1 and a2, finding the distance

between them is a hard problem (see Theorem 4.5.8). A very good description

of the ideas and techniques used in the infrastructure of a hyperelliptic curve

given by a real model can be found in [79].

4.3 Operations on the Infrastructure Ideals

Let a be a primitive ideal of O with basis [Q, y + P ]. Note that the pair of

polynomials (Q,P ) satisfy all the conditions to be the Mumford representation

of a divisor. In other words, there is an effective, affine, semi-reduced divisor

D on the curve C such that D = div(Q,P ).

Definition 4.3.1. Given a primitive ideal a of O with basis [Q, y + P ], we

define the divisor associated to a as the divisor D = div(a) whose Mumford

representation is (Q,P ).

Since the basis [Q, y + P ] of the ideal a could also be thought of as the
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Mumford representation of a divisor, we can use Algorithm 3.4 (composi-

tion), Algorithm 3.5 (reduction) and Algorithm 3.6 (composition at infinity

and reduction) on elements of R. The idea of using these algorithms (or

rather, a variant that does not compute counterweights) on ideals is not new

(see [13, 79]). The interpretation of the action of these algorithms on infras-

tructure ideals is not obvious. In this section we give an interpretation both of

the action of the algorithms on ideals of O, and of the counterweights returned

by the algorithms in terms of the distance.

Proposition 4.3.2. Let a1 and a2 be two primitive ideals of O. If a3, (ω
+, ω−) =

comp(a1, a2) is the result obtained from applying Algorithm 3.4 on the basis of

a1 and a2, we get

a1 · a2 = s · a3

ω+ = ord∞+(s),

where s denotes the polynomial obtained in Step 1 of Algorithm 3.4.

Proof. The first property is a classic result. See [86, Theorem 3.4]. The second

follows from the fact that the order of a polynomial p(x) at ∞+ is given by

the degree deg p(x).

Proposition 4.3.3. Let a0 be a primitive divisor with basis a0 = [Q0, y + P0]

such that deg(Q0) ≥ g + 2. If we let a1, (ω
+, ω−) = red(a0) be the result of
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applying Algorithm 3.5 to the ideal a0, then

a1 =

(
y − P0

Q0

)
· a0

ω+ = − ord∞+

(
y − P0

Q0

)
.

Proof. If the ideal a0 has basis [Q0, y+P0], then the ideal ((y−P0)/Q0) ·a0 has

basis [y − P0, (y
2 − P 2

0 )/Q0], which is by definition a basis of a1. The second

assertion follows simply from Equation (3.2.3).

Proposition 4.3.4. Let a0 be a primitive divisor with basis a0 = [Q0, y + P0]

such that deg(Q0) ≤ g + 1. If we let a1, (ω
+, ω−) = red∞(a0) be the result of

applying Algorithm 3.6 to the ideal a0, then

a1 =

(
y − P0

Q0

)
· a0,

ω+ = − ord∞+

(
y − P0

Q0

)
.

Proof. The proof of the first property is analogous to the proof given for

Proposition 4.3.3. The second property follows from Equation (3.2.5).

Corollary 4.3.5. Let a0 be an infrastructure ideal. If a1, (ω
+, ω−) = red∞(a0),

then

ω+ = −δ(a0, a1).

Proof. Proposition 4.3.4 shows that there is a function α with ω+ = − ord∞+(α)

such that a1 = αa0, the result follows from the definition of δ.

Definition 4.3.6. Suppose that the regulator R is a positive integer. Given
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an integer n between 0 and R− 1, let

δ(n) = max{δ(a)|a ∈ R and δ(a) ≤ n},

and let an be the ideal in R such that δ(an) = δ(n). We say that an is the

ideal closest to the left of n [86].

The following result shows that in principle it is possible to find all the

infrastructure ideals using only the algorithms we have presented, we omit the

proof, but refer the reader to [86].

Proposition 4.3.7. Let a be an infrastructure ideal. Then the set {redi∞(a)}i∈Z

is the set of infrastructure ideals R.

Proof. See [86, Section 3.1].

4.4 A Cryptographic Interlude

The cryptographic applications of infrastructure have been the motivation for

most of the work done in the area. In this section we present the crypto-

graphic protocols presented in [86] which use the set of infrastructure ideals

as underlying algebraic structure. It has been claimed that this is the unique

Diffie-Hellman-like key exchange protocol that doesn’t use a group as under-

lying algebraic structure, we analyse this claim in the next section, see for

example Theorem 4.5.3.

Given an infrastructure ideal a0 with distance δ0 and an integer k, Algo-

rithm 4.1 finds the ideal closest to the left of k + δ0. We denote the result of

Algorithm 4.1 as a1 = CA(a0, k).
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Algorithm 4.1 Constant Addition

Input: An ideal a0 ∈ R and an integer k.
Output: The ideal a1 closest to the left of δ(a0) + k.

1: if k is positive then
2: Use H+ in the red∞ steps.
3: Let a2, (ω

+, ω−) := red∞(a0).
4: Let a1 := a0,, n := ω+.
5: while n < k do
6: a1 := a2.
7: a2, (ω

+, ω−) := red∞(a0), n := n+ ω+.

8: else if k is negative then
9: Use H− in the red∞ steps.

10: Let a2, (ω
+, ω−) := red∞(a0).

11: Let a1 := a0, n := ω+.
12: while n ≥ k do
13: a1 := a2.
14: a2, (ω

+, ω−) := red∞(a0), n := n+ ω+.

15: return a1.

It can be proved that the maximum value of n in Step 8 in Algorithm 4.2

is bounded by (g + 1)/2 (see [86]). Algorithm 4.2 shows that given two ideals

with distances δ1 and δ2, it is possible to find the ideal closest to the left of

δ1 + δ2.

Algorithm 4.2 Ideal Multiplication

Input: Ideals a1, a2 ∈ R.
Output: The ideal a3 closest to the left of δ(a1) + δ(a2).

1: a3, (ω
+, ω−) := comp(a1, a2), n := ω+.

2: while deg(a3) ≥ g + 2 do
3: a3, (ω

+, ω−) := red(a3), n := n+ ω+.

4: if deg(a3) = g + 1 then
5: a3, (ω

+, ω−) := red∞(a3), n := n+ ω+.

6: a3 := CA(a3, n).
7: return a3.

Combining Algorithm 4.2 with Algorithm 4.1, given an infrastructure ideal

a with distance δ and an integer k, it is possible to find the ideal closest to the

left of kδ, even if δ is not known, in time O(log(k)) (see Algorithm POWER
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in [86]). This construction can then be used to implement a key-exchange

protocol modeled on Diffie-Hellman using the infrastructure ideals.

Algorithm 4.3 Infrastructure Diffie-Hellman

Public Information: An ideal a ∈ R and its distance δ = δ(a).
1: Alice generates a random ideal aA with distance δ(aA) = aδ. Alice knows
a.

2: Bob generates a random ideal aB with distance δ(aB) = bδ. Bob knows b.
3: Alice and Bob exchange aA and aB.
4: Alice and Bob compute the ideal aC closes on the left to abδ.
5: Alice and Bob use aC as the key in a symmetric encryption scheme.

In the context of affine semi-reduced effective divisors, we mentioned that

Algorithm 3.6 (composition at infinity and reduction) has the same action on

a divisor D as Algorithm 3.5 (reduction) if deg(D) ≥ g + 2. In the context

of infrastructure, it is customary to use only Algorithm 3.6; we have chosen

to differentiate its use in Algorithm 4.2 precisely to separate the cases when

only a reduction is taking place from those when some composition at infinity

is also carried out. From a practical perspective the algorithms are identical,

but we believe that conceptually they deserve being treated differently.

4.5 A map into the class group

As mentioned before, it is claimed that Algorithm 4.3 provides a Diffie-Hellman-

type key construction algorithm in a non-group structure. In this section we

will explain that the failure of R to be a group is somewhat artificial. The

results in this section are based on the construction of a map relating the set

of infrastructure ideals with certain divisor classes in Cl0(C).
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Definition 4.5.1. Given a ∈ R an infrastructure ideal, define

ψ :R −→ Cl0(C)

a 7→ [div(a)− deg(a)∞−],

where div(a) refers to the affine effective semi-reduced divisor associated to a

(see Definition 4.3.1).

Proposition 4.5.2. Let a1 and a2 be two infrastructure ideals. If δ is the

distance δ(a1, a2) between a1 and a2, then

ψ(a1) + δ[∞+ −∞−] = ψ(a2). (4.5.1)

Proof. Proposition 4.3.7 shows that one can reach any element of R using

successive applications of red∞ on a1, so it suffices to prove this result for

ideals a1 and a2, (ω
+, ω−) = red∞(a1). Let D1 = div(a1) and D2 = div(a2) be

affine divisors of degrees d1 and d2 respectively. Step 4 in Algorithm 3.6 says

that (ω+, ω−) = (d1 − g − 1, g + 1− d2), and using Equation (3.2.5) we get

D1 ≡ D2 + (d1 − (g + 1))∞+ + (g + 1− d2)∞−.

This implies

(D1 − d1∞−) + (g + 1− d1)(∞+ −∞−) ≡ (D2 − d2∞−),

Since a1 = red∞(a0), Corollary 4.3.5 proves that δ = −ω+, and since ω+ =
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d1 − g − 1. We can finally conclude that

ψ(a) + δ(∞+ −∞−) = ψ(b).

Theorem 4.5.3. The map ψ : R −→ Cl0(C) sends an ideal a with distance

δ = δ(a) to the element ψ(a) = δ[∞+ −∞−] of Cl0(C).

Proof. The result is trivial for a = O, since we have mentioned that deg(O) =

0 and by definition ψ(O) = 0. It extends to R using Proposition 4.5.2.

Corollary 4.5.4. Let a be an infrastructure ideal with distance δ, then the

Mumford representation of the affine part of the canonical representative of

δ[∞+ −∞−] using base divisor D∞ = g∞− is given by the polynomials in the

basis of a.

We have proved that there is a simple map ψ sending the infrastructure ide-

als into the class group Cl0(C) that is compatible with the group-like structure

of R. Using the explicit description of ψ, we can describe exactly the elements

missing in R to be a group. Let div((u, v), n) denote (see Definition 3.3.1) the

element

div(u, v) + n∞+ + (g − deg(u)− n)∞− − g∞−,

and let G = 〈[∞+ −∞−]〉 be the group generated by [∞+ −∞−]. Using this

notation we have the following

Theorem 4.5.5. The image ψ(R) of the infrastructure ideals under ψ, con-

sists of the elements of G of the form div((u, v), 0).

78



Proof. A different way to state this theorem is by saying that a divisor class

[D] in G is in the image of ψ if and only if the coefficient of∞+ in its canonical

representative with base divisor g∞− is zero.

By construction, all ideals in the image ψ(R) have the indicated form. We

will prove the converse by induction, and we will only prove it for positive

multiples of [∞+ − ∞−], as the proof for negative multiples is either not

necessary or analogous.

Let a0 be an ideal with distance δ0 = δ(a0). Denote a1, (ω
+, ω−) = red∞(a0)

and let δ1 = δ(a1). Since ω+ = deg(a0) − g − 1, Corollary 4.3.5 proves that

δ1−δ0 = g+1−deg(a0). We will show that none of the elements n[∞+−∞−],

for δ0 < n < δ1, has the indicated form (if δ1 − δ0 = 1 this is a vacuous

statement).

We know from Theorem 4.5.3 that ψ(a0) = δ0[∞+−∞−], and by definition

ψ(a0) = [div(a0) + (g − deg(a0))∞− − g∞−].

For every n such that δ0 < n < δ1 the divisor

(
div(a0) + (g − deg(a0))∞− − g∞−

)
+ (n− δ0)(∞+ −∞−),

gives a representative of the divisor class n[∞+ −∞−]. This divisor can be

rewritten as

div(a0) + (n− δ0)∞+ + (g − deg(a0)− n+ δ0)∞− − g∞−. (4.5.2)

Since δ0 < n < δ1 and δ1 − δ0 = g + 1 − deg(a0), we have n − δ0 > 0, and

deg(a0)−g−n+δ0 ≥ 0. It follows that the divisor given by Equation (4.5.2) is
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the canonical representative of n[∞+−∞−] in Cl0(C) with base divisor g∞−.

But the coefficient of ∞+ in this divisor is not zero, hence it does not have

the form div((u, v), 0) and the result follows.

Corollary 4.5.6. Let a1, a2 and a3 be infrastructure ideals with

δ(a1) + δ(a2) = δ(a3),

then the operations needed to calculate a3 from a1 and a2 are the same as the

operations needed to add δ(a1)[∞+ − ∞−] and δ(a2)[∞+ − ∞−] in Cl0(C),

when these two ideal classes are given by their canonical representatives with

base divisor D∞ = g∞−.

Remark 4.5.7. Theorem 4.5.3 and Corollary 4.5.6 show that the use of in-

frastructure in cryptographic protocols is equivalent to the implementation of

these protocols in the class group Cl0(C) of the corresponding hyperelliptic

curve C, with the disadvantage that the infrastructure has some ‘holes’, as

proven in Theorem 4.5.5, while Cl0(C) is a group. Corollary 4.5.6 also shows

that the representation of the elements of Cl0(C) used when working with the

infrastructure is non-optimal, and it would be better to work with the repre-

sentation using a balanced divisor at infinity as described in the article [36].

It is possible to use our results to properly assess the difficulty of com-

puting the distance of a random infrastructure ideal a. The only arguments

known in this direction show that the problem of finding distances in the set

of infrastructure ideals associated to a real model for an elliptic curve E is

equivalent to the DLP in E; it is then argued that if an algorithm existed to

compute distances in all curves, then this algorithm could be used to solve

the DLP in an elliptic curve. This argument is not satisfactory, and we now
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present a more refined analysis.

Theorem 4.5.8. Let R be the set of infrastructure ideals associated to the

hyperelliptic curve C given by a real model. The problem of computing the

distance δ(a) of a random ideal a in R is equivalent to the DLP in the subgroup

G = 〈[∞+ −∞−]〉 of the class group Cl0(C).

Proof. Let a be an ideal in R with distance δ = δ(a). Theorem 4.5.3 shows

that ψ(a) = δ[∞+ −∞−]. The element ψ(a) can be computed in polynomial

time, and the problem of finding δ is thus reduced to finding the discrete

logarithm of ψ(a) with respect to [∞+ −∞−].

To prove the reverse implication, note that Theorem 4.5.5 shows that a

random element of G will belong to the image of R under ψ with high proba-

bility. Hence, given two divisor classes [D1] and [D2], one can find an integer

n relatively prime to the regulator R such that n[D1] and n[D1] lie in ψ(R) in

probabilistic polynomial time. The map ψ can be inverted in constant time,

and if δ1 and δ2 are the distances of the ideals ψ−1(n[D1]) and ψ−1(n[D1]),

then the discrete logarithm of [D2] with respect to [D1] is given by δ2/δ1

mod R.

4.6 Conclusions

The main computational applications of infrastructure in the arithmetic of

real quadratic number fields are the computation of the regulator and of a

fundamental unit. In the case of the infrastructure of a hyperelliptic curve

given by a real model over a finite field, there exist efficient algorithms to

solve both of these problems.

Calculating the regulator of a hyperelliptic curve C over a finite field Fq
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can be done by finding the number of points on the class group Cl0(C) of C.

The best techniques available to count the number of points on the class group

of a hyperelliptic curve do not use the infrastructure of the curve, but rather

sofisticated sofisticated algorithms depending on the genus of the curve and

the size of the base field [2, 44, 52, 60, 81].

If the regulator of the hyperelliptic curve C is known, the problem of finding

a fundamental unit in the affine coordinate ring of a hyperelliptic curve C

can be solved in polynomial time using Miller’s algorithm. Hence, the only

computational task depending on the infrastructure of the curve C would be

the Diffie-Hellman-like key exchange algorithm (Algorithm 4.3).

It has been claimed that Algorithm 4.3 provides the unique Diffie-Hellman-

like key exchange protocol implemented over a non-group algebraic structure.

In this chapter we have shown that there is a simple (and very natural) embed-

ding of the infrastructure ideals into the class group of the curve that makes

the group operations in Cl0(C) compatible with those of the infrastructure.

We have shown that every algorithm using the infrastructure to obtain cryp-

tographic primitives can be implemented more efficiently in the class group of

the corresponding hyperelliptic curve C. This is not only because the class

group of the curve fills the ‘holes’ that prevent R from being a group, but also

because the representation of the elements of Cl0(C) used when working with

the infrastructure is not optimal.
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Chapter 5

Pairings on Hyperelliptic

Curves with a Real Model

The results presented in this chapter were developed in a joint project with

S. Galbraith and X. Lin, and will be published as [39]. In particular, the

pairing results reported in Sections 5.3 and 5.4 were implemented by X. Lin,

and Algorithm 5.1 was developed by S. Galbraith and X. Lin.

5.1 Introduction

The study of efficient pairing computation on hyperelliptic curves has fo-

cused exclusively on the analysis of hyperelliptic curves given by an imaginary

model. With the development of new divisor addition algorithms on hyperel-

liptic curves given by a real model [36], it is natural to ask if pairings can be

implemented on these curves competitively.

The authors of [41] construct a genus 2 curve C, defined over Fp for p a

prime p ≡ 5 mod 6. The Jacobian Jac(C) of this curve has p2 − p+ 1 points

defined over Fp, and embedding degree 6 with respect to any subgroup with
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prime order r | (p2 − p + 1) and r > 3. The curve C is given by a real model

(see [36]), which in particular means that it has 2 points at infinity.

In [95], Verheul presents the construction of an elliptic curve with embed-

ding degree 3. This curve is defined over a field Fp2 for p a prime p ≡ 5

mod 6, and has p2 − p + 1 points over Fp2 . Pairings on these elliptic curves

have been studied by Hu et.al. in [51].

The similarities between these curves make them natural candidates for a

comparison between elliptic and hyperelliptic curve pairing implementations.

In this chapter we explore several optimisation techniques on these curves,

implement pairings and compare their performance. Among the optimisa-

tions used in the implementation is the recent R-ate pairing proposed by Lee,

Lee and Park in [64], and the well-known denominator elimination technique,

which is combined with the R-ate pairing thanks to Theorem 5.2.4.

A crucial step towards a competitive implementation of pairings on hy-

perelliptic curves given by a real model is having efficient divisor addition

algorithms that result in simple Miller functions. The addition algorithms

presented in Chapter 3 allow for a fast implementation not only because the

operation count in the addition and doubling algorithms is smaller than that

in previous proposals [79], but also because the Miller function, whose evalua-

tion is the bottleneck in pairing computations on high genus curves, is simpler

using the algorithms of Chapter 3 than it would be if computed using previous

proposals. We make a theoretical and practical comparison of the efficiency

of our pairings compared with that of pairings on elliptic and hyperelliptic

curves. We conclude that pairings can be efficiently implemented on hyperel-

liptic curves given by a real model.

This chapter is organized as follows: Section 5.2 presents a specialization of

84



the results of Chapter 3 to genus 2, and the embedding degree 6 construction

of Galbraith, Pujolas, Ritzenthaler and Smith [41]. Section 5.3 describes our

parameter generation algorithms and the optimisations used in the implemen-

tation. In Section 5.4 we report our implementation results and compare them

with pairing computation results obtained for similar elliptic or hyperelliptic

curves. Some conclusions are discussed in Section 5.5.

5.2 Genus Two Curves

5.2.1 Arithmetic on hyperelliptic curves

Let C be a genus 2 hyperelliptic curve given by

C : y2 = F (x),

where char(k) 6= 2, 3 and F (x) ∈ k(x) is a square-free degree 6 polynomial. We

say that this is a real model for C. The desingularization of C has 2 different

points at infinity, which we will denote ∞+ and ∞− (see Example 2.2.1). Let

D∞ = ∞+ +∞− (see Definition 2.2.10), note that this divisor is k-rational

even if the points ∞+ and ∞− are not independently so.

Proposition 2.2.9 shows that every element of Cl0(C) has a unique represen-

tative of the form D0−D∞, where D0 = P1+P2 is an effective k-rational divisor

of degree 2 such that P1 6= P̄2. If D0 = P1+P2, generically P1, P2 /∈ {∞+,∞−},

so in this chapter we will only consider generic divisors.

A generic divisor class has a representative D0 −D∞ where D0 = P1 + P2

with P1, P2 /∈ {∞+,∞−}. Hence, for the remainder of the paper we discuss

arithmetic only for generic divisors. This is not a serious restriction for the
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pairing applications: there will exist divisor classes of the required prime order

which are of the generic form. Full details of how to handle the special cases

are given in [36].

Let D1 = P1+P2−D∞ and D2 = P3+P4−D∞ be two divisors. An explicit

interpretation of the results of Chapter 3 (see Section 3.2 or Example 3.3.2) in

the case of a genus 2 curve implies that if p(x) denotes the unique polynomial

of degree at most 3 passing through P1, P2, P3 and P4, and we let P5, P6 be

the remaining intersection points of y − p(x) with C, then

div(y − p(x)) =
6∑
i=1

Pi − 3D∞. (5.2.1)

If we write D3 = P̄5 + P̄6 −D∞, Equation (5.2.1) can be rewritten as

[D1] + [D2] = [D3].

If u3 is the first polynomial in the Mumford representation of D3, the function

gD1,D2 =
y − p(x)

u3

(5.2.2)

has associated divisor D1 + D2 − D3. This will be used later to compute

pairings (see Equation (2.3.1)).

In our pairing implementation we will use the explicit formulae for Algo-

rithms 3.4,3.5 and 3.6 for genus 2 curves presented in [26], which we include

in an Appendix for completeness. The polynomial p(x) in Equation (5.2.1)

can be easily computed from the intermediate results in the addition formulae

from [26], these calculations are presented in the Appendix.
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When the divisor at infinity used is the traditional D∞ = 2∞+, the func-

tion gD1,D2 with divisor D1 + D2 −D3 has the form gD1,D2 = (y − p1(x))(y −

p2(x))/(u3(x)u4(x)), where again p1(x) and p2(x) are cubic polynomials and

u3(x), u4(x) are quadratic polynomials. Since the bottleneck of pairing cal-

culations is precisely the evaluation of this function, our approach gives a

significant improvement over methods which use D∞ = 2∞+.

5.2.2 Hyperelliptic curves with embedding degree 6

In this section we will substitute the notation Cl0(C) we had been using in pre-

vious chapters for the more geometric (and equivalent) Jac(C), better suited

when dealing with endomorphism rings.

In [41], the authors present a family of genus 2 curves with embedding

degree 6 and generators of a subring R of the endomorphism ring of Jac(C),

such that R contains a distortion map for any non-trivial pair (D1, D2) of

divisors.

The curves in this family will have 2 points at infinity and our addition

algorithm is well-suited to perform efficient arithmetic on them. We now

briefly describe the construction of the curves given in [41, Section 5].

Let p 6= 2 a prime such that p ≡ 2 (mod 3). Denote by ζ6 ∈ Fp2 a root of

x2 − x + 1 and by ζ3 = ζ2
6 , let γ ∈ Fp6 be such that γp

2−1 = ζ3. An equation

of C will then be

C : y2 = (ax+ b)6 + (cx+ d)6,

where a = γp, b = ζ2
3γ

p, c = γ and d = ζ3γ.

In this case, the coefficient of the x6 term in the equation of C is a6 + c6,

which is a non-zero Fp-rational element. If it is not a square, we can take two
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rational points on C and move them to the line at infinity, and get a curve

isomorphic to C given by a monic polynomial. This will let us use the addition

formulae presented in [26], which only work on curves given by an equation of

the form y2 = x6 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

Lemma 5.2.1. The model of the curve C defined above has 2 points at infinity.

Proof. Let C be given by y2 = F (x) and denote the leading coefficient of F

as F6. Notice that

F6 = a6 + c6 = γ6p + γ6.

To prove the lemma we only need to prove that F6 6= 0. Since p2 − 1 is a

multiple of 3 and γp
2−1 = ζ3 the multiplicative order of γ is a multiple of 9.

So F6 = γ6(γ6p−6 + 1) cannot be zero as this would imply that γ12p−12 = 1,

but 12p− 12 is not a multiple of 9 as p ≡ 2 (mod 3).

The characteristic polynomial of Frobenius on C is T 4−pT 2+p2, so Jac(C)

will have p2−p+1 elements. Note that if C ′ is the curve C ′ : y2 = x6 +1, then

C is a twist of C ′ by the automorphism u : (x, y) 7→ ( ζ3
x
, y
x3 ). Furthermore,

there is an isomorphism φ : C −→ C ′ given by

φ(x, y) =

(
ax+ b

cx+ d
,

y

(cx+ d)3

)

The authors of [41] then define the following endomorphisms of C ′:

π(x, y) = (xp, yp)

χ(x, y) =

(
1

x
,
y

x3

)
ζ6(x, y) = (ζ6x, y).
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We will abuse notation and extend these endomorphisms to Jac(C ′). These

endomorphisms are enough to find a distortion map on Jac(C) (see Defini-

tion 2.3.7), as the following result shows.

Theorem 5.2.2 (Theorem 5.3 in [41]). Let r be a prime different from 2 and

p. Then for all pairs of divisors D1 and D2 on C of order r, there exists a

distortion map in the ring φ−1Z[π, χ, ζ6]φ.

It is well known that if the first coordinate of the Mumford representation

of a divisor lies in a proper subfield of Fp6 , then the function gD1,D2 in Equa-

tion (5.2.2) can be substituted by y − p(x) (p as in Equation (5.2.2)) in the

Miller loop of the pairing computation. The following Lemma shows that the

endomorphisms χ and ζ6 can be used to this end.

Lemma 5.2.3. Let P ∈ C be a point with a Fp-rational x-coordinate. Then:

• The x-coordinate of (φ−1 ◦ ζ6 ◦ φ)(P ) is Fp-rational.

• The x-coordinate of (φ−1 ◦ χ ◦ φ)(P ) is Fp3-rational.

• The x-coordinate of (φ−1 ◦ χ ◦ ζ6 ◦ φ)(P ) is Fp3-rational.

Proof. Let P = (x, y) be the coordinates of P . A tedious but simple calcula-

tion shows that the x-coordinate of (φ−1 ◦ ζ6 ◦ φ)(x, y) is given by

−x− 1

x− 2
,

which is Fp-rational whenever x is an element of Fp.

The x-coordinate of (φ−1 ◦ χ ◦ φ)(x, y) is given by

xχ =
(ζ3γ

2 − ζ2
3γ

2p)x+ (ζ2
3γ

2 − ζ3γ2p)

(γ2p − γ2)x+ (ζ2
3γ

2p − ζ3γ2)
,
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and again, it is straightforward to prove that xp
3

χ = xχ. The third claim follows

from the first two.

The previous Lemma shows that using χ and ζ6 as distortion maps (see

Definition 2.3.7) makes it possible to use denominator elimination. We will

now prove that the image of Fp-rational divisors under the distortion map

(φ−1 ◦ χ ◦ ζ6 ◦ φ) lies in the p-eigenspace, thus allowing us to directly use

loop-shortening techniques.

Theorem 5.2.4. Let D1 ∈ Cl0(C)[r] be a Fp-rational divisor. Then its image

D2 = (φ−1 ◦ χ ◦ ζ6 ◦ φ)(D1) under the distortion map lies in the p-eigenspace

of Cl0(C)[r].

Proof. The r-torsion subgroup Cl0(C)[r] can be decomposed as the direct sum

of four 1-dimensional eigenspaces with respect to Frobenius πp, with eigenval-

ues 1,−1, p and −p. The polynomial T 2 − T + 1 is divisible by T − p mod r,

hence the endomorphism (π2
p − πp + 1) annihilates the p-eigenspace, and is

invertible when restricted to the other eigenspaces. It follows that D2 lies in

the p-eigenspace if and only if (π2
p − πp + 1)(D2) = 0.

To prove that this is the case, it suffices to show that the unique cubic

polynomial passing through the four points in the affine support of D2 and

π2
p(D2) also passes through the points in the affine support of πp(D2). This can

be proven symbolically simply by defining formal variables γ and γp over Q(ζ6),

and formally defining the action of Frobenius as πp(γ) = γp, πp(γ
p) = ζ2

6γ and

πp(ζ
6) = ζ5

6 . The verification of our claim boils down to a trivial, albeit tedious

calculation, which we performed using Magma [10].

90



5.2.3 Elliptic curves with embedding degree 3

In this subsection we describe the construction of elliptic curves with embed-

ding degree k = 3 given in [95]. We will report our pairing implementation

results on these curves in later sections.

Let p be a prime, p ≡ 5 mod 6, let E be an elliptic curve defined over Fp2

by y2 = x3 + ρ2, where ρ ∈ Fp2 is an element such that ρ2 is not a cube in

Fp2 . The number of Fp2 rational points of E is p2 − p + 1 (see Lemma 7 of

[42] for a proof). Let r be the largest prime dividing p2 − p + 1, then E has

embedding degree k = 3 with respect to r. Define the following map:

φE : E(Fp2)→ E(Fp6)

(x, y)→ (aβxp, byp)

where a = ρ−(2p−1)/3, b = ρ−(p−1), and β is a cubic root of ρ. If we let

(x′, y′) = φE(x, y), it is not hard to see that x′ ∈ Fp6 and y′ ∈ Fp2 . The endo-

morphism φE will be used as a distortion map in our pairing implementation

(see Definition 2.3.7).

When executing Miller’s algorithm to compute pairings on an elliptic curve,

the denominator of the function gn1,n2,D in Equation (2.3.1) has the form

(xR−xQ), where R and Q are points on the elliptic curve. Note that xR ∈ Fp2

and xQ ∈ Fp6 . We replace

1

xR − xQ
=
xR(xR + xQ) + x2

Q

y2
R − y2

Q

,

and since y2
R − y2

Q lies in the proper subfield Fp2 of Fp6 , we can discard its
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value as it will become 1 after the final exponentiation.

So the function gn1,n2,D in Equation (2.3.1) can be substituted by

lR,P (Q) · (xR(xR + xQ) + x2
Q), (5.2.3)

where lR,P denotes the line passing through the points P and R. If x2
Q is

precomputed then the saving compared with the standard method (i.e., writ-

ing the Miller variable f as a numerator and a denominator) is to replace a

squaring in Fp6 by a multiplication of an element in Fp2 with an element in

Fp6 .

5.3 Pairing implementation and efficiency anal-

ysis

In this section, we describe some optimizations of the pairing implementation

on the hyperelliptic curves given above, including the generation of parame-

ters to shorten the Miller loop, denominator elimination, and the finite field

construction.

5.3.1 Loop shortening

We will now describe how the loop-shortening techniques presented in Sec-

tion 2.3 can be used in the curves constructed in Section 5.2 to efficiently

compute pairings.

We know that the elliptic curve E constructed in Subsection 5.2.3 accepts

a twist of degree 3, has embedding degree k = 3 and, in the notation of

Subsection 2.3.3, it has T = p − 1. Using Theorem 2.3.10 and Equation
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(2.3.2), the function

e(P,Q) = fp−1,P (Q)(qk−1)/r

defines a bilinear function on G1×G2. Therefore, if P is a Fp2-rational point,

both fp−1,P and fr,P define bilinear maps on appropriate subgroups of E[r].

Similarly, if D1 is a r-torsion, Fp-rational divisor on the curve C defined in

Subsection 5.2.2, then Theorem 2.3.11 shows that the function fp,D1 defines a

bilinear map on appropriate subgroups of G1×G2. The standard Tate pairing

shows that the function fr,D1 also defines a bilinear pairing on Cl0(C)[r] ×

Cl0(C)[r].

Theorem 5.3.1. Let C be an elliptic curve constructed as described in Subsec-

tion 5.2.3 and let C a curve as described in Subsection 5.2.2. Denote B = r,

AE = p− 1 and AC = p. Choose integers a and b such that p = a · r+ b. Then

the function fb−1,P defines a bilinear map on G1×G2 ⊂ E[r]×E[r] and fb,D1

defines a bilinear map on G1 ×G2 ⊂ Cl0(C)[r]× Cl0(C)[r].

Proof. This is a straight-forward application of Theorem 2.3.12 and Remark 2.3.13.

Choosing an appropriate b could greatly improve the pairing computations,

we show how to do this in the following section.

Corollary 5.3.2. Let C be an elliptic curve over Fp2 or a genus 2 curve over

Fp whose divisor class group has p2 − p + 1 points. Let r | (p2 − p + 1) and

write b = (p− 1) (mod r) in the elliptic case and b = p (mod r) in the genus

2 case. Then the function

fb,D1(D2)
(p6−1)/r

defines a non-degenerate bilinear pairing on G1 ×G2.
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Proof. We already know that fr,D1(D2)
(p6−1)/r and (for T = p− 1 or p respec-

tively) fT,D1(D2)
(p6−1)/r are non-degenerate and bilinear. Write B = r and

A = p− 1 or p and apply Theorem 2.3.12. One gets the pairing

fa,rD1(D2) · fb,D1(D2) · garD1,bD1(D2).

Since rD1 = 0 it follows that one can choose fa,rD1(D2) = 1 and garD1,bD1(D2) =

1. The result follows.

5.3.2 Efficient generation of parameters

In this subsection, we describe a method to generate parameters for the curves

constructed in Subsections 5.2.2 and 5.2.3, which will shorten the Miller loop

to half the bit-length of the subgroup order r.

Using Corollary 5.3.2, if b ≡ p mod r, then the functions fb,D1 and fb−1,P

give bilinear functions on the appropriate subgroups of Cl0(C)[r] and E[r]

respectively.

In both cases, considering the current security level (AES 80), r is about

the same size of p. Algorithm 5.1 below shows how to choose p, r and b

efficiently. As can be seen from the algorithm, b can be chosen to have very

low hamming weight and half the bit-length of r.

The following is a set of parameters generated by Algorithm 5.1, using

n = 80. These are the parameters used in our implementation, which will be

described in the following section. The parameters are written in hexadecimal

notation.

Example 5.3.1. A set of parameters for AES 80 security

• p =B000000000000000011260000000000000006AEFB
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Algorithm 5.1 Parameter Generation

Input: Integers n, lmax.
Output: Integers b, r, l1, l0 and a prime p such that r | p2 − p + 1, p ≡ b

mod r, and p2 − p+ 1 = r(l1p+ l0).
1: repeat
2: Choose b of size n bits and low hamming weight.
3: Let r = b2 − b+ 1.
4: until r is prime or nearly prime.
5: for l from 1 to lmax. do
6: let p = l · r + b.
7: if p is a prime and p ≡ 11 mod 12. then
8: Break.
9: if l = lmax, goto step 1.

10: let l1 = l and l0 = l(b− 1) + 1. ( p2 − p+ 1 = r(lp+ l(b− 1) + 1))
11: return p, r, b, l1 and l0.

• r =10000000000000000018F00000000000000009B79

• b =1000000000000000000C8

Remark 5.3.3. Algorithm 5.1 can be generalized to find parameters for many

other types of curves. For example, a similar algorithm can be used to generate

parameters for supersingular genus 2 curves given by an equation of the form

y2 = x5 + a, where a ∈ F∗p, p ≡ 2, 3 mod 5. Ó hÉigeartaigh and M. Scott

efficiently implemented pairings on these curves in [77], achieving some of the

fastest pairing computations on genus 2 curves. Using a parameter selection

algorithm similar to Algorithm 5.1 could further improve their results.

5.3.3 Finite field construction and arithmetic

The following field construction was presented by Hu et al. in [51]. We will

use it to perform the final exponentiation in our pairing computations.

We restrict to p ≡ 3 mod 4 so that −1 is not a quadratic residue modulo

p. In other words, we require p ≡ 11 mod 12. The finite fields are represented
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as follows:

Fp2 = Fp[α]/(α2 + 1) = {uα + v|u, v ∈ Fp} = {a1 + a2β
3|a1, a2 ∈ Fp}.

Fp6 = Fp2 [β]/(β3 − ρ) = {b0 + b1β + b2β
2 + b3β

3 + b4β
4 + b5β

5|bi ∈ Fp}

= {c0 + c1β + c2β
2|ci ∈ Fp2}

where ρ = α+ u0 and u0 is a small integer such that x3− ρ is irreducible over

Fp2 .

Let Mi, Si, and Ii denote the cost of multiplication, squaring, and inversion

in Fpi for i = 1, 2, 6 using the above representation. It is standard (see Section

7 of [49]) that M2 = 3M1 and I2 = 2M1+2S1+1I1. For purposes of comparison

we follow [49] and assume thatM1 = S1, and 1I1 = 10M1. Finally, as explained

in [21] one has S2 = 2M1, M6 = 15M1 and S6 = 11M1.

Let eij ∈ Fp be defined by βip = ei0 + ei1β + · · ·+ ei5β
5 for 1 ≤ i ≤ 5. We

have that βip = β2iρi(p−2)/3. Since β3 = ρ and ρ ∈ Fp2 , there are at most two

non-zero terms in the coefficient vector (ei0, ei1, · · · ei5). Specifically, we have

(e30, e31, · · · e35) = (2w0, 0, 0,−1, 0, 0). Hence, raising a random element to the

pth power is given by

(b0 + b1β + b2β
2 + b3β

3 + b4β
4 + b5β

5)p = b0 +
5∑
i=1

bi(ei0 + ei1β + · · ·+ ei5β
5).

This computation costs only 8Fp−multiplications (remember w0 is a small

integer).

The final exponentiation is often computed using a base p expansion. In

the cases k = 6, the final exponentiation can be represented as

p6 − 1

r
= (p3 − 1)(p+ 1)

p2 − p+ 1

r
= (p3 − 1)(p+ 1)(l1p+ l0)
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where l1 is small. Thus, the construction above allows for very fast exponen-

tiation.

5.3.4 Optimized pairing computation

The cost of Miller’s algorithm to compute pairings is determined by the length

of the Miller loop, the cost of the calculations inside the loop, and the final

exponentiation. To compute pairings on hyperelliptic genus 2 curves given

by a real model, we used the techniques described above to speed up the

computation, that is:

• Algorithm 5.1 generates suitable parameters to get a short, low Hamming

weight Miller loop.

• Use D∞ =∞+ +∞− to represent elements of Cl0(C) to get fast addition

and a simple Miller function.

• The distortion map (φ−1◦χ◦ζ6◦φ) described in Theorem 5.2.4 allows for

denominator elimination while using the R-ate pairing [64] technique.

• The field construction in Subsection 5.3.3 provides the arithmetic for a

very efficient final exponentiation.

5.4 Efficiency analysis and implementation re-

sults

The optimization techniques described above make the computation of pair-

ings on hyperelliptic genus 2 curves practical and efficient. In this section we
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analyse the efficiency of our pairing implementations, and compare it with

pairing implementations on elliptic curves with the same group order.

5.4.1 Comparison with elliptic curves with k = 3

As mentioned in the introduction, the curves constructed in Subsections 5.2.2

and 5.2.3 have very similar characteristics, so implementation results on the

embedding degree 3 elliptic curve provide a useful benchmark to analyse our

pairing implementation on hyperelliptic curves given by a real model.

As mentioned before, (the class groups of) both curves have the same

number of Fp-rational points, and the embedding field for both curves is the

same, as is the bandwidth requirement. A point P = (x, y) ∈ E(Fp2) is

represented by 4 elements of Fp, which is the same number of coefficients

required to represent a divisor D = (x + u1x + u0, x
3 + v1x + v0). Since the

target field is the same, both pairing values can be compressed at the same

rate by using the technique of the XTR public key cryptosystem [65].

In the notation of Theorem 2.3.12, we need to calculate fb,D. Since b is an

integer calculated using Algorithm 5.1, it will have very low Hamming weight

and we will only analyse the cost of the doubling steps in the Miller loop.

We are pairing two divisors D1 and D2 defined over Fp. We assume that

these divisors are generic (as mentioned earlier). We further assume that

the Mumford representation of D2 factors over Fp and that we know the

factorisation. This is a restriction to roughly half the divisor classes. Before

computing the pairing we apply the distortion map ψ from Theorem 5.2.4 to

map D2 to a divisor over Fp6 . In other words, we know x1, x2 ∈ Fp3 and

y1, y2 ∈ Fp6 such that ψ(D2) = (x1, y1) + (x2, y2)−D∞.
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The Miller functions are evaluated at (x1, y1) and (x2, y2) rather than per-

forming a resultant computation. Since D∞ is defined over Fp we can omit

the evaluation (y − p(x))(D∞).

To compare the efficiency of our pairing implementations on elliptic and

hyperelliptic curves, we first estimate the cost of each doubling step. We will

let f denote the intermediate value in the Miller loop. The update of f is

similar to that used in other standard implementations of Miller’s algorithm,

such as Algorithm 1 in Section 2 of [46], except that the denominator of

gn1D,n2D in Equation (2.3.1) can be removed as described by Equation (5.2.3)

in the elliptic curve case, and by Lemma 5.2.3 in the hyperelliptic curve case.

elliptic : f ← f 2 · lR,P (Q) · (xR(xR + xQ) + x2
Q) and R← 2R

hyperelliptic: f ← f 2 · (y1 − p(x1)) · (y2 − p(x2)) and D1 ← 2D1.

Here lR,P is the line through R and P , D1 = (x1, y1) + (x2, y2) −D∞ and

y − p(x) is as in Equation (5.2.1). Note that p(x) will be a cubic polynomial

with coefficients in Fp.

We use affine coordinates for our implementation. In the elliptic case,

doubling a point costs about 1I2 + 2M2 + 2S2, which makes each doubling

step in the Miller loop cost about 1I1 + 67M1 (see the formulae for M2, S2

etc in Section 4.2). In the hyperelliptic case, doubling a divisor costs about

1I1+32M1 = 42M1 [36], which makes each doubling step in the Miller loop cost

about 101M1. There are a total of 84 doubling steps using the parameters given

in Example 5.3.1. So the costs of the Miller loops are 6468M1 and 8484M1

respectively (counting only doubling steps since b has Hamming weight 4).

The final exponentiation step is identical in both cases, and costs about

1621M1.
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This shows that pairings on real hyperelliptic genus 2 curves with k = 6

are competitive to parings on elliptic curves with k = 3, though slower.

5.4.2 Theoretical comparison with imaginary hyperel-

liptic curves with k = 4

To complement our efficiency analysis, we will also make an abstract compar-

ison of our implementation results with those reported in [77], using genus 2

hyperelliptic curves with embedding degree k = 4. The implementation results

in [77] are amongst the best reported in the literature.

In curves with embedding degree k = 4, the underlying prime field needs

to be 96 bits larger than our implementation to achieve an equivalent level of

security. The representation of each divisor will then need 384 more bits.

The estimated cost of a pairing computation on a degenerate divisor re-

ported in Section 4.9 of [77] is of about 162I1 + 10375M1 + 645S1 (excluding

the cost of the final exponentiation). This estimate is a bit slower than the

estimate for hyperelliptic pairings considered in this paper. Although, as men-

tioned in Remark 5.3.3, the use of an algorithm similar to Algorithm 5.1 to

find curve parameters could improve the results of [77]. However, we expect

that a R-ate pairing on this curve for general divisors will not be faster than

our case.

We can see that pairings on hyperelliptic curves given by a real model are

competitive with pairings on curves given by an imaginary model, in terms of

bandwidth and computation requirements.
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5.4.3 Implementation results

This section reports some implementation results. The implementation uses

the parameters given in Example 5.3.1. The timings are obtained using the

Magma Online Platform [10].

The following table summarizes the results. The first row shows our im-

plementation result for hyperelliptic curves, and the second row shows our

implementation result for elliptic curves.

Table 5.1: Efficiency Comparision with an AES 80 Security Level

Curve size of pOperation Count time(ms)
C(Fp) k = 6 160 10105M1 21.6
E(Fp2) k = 3 160 8089M1 15.3

5.5 Conclusion

In this chapter we presented several techniques to speed-up the calculation

of pairings on hyperelliptic curves given by a real model. We showed that

computing pairings on real genus 2 curves is practical. The implementation

results are comparable to existing results in the literature for similar settings.

We compared the efficiency of two similar elliptic and hyperelliptic curves,

and conclude that pairings on elliptic curves with k = 3 require 21% less field

multiplications than pairings on real hyperelliptic genus 2 curves with k = 6.

The timing difference in our implementation was that elliptic curves are 28%

faster than genus 2 curves.
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5.6 Appendix: Addition Formulae

We now present the formulae from [26], which are explicit formulae for the

algorithms presented in Section 3.2 to build an efficient algorithm for divisor

arithmetic on hyperelliptic curves with two points at infinity. These formulae

require that the curve have model of the form

y2 = x6 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

To make the polynomial defining the hyperelliptic curve monic, one takes a

random pair of Fp-rational points (x,±y) on the curve, moves them to infinity,

and absorbs the square root of the leading coefficient into y. Since we are

working in large characteristic there is no problem setting f5 = 0.

To be compatible with the divisor representation used in [26] the second

polynomial in the Mumford representation is the unique polynomial v′ ≡ v

mod u of the form v′ = x3 + v1x+ v0. Notice that v′ can be represented only

by 2 coefficients even though it has degree 3.

When adding divisors D1 and D2, the cubic polynomial p(x) given by

Equation (5.2.1) can be calculated as p(x) = v2(x) + u2(x)s(x), where s(x) =

s1x+ s0 in Algorithm 5.2.

The cubic polynomial from Equation (5.2.1) used in Miller’s algorithm

when doubling a divisor D is given by p(x) = v(x) + u(x)s(x), where s(x) =

s1x+ s0 in Algorithm 5.3.

Proposition 5.6.1. In the notation of Algorithm 5.2, the cubic polynomial

p(x) given by Equation (5.2.1) can be calculated as p(x) = v2(x) + u2(x)s(x),

where s(x) = s1x + s0. An analogous result holds for the polynomial p(x) =

v(x) + u(x)s(x), where s(x) = s1x+ s0 in Algorithm 5.3.
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Algorithm 5.2 Addition Formulae

Input: Divisors D1 = div(u1, v1) and D2 = div(u2, v2) .
Output: A divisor D3 = div(u3, v3) such that [D3] = [D1] + [D2].

1: z0 = u10 − u20, z1 = u11 − u21.
2: z2 = u11 · z1 − z0, z3 = u10 · z1.
3: r = z1 · z3 − z0 · z2.
4: w0 = v10 − v20, w1 = v11 − v21.
5: s′1 = w0 · z1 − w1 · z0, s

′
0 = w0 · z2 − w1 · z3.

6: k2 = f4 − 2v21.
7: r2 = r2, ŵ0 = r2 − (s′1 + r)2, ŵ1 = (r · ŵ−1).
8: ŵ2 = ŵ0 · ŵ1, ŵ3 = r · r2 · w1.
9: s1 = s′1 · ŵ2, s0 = s′0ŵ2.

10: w̃0s0 · u20, w̃1 = s1 · u21, l2 = s0 + w̃1.
11: l1 = (s0 + s1)(u21 + u20)− w̃1 − w̃0, l0 = w̃0.
12: m′3 = ŵ3 · (−s1 · (s0 + l2)− 2s0).
13: m′2 = ŵ3 · (k2 − s1 · (l1 + 2v21)− s0l2).
14: u′1 = m′3 − u11, u

′
0 = m′2 − u10 − u11 · u′1.

15: w1 = u′1 · (s1 + 2), w0 = u′0 · (l2 − w1).
16: v′1 = (u′0 + u′1) · (s1 +−w1 + l2)− v21 − l1 − w0 − w1.
17: v′0 = w0 − v20 − l0.

Algorithm 5.3 Doubling Formulae

Input: D = div(u, v) .
1: w1 = u2

1, ṽ1 = 2(v1 + w1 − u0), ṽ0 = 2(v0 + u0 · u1).
2: w2 = u0 · ṽ1, w3 = u1 · ṽ1.
3: inv1 = ṽ1, inv0 = w3 − ṽ0.
4: r = ṽ0 · inv0−w2 · ṽ1.
5: k′2 = f4 − 2v1

6: k′1 = f3 − 2v0 − 2k′2 · u1.
7: k′0 = f2 − v2

1 − k′1 · u1 − k′2(w1 + 2u0).
8: s′1 = inv1 ·k′0 − ṽ0 · k′1, s′0 = inv0 ·k′0 − w2 · k′1.
9: r2 = r2, ŵ0 = (s′1 + r)2 − r2, ŵ1 = (r · ŵ0)

−1.
10: ŵ2 = ŵ0 · ŵ1, ŵ3 = r · r2 · ŵ1.
11: s1 = ŵ2 · s′1, s0 = ŵ2 · s′0.
12: u′1 = 2ŵ3 · ((s0 − u1) · s1 + s0).
13: u′0 = ŵ3 · ((s02u1) · s0 + ṽ1 · s1 − k′2).
14: z0 = u′0 − u0, z1 = u′1 − u1.
15: w0 = z0 · s0, w1 = z1 · s1.
16: v′1 = 2u′0 − v1 + (s0 + s1) · (z0 + z1)− w0 − w1 − u′1 · (2u′1 + w1).
17: v′0 = w0 − v0 − u′0 · (2u′1 + w1).
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Proof. We will only prove the result corresponding to Algorithm 5.2, since the

result for Algorithm 5.3 can be proven analogously.

By construction the polynomial s(x) has the property that s(x) ≡ (v1(x)−

v2(x))/u2(x) mod u1(x). Hence, the polynomial p(x) = v2(x) + u2(x)s(x) is

such that p(x) ≡ v1(x) mod u1(x) and p(x) ≡ v2(x) mod u2(x). Since there

is a unique cubic polynomial that satisfies these conditions, we have shown

that p(x) is indeed the polynomial from Equation (5.2.1).
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Chapter 6

An Attack on Disguised Elliptic

Curves

6.1 Introduction

The use of pairings in cryptography has had a number of important conse-

quences. In [70], Menezes, Okamoto and Vanstone use the Weil pairing to

reduce the discrete logarithm problem from the group of points of an ellip-

tic curve E(Fq) to the multiplicative group of invertible elements of a finite

field F∗qn for a suitable n. In recent years, pairings for elliptic curves have

found more constructive applications (see [78] for a survey), which simply

stated depend on the fact that they provide some elliptic curves with a gap

Diffie-Hellman group structure: a group in which the decision Diffie-Hellman

problem is easy, and yet the computational Diffie-Hellman problem remains

hard.

In [19], Dent and Galbraith take this construction one step further and

explore the idea of Trapdoor Decisional Diffie-Hellman groups: groups for
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which the knowledge of certain trapdoor information is sufficient to efficiently

solve the DDH, whereas solving the DDH without the trapdoor information is

believed to be hard. In [19] the authors describe two such constructions, both

based on elliptic curves. The first one depends on elliptic curves over the ring

Z/NZ where N = pq is an RSA modulus (we refer the reader to the original

paper for further details). The second construction is based on an idea of

Frey [30] that consists of “disguising” elliptic curves. In the next section we

will give a detailed description of this construction and then we will proceed

to describe an attack on it. The results of this chapter have been published

as [74]

6.2 Disguising elliptic curves

This proposal consists of taking the Weil restriction of an elliptic curve with

respect to Fqn/Fq and then transforming the group operation equations using

a linear change of variables. We will first explain how to obtain multivariate

polynomials describing the group law and then we will describe the blinding

procedure using an invertible linear transformation.

Given an Fq-basis β = {αi}n1 of Fqn , every element x =
∑n

i=1 xiαi of Fqn

can be described as an n-tuple (x1, x2, . . . , xn) ∈ Fn
q with respect to β. We

will use the notation x to represent both the field element x ∈ Fqn and the

n-tuple over Fq.

Lemma 6.2.1. Fix an Fq-basis β of Fqn. Given a monomial xiyj, there

exists an n-tuple (pk)
n
k=1 of homogeneous polynomials pk of degree (i+j) in 2n

variables, such that for two elements x0 and y0 of Fqn, the coordinates of xi0y
j
0

are given by the evaluation of the n-tuple of polynomials in the coordinates of
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x0 and y0.

Proof. This is a classic result. The n-tuple of polynomials is obtained expand-

ing the product of the formal n-tuples describing x and y and writing the

products of elements of β again as an n-tuple in β.

Throughout this chapter, E will be an elliptic curve defined over the field

Fqn . Points on E will be described by their projective coordinates. When

denoting projective points, we will use the notation (x, y, z) instead of the

usual (x : y : z), because in the attack we will be interested in the specific

representative of the projective class being used.

Proposition 6.2.2. Let E be an elliptic curve defined over a finite field Fqn.

There exists homogeneous polynomials fx, fy and fz in Fqn [x1, y1, z1, x2, y2, z2],

such that the addition P3 = P1 + P2 of two points P1 and P2 on E is given by

P3 = (fx, fy, fz)(P1, P2).

Analogously, there exists a triple of polynomials (gx, gy, gz) that give the point

doubling operation.

Proof. This is a standard result for elliptic curves. For a proof see [91][Algorithm

III.2.3].

Proposition 6.2.3. If we describe a point on E(Fqn) as a 3n-tuple of elements

of Fq, there exists a 3n-tuple (fi)
3n
i=1 of homogeneous polynomials fi in 6n

variables, such that the addition of two points P1 and P2 on E can be calculated

as the evaluation of the 3n-tuple of polynomials in the coordinates of P1 and P2.

Analogously, there exists a 3n-tuple (gi)
3n
i=1 of polynomials gi in 3n variables,

that can be used to double points in E.
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Proof. This is a simple combination of Proposition 6.2.2 and Lemma 6.2.1.

In order to blind the elliptic curve we will choose some random matrix

U ∈ GL3n(Fq). This matrix will be part of the private key of the cryptosystem.

Definition 6.2.4. Given an elliptic curve E, let (fi)
3n
i=1 be the 3n-tuple of

polynomials describing the addition law as in Proposition 6.2.3. Define the

3n-tuple of blinded addition polynomials as

(
f̃i(x1, y1, z1, x2, y2, z2)

)3n

i=1
= U

(
fi
(
U−1(x1, y1, z1), U

−1(x2, y2, z2)
)3n
i=1

)
.

We define the 3n-tuple of blinded doubling polynomials (g̃i)
3n
i=1 in a similar

fashion.

Definition 6.2.5. Given a point P = (x, y, z) in F3
qn, write its coordinates as

n-tuples with respect to our basis β. We say that the 3n-tuple P̃ = U ·P is the

blinded image of P . Throughout this chapter P̃ will denote the blinded image

U · P of the point P .

Definition 6.2.6. Given an elliptic curve E, we define its blinded description

as the tuple

(E, (f̃i)
3n
i=1, (g̃i)

3n
i=1, P̃0),

where the 3n-tuples of polynomials (f̃i) and (g̃i) are the blinded addition and

doubling polynomials of E with respect to some matrix U and the 3n-tuple P̃0

is the blinded image of a (secret) point P0 on E.

In [19] different variants of the scheme are discussed; for instance, it is

suggested to take a matrix U mapping the XZ- and Y -spaces onto themselves,

both for functionality and implementation convenience. A further variant of
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the scheme has a more restrictive public key, consisting only of a blinded point

P̃ = U · P and the blinded version of the doubling and “translation by P”

formulae, this has the disadvantage that it is not possible to compute arbitrary

multiples of a point (see the original paper [19] for the details). Our attack

does not apply to this variant.

The goal of disguising an elliptic curve is to construct a trapdoor DDH

group. Thus, an attack on the scheme is any algorithm that allows someone in

possession of the public key to compute a bilinear pairing on the curve. Under

such considerations, to break the scheme one does not need to recover the

original blinding matrix U , all that is needed is a matrix U ′ taking our blinded

curve to an Fqn-isomorphic curve. In particular, starting with a different Fq-

basis of Fqn corresponds to conjugating U by an invertible matrix, and is

enough to break the scheme.

6.3 The attack

In this section we describe our attack on the disguised curve scheme. The

attack is based on some simple observations coupled with standard linear

algebra. For some variants of the scheme we are able to completely break the

trapdoor.

We first present a general attack that will work on any variant with basic

functionality; this attack alone does not recover U , but will greatly reduce the

search space. Building upon our first attack, we then show a second attack

that completely recovers U in some special cases. This second attack can be

seen as a warning against careless implementations.

Throughout this section we will fix an Fq-basis {αi}n1 of Fqn and whenever
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we speak of the matrix in GLn(Fq) associated with multiplication by λ ∈ Fqn ,

it will be with respect to this basis. If P = (x, y, z) is a point in F3
qn and λ is

an element of Fqn , then [λ] will denote the matrix in GL3n(Fq) corresponding

to multiplication by λ in each coordinate.

For future reference, we present the standard addition formulae for curves

given by an equation of the form y2 = x3 +Ax+B, or its projective equivalent

zy2 = x3 + Axz2 +Bz3. If (x3, y3, z3) = (x1, y1, z1) + (x2, y2, z2), then

(x3, y3, z3) = (fx, fy, fz)(x1, y1, z1, x2, y2, z2),

where

fx = z1z2DN
2 −D3(x1z2 + x2z1) (6.3.1)

fy = N(z1z2N
2 −D2x1z2 − 2D2x2z1) +D3x2z1 (6.3.2)

fz = D3z1z2 (6.3.3)

N = y1z2 − y2z1 and D = x1z2 − x2z1. (6.3.4)

Remark 6.3.1. The triple of polynomials (fx, fy, fz) giving addition formulae

for the curve E is not unique. For example, given a homogeneous polynomial

p(x1, y1, z1), the triple (pfx, pfy, pfz) can also be used to add points on E.

6.3.1 Attack 1

In this first attack we assume that we know the blinded description (E, (f̃i)
3n
i=1, (g̃i)

3n
i=1, P̃0)

of an elliptic curve E with respect to an unknown matrix U . We do not as-

sume knowledge of the point P0, or of the unblinded version of the curve
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addition formulae. Note that we can find random blinded points on E simply

by computing random multiples of P̃0.

Definition 6.3.2. Let P̃1 and P̃2 be the blinded image of the points P1 =

(x1, y1, z1) and P2 = (x2, y2, z2). We say that the 3n-tuples P̃1 and P̃2 are

similar if there exists λ such that (x1, y1, z1) = (λx2, λy2, λz2). In this case we

say that λ is the similarity factor between P̃1 and P̃2.

Algorithm 6.1 Similar 3n-tuples

Input: The blinded description (E, (f̃i)
3n
i=1, (g̃i)

3n
i=1, P̃0) of an elliptic curve E.

Output: Two similar 3n-tuples P̃1 and P̃2.
1: Let P̃ and Q̃ be two random blinded points on E.
2: Let P̃1 := 2(P̃ + Q̃).
3: Let P̃2 := 2P̃ + Q̃+ Q̃.
4: return P̃1, P̃2.

Proposition 6.3.3. Let P̃1, P̃2 be the output of Algorithm 6.1. Then the tuples

P̃1 and P̃2 are similar, and the similarity factor is a random element of Fqn.

Proof. The similarity between P̃1 and P̃2 follows from the fact that they are

both blinded versions of a representative of the point 2P + 2Q.

Let (p1, p2, p3) be the triple of polynomials that calculates 2P + Q + Q

(i.e. (p1, p2, p3)(P,Q) = 2P + Q + Q) , and let (q1, q2, q3) be the triple of

polynomials that calculates 2(P+Q). The polynomials p1 and q1 have different

degrees and one is not a multiple of the other. The proportionality constant

by which P1 and P2 differ is (p1/q1)(P,Q). This proves that it is given by the

value of a non-constant rational function evaluated in two random points P and

Q. Since non-constant rational functions are surjective over the algebraically

closure, we can expect the proportionality constant between P1 and P2 to be

a random element of Fqn .
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The polynomials in the coordinates of P and Q that calculate 2P +Q+Q

and 2(P +Q) have different degrees and one is not a multiple of the other.

The proportionality constant by which P1 and P2 differ is the value of

a non-constant rational function evaluated in two random points P and Q

on E, there is no reason to expect any constraint in the value by which these

two projective points differ when P and Q are taken at random.

Proposition 6.3.4. Fix a triple of polynomials (fx, fy, fz) giving projective

addition formulae for the elliptic curve E. There exists a fixed integer s such

that if P1 and P2 are two different projective representatives of the same point,

with coordinates P1 = (x1, y1, z1) and P2 = (λx1, λy1, λz1), then for every point

Q the projective coordinates of P1 +Q and P2 +Qare related by

P1 +Q = (x3, y3, z3), P2 +Q = (λsx3, λ
sy3, λ

sz3).

Proof. For any triple of polynomials (fx, fy, fz) giving generic addition formu-

lae on the curve, the polynomials (fx, fy, fz) have to be homogeneous in the

coordinates of the first and second points. The integer s is given by the degree

of the formulae in the variables corresponding to the first point.

Proposition 6.3.5. Let P̃1 and P̃2 be two similar 3n-tuples with similarity

factor λ. For a blinded point Q̃, the coordinates of ˜(P1 +Q) and ˜(P2 +Q) will

differ by the matrix M = U [λs]U−1.

Proof. If follows directly from the construction of the blinded description of

the curve that

P̃ + Q̃ = ˜(P +Q).
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Using Proposition 6.3.4, we get

P̃2 + Q̃ = U · (P2 +Q) = U [λs] · (P1 +Q) = U [λs]U−1 ˜(P1 +Q) = M(P̃1 + Q̃),

which proves the proposition.

For the attack to succeed we need two similar points P̃1 and P̃2 with sim-

ilarity factor λ such that λs generates Fqn . If λ is a random element of Fqn ,

this happens with high probability as Lemma 6.3.6 shows. If we are unlucky

then the attack can be repeated for different pairs of points (P̃1, P̃2) until we

find λ such that λs generates Fqn . We will shortly describe how to determine

if this is the case.

Lemma 6.3.6. Let λ be a random element of the field Fqn. The probability

that λs does not generate Fqn over Fq is O(log(n)sq−n/2).

Proof. The element λs does not generate Fqn if and only if it lies in a proper

subfield of Fqn . Every such subfield has at most qn/2 elements, and the num-

ber of proper subfields of Fqn that contain Fq is O(log n). Finally, if γ is

an element of Fqn , there are at most s values of λ such that γ = λs. The

number of elements λ such that λs does not generate Fqn over Fq is therefore

O(log(n)sqn/2) out of qn elements of Fqn . The result follows.

Algorithm 6.2 Similarity Matrix

Input: The blinded description of an elliptic curve E, and two similar 3n-
tuples P̃1 and P̃2.

Output: A 3n× 3n matrix M .
1: Construct a set {Q̃i} of m > 3n random blinded points on E.
2: Let M be a matrix such that M(P̃1 + Q̃i) = P̃2 + Q̃i for every Q̃i.
3: return M .
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Proposition 6.3.7. Algorithm 6.2 is correct. If λ is the similarity factor

between P̃1 and P̃2 and the set {Q̃i} is sufficiently large, then the unique matrix

M satisfying condition 2 in Algorithm 6.2 is given by M = U [λs]U−1.

Proof. Proposition 6.3.5 shows that ˜(P2 +Qi) = U [λs]U−1 ˜(P1 +Qi) for every

Qi, proving that there is always a matrix satisfying the condition in Step 2 of

Algorithm 6.2. If the set of points {Q̃i} is sufficiently large, there is a unique

matrix satisfying these conditions.

Remark 6.3.8. The eigenvalues of M will be λs and its Galois conjugates. We

calculate the eigenvalues of M , choose one of them1 and work with it as λs.

Using Lemma 6.3.6 we will assume that λs generates Fqn over Fq.

Theorem 6.3.9. Let (E, (f̃i)
3n
i=1, (g̃i)

3n
i=1, P̃0) be the blinded description of an

elliptic curve E. Use Algorithm 6.1 to find a pair of similar 3n-tuples P̃1 and

P̃2, with similarity factor λ, and use these as input to Algorithm 6.2 to find a

matrix M . If U is the secret blinding matrix, then U satisfies

M = U [λs]U−1. (6.3.5)

Proof. This is a simple consequence of Proposition 6.3.7.

Theorem 6.3.9 imposes a strong condition on the possible matrices U used

in the blinding procedure through Equation (6.3.5). There is more than one

solution to Equation (6.3.5), so further work has to be done to recover U .

Notice that not every matrix U satisfying Equation (6.3.5) can be used as

secret key, as its action on points must also be compatible with the point

adding and doubling operations.

1Choosing the “wrong” λ amounts to twisting the original elliptic curve with some ele-
ment σ of the Galois group of Fqn over Fq, this doesn’t affect the attack as a useful trapdoor
would still be found. Equivalently this can be seen as choosing the Fq-basis {ασj }.
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We can rewrite Equation (6.3.5) as

MU = U [λs]. (6.3.6)

If we let V denote the Fq-vector space of matrices U with entries in Fq sat-

isfying Equation (6.3.6), then every invertible matrix in V is a solution to

Equation (6.3.5). To estimate the strength of the restriction imposed in U by

Theorem 6.3.9, we calculate the dimension of the vector space V , and com-

pare it with the number of variables necessary to perform a naive multivariate

attack on the scheme. Such an attack would need 9n2 variables to represent

an arbitrary matrix U in the general case, or 5n2 if the XZ- and Y -spaces are

mapped onto themselves.

Let Vc be the vector space of matrices U with entries in the algebraic

closure Fq of the field Fq satisfying Equation (6.3.6).

Proposition 6.3.10. The dimension of the Fq-vector space Vc is 9n.

Proof. We will work over the field Fq. Diagonalize the matrices M and [λs]

as MD = D−1
1 MD1 and MD = D−1

2 [λs]D2. The Fq-vector space of matrices V

with entries in Fq satisfying

MDV = VMD, (6.3.7)

and the elements of the vector space Vc are isomorphic as Fq-vector spaces: if

U is a matrix that satisfies Equation (6.3.6), then the matrix V = D−1
1 UD2

satisfies Equation (6.3.7), and conversely if V satisfies Equation (6.3.7), then

U = D1V D
−1
2 satisfies Equation (6.3.6).

Since the matrix [λs] has as eigenvalues all the Galois conjugates of λs,
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each with multiplicity 3, the matrix MD has n different values in the diagonal,

each repeated 3 times. It is now easy to see that the vector space of matrices

V satisfying (6.3.7) has dimension 9n as Fq-vector space, since it is necessary

and sufficient that V maps the 3-dimensional eigenspaces corresponding to a

given eigenvalue onto themselves.

Proposition 6.3.11. The Fq-vector space V has dimension 9n.

Proof. We know that the Fq-vector space Vc has dimension 9n, and V consists

of the Fq-rational elements of Vc. The fact that the conditions defining the

vector spaces V and Vc are defined over Fq and Proposition A.2.2.10 in [50],

prove that there is a basis for the Fq-vector space Vc with elements defined

over Fq. The proposition follows.

Proposition 6.3.12. If the matrix U maps the XZ- and Y -spaces onto them-

selves, then the dimension of the vector space V is 5n.

Proof. The proof is analogous to that given for Proposition 6.3.11.

Given two similar 3n-tuples P̃1 and P̃2, we have seen how Algorithm 6.2

can be used to find a matrix M imposing conditions on the possible blinding

matrices U . It would be natural to try to run Algorithm 6.2 using as input

several different pairs of similar points {P̃ ′1, P̃ ′2} to further narrow down the

possibilities for U . Unfortunately, this wouldn’t give us any extra information,

as the following proposition shows.

Proposition 6.3.13. Let M be the output of Algorithm 6.2 on input {P̃1, P̃2},

and let N be the output of Algorithm 6.2 on input {P̃ ′1, P̃ ′2}. Then every matrix

U satisfying M = U [λs]U−1 will also satisfy N = U [µs]U−1, where µ is the

similarity factor between P̃ ′1 and P̃ ′2.
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Proof. Since λs generates Fqn , there exist elements ai ∈ Fq such that µs =∑n−1
i=0 ai(λ

s)i. Therefore N =
∑
aiM

i, and it follows that for a given matrix

U if U [λs]U−1 = M, then automatically

N = U [µs]U−1,

so every matrix U satisfying Equation (6.3.5) for [λs] and M would work for

[µs] and N .

With Theorem 6.3.9, we have reduced the search space for a multivariate

attack on the scheme from quadratic in the number of variables n to linear

in n (as proven in Proposition 6.3.11 and Proposition 6.3.12). Since Gröbner

basis methods can be used to break these systems, our analysis shows that the

parameter n required for a given security level would have to be much higher

than suggested in [19].

6.3.2 Attack 2

As mentioned before, there are several variants of the disguised curve pro-

posal in [19]. We now show how to improve the previous attack for one of

these variants. We will assume knowledge of at least one blinded point in the

curve, we also assume that the unblinded version of the addition formulae is

given by the polynomials we presented in Equations (6.3.1) above (as we have

mentioned, one could use different addition formulae). We will also assume

that the XZ (resp. Y )-space is mapped onto itself under U (see [19]) and

that char(Fq) > 2. Since U maps the XZ- and Y -spaces separately, we will

write U = UXZ ⊕ UY , where UXZ denotes the action of U on the XZ-space

and UY gives the action of U on the Y -space.
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Algorithm 6.3 Coordinate quotient

Input: Two 3n-tuples Ã1 and Ã2 with non-zero Y -coordinates.
Output: An element µ of Fqn .

1: Let M be the matrix output by Algorithm 6.2. Assume that M = U [λ]U−1

for some λ that generates Fqn over Fq, and denote M = MXZ⊕MY , where
MXZ and MY act on the XZ- and Y -spaces respectively.

2: Let Ã1,Y and Ã2,Y denote the Y -coordinate of the 3n-tuples Ã1 and Ã2.
3: Find an n-tuple (ai)

n−1
i=0 of elements of Fq such that (

∑n−1
i=0 aiM

i
Y )Ã1,Y =

Ã2,Y .
4: Let µ :=

∑n−1
i=0 aiλ

i.
5: return µ.

Proposition 6.3.14. In the notation of Algorithm 6.3, let y1 and y2 be the un-

blinded Y -coordinates of the points Ã1 and Ã2, and let µ be the value returned

by Algorithm 6.3. Then µ = y2/y1.

Proof. Let y2/y1 =
∑n−1

i=0 aiλ
i, this implies that y2 = (

∑n−1
i=0 ai[λ]i)y1. We

know that MY = U−1
Y [λ]UY , and since Ã1,Y = UY y1 and Ã2,Y = UY y2, we get

(
∑n−1

i=0 aiM
i
Y )Ã1,Y = Ã2,Y . This proves the proposition.

Definition 6.3.15. Let Vz be the vector space U · {(x, y, 0)|x, y ∈ Fqn}.

Since the XZ-space and the Y -space are scrambled onto themselves under

U , finding a basis for the vector space Vz is equivalent to finding a basis for

the vector space U{(x, 0, 0)|x ∈ Fqn}.

Proposition 6.3.16. The 3n-tuple returned by Algorithm 6.4 lies in the vector

space Vz.

Proof. We will use the notation of Algorithm 6.4. The 3n-tuple Ã3 is the

blinded version of a point A3 = (x3, y3, z3). This point is also given as A3 =

A1 + A2, where the “addition” is performed using the unblinded addition

formulae given by Equations (6.3.1). Analogously, Ã′3 = UA′3 for a point

A′3 = (x′3, y
′
3, z
′
3), given by A′3 = A′1 + A2.
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Algorithm 6.4 Identify Vz
Input: Two random 3n-tuples Ã1 and Ã2, corresponding to the blinded rep-

resentation of the vectors A1 = (x1, y1, z1) and A2 = (x2, y2, z2) in F3
qn .

Output: A 3n-tuple Ã4 lying in the vector space Vz.
1: Let A′1 = (2x1, y1, 2z1), and let Ã′1 = UA′1. The 3n-tuple Ã′1 can be

computed from Ã1 even if A′1 is not known, since U maps the XZ-space
onto itself.

2: Denote Ã3 := Ã1+Ã2, and Ã′3 := Ã′1+Ã2, where the addition is calculated
using the blinded addition polynomials.

3: Let Ã4 := 8Ã3− Ã′3 (the subtraction is as 3n-tuples, not as blinded points
of an elliptic curve).

4: return Ã4.

A simple analysis of the addition formulae (6.3.1) shows that 8z3 = z′3 and

8x3 6= x′3. We now have that

8Ã3 − Ã′3 = U(8A3 − A3) = U(8x3 − x′3, 8y3 − y′3, 0).

The proposition follows.

Corollary 6.3.17. Given the blinded description of an elliptic curve as pre-

sented in Definition 6.2.6, it is possible to efficiently compute a Fq-basis of the

vector space Vz.

Proof. It suffices to run Algorithm 6.4 until a basis of Vz is found. This should

happen with high probability after n runs of the algorithm.

Proposition 6.3.18. Algorithm 6.5 is correct.

Proof. We know that the matrix M is given by M = U−1[λ]U , where λ gen-

erates Fqn over Fq. If z1 is the Z-coordinate of A1, z2 is the Z-coordinate of

A2 and z2 is not zero, then there is a unique n-tuple (ai)
n−1
i=0 of elements of Fq

such that
∑n−1

i=0 aiλ
i = z1/z2. It follows that if A′2 = (

∑n−1
i=0 aiλ

i)A2, then the

Z-coordinates of A′2 and A1 are equal. The proposition follows.
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Algorithm 6.5 Same Z-coordinate

Input: Two random 3n-tuples Ã1 and Ã2 not lying in Vz. The matrix M
returned by Algorithm 6.2.

Output: A 3n-tuple Ã′2 similar to Ã2, such that the Z-coordinates of the
points A1 and A′2 are equal.

1: Corollary 6.3.17 shows that it is possible to find a basis for Vz, so one can
use this basis to verify that a vector does not lie in Vz.

2: Find the unique n-tuple (ai)
n−1
i=0 in Fq, such that (

∑n−1
i=0 aiM

i)Ã2− Ã1 lies
in Vz.

3: Let Ã′2 := (
∑n−1

i=0 aiM
i)Ã2

4: return Ã′2.

Theorem 6.3.19. Let P̃0 be the blinded version of a point P0 with odd order

r. If the affine coordinates of P0 are P0 = (x0, y0), it is possible to efficiently

compute x0.

Proof. Recall that given a point P = (x, y) on the elliptic curve E, there exist

rational functions r1(x) and r2(x) such that [2]P = (r1(x), yr2(x)).

Let P̃1 be the result of applying the blinded doubling formulae on P̃0. Using

Algorithm 6.5, find a 3n-tuple P̃ ′1 similar to P̃1, such that the Z-coordinates

of P0 and P ′1 are the same. Let P0 = (X0, Y0, Z0) and P ′1 = (X1, Y1, Z0).

Using Algorithm 6.3, find the value w of Y1/Y0. Denote the affine coor-

dinates of P0 and P ′1 by P0 = (x0, y0) and P ′1 = (x1, y1). Since P ′1 = [2]P0,

we have that y1/y0 = r2(x0). But also y1 = Y1/Z0 and y0 = Y0/Z0, hence

y1/y0 = Y1/Y0. In other words, the value of Y1/Y0 is the same as that of

r2(x0).

Now solve for x satisfying r2(x) = w. There are at most 4 values of x that

satisfy this equation. Given a point P = (x, y) such that x satisfies r2(x) = w,

the x-coordinates of the points P +E[2] provide all the other solutions to this

equation. At most one of the points in the set P + E[2] has odd order, hence

there is only one value of x satisfying r2(x) = w and such that the point (x, y)

120



on E has order r. Note that the value of y is only defined up to sign, but this

does not change the order of (x, y). The theorem follows.

Algorithm 6.6 Blinding Matrix

Input: The blinded description of an elliptic curve with respect to some un-
known matrix U that maps the XZ- and Y -spaces onto themselves.

Output: A matrix U ′ = U · [µ] for some µ ∈ Fqn .
1: Find the unblinded affine x-coordinate x1 of a point P̃1 using Theo-

rem 6.3.19. Arbitrarily choose y1 such that (x1, y1) ∈ E, and assume
that P1 = (x1, y1).

2: For 1 ≤ i ≤ 9n2, compute the point P̃i = [i]P̃1 (here all we need is 9n2

known multiples of P̃1, we use consecutive multiples for convenience).
3: Denote the affine coordinates of the point Pi by (xi, yi). These are easily

computable from (x1, y1) for a given i.
4: Using Algorithm 6.5, substitute P̃i for a 3n-tuple similar to P̃i, having the

same z-coordinate as P̃1.
5: Find the unique matrix U ′ such that P̃i = U ′ · (xi, yi, 1) for every i.
6: return U ′.

Algorithm 6.6 shows how to recover the matrix U up to multiplication by

a block-diagonal matrix [µ] for µ ∈ Fqn . This is enough to break the scheme,

since the factor µ is cancelled when the affine coordinates of a given point are

considered.

6.4 Conclusions

We have cryptanalysed the hidden pairing scheme of [19] based on disguising

an elliptic curve. Our attacks show that to obtain a secure system one would

have to massively increase the memory requirements of the public keys in the

proposal of [19]. Our results do not apply to the proposal of Frey since [30]

does not specify a method to compute the group law on an elliptic curve.
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Chapter 7

Cheon’s algorithm, pairing

inversion and the DLP

7.1 Introduction

Pairing-based cryptography has become one of the most active research ar-

eas in public key cryptography. The security of a pairing-based cryptosystem

depends on the difficulty of several computational problems, some of them ex-

clusive to the area, such as the pairing inversion problem (see Definition 7.2.1).

Using results of Verheul [95], later extended by Galbraith, Hess and Ver-

cauteren [37], it is well known that if one can solve certain pairing-inversion

problems, then it is also possible to solve the computational Diffie-Hellman

(DH) problem in a number of groups, including a class of subgroups of finite

fields.

In this chapter we find results that relate the difficulty of pairing inver-

sion problems and the discrete logarithm problem (DLP). We begin using the

techniques of Boheh and Lipton [8], and Maurer [68], to show that if one can
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solve both the FAPI1 and FAPI2 problems (see Definition 7.2.1), then there

exists a sub-exponential discrete logarithm algorithm in the groups involved.

We also explore the implications of being able to solve only one of the

FAPI problems. In this case it is not possible to solve the computational

Diffie-Hellman problem, so the previous approach does not apply. We prove

that it is still possible to solve the static Diffie-Hellman problem, this will let

us use algorithms developed by Brown and Gallant [11], and Cheon [15] that

solve the discrete logarithm problem using a static Diffie-Hellman oracle.

Instead of presenting his algorithm in the context of the static Diffie-

Hellman problem, Cheon presents his algorithm as a solution to the l-Strong

Diffie-Hellman problem (l-SDH).

Problem 7.1. Given P and αiP for i = 1 . . . l, compute αl+1P .

This problem was first introduced by Boneh and Boyen in [6] to give a

security proof in the standard model for a signature scheme. Cheon’s idea

consists of exploiting the extra information given by the SDH problem to

accelerate the computation of the discrete logarithm α.

This chapter is organized as follows. In Section 7.2, we define the pairing

inversion problems we are interested in. Section 7.3 uses the techniques de-

veloped to reduce the DLP to the DH problem to show that the existence of

pairing inversion algorithms implies the existence of sub-exponential discrete

logarithm algorithms. Section 7.4 presents Cheon’s algorithm and explores

its implications in the presence of a pairing inversion oracle. We present our

conclusions in Section 7.5
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7.2 Pairings

Throughout this chapter, we will let G1,G2 and GT denote groups of prime

order p. We will write the group operation in G1 and G2 additively, and

we will use multiplicative notation for GT . We will consider non-degenerate

bilinear pairings of the form

e : G1 ×G2 −→ GT .

We are interested in the following problems:

Definition 7.2.1. Let e be a non-degenerate bilinear pairing as above.

The Fixed Argument Pairing Inversion 1 (FAPI1) problem is: given

P1 ∈ G1, z ∈ GT , find P2 ∈ G2 such that e(P1, P2) = z.

The Fixed Argument Pairing Inversion 2 (FAPI2) problem is: given

P2 ∈ G2, z ∈ GT , find P1 ∈ G1 such that e(P1, P2) = z.

Given an instance (P1, z) of the FAPI1 problem, we will denote its solution

as P2 = FAPI1(P1, z). Analogously, a solution to an instance (P2, z) of the

FAPI2 problem will be denoted as P1 = FAPI2(P2, z).

The existence of efficient algorithms to solve the FAPI1 and FAPI2 prob-

lems would have profound consequences. Galbraith, Hess and Vercauteren

have generalized results of Verheul, and proved in [37] the following:

Theorem 7.2.2. [Theorem 1 in [37]] Let e : G1 × G2 −→ GT be a non-

degenerate bilinear pairing on cyclic groups of prime order p. Given access

to FAPI1 and FAPI2 oracles, it is possible to solve the computational Diffie-

Hellman problem in G1,G2 and GT in polynomial time.

In practice, Gi, i ∈ {1, 2}, will be a subgroup of an elliptic curve E and
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e will be the Tate- or Weil-pairing (or a variant thereof). Let the elliptic

curve E be defined over the field K, and suppose that K contains the group

of pth roots of unity µp. If E[p] denotes the p-torsion subgroup of E, and

E[p] ⊂ E(K), the Tate-pairing is a non-degenerate bilinear function

〈·, ·〉 : E[p]× E(K)/pE(K) −→ K∗/(K∗)p.

If K is a finite field, it is possible to get a unique element of K as result of

the pairing as

e(P,Q) = 〈P,Q〉(#K/p).

This bilinear function is known as the reduced Tate-pairing.

Recent developments in pairing computation techniques, prominently the

short Miller loops afforded by the ate-pairing [49], have raised questions re-

garding the possibility of solving one of the FAPI problems for some special

curves. In the following sections we will explore some consequences of the ex-

istence of pairing inversion algorithms. A detailed description of the subtleties

and difficulties regarding efficient pairing inversion can be found in [37, 84].

7.3 FAPI, the DH and DLP problems

After the publication of Verheul’s results [95, 96] and with the results recently

obtained by Galbraith, Hess and Vercauteren in [37], it is widely known that

the ability to invert pairings in polynomial time implies that the computational

Diffie-Hellman problem can also be solved in polynomial time.

Combining the results of den Boer [18], Boneh and Lipton [8], and Maurer
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and Wolf [68], which relate the Diffie-Hellman problem and the discrete loga-

rithm problem, and the reduction from pairing inversion to the Diffie-Hellman

problem proved in [95, 37], we will prove that pairing inversion can be used to

solve the discrete logarithm problem in sub-exponential time in the order of

the groups. These results, although well-known to experts in the field, have

not been published and we include them here to provide a reference.

7.3.1 Black Box Fields

A black-box field is an abstract construction introduced in [8]. It is analogous

to the extensively studied black-box groups construction.

Definition 7.3.1. A black-box field is a 5-tuple (p, S, h, F,G), where p is a

prime and S is a set with p elements. The functions h, F,G are defined as

follows:

• The function h : S −→ Z/pZ is a bijection.

• The function F : S×S −→ S corresponds to addition, that is h(F (s1, s2)) =

h(s1) + h(s2).

• The function G : S × S −→ S corresponds to multiplication, that is

h(G(s1, s2)) = h(s1) · h(s2).

Following Boneh and Lipton, given x an element of Z/pZ, we will write [x]

to denote the element s of S such that h(s) = x. Note that the given functions

suffice to compute field inversion, since [x−1] = [xp−2]. It is interesting to

observe that there exist an algorithm by Shanks to extract square roots in

Z/pZ using only operations available in black-box fields [16]. This observation

is fundamental in the techniques developed to relate the DH and DL problems.
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Definition 7.3.2. Let (p, S, h, F,G) be a black-box field for some prime p.

Denote the map sending x to [x] by [·]. The black-box field problem is: given

oracles for F,G, [·] and an element [α] ∈ S, find α explicitly.

The concept of a black-box field is important because being able to solve

the computational Diffie-Hellman problem in a group G of order p, gives us a

black box representation of Z/pZ by elements of G.

Definition 7.3.3. Given an instance (P, aP, bP ) of the computational Diffie-

Hellman problem, we denote its solution as abP = DH(P, aP, bP ).

Lemma 7.3.4. Let G be group with prime order p generated by P . If we

denote the group binary operation as + and let

h :G −→ Z/pZ

aP 7→ a,

denote a bijection between G and Z/pZ, the 5-tuple (p,G, h,+,DH(P, ·, ·))

forms a black-box field representation of Z/pZ.

Proof. Since (a+b)P = aP +bP , it follows that h(aP )+h(bP ) = h((a+b)P ).

Analogously, since abP = DH(P, aP, bP ), we have that h(DH(P, aP, bP )) =

h(aP ) · h(bP ).

Note that in this construction [a] = aP for a ∈ Z/pZ. In this con-

text, the DLP for the group G becomes the black-box field problem for

(p,G, h,+,DH(P, ·, ·)).

The reduction from the DH problem to the DLP presented in [8, 69] uses

the following idea of Maurer [68] to solve the DLP problem in the group G

generated by P :
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1. Find an elliptic curve EA,B, defined over Z/pZ by the equation y2 =

x3 +Ax+B, with N -smooth order for a suitably small N . Assume that

EA,B(Z/pZ) is generated by Q.

2. Given P and aP in G, use the black-box representation of Z/pZ on

G afforded by the DH oracle and Lemma 7.3.4 to find [y] such that

(a, y) ∈ EA,B.

3. Since the order of EA,B is N -smooth, use the Pohling-Hellman algorithm

to find the discrete logarithm of (a, y) with respect to Q.

4. Recover a using the known coordinates of Q.

The elliptic curve EA,B is known as an auxiliary group, and an approach using

more general algebraic groups has been explored in [69].

A run of the algorithm to compute discrete logarithms using a Diffie-

Hellman oracle thus consist of two parts: firstly, finding an appropriate curve

EA,B, and secondly, computing the discrete logarithm of (a, y) with respect to

Q. The best result in this direction was proven by Boneh and Lipton in [8],

and is presented here as Theorem 7.3.7.

Maurer [68] argues that with high probability there is a number in the

interval [p + 1 − 2
√
p, p + 1 + 2

√
p] whose largest prime factor is polynomial

in log p. Since for every integer n in this interval there is an elliptic curve

over Z/pZ with n points [20], knowing the equation defining such an elliptic

curve would provide a polynomial time algorithm to solve discrete logarithms

in groups of order p with access to a DH-oracle. The implications of these

result are not clear, since finding n (and hence the elliptic curve) is likely to

be exponentially hard.
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Incidentally, Muzereau, Smart and Vercauteren have found auxiliary groups

withN -smooth order (220 ≤ N ≤ 283), for most of the NIST elliptic curves [76].

This is, of course, a hardness result for the Diffie-Hellman problem, as there

is no reason to expect the DL problem in this curves to be easy.

7.3.2 Black-Box fields and Pairing Inversion

After the construction described in the previous subsection, a pairing inversion

algorithm could then be used as a DH-oracle in the reduction of Boneh and

Lipton to solve discrete logarithms in the p-torsion subgroup of an elliptic

curve and the group of p-roots of unity µp in K. This proves that (conditional

to some conjectures regarding the number of N -smooth numbers in Hasse-Weil

intervals) there is a reduction from the discrete logarithm problem to solving

both of FAPI1 and FAPI2.

Definition 7.3.5. Given a natural number n and a real number α, such that

0 ≤ α ≤ 1, denote

Ln(α) = exp((log n)α(log log n)1−α).

Conjecture 7.3.6. [Conjecture 2.10 in [67]] A random integer in the interval

(p+ 1− 2
√
p, p+ 1 + 2

√
p) is Lp(α) smooth with probability at least 1/Lp(1−

α)1−α+o(1) for any α.

Assuming Conjecture 7.3.6, Boneh and Lipton prove the following:

Theorem 7.3.7 (Theorem 8 in [8]). Given a group G of prime order p, and

access to a DH oracle for G, it is possible to compute discrete logarithms in

G in time Lp(1/2)2+o(1).
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Using Theorem 7.3.7, we are ready to prove the main result of this section.

Theorem 7.3.8. Consider e : G1 × G2 −→ GT a non-degenerate bilinear

pairing. Given access to FAPI1 and FAPI2 oracles, it is possible to solve the

DLP in G1,G2 and GT in time Lp(1/2)2+o(1)

Proof. Using Theorem 7.2.2, the FAPI oracles can be used to construct a Diffie-

Hellman oracle for all the groups involved. The result follows immediately from

Theorem 7.3.7.

This theorem proves that the existence of algorithms that efficiently solve

the FAPI1 and FAPI2 problems implies the existence of sub-exponential DLP

algorithms for the groups involved. However, the Quadratic Sieve and the

Number Field Sieve already provide sub-exponential DLP algorithms in finite

fields, and using the MOV [70] attack, we get a sub-exponential DLP algorithm

for elliptic curves with sufficiently small embedding degree. In this respect,

Theorem 7.3.8 is hardly a surprising result.

Furthermore, for a fixed embedding degree k, computing discrete loga-

rithms using our reduction would be slower than a direct attack using the

Number Field Sieve on the embedding field Fpk , where discrete logarithms can

be computed in time Lpk(1/3). It would be very interesting to find algorithms

that accelerate the computation of discrete logarithms using a DH oracle in

groups that already have a sub-exponential discrete logarithm algorithm, such

as the group of invertible elements in a finite field.

7.4 Cheon’s algorithm and the DLP

In the previous section we proved that being able to solve the FAPI problems

allows for the computation of discrete logarithms in sub-exponential time.
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Note that it might be possible to have algorithms that solve only one of the

FAPI problems. In that case, the techniques of Boneh, Lipton, Maurer and

Wolf can not be used.

We will prove that one might still adapt an approach developed by Brown

and Gallant [11], and Cheon [15], to work in this setting. As we mentioned

before, Cheon developed an algorithm to solve the DLP in the context of the

l-SDH problem. Using oracle calls to just one FAPI problem, we can use

Cheon’s algorithm to compute discrete logarithms.

7.4.1 Static Diffie-Hellman Problem

In [11], Brown and Gallant introduce the concept of the static Diffie-Hellman

(ScDH) problem.

Definition 7.4.1. Given fixed elements P and aP of the group G, and a

random element yP , find ayP .

Given an instance ((P, aP ), Q) of the ScDH problem, we will denote its

solution as aQ = ScDH(P,aP )(Q).

The interest in this problem comes from the fact that in many protocols,

including static Diffie-Hellman key agreement, a user has a fixed public key

aP , and attacks to the system would involve solving an instance of the Diffe-

Hellman problem with one of the entries equal to aP . The security of the

system from the user’s perspective thus depends on the difficulty of solving

the ScDH problem and not the traditional DH problem.

Brown and Gallant prove that for a group G with prime order p, if p−1 =

uv, and one is given access to a ScDH oracle, it is possible to solve the DLP

in G in time O(
√
u +
√
v). In the next subsection we present an algorithm
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due to Cheon that is similar to the algorithm presented by Brown and Gallant

proving their result.

Our interest in the static Diffie-Hellman problem arises from the fact that

having access to an oracle that solves exactly one of the FAPI1 or FAPI2

problems provides us with a ScDH oracle when interpreted in the appropriate

groups.

Proposition 7.4.2. Given a bilinear pairing e : G1 ×G2 −→ GT , elements

P1 ∈ G1 P2, αP2 ∈ G2 and access to a FAPI2 oracle, it is possible to solve

the ScDH problem in GT with static input (z, zα), where z = e(P1, P2), in

polynomial time.

Proof. Let z = e(P1, P2). Then zα = e(P1, αP2). Given zy, we can use the

FAPI2 oracle to find yP1 = FAPI2(P2, z
y). We finish simply computing zyα =

e(yP1, αP2).

7.4.2 Cheon’s algorithm

We now explore Cheon’s algorithm [15] and analyse how can it be combined

with a FAPI oracle to solve the DLP. We decided to present Cheon’s algorithm

instead of the very similar solution presented by Brown and Gallant [11],

since Cheon’s work allows for the computation of discrete logarithms using

the factors of either p− 1 or p+ 1, and is more general from our perspective.

Theorem 7.4.3. [Theorem 1 in [15]] Let P be an element of prime order p in

an abelian group. Suppose that d is a positive divisor of p− 1. If P, P1 = αP

and Pd = αdP are given, α can be computed in O(log p(
√

(p− 1)/d +
√
d))

group operations using O(max{
√

(p− 1)/d,
√
d}) memory.
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To prove Theorem 7.4.3 it suffices to show that Algorithm 7.1 is correct

and finishes in the indicated time. The running time of O(log p(
√
p/d+

√
d))

for Algorithm 7.1 was later improved to O(
√
p/d+

√
d) by Kozaki et al in [62].

Algorithm 7.1 Cheon’s Algorithm

Input: A tuple (P, P1 = αP, Pd = αdP ), where d|p− 1.
Output: α

1: Find a generator ζ0 ∈ (Z/pZ)∗.
2: ζ := ζd0 .
3: d1 := d

√
(p− 1)/de.

4: Find 0 ≤ u1, v1 < d1 such that ζ−u1Pd = ζd1v1P by BSGS.
5: k0 := d1v1 + u1. Note αd = ζk0 .
6: d2 := d

√
de.

7: Find 0 ≤ u2, v2 < d2 such that ζ
−u2(p−1)/d
0 P1 = ζ

k0+d2v2(p−1)/d
0 P by BSGS.

8: return ζ
k0+(d2v2+u2)(p−1)/d
0

Cheon presents several other algorithms to find the discrete logarithm of

an element using extra information presented in some cryptographic schemes.

Using a special implementation of Algorithm 7.1, Cheon proves the following:

Corollary 7.4.4. Let P be an element of prime order p in an abelian group.

Suppose that p− 1 =
∏t

i=1 di, for di pairwise relatively prime. If P and Pi =

α(p−1)/diP for 1 ≤ i ≤ t are given, then α can be computed in O
(
log p

(∑t
i=1

√
di
))

group operations using max{
√
di}1≤i≤t memory.

Finally, Cheon represents elements of Fp2 as pairs of elements of Z/pZ, and

uses a clever representation of elements in the subgroup µp+1 of F∗p2 to prove:

Theorem 7.4.5 (Theorem 2 in [15]). Let P be an element of prime order p in

an abelian group. Suppose that d is a positive divisor of p+1 and Pi = αiP for

i = 1, 2, . . . 2d are given. Then α can be computed in O(log p(
√

(p+ 1)/d+d))

group operations using O(max{
√

(p+ 1)/d,
√
d}) memory.
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7.4.3 Cheon’s algorithm and FAPI

Algorithm 7.1 was presented in the context of problems similar to the l-SDH

problem as discussed above. However, there is another area where they can

potentially be used to attack a cryptosystem.

Proposition 7.4.6. Given P1 ∈ G1, P2, αP2 ∈ G2, and access to a FAPI2

oracle, then it is possible to compute αiP1 for every i using O(i) calls to the

FAPI2 oracle.

Proof. The proof follows from a simple induction argument. Having found

αnP1, we can compute

αn+1P1 = FAPI2(P2, e(α
nP1, P2).

An analogous computation recovers αn−1P1.

Using Cheon’s algorithm and the previous Proposition, we get the follow-

ing:

Theorem 7.4.7. Consider e : G1 × G2 −→ GT a non-degenerate bilinear

pairing between groups of prime order p. Given P2, αP2 ∈ G2, access to a

FAPI2 oracle and a positive integer d dividing p − 1 or p + 1, there exists an

algorithm that computes α in time O(
√
p/d+ d).

Proof. Use d calls to the FAPI2 oracle to compute αdP2 as described in Propo-

sition 7.4.6. Given P2, αP2 and αdP2 we can use the algorithm in [62] to recover

α running in time O(
√
p/d+

√
d). The result follows.

Using heuristic results describing the divisors of p+1 and p−1, we can give

an effective version of Theorem 7.4.7. If we assume that for a prime number
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p, the prime decomposition of p+ 1 and p− 1 is the same as that of a random

integer, we get the following.

Conjecture 7.4.8 (Section 3 of [11]). The largest prime factor of p−1 and p+1

is typically of size O(p2/3).

Combining Theorem 7.4.7 with Conjecture 7.4.8, we can prove:

Corollary 7.4.9. Under the hypotheses of Theorem 7.4.7, if p is a random

prime, with high probability there exists an algorithm to find α in time O(p1/3).

Proof. If either of p+ 1 or p− 1 has a prime factor of size O(p2/3), then it also

has a divisor of size O(p1/3). Using this divisor as d in Theorem 7.4.7 gives a

running time of O(p1/3).

Note that Pollard’s rho method [82] has a running time of O(n1/2) to

compute discrete logarithms. If we are in a situation where Pollard’s rho in

G1 is balanced with the cost of the Number Field Sieve in GT , Theorem 7.4.7

and Corollary 7.4.9 provide an actual speed-up in the computation of discrete

logarithms.

7.5 Conclusions

The relation between pairing inversion algorithms and other well-studied com-

putational problems has only recently received widespread attention [37, 84].

In many pairing-based cryptosystems, the groups G1 and G2 are the same,

or there is an efficiently computable morphism between them. In these cases,

Theorem 7.3.8 proves that if the DLP is hard, no efficient pairing inversion

algorithm exists. The same can be argued from Theorem 7.4.7, although in

this case the reduction is much looser. As mentioned, if the embedding degree
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is fixed, the MOV attack [70] already provides a faster sub-exponential reduc-

tion. For some values of k, the MOV attack becomes exponentially slow while

pairings can still be computed in polynomial time.

The families of pairing friendly elliptic curves for which the authors of [37]

prove that the Miller inversion problem can be solved in polynomial time have

embedding degree

k ≈ α

(
log r

log log r

)
,

so if one could invert pairings for these families, the reduction given by The-

orem 7.3.7 would be asymptotically faster than that provided by the MOV

attack. Note that the curves in this family are ordinary elliptic curves, so

there is no obvious non-trivial morphism between G1 and G2.

From a practical point of view, if a sub-exponential but expensive pairing

inversion algorithm existed, Theorem 7.4.7 might provide a faster tool to com-

pute discrete logarithms even in cases where an efficiently computable map

Ψ : G1 −→ G2 exists. This is because the algorithms described in Section 7.3

use significantly more calls to a DH oracle in order to compute discrete loga-

rithms than those based in Cheon’s algorithm.

If an efficiently computable isomorphism between G1 and G2 is known, it

is possible to find αdP using only O(log d) applications of the FAPI2 algorithm

combining Proposition 7.4.6 and a square-and-multiply algorithm; this would

allow us to compute discrete logarithms in O(
√
p/d+

√
d+C log p) operations,

where C is the cost of a run of the FAPI2 algorithm. For example, if either of

p+ 1 or p− 1 has a divisor of size O(p1/2), discrete logarithms can be found in

O(p1/4 +C log p) operations. Depending on the value of C, this could speed-up

the computation of discrete logarithms.

Our results show that the existence of efficient algorithms to solve the
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FAPI problems would accelerate the computation of discrete logarithms on

some elliptic curves. Depending on the parameters being used, our reduction

from the FAPI problems to the DLP might be faster than the reduction given

by the MOV attack on pairing friendly elliptic curves.
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