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Executive Summary

These cryptosystems are not broken.

They might be post-quantum secure.

Lots of research still to be done.
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Diffie-Hellman Key Exchange

Fix an element g in a group G .

g

ga

gb

gab

φA

φB

The maps φA(x) = xa and φB(x) = xb are group homomorphisms.
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Elgamal encryption (Static Diffie-Hellman)

Static Diffie-Hellman key exchange is where Alice uses a fixed key
h = ga.

Bob sends gb and the shared key is gab.

This gives Elgamal encryption:
I Alice has public key h = g a.
I Bob sends (c1, c2) = (gb,mg ab).
I Alice decrypts as m = c2c

−a
1 .
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Small subgroup/invalid group attack

First analysed by Lim and Lee.

Suppose malicious Bob wants to learn Alice’s long-lived secret key a.

Bob chooses ḡ with small order ` and sends (c1, c2) = (ḡ , ḡ r ) for
some random r .

Alice computes c2c
−a
1 = ḡ r−a.

Bob hopes that his future interactions with Alice allow him to learn
r − a (mod `) and hence a (mod `).

Repeating the attack for different ` and using Chinese remainder
theorem allows Bob to learn a.
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Validation

Alice can prevent the attack by checking that Bob’s values (c1, c2) lie
in the correct group and have the correct order.

This process is sometimes called “validation”.

The cost of validation depends on the groups being used.

For small subgroups of F∗p validation can be quite expensive.

For prime order elliptic curves validation can be quite cheap.
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Generalisations of Diffie-Hellman

Consider a group homorphism φA : G → GA where GA
∼= G/ ker(φA).

Similarly, φB : G → GB .

G

GA

GB

GAB

φA

φB

Two difficult problems to solve:

Need to be able to “complete the square” and compute a well-defined
shared secret.

Need to represent GA = G/ ker(φA) in a way that does not leak φA.
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Isogenies

Let E : y2 = x3 + Ax + B be an elliptic curve over a field Fq.

If H is a finite subgroup of E then there is an elliptic curve E ′ and a
morphism

φ : E → E ′

such that φ is a group homomorphism and ker(φ) = H.

This is called an isogeny and we may denote E ′ as E/H.

The isogeny can be computed in time O(|H|) field operations.
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Example of an isogeny

Let A,B ∈ Fq be such that B 6= 0 and D = A2 − 4B 6= 0.

Define E : y2 = x(x2 + Ax + B).

The point (0, 0) has order 2.

Let E ′ : Y 2 = X (X 2 − 2AX + D).

The map

φ(x , y) =

(
y2

x2
,
y(B − x2)

x2

)
=

(
x2 + Ax + B

x
, y

B − x2

x2

)
maps E to E ′ and has kernel 〈(0, 0)〉 = {(0, 0), 0}.

Steven Galbraith Security of Supersingular Isogeny Cryptosystems September 9, 2016 10 / 34



Isogeny version of Diffie-Hellman

Alexander Rostovtsev and Anton Stolbunov, ePrint 2006/145.

Anton Stolbunov, Advances in Mathematics of Communications,
2010.

Fix a curve E over Fq.

Alice and Bob choose subgroups GA,GB ⊆ E (Fq).

Alice publishes the image curve EA
∼= E/GA.

Bob publishes EB
∼= E/GB .

If there is a way for Alice to compute φB(GA) ⊆ EB(Fq) then Alice
computes

EB/φB(GA) ∼= E/〈GA,GB〉.

Similarly, if Bob can compute φA(GB) then he computes

EA/φA(GB) ∼= E/〈GA,GB〉.
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Security

Public: E , EA.
Private: φA,GA such that φA : E → EA = E/GA.

This assumption also used by Charles, Lauter and Goren
“Cryptographic hash functions from expander graphs”, Jornal of
Cryptology, 2009.

Classical security: Find path in isogeny graph.
The best general algorithm runs in time approx square-root of the size
of the isogeny graph.

Quantum algorithms:
I Ordinary case: Sub-exponential complexity.

Andrew M. Childs, David Jao, and Vladimir Soukharev, J.
Mathematical Cryptology, 2014.

I Supersingular case: Exponential complexity.
De-Feo, Jao, Plût, J.Math.Crypt. 2014.
Jean-Francois Biasse, David Jao, Anirudh Sankar, INDOCRYPT 2014.
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Supersingular Elliptic Curves

An elliptic curve E over Fpn is supersingular if #E (Fpn) ≡ 1 (mod p).

The endomorphism ring is non-commutative.

All supersingular elliptic curves mod p can be defined over Fp2 .

There are approximately p/12 supersingular curves.
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De Feo and Jao Key Exchange Scheme

Choose prime p = 2n3mf ± 1, where f is small and 2n ≈ 3m.

Choose a supersingular curve E/Fp2 .

Then #E (Fp2) = (2n3mf )2 and E [2n],E [3m] ⊆ E (Fp2).

Fix linearly independent points PA,QA ∈ E [2n] and PB ,QB ∈ E [3m].
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De Feo and Jao Key Exchange Scheme

Alice picks random integers 0 ≤ a1, a2 < 2n (not both divisible by 2)
and computes

GA = 〈[a1]PA + [a2]QA〉.

Alice now has an isogeny φA : E → EA.

Bob picks random integers 0 ≤ b1, b2 < 3m (not both divisible by 3)
and computes

GB = 〈[b1]PB + [b2]QB〉.

Bob now has an isogeny φB : E → EB .
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De Feo and Jao Key Exchange Scheme

Let EA = φA(E ) = E/GA, and EB = φB(E ) = E/GB .

Alice sends message EA, φA(PB), φA(QB) to Bob.

Bob sends EB , φB(PA), φB(QA) to Alice.

Alice can then compute φB(GA), while Bob can compute φA(GB).

The shared key is EAB = EA/φA(GB) = EB/φB(GA) (up to
isomorphism).

Actually, shared key is the j-invariant j(EAB).
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De Feo and Jao Key Exchange Scheme

This can be summarised in the following diagram, where we use the
notation from above.

E

E/GA

E/GB

E/〈GA,GB〉

φA

φB
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Parameter sizes

Recall p = 2n3mf ± 1.

There is a classical attack on Alice’s key that takes about 2n/2

operations.

Similarly, there is an attack on Bob using about 3m/2 operations.

To balance cost we take 2n ≈ 3m.

For 128-bit security take n = 256, m = 161 giving p ≈ 2512.

The classical attack therefore has complexity O(p1/4).

The fastest quantum attack in this specific case (De-Feo, Jao, Plût)
has complexity O(p1/6).
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Implementation Details

De Feo, Jao and Plût, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”, J. Mathematical
Cryptology, 2014.

Yoshida and Takashima, “Computing a Sequence of 2-Isogenies on
Supersingular Elliptic Curves” IEICE 2013.

Azarderakhsh, Fishbein and Jao, “Efficient implementations of a
quantum- resistant key-exchange protocol on embedded systems”,
Technical report 2014.

Azarderakhsh, Jao, Kalach, Koziel and Leonardi, “Key Compression
for Isogeny-Based Cryptosystems”, AsiaPKC ’16.

Costello, Longa and Naehrig, “Efficient algorithms for supersingular
isogeny Diffie–Hellman”, CRYPTO 2016.
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Costello-Longa-Naehrig Validation

We now focus on attacking Alice with a static key EA. We want to
compute Alice’s subgroup GA = 〈[a1]PA + [a2]QA〉.
Active attacks have been expected.

Two requirements are: that the points P,Q in the public key have
full order and that they are independent.

CLN use the Weil pairing of the two points to check independence.

Not necessary to use the Weil pairing.
Suffices to check [2n−1]P 6= [2n−1]Q and neither 0.

Weil pairing can be used to check a lot more than just independence.
A natural validation step for Alice is

e2n(φB(PA), φB(QA)) = e2n(PA,QA)3
m
.
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Security: Importance of correct isog

This problem is different to general isogeny problem: special primes;
auxiliary points; very strong constraint on the isogeny degree.

Suppose an attacker given E ,EA,EB can compute an isogeny
φ′ : E → EA.

A natural approach is to compute φB(ker(φ′)), and then compute an
isogeny from EB with this kernel.

However, the attacker only has the points φB(PA), φB(QA), so can
only compute φB(ker(φ′)) if ker(φ′) ⊆ 〈PA,QA〉.
A random isogeny φ′ is unlikely to have this property.
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Lemma

Assuming that Alice has chosen (a1, a2) as her private key such that both
are not simultaneously even, an attacker may assume that the private key
is of the form (1, α) or (α, 1).
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Adaptive attack models

We assume that Alice is using a static key (1, α).

Dishonest user is playing the role of Bob.

Model 1: O(E ,R,S) = E/〈R + [α]S〉.
This corresponds to Alice taking Bob’s protocol message, completing
her side of the protocol, and outputting the shared key.

Model 2: O(E ,R,S ,E ′) returns 1 if j(E ′) = j(E/〈R + [α]S〉) and 0
otherwise.
This corresponds to Alice taking Bob’s protocol message, completing
her side of the protocol, and then performing some operations using
the shared key that return an error message if shared key is not j(E ′).

Our main attack works with both models, so we assume the weaker
Model 2.
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First Step of the Attack

To differentiate between (1, α) and (α′, 1):

Attacker honestly generates ephemeral values
(EB ,R = φB(PA),S = φB(QA)) and computes EAB .

Attacker sends (EB ,R, S + [2n−1]R) to Alice and tests the resulting
j-invariant.

Note that if (1, α) with α even then

R + [α](S + [2n−1]R) = R + [α]S .

This means that EB/〈R + [α]S〉 = EB/〈R + [α](S + [2n−1]R)〉.
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Continuing the Attack

Wolog assume (a1, a2) = (1, α)

Write α = Ki + 2iαi + 2i+1α′ where Ki is known but αi ∈ {0, 1} and
α′ ∈ Z are not known.

Attacker honestly generates random EB ,R = φB(PA),S = φB(QA)
and EAB .

Instead of sending (EB ,R,S) to Alice, choose suitable integers
a, b, c, d and send ([a]R + [b]S , [c]R + [d ]S) to Alice.
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Required Conditions for Attack

If αi = 0, then 〈[a + αc]R + [b + αd ]S〉 = 〈R + [α]S〉,
If αi = 1, then 〈[a + αc]R + [b + αd ]S〉 6= 〈R + [α]S〉,
[a]R + [b]S and [c]R + [d ]S both have order 2n,

The Weil pairing e2n([a]R + [b]S , [c]R + [d ]S) is equal to

e2n(φB(PA), φB(QA)) = e2n(PA,QA)deg φB = e2n(PA,QA)3
`
.
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Solution

The following integers satisfy the first three conditions:

ai = 1, bi = −2n−i−1Ki ,

ci = 0, di = 1 + 2n−i−1.

To satisfy the fourth condition we need to use a scaling by θ, which is a
square root of 1 + 2n−i−1 modulo 2n.
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Analysis and Complexity of the Attack

The attack requires fewer than n ≈ 1
2 log2(p) interactions with Alice.

This seems close to optimal for the weak attack model.

We can reduce the number of queries by doing more computation
(increasing the range of the brute-force search).

The attack is not detected by the validation steps of Costello et al.
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Kirkwood, Lackey, McVey, Motley, Solinas and Tuller
validation

General method to secure any key exchange protocol of a certain type.

Bob chooses a random seed rB to derive his ephemeral values in the
key exchange protocol.

Alice and Bob engage with the protocol as usual.

On completion, they derive an additional verification key VK .

Bob encrypts his seed using VK and sends to Alice.

Alice decrypts to get the seed, then re-computes all Bob’s ephemeral
values and terminates if they do not agree.
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Further results in our paper

We show that if one can compute End(E ) and End(EA) then one can
break the scheme.

We give a method to determine the secret key from partial knowledge
of the secret key.

We formalise this problem as a variant of the “hidden number
problem”.

This results can be viewed as a bit security result, or as a tool for a
side channel attack.
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Isogeny hidden number problem

Let Es be an unknown supersingular elliptic curve over Fp2 .

The isogeny hidden number problem is to compute the j-invariant
j(Es) given an oracle O such that O(r) outputs partial information on
j(E ′) for some curve E ′ which is r -isogenous to Es .
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Algorithm for the Isogeny Hidden Number Problem

Let Fp2 = Fp(θ), where θ2 + Aθ + B = 0, with A,B ∈ Fp.

We write supersingular j-invariants as j = j1 + j2θ.

we consider two leakage models:
1 Oracle returns an entire component ji of the j-invariant.
2 Oracle returns the most significant bits of both components.

Algorithm is based on modular polynomials Φr (x , y).
There is an isogeny φ : E → E ′ of degree r with cyclic kernel if and
only if Φr (j(E ), j(E ′)) = 0.
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Theorem

Let oracle O in the isogeny hidden number problem output one
component of the finite field representation of j(E ′) ∈ Fp2 .

Then there is an algorithm to solve the isogeny hidden number
problem that makes two queries to O and succeeds with probability at
least 1/18.

Proof: Call oracle O(1) and O(2), do Weil descent, get two
polynomial equations in 2 variables, take resultants, compute roots.
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Open Questions

Classically secure?

Quantumly secure?

Side-channel attacks?

Fault attacks?

Security analysis of the Kirkwood et al validation.

Thank you for your attention.
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