Distinguishing Maximal Orders of Quaternion Algebras by their Short Elements

Ilya Chevyrev and Steven Galbraith
University of Auckland, New Zealand
11-16 January 2015
Nelson, South Island, NZ

Auckland, New Zealand, December 2015
Plan

- Background and some of my favourite questions
- Why is this talk in a session on lattices?
- Sketch of results and algorithm
- Shall we talk about something else?

Thanks: David Kohel, Drew Sutherland.

Please ask questions at any time.
Isogeny graphs of elliptic curves
Elliptic Curves and Isogenies

- An **elliptic curve** over a field \mathbb{k} is a non-singular projective cubic curve. The set of \mathbb{k}-rational points is a group.

- An **isogeny** $\phi : E_1 \rightarrow E_2$ of elliptic curves is a morphism that is a group homomorphism.

- Isogenies satisfy a degree 2 characteristic polynomial $T^2 - \text{Tr}(\phi) T + \deg(\phi) = 0$, having discriminant $D = \text{Tr}(\phi)^2 - 4\deg(\phi) \leq 0$.

- Tate’s isogeny theorem: Let E_1, E_2 be elliptic curves over a finite field \mathbb{F}_q. Then $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$ iff there is an isogeny $\phi : E_1 \rightarrow E_2$ over \mathbb{F}_q.

- $\text{End}(E) = \{\text{isogenies } \phi : E \rightarrow E \text{ over } \overline{\mathbb{F}}_q\}$.

- $\text{End}(E)$ is either an order in an imaginary quadratic field (ordinary) or a maximal order in a definite quaternion algebra B_p ramified at $\{p, \infty\}$ (supersingular).
Some Computational Questions

- Given E over \mathbb{F}_q to compute $\text{End}(E)$. Two cases: ordinary and supersingular.
- Given E, E' over \mathbb{F}_q with $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$ to compute an isogeny from E' to E. Two cases: ordinary and supersingular.
- Given q, N construct an elliptic curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = N$.
- Construct an elliptic curve E/\mathbb{F}_q with $\#E(\mathbb{F}_q) = N$ for pairs (q, N) with certain “desired properties”.
- Given a maximal order \mathcal{O} in the quaternion algebra B_p to construct an elliptic curve E over \mathbb{F}_p or \mathbb{F}_{p^2} with $\text{End}(E) \cong \mathcal{O}$.
Consider fundamental discriminant $D < 0$. The Hilbert class polynomial $H_D(X) \in \mathbb{Z}[X]$ has property:

Given E/\mathbb{K}, if $H_D(j(E)) = 0$ then $\text{End}(E)$ contains an isogeny of discriminant D.

Specifically, the roots in \mathbb{C} of $H_D(X)$ are the j-invariants of the elliptic curves over \mathbb{C} possessing the quadratic order $\mathcal{O}_D = \mathbb{Z}[\frac{1}{2}(D + \sqrt{D})]$ as their endomorphism ring.

Class polynomials are used in the CM method for constructing curves with a given group order/endomorphism structure.

What other applications might there be?
Bröker’s Algorithm

- Goal: Given $q = p^a$ to construct a supersingular curve over \mathbb{F}_q with specified trace of Frobenius.
- Main idea: Choose small prime ℓ such that $\left(\frac{-\ell}{p}\right) = -1$ then find root of $H_{-\ell}(X)$ or $H_{-4\ell}(X)$ in \mathbb{F}_q.
- Construct corresponding E and twist if necessary.
- CM theory tells that E is supersingular, as p is inert in $\mathbb{Q}(\sqrt{-\ell})$.
Problem: Given a maximal order \mathcal{O} construct E such that $\text{End}(E) \cong \mathcal{O}$.

A simple idea is to find some elements in \mathcal{O} of small discriminant D_1, D_2, \cdots and take

$$G(X) = \gcd(H_{D_1}(X), H_{D_2}(X), \cdots).$$

Then hope that $\deg(G) \leq 2$ and that taking roots gives $j(E)$ and hence E.

Related application: Can we determine $\text{End}(E)$ by testing if $H_D(j(E)) = 0$ for various discriminants D?

Question: Is a maximal order \mathcal{O} in quaternion algebra B_p determined by a small number of discriminants.
Consider the \(\mathbb{Z} \)-module \(\mathcal{O}^T = \{ 2x - \text{Tr}(x) : x \in \mathcal{O} \} \) of rank 3.

Note that \(y \in \mathcal{O}^T \) implies \(\text{Tr}(y) = 0 \) (pure quaternion).

The reduced norm on \(\mathcal{O} \) is a ternary quadratic form \(Q \), making \(\mathcal{O}^T \) a lattice.

The volume of the lattice is \(4p^2 \).

Let \(\mathcal{O}' \) be another maximal order in the same quaternion algebra \(B_p \) and let \(Q' \) be the ternary form of \(\mathcal{O}'^T \). If \(Q' \) is equivalent to \(Q \), in the sense of quadratic forms, then is \(\mathcal{O}' \) isomorphic to \(\mathcal{O} \) (\(\mathcal{O}' = c\mathcal{O}c^{-1} \) for some \(c \in B_p \))?

Theorem: (Schiemann) Ternary quadratic forms are determined up to equivalence by their theta series.

We will show that one can check equivalence by only checking a very small number of coefficients of the theta series.
Bulguksa Lattices
Main Theorems

Theorem
Let \(\mathcal{O} \) and \(\mathcal{O}' \) be two maximal orders of \(B_p \). Let \(\mathcal{O}^T \) and \(\mathcal{O}^{'T} \) have the same successive minima \(D_1 \leq D_2 \leq D_3 \). Assume moreover that \(D_1 D_2 < 16p/3 \) and that \(p \) is sufficiently large. Then \(\mathcal{O} \) and \(\mathcal{O}' \) are of the same type (= isomorphic).

Theorem
Let \(p > 286 \) and \(\mathcal{O}, \mathcal{O}' \) be two maximal orders of \(B_p \). Let \(D_1, D_2 \) and \(D_3 \) be the successive minima of \(\mathcal{O}^T \) and let \(x, y \in \mathcal{O}^T \) be such that \(\text{Nr}(x) = D_1 \) and \(\text{Nr}(y) = D_2 \). Suppose that \(D_1 D_2 < \frac{16}{3}p \) and that \(D_1, D_2, \text{Nr}(x + y), \text{Nr}(x - y) \) and \(D_3 \) are all “represented optimally” in \(\mathcal{O}^{'T} \) and that \(\theta_{\mathcal{O}^T}(D_3) \leq \theta_{\mathcal{O}^{'T}}(D_3) \). Then \(\mathcal{O} \) and \(\mathcal{O}' \) are of the same type.
The condition $D_1D_2 < 16p/3$

Lemma

Let \mathcal{O} be a maximal order in B_p that contains an element π such that $\pi^2 = -p$ (and hence $j(\mathcal{O}) \in \mathbb{F}_p$). Then $D_1D_2 < 16p/3$.

Proof based on a paper of Kaneko.

Elkies showed $D_1 \leq 2p^{2/3}$ for any maximal order in B_p and Yang has shown that this is best possible.
Method of Proof

Let \(x, y \in \mathcal{O}^T \) have norms \(D_1 \) and \(D_2 \) respectively. Similarly \(x', y' \in \mathcal{O}'^T \).

Prove that \(\langle x, y \rangle \) and \(\langle x', y' \rangle \) isometric, using \(4D_1D_2 - \text{Tr}(xy)^2 \equiv 0 \pmod{p} \) and simple geometry of numbers.

Lemma: \(w = 2xy - \text{Tr}(xy) \in \mathcal{O}^T \cap \langle x, y \rangle^\perp \).

More geometry of numbers completes the result.

Proof of Theorem 2 requires further arguments to reduce to case of Theorem 1.

Everyone agrees there should be a nicer proof.
Algorithm to Construct E

- Let \mathcal{O} be a maximal order in B_p given as a \mathbb{Z}-basis.
- Use lattice algorithms to find several small norms d_1, d_2, \ldots, d_n of “primitive” elements in \mathcal{O}^T.
- Hence $(X - j(E))$ is a factor of $\gcd(H_{-d_1}(X), H_{-d_2}(X), \ldots, H_{-d_n}(X))$.
- Take multiple roots into account.
- When $j(E) \in \mathbb{F}_p$ then our theorems imply the algorithm terminates with a degree 1 polynomial.
- In this case, all d_i are such that $|d_i| = O(p)$.
- Computing $H_d(X)$ can be done in time $\tilde{O}(|d|)$ by Belding-Bröker-Enge-Lauter or Sutherland.
 This is the limiting step, as poly degree is $O(|d|^{0.5+\epsilon})$.
- So overall complexity $\tilde{O}(p)$.
- Examples in paper.
Algorithm when $j(E) \not\in \mathbb{F}_p$

- Conjecture that the algorithm terminates with degree two polynomial.
- Conjecture that running time is still $\tilde{O}(p)$.
- Can consider an algorithm to match $\{O\}$ with the set $\{j(E)\}$ over all supersingular curves.
- Cerviño proposed such an algorithm.
 As far as we can tell, his algorithm requires $O(p^{3+\varepsilon})$ field operations.
- Our method has the improved complexity $O(p^{2.5+\varepsilon})$ field operations.
- Our algorithm is always guaranteed to halt!
- For subcase of $j(E) \in \mathbb{F}_p$, Cerviño needs $O(p^{2.5+\varepsilon})$ and we need $O(p^{1.5+\varepsilon})$.

Steven Galbraith

Isogeny graphs of elliptic curves
The last talk of the conference has tools that should lead to better solutions to these problems.
Computing Isogenies between Supersingular Elliptic Curves over \mathbb{F}_p

- Joint work with Christina Delfs.
- Problem is to find sequence of isogenies between two given supersingular elliptic curves.
- The number of supersingular elliptic curves in \mathbb{F}_p is approximately $p/12$, but there are only $p^{0.5+\epsilon}$ supersingular elliptic curves over \mathbb{F}_p.
- So finding a path between two supersingular elliptic curves over \mathbb{F}_p should be easier than the general problem.
- Can reduce general case to this case using random walks.
Full supersingular isogeny graph

Supersingular Isogeny Graph $X(\mathbb{F}_{83}, 2)$
Subgraph consisting $j \in \mathbb{F}_{83}$
New graph

\[X(\mathbb{F}_{83}, 2) \]
Structure theorem ($p > 3$ prime)

1. $p \equiv 1 \pmod{4}$: There are $h(-4p)$ \mathbb{F}_p-isomorphism classes of supersingular elliptic curves over \mathbb{F}_p, all having the same endomorphism ring $\mathbb{Z}[\sqrt{-p}]$. From every one there is one outgoing \mathbb{F}_p-rational horizontal 2-isogeny as well as two horizontal ℓ-isogenies for every prime $\ell > 2$ with $\left(\frac{-p}{\ell}\right) = 1$.

2. $p \equiv 3 \pmod{4}$: There are two levels in the supersingular isogeny graph. From each vertex there are two horizontal ℓ-isogenies for every prime $\ell > 2$ with $\left(\frac{-p}{\ell}\right) = 1$.
 2.1 If $p \equiv 7 \pmod{8}$, on each level $h(-p)$ vertices are situated. Surface and floor are connected 1:1 with 2-isogenies and on the surface we also have two horizontal 2-isogenies from each vertex.
 2.2 If $p \equiv 3 \pmod{8}$, we have $h(-p)$ vertices on the surface and $3h(-p)$ on the floor. Surface and floor are connected 1:3 with 2-isogenies, and there are no horizontal 2-isogenies.
Example 2: $p = 103 \equiv 7 \pmod{8}$

Supersingular Isogeny Graph $\mathcal{X}(\mathbb{F}_{103}, 2)$
$X(\mathbb{F}_{103}, 2)$
Thank You