Motivation

Rational points on modular curves hold importance in number theory and Coleman integrals have been used in computing various arithmetic-geometric invariants, including rational points on curves. Current methods employ Dwork's principle of analytic continuation along the Frobenius, and we investigate the effect of Hecke operators on these p-adic line integrals and thus circumvent the use of Frobenius.

Modular Curves

Let \mathbb{H} denote the upper half plane, $\Gamma \leq S L_{2}(\mathbb{R})$ an arithmetic subgroup, $X(\Gamma):=$ $\Gamma \backslash\left(\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{Q})\right)$ a modular curve . For the purpose of demonstration, we consider

$$
\Gamma=\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}), N \mid c\right\}
$$

Points on modular curves parametrise elliptic curves with certain data. In our case, a \mathbb{Q}-point $P=(E, C) \in X_{0}(N):=X\left(\Gamma_{0}(N)\right)$ corresponds to an elliptic curve E defined over \mathbb{Q} with a cyclic subgroup C of order N. Equivalently, a point on $X_{0}(N)$ is a pair of elliptic curves with a cyclic isogeny $\varphi: E \rightarrow E^{\prime}$ of degree N.

For ℓ not dividing the level N, we have two degeneracy maps $\pi_{1}, \pi_{2}: X_{0}(\ell N) \rightarrow$ $X_{0}(N)$. Note that $X_{0}(\ell N)$ parametrises pairs (E, G) where $G=C \oplus D$ with C cyclic of order ℓ and D cyclic of order N. Then π_{1} forgets the subgroup C of order ℓ and π_{2} quotients by C :

We define the Hecke correspondence T_{ℓ} on divisors and differential forms on $X_{0}(N)$ via the formula $T_{\ell}(D):=\pi_{2 *} \pi_{1}^{*} D$. More concretely,

$$
(E, D) \mapsto \sum_{C \in E[\ell]}(E, C \oplus D) \mapsto \sum_{C \in E[\ell]}(E / C,(C+D) / C)
$$

Coleman Integration
In the 1980s, Coleman defined a p-adic line integral $\int_{P}^{Q} \omega \in \mathbb{C}_{p}$ on a curve X over \mathbb{Q}_{p} with good reduction at the prime p where ω is a holomorphic differential on X, $P, Q \in X\left(\mathbb{C}_{p}\right)$. These integrals satisfy, among many others, nice properties [4]:

- Linearity:

$$
\int_{P}^{Q} a \eta+b \omega=a \int_{P}^{Q} \eta+b \int_{P}^{Q} \omega
$$

- Additivity in endpoints:

$$
\int_{P}^{Q} \omega=\int_{P}^{R} \omega+\int_{R}^{Q} \omega
$$

- Defining it on divisors

$$
\int_{P}^{Q} \omega+\int_{P^{\prime}}^{Q^{\prime}} \omega=\int_{P}^{Q^{\prime}} \omega+\int_{P^{\prime}}^{Q} \omega
$$

- Change of variables: If $U \subseteq X, V \subseteq Y$ are wide open subspaces of the rigid analytic spaces X, Y, ω a 1 -form on $V, \phi: U \rightarrow V$ a rigid analytic map, then:

$$
\int_{P}^{Q} \phi^{*} \omega=\int_{\phi(P)}^{\phi(Q)} \omega
$$

- Fundamental theorem of calculus: Let f be a rigid analytic function on $U \subseteq X$ wide open subspace, then:

$$
\int_{P}^{Q} d f=f(Q)-f(P)
$$

- Tiny integrals: For $P, Q \in X\left(\mathbb{Q}_{p}\right)$ in the same residue disc, we have $\int_{P}^{Q} \omega=\int_{t(P)}^{t(Q)} \omega(t)$, where t is a local coordinate.

To explicitly compute a Coleman integral of a genus g curve X, the approach using Frobenius is as follows [3]

1. Find a model for the curve X.
2. Obtain a basis $\left\{\omega_{i}\right\}$ in the Monsky-Washnitzer cohomology.
3. Find a lift of ϕ Frobenius $\bmod p$ to dagger algebras.
4. Compute the action of ϕ on $\left\{\omega_{i}\right\}$ using Kedlaya's algorithm [6, 3]:

$$
\phi^{*} \omega_{i}=d f_{i}+\sum_{j=0}^{2 g-1} M_{j i} \omega_{j}
$$

5. We note that $M-I$ is invertible by the proof of Weil Conjectures. And using properties listed above, we have the following:

$$
\left(\begin{array}{c}
\vdots \\
\int_{P}^{Q} \omega_{j} \\
\vdots
\end{array}\right)=(M-I)^{-1}\left(f_{i}(P)-f_{i}(Q)-\int_{P}^{\vdots} \dot{\vdots}(P) \omega_{i}-\int_{\phi(Q)}^{Q} \omega_{i}\right)
$$

Coleman integrals on modular curves

On modular curves, the differentials correspond to weight 2 Hecke eigenforms. Using properties of the integral and the Hecke correspondence defined earlier would give (here $\ell=p$ as discussed in the previous sections)

$$
\begin{aligned}
\int_{P}^{Q} T_{\ell}(\omega) & =a_{\ell} \int_{P}^{Q} \omega \\
& =\sum_{i=1}^{\ell+1} \int_{P_{i}}^{Q_{i}} \omega
\end{aligned}
$$

And using the Ramanujan bound, we obtain a nonzero integral where the right hand side consists of tiny integrals as P and $T_{\ell} P$ each consist of points in the same residue disc:

$$
\left(\ell+1-a_{\ell}\right) \int_{P}^{Q} \omega=\sum_{i=1}^{\ell+1}\left(\int_{Q_{i}}^{Q} \omega-\int_{P_{i}}^{P} \omega\right)
$$

One of the issues with modular curves is that it is not easy to find good models for them. We provide a "model-free" algorithm to resolve this problem using the modular j-invariant: Let $P=(E, C) \in X(\mathbb{Q}), \omega \leftrightarrow f(z) d z$.

1. Find $\tau_{0} \in \mathbb{H}$ such that $\Gamma_{0}(N) \tau_{0}$ corresponds to P, with j-invariant j_{0}.
2. Expand ω as a power series in $j-j_{0}$ where ω could be expressed as a power series in $\tau-\tau_{0}$:

$$
\omega=\sum_{i=0}^{\infty} a_{i}\left(j-j_{0}\right)^{i} d\left(j-j_{0}\right)
$$

3. Use linear algebra and algdep from PARI/GP or SAGE to recover the a_{i} 's.
4. Find $j\left(P_{i}\right)$ via the modular polynomial $\Phi_{\ell}(X, j(P))=0$.
5. Compute $\int_{P}^{Q} \omega=\sum_{i=1}^{\ell+1} \int_{0}^{j\left(P_{i}\right)-j_{0}} a_{0}+a_{1} t+\ldots d t$.

Remarks and future work

We have computed examples for small N in the case of $\Gamma=\Gamma_{0}(N), \Gamma_{0}^{+}(N)$ and verified the hyperelliptic cases with the already implemented codes on Magma and SAGE.
There are several observations that arise from the calculations:

- The denominators appearing in the coefficients obtained in the model free method are somehow related to the trace of Frobenius of $P \bmod p$ for any prime p of good reduction (e.g. $X_{0}(37)$) [5].
- Iterated integrals (such as the double integrals appearing in quadratic Chabauty $[2,1]$) do not yield to this method due to the lack of additivity in endpoints of the Hecke correspondence.
- The height of the a_{i} 's are large for the expansion of $\left(j-j_{0}\right)^{i}$. A good replacement would be uniformisers with smaller q-coefficients on the curve, such as Hauptmoduls (e.g. eta quotients).

References

[1] Jennifer Balakrishnan and Netan Dogra. "Quadratic Chabauty and rational points II: Gener-
alised height functions on Selmer varieties". In: (Apr. 2017). alised height functions on Selmer varieties". In: (Apr. 2017).
[2] Jennifer Balakrishnan and Netan Dogra. "Quadratic Chabauty and rational points, I: P-adic 0013 . 0013.
[3] Jennifer Balakrishnan and Jan Tuitman. "Explicit Coleman integration for curves". In: Mathematics of Computation (Oct. 2017). Dol: 10.1090/mcom/3542.
4] Robert F. Coleman. "Torsion Points on Curves and p-Adic Abelian Integrals". In: Annals of matics 121.1 (1985), pp. 111-168.
[5] Noam Elkies. "Elliptic and modular curves over finite fields and related computational is sues". In: Computational Perspectives on Number Theory. Proceedings of a Conference in Honor of A. O. L. Atkin. Ed. by Duncan Buell and Jeremy Teitelbaum. AMS, 1998, pp. 21-76. [6] Kiran Kedlaya. "Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Coho-
mology". In: J. Ramanujan Math. Soc. 16 (June 2001).

