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Motivation

Rational points on modular curves hold importance in number theory and Cole-
man integrals have been used in computing various arithmetic-geometric invari-
ants, including rational points on curves. Current methods employ Dwork’s prin-
ciple of analytic continuation along the Frobenius, and we investigate the effect
of Hecke operators on these p-adic line integrals and thus circumvent the use of
Frobenius.

Modular Curves

Let H denote the upper half plane, Γ ≤ SL2(R) an arithmetic subgroup, X(Γ) :=
Γ\(H ∪ P1(Q)) a modular curve . For the purpose of demonstration, we consider

Γ = Γ0(N) :=
{(a b

c d

)
∈ SL2(Z), N |c

}
Points on modular curves parametrise elliptic curves with certain data. In our
case, a Q-point P = (E,C) ∈ X0(N) := X(Γ0(N)) corresponds to an elliptic
curve E defined over Q with a cyclic subgroup C of order N . Equivalently, a point
on X0(N) is a pair of elliptic curves with a cyclic isogeny ϕ : E → E′ of degree
N .
For ` not dividing the level N , we have two degeneracy maps π1, π2 : X0(`N) →
X0(N). Note that X0(`N) parametrises pairs (E,G) where G = C ⊕ D with C
cyclic of order ` and D cyclic of order N . Then π1 forgets the subgroup C of order
` and π2 quotients by C:

We define the Hecke correspondence T` on divisors and differential forms on
X0(N) via the formula T`(D) := π2∗π∗1D. More concretely,

(E,D) 7→
∑

C∈E[`]

(E,C ⊕D) 7→
∑

C∈E[`]

(E/C, (C + D)/C)

Coleman Integration

In the 1980s, Coleman defined a p-adic line integral
∫ Q
P ω ∈ Cp on a curve X over

Qp with good reduction at the prime p where ω is a holomorphic differential on X,
P,Q ∈ X(Cp). These integrals satisfy, among many others, nice properties [4]:

• Linearity: ∫ Q

P
aη + bω = a

∫ Q

P
η + b

∫ Q

P
ω

• Additivity in endpoints: ∫ Q

P
ω =

∫ R

P
ω +

∫ Q

R
ω

• Defining it on divisors: ∫ Q

P
ω +

∫ Q′

P ′
ω =

∫ Q′

P
ω +

∫ Q

P ′
ω

• Change of variables: If U ⊆ X, V ⊆ Y are wide open subspaces of the rigid analytic
spaces X, Y , ω a 1-form on V , φ : U → V a rigid analytic map, then:

∫ Q

P
φ∗ω =

∫ φ(Q)

φ(P )
ω

• Fundamental theorem of calculus: Let f be a rigid analytic function on U ⊆ X wide
open subspace, then: ∫ Q

P
df = f (Q)− f (P )

• Tiny integrals: For P,Q ∈ X(Qp) in the same residue disc, we have
∫ Q
P ω =

∫ t(Q)
t(P )

ω(t),
where t is a local coordinate.

To explicitly compute a Coleman integral of a genus g curve X, the approach using Frobe-
nius is as follows [3]:

1. Find a model for the curve X.

2. Obtain a basis {ωi} in the Monsky-Washnitzer cohomology.

3. Find a lift of φ Frobenius mod p to dagger algebras.

4. Compute the action of φ on {ωi} using Kedlaya’s algorithm [6, 3]:

φ∗ωi = dfi +

2g−1∑
j=0

Mjiωj

5. We note that M − I is invertible by the proof of Weil Conjectures. And using properties
listed above, we have the following: ...∫ Q

P ωj
...

 = (M − I)−1


...

fi(P )− fi(Q)−
∫ φ(P )
P ωi −

∫ Q
φ(Q)

ωi
...



Coleman integrals on modular curves

On modular curves, the differentials correspond to weight 2 Hecke eigenforms. Using prop-
erties of the integral and the Hecke correspondence defined earlier would give (here ` = p
as discussed in the previous sections):

∫ Q

P
T`(ω) = a`

∫ Q

P
ω

=

`+1∑
i=1

∫ Qi

Pi

ω

And using the Ramanujan bound, we obtain a nonzero integral where the right hand side
consists of tiny integrals as P and T`P each consist of points in the same residue disc:

(` + 1− a`)
∫ Q

P
ω =

`+1∑
i=1

(∫ Q

Qi

ω −
∫ P

Pi

ω
)

One of the issues with modular curves is that it is not easy to find good models
for them. We provide a "model-free" algorithm to resolve this problem using the
modular j-invariant: Let P = (E,C) ∈ X(Q), ω ↔ f (z)dz.

1. Find τ0 ∈ H such that Γ0(N)τ0 corresponds to P , with j-invariant j0.

2. Expand ω as a power series in j − j0 where ω could be expressed as a
power series in τ − τ0:

ω =

∞∑
i=0

ai(j − j0)id(j − j0)

3. Use linear algebra and algdep from PARI/GP or SAGE to recover the ai’s.

4. Find j(Pi) via the modular polynomial Φ`(X, j(P )) = 0.

5. Compute
∫ Q
P ω =

∑`+1
i=1

∫ j(Pi)−j0
0 a0 + a1t + . . . dt.

Remarks and future work

We have computed examples for small N in the case of Γ = Γ0(N),Γ+
0 (N) and

verified the hyperelliptic cases with the already implemented codes on Magma

and SAGE.
There are several observations that arise from the calculations:

• The denominators appearing in the coefficients obtained in the model free
method are somehow related to the trace of Frobenius of P mod p for any
prime p of good reduction (e.g. X0(37)) [5].

• Iterated integrals (such as the double integrals appearing in quadratic
Chabauty [2, 1]) do not yield to this method due to the lack of additivity
in endpoints of the Hecke correspondence.

• The height of the ai’s are large for the expansion of (j − j0)i. A good re-
placement would be uniformisers with smaller q-coefficients on the curve,
such as Hauptmoduls (e.g. eta quotients).
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