Distinguishing Maximal Orders of Quaternion Algebras by their Short Elements

Ilya Chevyrev and Steven Galbraith

University of Auckland, New Zealand

Summer School, Nelson, NZ, January 2015

$$
\begin{aligned}
& \text { 11-16 January } 2015 \\
& \text { Nelson, South Island, NZ }
\end{aligned}
$$

Speakers: Pierre Deligne, Gus Lehrer, Cheryl Praeger, René Schoof, Richard Weiss.

Auckland, New Zealand, December 2015

Plan

- Background and some of my favourite questions
- Why is this talk in a session on lattices?
- Sketch of results and algorithm
- Shall we talk about something else?

Thanks: David Kohel, Drew Sutherland.

Please ask questions at any time.

Ilya Chevyrev

Elliptic Curves and Isogenies

- An elliptic curve over a field \mathbb{k} is a non-singular projective cubic curve. The set of \mathbb{k}-rational points is a group.
- An isogeny $\phi: E_{1} \rightarrow E_{2}$ of elliptic curves is a morphism that is a group homomorphism.
- Isogenies satisfy a degree 2 characteristic polynomial $T^{2}-\operatorname{Tr}(\phi) T+\operatorname{deg}(\phi)=0$, having discriminant $D=\operatorname{Tr}(\phi)^{2}-4 \operatorname{deg}(\phi) \leq 0$.
- Tate's isogeny theorem: Let E_{1}, E_{2} be elliptic curves over a finite field \mathbb{F}_{q}. Then $\# E_{1}\left(\mathbb{F}_{q}\right)=\# E_{2}\left(\mathbb{F}_{q}\right)$ iff there is an isogeny $\phi: E_{1} \rightarrow E_{2}$ over \mathbb{F}_{q}.
- $\operatorname{End}(E)=\left\{\right.$ isogenies $\phi: E \rightarrow E$ over $\left.\overline{\mathbb{F}}_{q}\right\}$.
- End (E) is either an order in an imaginary quadratic field (ordinary) or a maximal order in a definite quaternion algebra B_{p} ramified at $\{p, \infty\}$ (supersingular).

Some Computational Questions

- Given E over \mathbb{F}_{q} to compute $\operatorname{End}(E)$. Two cases: ordinary and supersingular.
- Given E, E^{\prime} over \mathbb{F}_{q} with $\# E\left(\mathbb{F}_{q}\right)=\# E^{\prime}\left(\mathbb{F}_{q}\right)$ to compute an isogeny from E^{\prime} to E.
Two cases: ordinary and supersingular.
- Given q, N construct an elliptic curve E / \mathbb{F}_{q} with $\# E\left(\mathbb{F}_{q}\right)=N$.
- Construct an elliptic curve E / \mathbb{F}_{q} with $\# E\left(\mathbb{F}_{q}\right)=N$ for pairs (q, N) with certain "desired properties".
- Given a maximal order \mathcal{O} in the quaternion algebra B_{p} to construct an elliptic curve E over \mathbb{F}_{p} or $\mathbb{F}_{p^{2}}$ with $\operatorname{End}(E) \cong \mathcal{O}$.

Hilbert Class Polynomial

- Consider fundamental discriminant $D<0$. The Hilbert class polynomial $H_{D}(X) \in \mathbb{Z}[X]$ has property: Given E / \mathbb{k}, if $H_{D}(j(E))=0$ then $\operatorname{End}(E)$ contains an isogeny of discriminant D.
- Specifically, the roots in \mathbb{C} of $H_{D}(X)$ are the j-invariants of the elliptic curves over \mathbb{C} possessing the quadratic order $\mathcal{O}_{D}=\mathbb{Z}\left[\frac{1}{2}(D+\sqrt{D})\right]$ as their endomorphism ring.
- Class polynomials are used in the CM method for constructing curves with a given group order/endomorphism structure.
- What other applications might there be?

Bröker's Algorithm

- Goal: Given $q=p^{a}$ to construct a supersingular curve over \mathbb{F}_{q} with specified trace of Frobenius.
- Main idea: Choose small prime ℓ such that $\left(\frac{-\ell}{p}\right)=-1$ then find root of $H_{-\ell}(X)$ or $H_{-4 \ell}(X)$ in \mathbb{F}_{q}.
- Construct corresponding E and twist if necessary.
- CM theory tells that E is supersingular, as p is inert in $\mathbb{Q}(\sqrt{-\ell})$.
- Problem: Given a maximal order \mathcal{O} construct E such that $\operatorname{End}(E) \cong \mathcal{O}$.
- A simple idea is to find some elements in \mathcal{O} of small discriminant D_{1}, D_{2}, \cdots and take

$$
G(X)=\operatorname{gcd}\left(H_{D_{1}}(X), H_{D_{2}}(X), \cdots\right)
$$

- Then hope that $\operatorname{deg}(G) \leq 2$ and that taking roots gives $j(E)$ and hence E.
- Related application: Can we determine $\operatorname{End}(E)$ by testing if $H_{D}(j(E))=0$ for various discriminants D ?
- Question: Is a maximal order \mathcal{O} in quaternion algebra B_{p} determined by a small number of discriminants.

Lattices and Ternary Forms

- Consider the \mathbb{Z}-module $\mathcal{O}^{T}=\{2 x-\operatorname{Tr}(x): x \in \mathcal{O}\}$ of rank 3.
- Note that $y \in \mathcal{O}^{T}$ implies $\operatorname{Tr}(y)=0$ (pure quaternion).
- The reduced norm on \mathcal{O} is a ternary quadratic form Q, making \mathcal{O}^{T} a lattice.
- The volume of the lattice is $4 p^{2}$.
- Let \mathcal{O}^{\prime} be another maximal order in the same quaternion algebra B_{p} and let Q^{\prime} be the ternary form of $\mathcal{O}^{\prime T}$. If Q^{\prime} is equivalent to Q, in the sense of quadratic forms, then is \mathcal{O}^{\prime} isomorphic to $\mathcal{O}\left(\mathcal{O}^{\prime}=c \mathcal{O} c^{-1}\right.$ for some $\left.c \in B_{p}\right)$?
- Theorem: (Schiemann) Ternary quadratic forms are determined up to equivalence by their theta series.
- We will show that one can check equivalence by only checking a very small number of coefficients of the theta series.

Bulguksa Lattices

Main Theorems

Theorem
Let \mathcal{O} and \mathcal{O}^{\prime} be two maximal orders of B_{p}. Let \mathcal{O}^{\top} and $\mathcal{O}^{\prime T}$ have the same successive minima $D_{1} \leq D_{2} \leq D_{3}$. Assume moreover that $D_{1} D_{2}<16 p / 3$ and that p is sufficiently large. Then \mathcal{O} and \mathcal{O}^{\prime} are of the same type (= isomorphic).

Theorem
Let $p>286$ and $\mathcal{O}, \mathcal{O}^{\prime}$ be two maximal orders of B_{p}. Let D_{1}, D_{2} and D_{3} be the successive minima of \mathcal{O}^{T} and let $x, y \in \mathcal{O}^{T}$ be such that $\operatorname{Nr}(x)=D_{1}$ and $\operatorname{Nr}(y)=D_{2}$. Suppose that $D_{1} D_{2}<\frac{16}{3} p$ and that $D_{1}, D_{2}, \operatorname{Nr}(x+y), \operatorname{Nr}(x-y)$ and D_{3} are all "represented optimally" in $\mathcal{O}^{\prime T}$ and that $\theta_{\mathcal{O}^{T}}^{\prime}\left(D_{3}\right) \leq \theta_{\mathcal{O}^{\prime T}}^{\prime}\left(D_{3}\right)$. Then \mathcal{O} and \mathcal{O}^{\prime} are of the same type.

The condition $D_{1} D_{2}<16 p / 3$

Lemma
Let \mathcal{O} be a maximal order in B_{p} that contains an element π such that $\pi^{2}=-p\left(\right.$ and hence $\left.j(\mathcal{O}) \in \mathbb{F}_{p}\right)$. Then $D_{1} D_{2}<16 p / 3$.

Proof based on a paper of Kaneko.

Elkies showed $D_{1} \leq 2 p^{2 / 3}$ for any maximal order in B_{p} and Yang has shown that this is best possible.

Method of Proof

- Let $x, y \in \mathcal{O}^{T}$ have norms D_{1} and D_{2} respectively. Similarly $x^{\prime}, y^{\prime} \in \mathcal{O}^{\prime T}$.
- Prove that $\langle x, y\rangle$ and $\left\langle x^{\prime}, y^{\prime}\right\rangle$ isometric, using $4 D_{1} D_{2}-\operatorname{Tr}(x \bar{y})^{2} \equiv 0(\bmod p)$ and simple geometry of numbers.
- Lemma: $w=2 x y-\operatorname{Tr}(x y) \in \mathcal{O}^{T} \cap\langle x, y\rangle^{\perp}$.
- More geometry of numbers completes the result.
- Proof of Theorem 2 requires further arguments to reduce to case of Theorem 1.
- Everyone agrees there should be a nicer proof.

Algorithm to Construct E

- Let \mathcal{O} be a maximal order in B_{p} given as a \mathbb{Z}-basis.
- Use lattice algorithms to find several small norms $d_{1}, d_{2}, \ldots, d_{n}$ of "primitive" elements in \mathcal{O}^{T}.
- Hence $(X-j(E))$ is a factor of $\operatorname{gcd}\left(H_{-d_{1}}(X), H_{-d_{2}}(X), \ldots, H_{-d_{n}}(X)\right)$.
- Take multiple roots into account.
- When $j(E) \in \mathbb{F}_{p}$ then our theorems imply the algorithm terminates with a degree 1 polynomial.
- In this case, all d_{i} are such that $\left|d_{i}\right|=O(p)$.
- Computing $H_{d}(X)$ can be done in time $\tilde{O}(|d|)$ by Belding-Bröker-Enge-Lauter or Sutherland. This is the limiting step, as poly degree is $O\left(|d|^{0.5+\epsilon}\right)$.
- So overall complexity $\tilde{O}(p)$.
- Examples in paper.

Algorithm when $j(E) \notin \mathbb{F}_{p}$

- Conjecture that the algorithm terminates with degree two polynomial.
- Conjecture that running time is still $\tilde{O}(p)$.
- Can consider an algorithm to match $\{\mathcal{O}\}$ with the set $\{j(E)\}$ over all supersingular curves.
- Cerviño proposed such an algorithm. As far as we can tell, his algorithm requires $O\left(p^{3+\varepsilon}\right)$ field operations.
- Our method has the improved complexity $O\left(p^{2.5+\varepsilon}\right)$ field operations.
- Our algorithm is always guaranteed to halt!
- For subcase of $j(E) \in \mathbb{F}_{p}$, Cerviño needs $O\left(p^{2.5+\varepsilon}\right)$ and we need $O\left(p^{1.5+\varepsilon}\right)$.

Kohel-Lauter-Petit-Tignol

The last talk of the conference has tools that should lead to better solutions to these problems.

Computing Isogenies between Supersingular Elliptic Curves

 over \mathbb{F}_{p}- Joint work with Christina Delfs.
- Problem is to find sequence of isogenies between two given supersingular elliptic curves.
- The number of supersingular elliptic curves in $\overline{\mathbb{F}}_{p}$ is approximately $p / 12$, but there are only $p^{0.5+\epsilon}$ supersingular elliptic curves over \mathbb{F}_{p}.
- So finding a path between two supersingular elliptic curves over \mathbb{F}_{p} should be easier than the general problem.
- Can reduce general case to this case using random walks.
- We solve the sub-problem using CM theory and algorithm from S. Galbraith, F. Hess, N. P. Smart, "Extending the GHS Weil descent attack", EUROCRYPT 2002.

Full supersingular isogeny graph

Supersingular Isogeny Graph $X\left(\overline{\mathbb{F}}_{83}, 2\right)$

Subgraph

Subgraph consisting $j \in \mathbb{F}_{83}$

New graph

$$
X\left(\mathbb{F}_{83}, 2\right)
$$

Structure theorem ($p>3$ prime)

1. $p \equiv 1(\bmod 4):$ There are $h(-4 p) \mathbb{F}_{p}$-isomorphism classes of supersingular elliptic curves over \mathbb{F}_{p}, all having the same endomorphism ring $\mathbb{Z}[\sqrt{-p}]$. From every one there is one outgoing \mathbb{F}_{p}-rational horizontal 2-isogeny as well as two horizontal ℓ-isogenies for every prime $\ell>2$ with $\left(\frac{-p}{\ell}\right)=1$.
2. $p \equiv 3(\bmod 4)$: There are two levels in the supersingular isogeny graph. From each vertex there are two horizontal ℓ-isogenies for every prime $\ell>2$ with $\left(\frac{-p}{\ell}\right)=1$.
2.1 If $p \equiv 7(\bmod 8)$, on each level $h(-p)$ vertices are situated. Surface and floor are connected 1:1 with 2-isogenies and on the surface we also have two horizontal 2-isogenies from each vertex.
2.2 If $p \equiv 3(\bmod 8)$, we have $h(-p)$ vertices on the surface and $3 h(-p)$ on the floor. Surface and floor are connected $1: 3$ with 2-isogenies, and there are no horizontal 2-isogenies.

Example 2: $p=103 \equiv 7(\bmod 8)$

Supersingular Isogeny Graph $X\left(\overline{\mathbb{F}}_{103}, 2\right)$

New

$X\left(\mathbb{F}_{103}, 2\right)$

Thank You

