An Algorithm to Generate Random Factored Smooth Integers

Eric Bach, University of Wisconsin-Madison (bach@cs.wisc.edu)
Jonathan Sorenson, Butler University (jsorenso@butler.edu)
ANTS XIV poster session
Arxiv.org link: https://arxiv.org/abs/2006.07445

Results

We say an integer n is y-smooth if every prime divisor of n is $\leq y$. Let $\Psi(x, y)$ count the number of y-smooth integers $\leq x$.

We present a new algorithm that does the following:

Inputs:

- Integers x, y, with $x \geq y>0$, and
- A real number $r \in[0,1)$ (supposedly chosen uniformly at random).

Outputs:

- Integer n, with $0<n \leq x$,
- A list of primes p_{1}, p_{2}, \ldots such that $n=p_{1} p_{2} \cdots$, with $p_{i} \leq y$ for all i, and
- n is at position $r \Psi(x, y)(1+o(1))$ in the enumeration of y-smooth integers $\leq x$, lexicographically ordered by prime divisors. In other words, n is chosen asymptotically uniformly.

Our algorithm takes

$$
O\left(\frac{(\log x)^{3}}{\log \log x}\right)
$$

arithmetic operations on average. This running time analysis uses the following:

- We assume the ERH to extend the range of applicability to the estimate $x \rho(u)$ for $\Psi(x, y)$, where ρ is the Dickman-DeBruijn function [12], and
- We use the Miller-Rabin probabilistic primality test, so that our list of primes all are in fact prime with probability $1-o(1)$ [9, 10].

In the draft of our full paper, we show how to derive running times with differing sets of assumptions and conditions. Other special cases we discuss there include

- Setting $y=x$ to get an alternative to Bach's algorithm [2],
- Looking and what gets easier if all primes $\leq y$ are available, and
- Generating random semismooth integers with known prime factorization.

Buchstab's Identity

$$
\begin{equation*}
\Psi(x, y)=1+\sum_{p \leq y} \Psi(x / p, p), \tag{1}
\end{equation*}
$$

which decomposes $\Psi(x, y)$ by its largest prime divisor [12, §5.3].
We can use this equation to see that, for a prime $p \leq y$, the number of y-smooth integers with p as their largest prime divisor is $\Psi(x / p, p)$. In other words, when generating n, we choose p as n 's largest prime divisor with probability $\Psi(x / p, p) / \Psi(x, y)$. Then $n=1$ with probability $1 / \Psi(x, y)$.

Algorithm

This leads us to the following algorithm.
Inputs: x, y, r

1. If $r<1 / \Psi(x, y)$, output 1 and halt.
2. Find real t such that $\Psi(x, t)-r \Psi(x, y)$ is near zero.
3. Find consecutive primes $p_{1}<p_{2}$, near t, such that $\Psi\left(x, p_{1}\right)<r \Psi(x, y) \leq \Psi\left(x, p_{2}\right)$.

Note that, from Buchstab's identity above, this gives us

$$
1+\sum_{p \leq p_{1}} \Psi(x / p, p)<r \Psi(x, y) \leq 1+\sum_{p \leq p_{2}} \Psi(x / p, p),
$$

which tells us that p_{2} is our largest prime divisor.
4. Output p_{2}.
5. Set $r^{\prime}=\frac{r \Psi(x, y)-\Psi\left(x, p_{1}\right)}{\Psi\left(x / p_{2}, p_{2}\right)}$.
6. Recurse on $x / p_{2}, p_{2}$, and r^{\prime}.

Algorithm Details

- We estimate Ψ with either the $x \rho(u)$ estimate mentioned above [13], if y is not too small, or with a saddle-point based method [8, 11] for smaller y. See Hildebrand [6] for the cutoff point.
- If we use the $x \rho(u)$ method, we can find t with Newton's method. Otherwise, the Illinois algorithm with some bisection steps [4], or Brent's algorithm [3] gives quick convergence.
- We can find p_{1}, p_{2} by sieving a short interval and using strong pseudoprime tests [9, 10].
- Due to the work of Alladi [1], Hensley [5], and Hildebrand [7], we know the average number of prime divisors of n is

$$
O\left(\log \log x+\frac{\log x}{\log y}\right)
$$

which is also the recursion depth of the algorithm.

- If we were to use an exact method to compute Ψ, then we would generate an n at exactly position $\lfloor r \Psi(x, y)\rfloor$ in the enumeration of y-smooth numbers $\leq x$.

Example Run

We implemented our algorithm in C++ on a linux desktop workstation and ran it with $x=10^{100}$, $y=10000$, and $r=0.5$. It generated the following list of prime divisors for n :

$$
235729319711311311315722324150350956969172710331367157121412339
$$

2617274130413221354739894021451349995573657775739463
The resulting n is roughly $4.29 \cdot 10^{97}$, which occupies a position near $2.05 \cdot 10^{61}$ in the enumeration. The run took less than 0.35 seconds of wall time.

References

[1] Krishnaswami Alladi. An Erdős-Kac theorem for integers without large prime factors. Acta Arith., 49(1):81-105, 1987.
[2] E. Bach. How to generate factored random numbers. SIAM Journal on Computing, 2:179-193, 1988.
[3] R. P. Brent. Algorithms for Minimization Without Derivatives. Dover, 2013. Originally published by Prentice-Hall 1973.
[4] M. Dowell and P. Jarratt. A modified regula falsi method for computing the root of an equation. BIT, 11:168-174, 1971.
[5] Douglas Hensley. The distribution of $\Omega(n)$ among numbers with no large prime factors. In Analytic number theory and Diophantine problems (Stillwater, OK, 1984), volume 70 of Progr. Math., pages 247-281. Birkhäuser Boston, Boston, MA, 1987.
[6] A. Hildebrand. On the number of positive integers $\leq x$ and free of prime factors $>y$. Journal of Number Theory, 22:289-307, 1986.
[7] Adolf Hildebrand. On the number of prime factors of integers without large prime divisors. J. Number Theory, 25(1):81-106, 1987.
[8] Simon Hunter and Jonathan P. Sorenson. Approximating the number of integers free of large prime factors. Mathematics of Computation, 66(220):1729-1741, 1997.
[9] G. Miller. Riemann's hypothesis and tests for primality. Journal of Computer and System Sciences, 13:300-317, 1976.
[10] M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128138, 1980.
[11] Jonathan P. Sorenson. A fast algorithm for approximately counting smooth numbers. In W. Bosma, editor, Proceedings of the Fourth International Algorithmic Number Theory Symposium (ANTS IV), pages 539-549, Leiden, The Netherlands, 2000. LNCS 1838.
[12] Gérald. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory, volume 46 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, english edition, 1995.
[13] J. van de Lune and E. Wattel. On the numerical solution of a differential-difference equation arising in analytic number theory. Mathematics of Computation, 23:417-421, 1969.

