Rational points on modular curves hold importance in number theory and Cole-
man integrals have been used in computing various arithmetic-geometric invari-
ants, including rational points on curves. Current methods employ Dwork’s prin-
ciple of analytic continuation along the Frobenius, and we investigate the effect
of Hecke operators on these p-adic line integrals and thus circumvent the use of
Frobenius.

Modular Curves

Let H denote the upper half plane, I' < SLy(R) an arithmetic subgroup, X (I') :=
'\ (H U PYQ)) a modular curve . For the purpose of demonstration, we consider

[ = [y(N) = { (CCL Z) c SLQ(Z),N\C}

Points on modular curves parametrise elliptic curves with certain data. In our
case, a Q-point P = (E,C) € Xp(N) = X(I'o(IN)) corresponds to an elliptic
curve E defined over (Q with a cyclic subgroup C' of order N. Equivalently, a point
on X(N) is a pair of elliptic curves with a cyclic isogeny ¢ : E — E’ of degree
N.

For ¢ not dividing the level N, we have two degeneracy maps mq,m : Xo(/N) —
Xo(N). Note that Xy(¢N) parametrises pairs (F,G) where G = C & D with C
cyclic of order ¢ and D cyclic of order N. Then 7y forgets the subgroup C' of order
¢ and w9 quotients by C"

We define the Hecke correspondence 7, on divisors and differential forms on
Xo(N) via the formula Ty(D) := moxm D. More concretely,

(E,D)— Y (E,C®D)~ » (E/C,(C+D)/C)
CeFE|/] CeFE/]

Coleman Integration

In the 1980s, Coleman defined a p-adic line integral f]? w € Cponacurve X over
Q) with good reduction at the prime p where w is a holomorphic differential on X,
P,Q € X(C,). These integrals satisfy, among many others, nice properties [4]:
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e Linearity:
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e Defining it on divisors:
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e Change of variables: If U C X,V C Y are wide open subspaces of the rigid analytic
spaces X,Y,wa l1-formonV, ¢ : U — V arigid analytic map, then:
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e Fundamental theorem of calculus: Let f be a rigid analytic function on U C X wide
open subspace, then:
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e Tiny integrals: For P, ) € X(Qy) in the same residue disc, we have fgw = ffé?f w(t),
where t is a local coordinate.

To explicitly compute a Coleman integral of a genus g curve X, the approach using Frobe-
nius is as follows [3]:

1. Find a model for the curve X.

2. Obtain a basis {w;} in the Monsky-Washnitzer cohomology.
3. Find a lift of ¢ Frobenius mod p to dagger algebras.
4

. Compute the action of ¢ on {w;} using Kedlaya’s algorithm [6, 3]:

29—1
Owi = dfi + ¥ Mjw
=0

5. We note that M — I is invertible by the proof of Weil Conjectures. And using properties
listed above, we have the following:

[Qw; | = =71 | £i(P) = 1@ — [P wi = [0

Coleman integrals on modular curves

On modular curves, the differentials correspond to weight 2 Hecke eigenforms. Using prop-
erties of the integral and the Hecke correspondence defined earlier would give (here ¢ = p
as discussed in the previous sections):

And using the Ramanujan bound, we obtain a nonzero integral where the right hand side
consists of tiny integrals as P and 7P each consist of points in the same residue disc:
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One of the issues with modular curves is that it is not easy to find good models
for them. We provide a "model-free" algorithm to resolve this problem using the
modular j-invariant: Let P = (E,C) € X(Q), w < f(z)dz.

1. Find 7y € H such that I'g(/N )7y corresponds to P, with j-invariant j.

2. Expand w as a power series in 3 — j9 where w could be expressed as a
power series in 7 — 7p:

0. @)
w=>a;(j — jo)'d(j — jo)
i=0
3. Use linear algebra and algdep from PARI/GP or SAGE to recover the a;’s.

4. Find j(F;) via the modular polynomial ¢,(X, j(P)) = 0.

5. Compute fgw = Zfill 3<Pi>_j0 ap+ art + ... dt.

Remarks and future work

We have computed examples for small NV in the case of I' = Ty(N), I'; (V) and
verified the hyperelliptic cases with the already implemented codes on Magma
and SAGE.

There are several observations that arise from the calculations:

e The denominators appearing in the coefficients obtained in the model free
method are somehow related to the trace of Frobenius of P mod p for any
prime p of good reduction (e.g. X(37)) [5].

e |terated integrals (such as the double integrals appearing in quadratic
Chabauty [2, 1]) do not yield to this method due to the lack of additivity
In endpoints of the Hecke correspondence.

e The height of the a;’s are large for the expansion of (j — jo)’. A good re-
placement would be uniformisers with smaller g-coefficients on the curve,
such as Hauptmoduls (e.g. eta quotients).
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