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Results

We say an integer n is y-smooth if every prime divisor of n is ≤ y. Let Ψ(x, y) count the number
of y-smooth integers ≤ x.

We present a new algorithm that does the following:
Inputs:

• Integers x,y, with x ≥ y > 0, and

• A real number r ∈ [0, 1) (supposedly chosen uniformly at random).

Outputs:

• Integer n, with 0 < n ≤ x,

• A list of primes p1, p2, . . . such that n = p1p2 · · ·, with pi ≤ y for all i, and

• n is at position rΨ(x, y)(1 + o(1)) in the enumeration of y-smooth integers ≤ x, lexicograph-
ically ordered by prime divisors. In other words, n is chosen asymptotically uniformly.

Our algorithm takes

O

(
(log x)3

log log x

)
arithmetic operations on average. This running time analysis uses the following:

• We assume the ERH to extend the range of applicability to the estimate xρ(u) for Ψ(x, y),
where ρ is the Dickman-DeBruijn function [12], and

• We use the Miller-Rabin probabilistic primality test, so that our list of primes all are in fact
prime with probability 1− o(1) [9, 10].

In the draft of our full paper, we show how to derive running times with differing sets of assumptions
and conditions. Other special cases we discuss there include

• Setting y = x to get an alternative to Bach’s algorithm [2],

• Looking and what gets easier if all primes ≤ y are available, and

• Generating random semismooth integers with known prime factorization.

Buchstab’s Identity

Ψ(x, y) = 1 +
∑
p≤y

Ψ(x/p, p), (1)

which decomposes Ψ(x, y) by its largest prime divisor [12, §5.3].
We can use this equation to see that, for a prime p ≤ y, the number of y-smooth integers with

p as their largest prime divisor is Ψ(x/p, p). In other words, when generating n, we choose p as n’s
largest prime divisor with probability Ψ(x/p, p)/Ψ(x, y). Then n = 1 with probability 1/Ψ(x, y).
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Algorithm

This leads us to the following algorithm.
Inputs: x, y, r

1. If r < 1/Ψ(x, y), output 1 and halt.

2. Find real t such that Ψ(x, t)− rΨ(x, y) is near zero.

3. Find consecutive primes p1 < p2, near t, such that Ψ(x, p1) < rΨ(x, y) ≤ Ψ(x, p2).

Note that, from Buchstab’s identity above, this gives us

1 +
∑
p≤p1

Ψ(x/p, p) < rΨ(x, y) ≤ 1 +
∑
p≤p2

Ψ(x/p, p),

which tells us that p2 is our largest prime divisor.

4. Output p2.

5. Set r′ = rΨ(x,y)−Ψ(x,p1)
Ψ(x/p2,p2) .

6. Recurse on x/p2, p2, and r′.

Algorithm Details

• We estimate Ψ with either the xρ(u) estimate mentioned above [13], if y is not too small,
or with a saddle-point based method [8, 11] for smaller y. See Hildebrand [6] for the cutoff
point.

• If we use the xρ(u) method, we can find t with Newton’s method. Otherwise, the Illinois
algorithm with some bisection steps [4], or Brent’s algorithm [3] gives quick convergence.

• We can find p1, p2 by sieving a short interval and using strong pseudoprime tests [9, 10].

• Due to the work of Alladi [1], Hensley [5], and Hildebrand [7], we know the average number
of prime divisors of n is

O

(
log log x+

log x

log y

)
,

which is also the recursion depth of the algorithm.

• If we were to use an exact method to compute Ψ, then we would generate an n at exactly
position brΨ(x, y)c in the enumeration of y-smooth numbers ≤ x.

Example Run

We implemented our algorithm in C++ on a linux desktop workstation and ran it with x = 10100,
y = 10000, and r = 0.5. It generated the following list of prime divisors for n:

2 3 5 7 29 31 97 113 113 113 157 223 241 503 509 569 691 727 1033 1367 1571 2141 2339
2617 2741 3041 3221 3547 3989 4021 4513 4999 5573 6577 7573 9463

The resulting n is roughly 4.29 · 1097, which occupies a position near 2.05 · 1061 in the enumeration.
The run took less than 0.35 seconds of wall time.
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