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Alexander Aitken

Born in Dunedin, NZ.

Studied Otago Boys’ High
School and Otago University.

Served in WWI at Gallipoli
and the Somme.

PhD Edinburgh 1926.
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Alexander Aitken

“Professor Aitken’s first year mathematics lectures were rather
unusual. The fifty minutes were composed of forty minutes of clear
mathematics, five minutes of jokes and stories and five minutes of
tricks.”
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Aitken’s mathematics

Aitken’s mathematical work was in statistics, numerical analysis,
and algebra.

He wrote books about matrices and determinants, and wrote
important papers about generalised least squares.
He was also very interested in group theory.

My research is in computational number theory and applications
in cryptography.

This talk is designed to connect Aitken’s work with current hot
topics in cryptography.
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A game: Learning my secret vector

Your goal is to compute my secret s ∈ Z3.

Chosen queries:

You give me a ∈ Z3.

I return a · s.

Random queries:

You ask me for a clue.

I choose a “random” a ∈ Z3.

I return (a, a · s).
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The power of linear algebra

Let s ∈ Rn (column vector).

It doesn’t matter if you choose A and I give you As, or I choose
random A and give you (A,As).

Once A has rank n, you can compute s.

This works over any field, and is efficient.
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Linear algebra with errors

Suppose I introduce “errors” into my computation, so you receive
a · s + e for some “small” e that is more likely to be zero than
any other value.
(I will be more precise later.)

Suppose the “errors” are deterministic, so if you ask me a again I
return the same value a · s + e.
Hence, you can’t “average away” the errors by repeated queries.

How can you compute my secret s? Does the query model
matter?
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Classical least squares

Given m × n matrix A (with
m > n) and y = As + e, the
problem is to compute s.

y lies in a high dimensional
space Rm.
We want to find point in the
n-dimensional subspace
(column span of A) that is
close to y .

Orthogonal projection
minimises the error.
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Classical least squares

Let s ∈ Rn, A be an m × n matrix (with m > n) and e a “short”
error vector in Rm.

Given A and y = As + e the problem is to compute s.

If ATA has rank n then the orthogonal projection is

ŝ = (ATA)−1ATy .

So y − Aŝ is a “short” error vector.

In other words, solving linear regression is “easy”.
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Error distributions modulo p

Let p be a prime (mostly p = 2 in this talk).

We consider error distributions on Zp = Z/pZ such that 0 is the
most likely value.

In the case p = 2, we have Pr(e = 0) = p > 1
2

and
Pr(e = 1) = 1− p.

In the case p > 2 we take a discrete normal distribution on Z
with standard deviation much less than p (see later for details).

Problem: Given m × n matrix A (with m > n) and y = As + e

(mod p), where e = (e1, . . . , em)T for ei chosen with this
distribution, to compute s ∈ Zn

p.
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Error correcting codes

An (m, n) linear code (binary) is a vector subspace of Zm
2 of

dimension n.

The Hamming weight of a vector e ∈ Zm
2 is the number of

ones in the vector.

A code word is an element c = As, where the columns of A are
a basis for the subspace.

One transmits the code word c along a noisy channel and hopes
that only a few bits get corrupted.

The received word y ∈ Zm
2 is therefore of the form y = As + e

where e has low Hamming weight.

For certain special matrices A, and low enough error-rates, there
are efficient decoding algorithms (more details given later).
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Error correcting codes

Let m = 7, n = 4 and

A =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 1


.

s = (1, 0, 1, 0)T is encoded as (1, 0, 1, 0, 1, 0, 1)T .

y = (1, 1, 1, 0, 1, 0, 1)T and (1, 0, 1, 0, 1, 0, 0)T are both decoded as

(1, 0, 1, 0)T .
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Decoding linear codes

Let A be an arbitrary m × n binary matrix.

Then A defines a linear code.
Given y ∈ Zm

2 one can ask:
I Is there a vector e of weight less than some given bound w such that

y − e is in the column span of A?
I Find a vector s ∈ Zn

2 such that y − As has minimal weight.

Both these computational problems are NP-hard.
(Berlekamp, McEliece, van Tilborg, 1978)

This suggests that linear algebra modulo 2 with errors is hard: we
do not expect there to exist an algorithm to solve it with
polynomial-time worst-case complexity.
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Summary

Chosen queries Random queries
Exact Easy Easy
Lin. Alg.
Lin. Alg. R Easy Easy
with errors
Lin. Alg. Z2 Easy? Hard
with errors
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Remark about “hard” and “easy”

Input is an m × n binary matrix A (with m > n) and y = As + e
(mod 2).

So input size is m(n + 1) bits.

An algorithm is efficient (and the problem is considered “easy”)
if the number of steps is polynomial in the input size.

A problem is “hard” if we do not know any efficient algorithm.

So an algorithm that needs n queries to compute s ∈ Zn
2 is

efficient.

Whereas an algorithm that needs to try all 2n choices for s ∈ Zn
2

is not efficient.
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Error distributions modulo p

In the case p > 2 we take a discrete normal distribution on Z with
standard deviation much less than p.

Precisely, Pr(e = x) is proportional to exp(−x2/(2σ2)) where σ � p.

We then reduce this to {−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2} by
summing over congruence classes modulo p.
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Linear algebra modulo p > 2 with errors

Let p be a prime.

Let s ∈ Zn
p, A be an m × n matrix with entries in Zp.

Let e be an error vector in Zm
p with entries chosen independently

from the error distribution.

Given A and y = As + e (mod p) the problem is to compute s.

Exercise: Explain why linear regression mod p doesn’t work. In
other words,

ŝ = (ATA)−1ATy (mod p)

is not usually a good estimator for s, since y − Aŝ is not usually
“small”.

Exercise: Explain why Gaussian elimination doesn’t work.
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Linear algebra modulo p with errors

As already mentioned, the case p = 2 is the problem of decoding
a random linear code.

This is also often called learning parity with noise.

When p is large and the errors are chosen from a discrete normal
distribution with parameter σ � p the problem is called the
learning with errors problem (LWE).

This was studied by Oded Regev in 2005.

Regev proved some strong hardness results.
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Summary

Chosen queries Random queries
Exact Easy Easy
Lin. Alg.
Lin. Alg. R Easy Easy
with errors
Lin. Alg. Zp ? Hard
with errors

Can we use these hard problems for something?
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Public key cryptography

Cryptosystems provide privacy for communication over an
insecure channel.

Traditional cryptography is symmetric: both sender and receiver
have the same “key”.

Public key cryptography is asymmetric: the sender requires no
secret information to send a private message to the receiver.
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Public key cryptography

Concept was first proposed by James Ellis at GCHQ in 1970.

First cryptosystems by Clifford Cocks (1973) and Malcolm
Williamson (1974).

In the non-classified community, the first public key
cryptosystems were due to Whit Diffie, Martin Hellman, Ralph
Merkle, Ron Rivest, Adi Shamir and Len Adleman.

Public key cryptography is based on hard computational
problems.
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McEliece public key cryptosystem

Public key: Generator matrix A for an m × n linear binary code.

Private key: A decoding algorithm for the code.
To encrypt s ∈ Zn

2:
I Choose e ∈ Zm

2 of low Hamming weight
I Set c = As + e.

To decrypt: Run the secret decoding algorithm to get s.
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Public key cryptography from LWE (Regev)

Private key: s

Public key: A (m × n), y = As + e (mod p)

To encrypt M ∈ {0, 1}:
I Choose u ∈ {0, 1}m
I Set c1 = uA (mod p), c2 = u · y +M(p − 1)/2 (mod p)

To decrypt: Compute v = c2 − c1 · s (mod p) reduced to the
interval {−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2}.
If |v | < p/4 then output 0, else output 1.

Features: Post-quantum and homomorphic.
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Summary

Chosen queries Random queries
Exact Easy Easy
Lin. Alg.
Lin. Alg. R Easy Easy
with errors
Lin. Alg. Zp ? Hard
with errors
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Chosen query model

I have secret s ∈ Zn
2.

You give me a ∈ Zn
2.

I return a · s + e where e ∈ Z2 satisfies Pr(e = 0) = p > 1
2
.

Note: e is a deterministic function of a.

Basic trick: Choose unit vector ui = (0, . . . , 0, 1, 0, . . . , 0) and
random s and query on a + ui and a.

Get y1 = (a + ui) · s + e1 and y2 = a · s + e2.

With probability p2 + (1− p)2 > 1
2

we have y1 − y2 = si .
(This analysis assumes independent errors; worst case needs
p > 3

4
.)
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Summary

Chosen queries Random queries
Exact Easy Easy
Lin. Alg.
Lin. Alg. R Easy Easy
with errors
Lin. Alg. Zp Easy Hard
with errors
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Extensions of the problem

Given A and y find all pairs (s, e) such that y = As + e and e is
“small”.

In coding theory this is called list decoding.

Fourier analysis turns out to be a helpful way to think about this
problem in the “chosen-query model”.
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Fourier Analysis on Finite Groups

Consider G = Zn
2, a finite additive group of order 2n.

The set of functions f : G → C is a C-vector space of dimension
2n.

There is an inner product

〈f , g〉 = 1
2n

∑
x∈G

f (x)g(x)

An orthonormal basis for this set of functions is

χa(x) = (−1)a·x

where a runs over all elements of Zn
2.
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Fourier analysis on finite groups

Let f : G → C be given, G = Zn
2.

Then f has a Fourier expansion

f (x) =
∑
a∈Zn

2

f̂ (a)χa(x)

where the Fourier coefficients are f̂ (a) = 〈f , χa〉.
Parseval’s identity: 〈f , f 〉 =

∑
a∈G |f̂ (a)|2.

We call a character χa heavy if |f̂ (a)| is “relatively large”.

Parseval implies there cannot be many heavy Fourier coefficients.
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Lemma

Let X ⊆ Zn
2 such that |X | = δ2n.

Let f : Zn
2 → {1,−1} be such that

f (x) = (−1)x ·s = χs(x)

for all x ∈ X , and

f (x) = (−1)x ·s+1 = −χs(x)

for all x ∈ X = Zn
2 \ X .

Then 〈f , f 〉 = 1 and f̂ (s) = 2δ − 1.
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Linear algebra with errors

Consider y = As + e ∈ Zm
2 .

Think of this as m pairs (ai , yi = ai · s + ei).

Then (−1)yi is the value f (ai) of a function f like the one on the
previous slide.

Since ei is usually 0 then δ � 1
2

and so f̂ (s) is heavy.

Hence, the problem of computing s is re-phrased as computing a
heavy Fourier coefficient.

It is not efficient to compute all the Fourier coefficients f̂ (x), as
there are 2n characters χx .
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Goldreich-Levin/Kushilevitz-Mansour

In 1989 Goldreich and Levin published a landmark paper in
cryptography and learning theory.
They sketched a learning algorithm for heavy Fourier coefficients.

In 1993 Kushilevitz and Mansour presented a more general
algorithm.

There is a community in Engineering that studies related
algorithms under the name “sparse Fourier transform” (see
recent survey paper by Gilbert, Indyk, Iwen and Schmidt).

Hence, we know an efficient algorithm to compute a list of heavy
Fourier coefficients of a function f , by querying the function at
certain points.
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Prefix/Filter function

Fix f : Zn
2 → C.

Let 1 ≤ k ≤ n.

For a ∈ Zn
2 write a = αβ where α ∈ Zk

2 and β ∈ Zn−k
2 .

For fixed α ∈ Zk
2 define fα : Zn−k

2 → C by

fα(x) = 1
2n−k

∑
β∈Zn−k

2

f̂ (αβ)χβ(x).

Parseval states

〈fα, fα〉 =
∑

β∈Zn−k
2

|f̂ (αβ)|2.
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Estimating a prefix function

Recall the definition: Given α ∈ Zk
2 we set

fα(x) = 1
2n−k

∑
β∈Zn−k

2

f̂ (αβ)χβ(x).

Lemma:
fα(x) = 1

2k

∑
y∈Zk

2

f (yx)χα(y).

Given x one can estimate fα(x) by choosing some y ∈ Zk
2 and

sampling the function on yx .
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The Kushilevitz-Mansour algorithm

We want to find heavy Fourier coefficients of f : Zn
2 → C.

The algorithm computes a list L of “candidate prefixes” α ∈ Zk
2 .

Suppose s = (s1, . . . , sn) is a heavy fourier coefficient for f and
that α = (s1, . . . , sk).

Then 〈fα, fα〉 ≥ |f̂ (s)|2.

Similarly, for b = sk+1,

|〈fαb, fαb〉| ≥ |f̂ (s)|2.

Write b = 1− b. Parseval implies

〈fα, fα〉 = 〈fαb, fαb〉+ 〈fαb, fαb〉.

Hence, if 〈fαb, fαb〉 is small, and we can estimate its value
accurately, then we can eliminate αb.
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The Kushilevitz-Mansour algorithm

At each step the algorithm takes α ∈ L and computes
approximations to 〈fαb, fαb〉 for b ∈ {0, 1}.
The algorithm then extends the list L of “candidate prefixes”
from Zk

2 to Zk+1
2 .

Parseval implies the list does not become too large.

The algorithm runs in polynomial-time and requires
polynomially-many chosen samples of the function f .

Mansour has developed this algorithm for functions on Z2n and
Akavia to Zp and more general Abelian groups.
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Connections with my work

In collaboration with my former post-doc Shi Bai I have worked
on algorithms using lattices to solve LWE in special cases.

S. Bai and S. D. Galbraith, “Lattice Decoding Attacks on Binary LWE”, in W. Susilo and Y. Mu (eds.), ACISP 2014,

Springer LNCS 8544 (2014) 322–337.

S. Bai, S. D. Galbraith, L. Li and D. Sheffield, “Improved Combinatorial Algorithms for the Inhomogeneous Short

Integer Solution Problem”. Submitted.

In collaboration with my PhD student Barak Shani I have used
the Goldreich-Levin/Kushilevitz-Mansour algorithm in the case of
G = Zp to prove some “hardness” results relevant for
cryptography.

S. D. Galbraith and B. Shani, “The Multivariate Hidden Number Problem”, in A. Lehmann and S. Wolf (eds), 8th

International Conference on Information-Theoretic Security (ICITS), Springer LNCS 9063 (2015) 250-268.
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Open Questions

What are the best algorithms for solving linear algebra with errors
for various parameter ranges?

Improve the analysis of these algorithms and get better tools for
determining parameters for high-security cryptography.

Ditto for the Ring-LWE problem, which is where a · s is replaced
by multiplication in the cyclotomic ring Zp[x ]/(xn + 1).

Are Fourier learning algorithms optimal from a concrete point of
view?
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Thank you for your attention
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Solution to the question about least squares

Least squares computes an orthogonal projection of y = As + e
onto the space spanned by A.

Over R, orthogonal projection minimises the error.

A first problem is that Zm
p is not a metric space.

Over Zp, orthogonal projection still makes sense, but it does not
behave well with respect to the intuitive sense of “distance”.
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Example

s =

(
5

76

)
, A =

 22 102
191 176
−26 104

 , e =

 1
−1
0

 .

Least squares on b = As + e computes

ŝ ≈
(

4.993
76.003

)
.

Now work over Z311. The formula gives

ŝ =

(
274
223

)
.
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Why can’t we use Gaussian elimination?

Given m× n matrix A and y = As + e (mod p) the problem is to
compute s.

Perform row operations on A to construct a matrix U such that
UA starts with identity matrix.

Then Uy = UAs + Ue.

The problem is that the entries of U behave like random
elements of Zp and so Ue looks like a uniform vector.

The discrete nature of arithmetic in Zp is relevant here. In
traditional numerical analysis we think of Gaussian elimination
being relatively stable with respect to errors.
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