Distinguishing Maximal Orders of Quaternion Algebras by their Short Elements

Ilya Chevyrev and Steven Galbraith

University of Auckland, New Zealand

Summer School, Nelson, NZ, January 2015

11-16 January 2015 Nelson, South Island, NZ

Speakers: Pierre Deligne, Gus Lehrer, Cheryl Praeger, René Schoof, Richard Weiss.

Steven Galbraith Isogeny graphs of elliptic curves

Auckland, New Zealand, December 2015

Plan

- Background and some of my favourite questions
- Why is this talk in a session on lattices?
- Sketch of results and algorithm
- Shall we talk about something else?

Thanks: David Kohel, Drew Sutherland.

Please ask questions at any time.

Ilya Chevyrev

Elliptic Curves and Isogenies

- ► An elliptic curve over a field k is a non-singular projective cubic curve. The set of k-rational points is a group.
- ▶ An isogeny $\phi : E_1 \to E_2$ of elliptic curves is a morphism that is a group homomorphism.
- ► Isogenies satisfy a degree 2 characteristic polynomial $T^2 \text{Tr}(\phi)T + \text{deg}(\phi) = 0$, having discriminant $D = \text{Tr}(\phi)^2 4 \text{deg}(\phi) \le 0$.
- Tate's isogeny theorem: Let E₁, E₂ be elliptic curves over a finite field 𝔽_q. Then #E₁(𝔽_q) = #E₂(𝔽_q) iff there is an isogeny φ : E₁ → E₂ over 𝔽_q.
- End(E) = {isogenies $\phi : E \to E$ over $\overline{\mathbb{F}}_q$ }.
- ► End(E) is either an order in an imaginary quadratic field (ordinary) or a maximal order in a definite quaternion algebra B_p ramified at {p,∞} (supersingular).

Some Computational Questions

- ▶ Given E over F_q to compute End(E). Two cases: ordinary and supersingular.
- ▶ Given E, E' over F_q with #E(F_q) = #E'(F_q) to compute an isogeny from E' to E.
 Two cases: ordinary and supersingular.
- Given q, N construct an elliptic curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = N$.
- Construct an elliptic curve E/𝔽_q with #E(𝔽_q) = N for pairs (q, N) with certain "desired properties".
- ► Given a maximal order O in the quaternion algebra B_p to construct an elliptic curve E over F_p or F_{p²} with End(E) ≅ O.

Hilbert Class Polynomial

- Consider fundamental discriminant D < 0. The Hilbert class polynomial H_D(X) ∈ Z[X] has property:
 Given E/k, if H_D(j(E)) = 0 then End(E) contains an isogeny of discriminant D.
- Specifically, the roots in C of H_D(X) are the *j*-invariants of the elliptic curves over C possessing the quadratic order O_D = Z[¹/₂(D + √D)] as their endomorphism ring.
- Class polynomials are used in the CM method for constructing curves with a given group order/endomorphism structure.
- What other applications might there be?

Bröker's Algorithm

- Goal: Given q = p^a to construct a supersingular curve over 𝔽_q with specified trace of Frobenius.
- Main idea: Choose small prime ℓ such that (^{-ℓ}/_p) = −1 then find root of H_{-ℓ}(X) or H_{-4ℓ}(X) in F_q.
- Construct corresponding *E* and twist if necessary.
- CM theory tells that E is supersingular, as p is inert in $\mathbb{Q}(\sqrt{-\ell})$.

Idea

- ▶ Problem: Given a maximal order O construct E such that End(E) ≅ O.
- ► A simple idea is to find some elements in O of small discriminant D₁, D₂, · · · and take

$$G(X) = \gcd(H_{D_1}(X), H_{D_2}(X), \cdots).$$

- Then hope that deg(G) ≤ 2 and that taking roots gives j(E) and hence E.
- Related application: Can we determine End(E) by testing if H_D(j(E)) = 0 for various discriminants D?
- ► Question: Is a maximal order O in quaternion algebra B_p determined by a small number of discriminants.

Lattices and Ternary Forms

- Consider the \mathbb{Z} -module $\mathcal{O}^T = \{2x \operatorname{Tr}(x) : x \in \mathcal{O}\}$ of rank 3.
- ▶ Note that $y \in \mathcal{O}^T$ implies Tr(y) = 0 (pure quaternion).
- The reduced norm on O is a ternary quadratic form Q, making O^T a lattice.
- The volume of the lattice is $4p^2$.
- Let O' be another maximal order in the same quaternion algebra B_p and let Q' be the ternary form of O'^T.
 If Q' is equivalent to Q, in the sense of quadratic forms, then is O' isomorphic to O (O' = cOc⁻¹ for some c ∈ B_p)?
- Theorem: (Schiemann) Ternary quadratic forms are determined up to equivalence by their theta series.
- We will show that one can check equivalence by only checking a very small number of coefficients of the theta series.

Bulguksa Lattices

Main Theorems

Theorem

Let \mathcal{O} and \mathcal{O}' be two maximal orders of B_p . Let \mathcal{O}^T and \mathcal{O}'^T have the same successive minima $D_1 \leq D_2 \leq D_3$. Assume moreover that $D_1D_2 < 16p/3$ and that p is sufficiently large. Then \mathcal{O} and \mathcal{O}' are of the same type (= isomorphic).

Theorem

Let p > 286 and \mathcal{O} , \mathcal{O}' be two maximal orders of B_p . Let D_1 , D_2 and D_3 be the successive minima of \mathcal{O}^T and let $x, y \in \mathcal{O}^T$ be such that $Nr(x) = D_1$ and $Nr(y) = D_2$. Suppose that $D_1D_2 < \frac{16}{3}p$ and that D_1 , D_2 , Nr(x + y), Nr(x - y) and D_3 are all "represented optimally" in \mathcal{O}'^T and that $\theta'_{\mathcal{O}^T}(D_3) \leq \theta'_{\mathcal{O}'^T}(D_3)$. Then \mathcal{O} and \mathcal{O}' are of the same type. The condition $D_1D_2 < 16p/3$

Lemma

Let \mathcal{O} be a maximal order in B_p that contains an element π such that $\pi^2 = -p$ (and hence $j(\mathcal{O}) \in \mathbb{F}_p$). Then $D_1D_2 < 16p/3$.

Proof based on a paper of Kaneko.

Elkies showed $D_1 \leq 2p^{2/3}$ for any maximal order in B_p and Yang has shown that this is best possible.

Method of Proof

- ▶ Let $x, y \in O^T$ have norms D_1 and D_2 respectively. Similarly $x', y' \in O'^T$.
- Prove that ⟨x, y⟩ and ⟨x', y'⟩ isometric, using
 4D₁D₂ Tr(xy)² ≡ 0 (mod p) and simple geometry of numbers.
- Lemma: $w = 2xy \operatorname{Tr}(xy) \in \mathcal{O}^T \cap \langle x, y \rangle^{\perp}$.
- More geometry of numbers completes the result.
- Proof of Theorem 2 requires further arguments to reduce to case of Theorem 1.
- Everyone agrees there should be a nicer proof.

Algorithm to Construct E

- Let \mathcal{O} be a maximal order in B_p given as a \mathbb{Z} -basis.
- Use lattice algorithms to find several small norms d_1, d_2, \ldots, d_n of "primitive" elements in \mathcal{O}^T .
- ► Hence (X j(E)) is a factor of gcd(H_{-d1}(X), H_{-d2}(X), ..., H_{-dn}(X)).
- Take multiple roots into account.
- ▶ When $j(E) \in \mathbb{F}_p$ then our theorems imply the algorithm terminates with a degree 1 polynomial.
- In this case, all d_i are such that $|d_i| = O(p)$.
- Computing H_d(X) can be done in time Õ(|d|) by Belding-Bröker-Enge-Lauter or Sutherland. This is the limiting step, as poly degree is O(|d|^{0.5+ϵ}).
- So overall complexity Õ(p).
- Examples in paper.

Algorithm when $j(E) \notin \mathbb{F}_p$

- Conjecture that the algorithm terminates with degree two polynomial.
- Conjecture that running time is still $\tilde{O}(p)$.
- ► Can consider an algorithm to match {O} with the set {j(E)} over all supersingular curves.
- Cerviño proposed such an algorithm.
 As far as we can tell, his algorithm requires O(p^{3+ε}) field operations.
- ► Our method has the improved complexity O(p^{2.5+ε}) field operations.
- Our algorithm is always guaranteed to halt!
- For subcase of j(E) ∈ 𝔽_p, Cerviño needs O(p^{2.5+ε}) and we need O(p^{1.5+ε}).

Kohel-Lauter-Petit-Tignol

The last talk of the conference has tools that should lead to better solutions to these problems.

Computing Isogenies between Supersingular Elliptic Curves over \mathbb{F}_p

- ► Joint work with Christina Delfs.
- Problem is to find sequence of isogenies between two given supersingular elliptic curves.
- ► The number of supersingular elliptic curves in F
 _p is approximately p/12, but there are only p^{0.5+ϵ} supersingular elliptic curves over F_p.
- So finding a path between two supersingular elliptic curves over 𝑘_p should be easier than the general problem.
- Can reduce general case to this case using random walks.
- We solve the sub-problem using CM theory and algorithm from S. Galbraith, F. Hess, N. P. Smart, "Extending the GHS Weil descent attack", EUROCRYPT 2002.

Full supersingular isogeny graph

Supersingular Isogeny Graph $X(\overline{\mathbb{F}}_{83}, 2)$

Subgraph

Subgraph consisting $j \in \mathbb{F}_{83}$

New graph

 $X(\mathbb{F}_{83},2)$

Structure theorem (p > 3 prime)

- p ≡ 1 (mod 4): There are h(-4p) F_p-isomorphism classes of supersingular elliptic curves over F_p, all having the same endomorphism ring Z[√-p]. From every one there is one outgoing F_p-rational horizontal 2-isogeny as well as two horizontal ℓ-isogenies for every prime ℓ > 2 with (-p/ℓ) = 1.
- p ≡ 3 (mod 4): There are two levels in the supersingular isogeny graph. From each vertex there are two horizontal *l*-isogenies for every prime *l* > 2 with (^{-p}/_l) = 1.
 - 2.1 If $p \equiv 7 \pmod{8}$, on each level h(-p) vertices are situated. Surface and floor are connected 1:1 with 2-isogenies and on the surface we also have two horizontal 2-isogenies from each vertex.
 - 2.2 If $p \equiv 3 \pmod{8}$, we have h(-p) vertices on the surface and 3h(-p) on the floor. Surface and floor are connected 1:3 with 2-isogenies, and there are no horizontal 2-isogenies.

Example 2: $p = 103 \equiv 7 \pmod{8}$

Supersingular Isogeny Graph $X(\overline{\mathbb{F}}_{103}, 2)$

New

 $X(\mathbb{F}_{103},2)$

Thank You

