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Plan

I Background and some of my favourite questions
I Why is this talk in a session on lattices?
I Sketch of results and algorithm
I Shall we talk about something else?

Thanks: David Kohel, Drew Sutherland.

Please ask questions at any time.
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Elliptic Curves and Isogenies

I An elliptic curve over a field k is a non-singular projective
cubic curve. The set of k-rational points is a group.

I An isogeny φ : E1 → E2 of elliptic curves is a morphism that
is a group homomorphism.

I Isogenies satisfy a degree 2 characteristic polynomial
T 2 − Tr(φ)T + deg(φ) = 0, having discriminant
D = Tr(φ)2 − 4 deg(φ) ≤ 0.

I Tate’s isogeny theorem: Let E1,E2 be elliptic curves over a
finite field Fq. Then #E1(Fq) = #E2(Fq) iff there is an
isogeny φ : E1 → E2 over Fq.

I End(E ) = {isogenies φ : E → E over Fq}.
I End(E ) is either an order in an imaginary quadratic field

(ordinary) or a maximal order in a definite quaternion algebra
Bp ramified at {p,∞} (supersingular).
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Some Computational Questions

I Given E over Fq to compute End(E ).
Two cases: ordinary and supersingular.

I Given E ,E ′ over Fq with #E (Fq) = #E ′(Fq) to compute an
isogeny from E ′ to E .
Two cases: ordinary and supersingular.

I Given q,N construct an elliptic curve E/Fq with #E (Fq) = N.
I Construct an elliptic curve E/Fq with #E (Fq) = N for pairs

(q,N) with certain “desired properties”.
I Given a maximal order O in the quaternion algebra Bp to

construct an elliptic curve E over Fp or Fp2 with End(E ) ∼= O.
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Hilbert Class Polynomial

I Consider fundamental discriminant D < 0. The Hilbert class
polynomial HD(X ) ∈ Z[X ] has property:
Given E/k, if HD(j(E )) = 0 then End(E ) contains an isogeny
of discriminant D.

I Specifically, the roots in C of HD(X ) are the j-invariants of
the elliptic curves over C possessing the quadratic order
OD = Z[1

2(D +
√
D)] as their endomorphism ring.

I Class polynomials are used in the CM method for constructing
curves with a given group order/endomorphism structure.

I What other applications might there be?
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Bröker’s Algorithm

I Goal: Given q = pa to construct a supersingular curve over Fq
with specified trace of Frobenius.

I Main idea: Choose small prime ` such that (−`p ) = −1 then
find root of H−`(X ) or H−4`(X ) in Fq.

I Construct corresponding E and twist if necessary.
I CM theory tells that E is supersingular, as p is inert in

Q(
√
−`).
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Idea

I Problem: Given a maximal order O construct E such that
End(E ) ∼= O.

I A simple idea is to find some elements in O of small
discriminant D1,D2, · · · and take

G (X ) = gcd(HD1(X ),HD2(X ), · · · ).

I Then hope that deg(G ) ≤ 2 and that taking roots gives j(E )
and hence E .

I Related application: Can we determine End(E ) by testing if
HD(j(E )) = 0 for various discriminants D?

I Question: Is a maximal order O in quaternion algebra Bp
determined by a small number of discriminants.
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Lattices and Ternary Forms

I Consider the Z-module OT = {2x − Tr(x) : x ∈ O} of rank 3.
I Note that y ∈ OT implies Tr(y) = 0 (pure quaternion).
I The reduced norm on O is a ternary quadratic form Q, making
OT a lattice.

I The volume of the lattice is 4p2.
I Let O′ be another maximal order in the same quaternion

algebra Bp and let Q ′ be the ternary form of O′T .
If Q ′ is equivalent to Q, in the sense of quadratic forms, then
is O′ isomorphic to O (O′ = cOc−1 for some c ∈ Bp)?

I Theorem: (Schiemann) Ternary quadratic forms are
determined up to equivalence by their theta series.

I We will show that one can check equivalence by only checking
a very small number of coefficients of the theta series.
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Bulguksa Lattices
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Main Theorems

Theorem
Let O and O′ be two maximal orders of Bp. Let OT and O′T have
the same successive minima D1 ≤ D2 ≤ D3. Assume moreover that
D1D2 < 16p/3 and that p is sufficiently large. Then O and O′ are
of the same type (= isomorphic).

Theorem
Let p > 286 and O, O′ be two maximal orders of Bp. Let D1, D2
and D3 be the successive minima of OT and let x , y ∈ OT be such
that Nr(x) = D1 and Nr(y) = D2. Suppose that D1D2 <

16
3 p and

that D1, D2, Nr(x + y), Nr(x − y) and D3 are all “represented
optimally” in O′T and that θ′OT (D3) ≤ θ′O′T (D3). Then O and O′
are of the same type.
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The condition D1D2 < 16p/3

Lemma
Let O be a maximal order in Bp that contains an element π such
that π2 = −p (and hence j(O) ∈ Fp). Then D1D2 < 16p/3.

Proof based on a paper of Kaneko.

Elkies showed D1 ≤ 2p2/3 for any maximal order in Bp and Yang
has shown that this is best possible.
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Method of Proof

I Let x , y ∈ OT have norms D1 and D2 respectively. Similarly
x ′, y ′ ∈ O′T .

I Prove that 〈x , y〉 and 〈x ′, y ′〉 isometric, using
4D1D2 − Tr(xy)2 ≡ 0 (mod p) and simple geometry of
numbers.

I Lemma: w = 2xy − Tr(xy) ∈ OT ∩ 〈x , y〉⊥.
I More geometry of numbers completes the result.
I Proof of Theorem 2 requires further arguments to reduce to

case of Theorem 1.
I Everyone agrees there should be a nicer proof.

Steven Galbraith Isogeny graphs of elliptic curves



Algorithm to Construct E

I Let O be a maximal order in Bp given as a Z-basis.
I Use lattice algorithms to find several small norms

d1, d2, . . . , dn of “primitive” elements in OT .
I Hence (X − j(E )) is a factor of

gcd(H−d1(X ),H−d2(X ), . . . ,H−dn(X )).
I Take multiple roots into account.
I When j(E ) ∈ Fp then our theorems imply the algorithm

terminates with a degree 1 polynomial.
I In this case, all di are such that |di | = O(p).
I Computing Hd (X ) can be done in time Õ(|d |) by

Belding-Bröker-Enge-Lauter or Sutherland.
This is the limiting step, as poly degree is O(|d |0.5+ε).

I So overall complexity Õ(p).
I Examples in paper.
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Algorithm when j(E ) 6∈ Fp

I Conjecture that the algorithm terminates with degree two
polynomial.

I Conjecture that running time is still Õ(p).
I Can consider an algorithm to match {O} with the set {j(E )}

over all supersingular curves.
I Cerviño proposed such an algorithm.

As far as we can tell, his algorithm requires O(p3+ε) field
operations.

I Our method has the improved complexity O(p2.5+ε) field
operations.

I Our algorithm is always guaranteed to halt!
I For subcase of j(E ) ∈ Fp, Cerviño needs O(p2.5+ε) and we

need O(p1.5+ε).
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Kohel-Lauter-Petit-Tignol

The last talk of the conference has tools that should lead to better
solutions to these problems.
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Computing Isogenies between Supersingular Elliptic Curves
over Fp

I Joint work with Christina Delfs.
I Problem is to find sequence of isogenies between two given

supersingular elliptic curves.
I The number of supersingular elliptic curves in Fp is

approximately p/12, but there are only p0.5+ε supersingular
elliptic curves over Fp.

I So finding a path between two supersingular elliptic curves
over Fp should be easier than the general problem.

I Can reduce general case to this case using random walks.
I We solve the sub-problem using CM theory and algorithm from

S. Galbraith, F. Hess, N. P. Smart, “Extending the GHS Weil
descent attack”, EUROCRYPT 2002.
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Full supersingular isogeny graph
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>>~~~~~~~~

``@@@@@@@@

OO

Supersingular Isogeny Graph X (F83, 2)
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Subgraph
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New graph
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Structure theorem (p > 3 prime)

1. p ≡ 1 (mod 4): There are h(−4p) Fp-isomorphism classes of
supersingular elliptic curves over Fp, all having the same
endomorphism ring Z[

√
−p]. From every one there is one

outgoing Fp-rational horizontal 2-isogeny as well as two
horizontal `-isogenies for every prime ` > 2 with

(−p
`

)
= 1.

2. p ≡ 3 (mod 4): There are two levels in the supersingular
isogeny graph. From each vertex there are two horizontal
`-isogenies for every prime ` > 2 with

(−p
`

)
= 1.

2.1 If p ≡ 7 (mod 8), on each level h(−p) vertices are situated.
Surface and floor are connected 1:1 with 2-isogenies and on
the surface we also have two horizontal 2-isogenies from each
vertex.

2.2 If p ≡ 3 (mod 8), we have h(−p) vertices on the surface and
3h(−p) on the floor. Surface and floor are connected 1:3 with
2-isogenies, and there are no horizontal 2-isogenies.
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Example 2: p = 103 ≡ 7 (mod 8)
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New
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Thank You
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