Motivation

Rational points on modular curves hold importance in number theory and Coleman integrals have been used in computing various arithmetic-geometric invariants, including rational points on curves. Current methods employ Dwork's principle of analytic continuation along the Frobenius, and we investigate the effect of Hecke operators on these *p*-adic line integrals and thus circumvent the use of Frobenius.

Modular Curves

Let \mathbb{H} denote the upper half plane, $\Gamma \leq SL_2(\mathbb{R})$ an arithmetic subgroup, $X(\Gamma) := 0$ $\Gamma \setminus (\mathbb{H} \cup \mathbb{P}^1(\mathbb{Q}))$ a modular curve. For the purpose of demonstration, we consider

$$\Gamma = \Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), N|c \right\}$$

Points on modular curves parametrise elliptic curves with certain data. In our case, a Q-point $P = (E, C) \in X_0(N) := X(\Gamma_0(N))$ corresponds to an elliptic curve E defined over \mathbb{Q} with a cyclic subgroup C of order N. Equivalently, a point on $X_0(N)$ is a pair of elliptic curves with a cyclic isogeny $\varphi: E \to E'$ of degree N.

For ℓ not dividing the level N, we have two degeneracy maps $\pi_1, \pi_2 : X_0(\ell N) \rightarrow \ell$ $X_0(N)$. Note that $X_0(\ell N)$ parametrises pairs (E,G) where $G = C \oplus D$ with C cyclic of order ℓ and D cyclic of order N. Then π_1 forgets the subgroup C of order ℓ and π_2 quotients by C:

We define the Hecke correspondence T_{ℓ} on divisors and differential forms on $X_0(N)$ via the formula $T_\ell(D) := \pi_{2*}\pi_1^*D$. More concretely,

$$(E,D)\mapsto \sum_{C\in E[\ell]}(E,C\oplus D)\mapsto \sum_{C\in E[\ell]}(E/C,(C+D)/C)$$

Coleman Integration

In the 1980s, Coleman defined a p-adic line integral $\int_P^Q \omega \in \mathbb{C}_p$ on a curve X over \mathbb{Q}_p with good reduction at the prime p where ω is a holomorphic differential on X, $P, Q \in X(\mathbb{C}_p)$. These integrals satisfy, among many others, nice properties [4]:

• Linearity:

$$\int_{P}^{Q} a\eta + b\omega = a \int_{P}^{Q} \eta + b \int_{P}^{Q} \omega$$

• Additivity in endpoints:

$$\int_{P}^{Q} \omega = \int_{P}^{R} \omega + \int_{R}^{Q} \omega$$

COLEMAN INTEGRATION ON MODULAR CURVES Mingjie Chen, Kiran Kedlaya, Jun Bo Lau University of California, San Diego

• Defining it on divisors:

$$\int_{P}^{Q} \omega + \int_{P'}^{Q'} \omega = \int_{P}^{Q'} \omega + \int_{P'}^{Q} \omega$$

• Change of variables: If $U \subseteq X, V \subseteq Y$ are wide open subspaces of the rigid analytic spaces X, Y, ω a 1-form on V, $\phi: U \to V$ a rigid analytic map, then:

$$\int_{P}^{Q} \phi^* \omega = \int_{\phi(P)}^{\phi(Q)} \omega$$

• Fundamental theorem of calculus: Let f be a rigid analytic function on $U \subseteq X$ wide open subspace, then: \cap

$$\int_{P}^{Q} df = f(Q) - f(P)$$

• Tiny integrals: For $P, Q \in X(\mathbb{Q}_p)$ in the same residue disc, we have where t is a local coordinate.

To explicitly compute a Coleman integral of a genus g curve X, the approach using Frobenius is as follows [3]:

- 1. Find a model for the curve X.
- 2. Obtain a basis $\{\omega_i\}$ in the Monsky-Washnitzer cohomology.
- 3. Find a lift of ϕ Frobenius mod p to dagger algebras.
- 4. Compute the action of ϕ on $\{\omega_i\}$ using Kedlaya's algorithm [6, 3]:

$$\phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ji}\omega_j$$

5. We note that M - I is invertible by the proof of Weil Conjectures. And using properties listed above, we have the following:

$$\begin{pmatrix} \vdots \\ \int_P^Q \omega_j \\ \vdots \end{pmatrix} = (M-I)^{-1} \begin{pmatrix} f_i(P) - f_i(Q) - \int_P^{\phi(P)} \omega_i - \int_{\phi}^Q \omega_i \\ \vdots \end{pmatrix}$$

Coleman integrals on modular curves

On modular curves, the differentials correspond to weight 2 Hecke eigenforms. Using properties of the integral and the Hecke correspondence defined earlier would give (here $\ell = p$ as discussed in the previous sections):

$$\int_{P}^{Q} T_{\ell}(\omega) = a_{\ell} \int_{P}^{Q} \omega$$
$$= \sum_{i=1}^{\ell+1} \int_{P_{i}}^{Q_{i}} \omega$$

And using the Ramanujan bound, we obtain a nonzero integral where the right hand side consists of tiny integrals as P and $T_{\ell}P$ each consist of points in the same residue disc:

$$(\ell+1-a_{\ell})\int_{P}^{Q}\omega = \sum_{i=1}^{\ell+1} \left(\int_{Q_{i}}^{Q}\omega - \int_{P_{i}}^{P}\omega\right)$$

UC San Diego

for them. We provide a "model-free" algorithm to resolve this problem using the modular *j*-invariant: Let $P = (E, C) \in X(\mathbb{Q}), \omega \leftrightarrow f(z)dz$.

- **1.** Find $\tau_0 \in \mathbb{H}$ such that $\Gamma_0(N)\tau_0$ corresponds to *P*, with *j*-invariant j_0 .
- 2. Expand ω as a power series in $j j_0$ where ω could be expressed as a power series in $\tau - \tau_0$:

$$\omega = \sum_{i=0}^{\infty} a_i (j - j_0)^i d(j - j_0)$$

- 3. Use linear algebra and algebra from PARI/GP or SAGE to recover the a_i 's.
- 4. Find $j(P_i)$ via the modular polynomial $\Phi_{\ell}(X, j(P)) = 0$.
- 5. Compute $\int_{P}^{Q} \omega = \sum_{i=1}^{\ell+1} \int_{0}^{j(P_i)-j_0} a_0 + a_1 t + \dots dt$.

Remarks and future work

We have computed examples for small N in the case of $\Gamma = \Gamma_0(N), \Gamma_0^+(N)$ and verified the hyperelliptic cases with the already implemented codes on Magma and SAGE.

There are several observations that arise from the calculations:

- The denominators appearing in the coefficients obtained in the model free method are somehow related to the trace of Frobenius of P mod p for any prime p of good reduction (e.g. $X_0(37)$) [5].
- Iterated integrals (such as the double integrals appearing in quadratic Chabauty [2, 1]) do not yield to this method due to the lack of additivity in endpoints of the Hecke correspondence.
- The height of the a_i 's are large for the expansion of $(j j_0)^i$. A good replacement would be uniformisers with smaller *q*-coefficients on the curve, such as Hauptmoduls (e.g. eta quotients).

References

- [1] Jennifer Balakrishnan and Netan Dogra. "Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties". In: (Apr. 2017).
- [2] Jennifer Balakrishnan and Netan Dogra. "Quadratic Chabauty and rational points, I: P-adic heights". In: Duke Mathematical Journal 167 (Jan. 2016). DOI: 10.1215/00127094-2018-0013.
- [3] Jennifer Balakrishnan and Jan Tuitman. "Explicit Coleman integration for curves". In: Math*ematics of Computation* (Oct. 2017). DOI: 10.1090/mcom/3542.
- [4] Robert F. Coleman. "Torsion Points on Curves and p-Adic Abelian Integrals". In: Annals of *Mathematics* 121.1 (1985), pp. 111–168.
- [5] Noam Elkies. "Elliptic and modular curves over finite fields and related computational issues". In: Computational Perspectives on Number Theory. Proceedings of a Conference in Honor of A. O. L. Atkin. Ed. by Duncan Buell and Jeremy Teitelbaum. AMS, 1998, pp. 21–76.
- [6] Kiran Kedlaya. "Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology". In: J. Ramanujan Math. Soc. 16 (June 2001).

$$\int_P^Q \omega = \int_{t(P)}^{t(Q)} \omega(t)$$
 ,

One of the issues with modular curves is that it is not easy to find good models