Computing the Hilbert class field of quartic CM fields

Jared Asuncion - Universite de Bordeaux / Universiteit Leiden

Motivation

Compute the largest unramified abelian extension of a number field.

By compute, we mean: find an algorithm that gives a set α of algebraic numbers such that $K(\alpha)$ is equal to $H_K(1)$, the Hilbert class field of K.

Unramified extension: all places of K are unramified in L

unramified	prime ideals (finite places)
example $L = \mathbb{Q}(i)$ $K = \mathbb{Q}$	× (2) = $(2, 1 + i)^2$ (3) = $(3)^1$ (5) = $(5, i + 2)^1(5, i + 3)$

unramified embeddings (infinite places) \checkmark real emb in $K \rightsquigarrow$ real emb in L \times real emb in $K \rightsquigarrow$ complex emb in L \checkmark complex emb in $K \rightsquigarrow$ complex emb in L

Abelian extension: Galois extension whose Galois group is abelian

▶ class field theory (20th century) \rightsquigarrow existence of set of fields $\{H_{\kappa}^+(m) : m \in \mathbb{Z}_{>0}\}$ satisfying I Gal $(H_{K}^{+}(m)/K) \cong Cl_{K}^{+}(m)$, a group described in terms of ideals of \mathcal{O}_{K}

What do we know?

Let $m \in \mathbb{Z}_{>0}$.

 $\checkmark H^+_{\mathbb{Q}}(m) = \mathbb{Q}(\exp(2\pi i \cdot 1/m))$ (...by Kronecker-Weber Theorem, 19th century) $\checkmark H^+_{\kappa}(m); K = \mathbb{Q}(\sqrt{D}), D \in \mathbb{Q}, D < 0$ (...by class field theory + CM theory)

 \blacktriangleright $H_{\kappa}^{+}(m)$ $K = \mathbb{Q}(\sqrt{D}), D > 0$ (...solved if Stark's conjectures are true [13, 8])

 \forall abelian exts L/K which do not ramify at infinite places of $K \exists m$ s.t. $L \subseteq H_K(m)$. $\exists m \text{ s.t. } L \subseteq H^+_{\kappa}(m).$ \forall abelian exts L/K

\blacktriangleright $H_{\kappa}^{+}(m)$ when K is a quartic CM field (...what this poster is about)

CM Theory	A theorem of Shimura		
CM field: $K = K_0(\sqrt{\delta})$ s.t. • K_0 totally real • $\delta \in K_0$ s.t. $\delta \ll 0$	Shimura [11]: Given K , primitive quartic CM field (i.e. then $\exists m \in \mathbb{Z}_{>0}$ such that	degree 4 CM field that is either cyclic Galois or not Galois),	
Reflex field : K^r , a field related to K and a <i>CM type</i> Φ of K .	$H_{K}(1)\subseteq H_{K}$ holds	$\chi_0(m) \operatorname{CM}_K(m) \qquad (\star_m)$	
Main Theorem of CM [10]:			
For each $m \in \mathbb{Z}_{>0}$ •we can compute the following abelian extension of K : $CM_{\mathcal{K}}(m) := \mathcal{K}(j_{\mathcal{A},m})$ s.t. • $CM_{\mathcal{K}}(m) \subseteq H_{\mathcal{K}}(m)$	An integer <i>m</i> for which \star_m holds.	Given an integer <i>m</i> , does \star_m hold?	
	Theorem (Asuncion). Let K be a primitive quartic CM field. Let S be a finite set of prime ideals of \mathcal{O}_K such that $ CI_K(1)/\langle S \rangle $ is odd	Assume <i>K</i> , primitive quartic CM field. 1 Express $\star_m \rightsquigarrow$ in terms of Galois theory: $G(H_{\mathcal{K}}(1)) \supseteq G(\mathcal{K}H_{\mathcal{K}_0}(m)) \cap G(CM_{\mathcal{K}}(m))$ where $G(F) := Gal(H_{\mathcal{K}}(m)/F)$.	
JA,m, set of invariants associated	$\mathcal{O}_{\mathcal{O}}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcalO}}}}}}}}}}$	Class field theory can compute groups \cong to:	

to the **m** torsion points of a principally polarized abelian variety **A** with End $\mathbf{A} \cong \mathcal{O}_{K^r}$ (CM by \mathcal{O}_{K^r}) of type Φwe can find the subgroup: $J_m < G := \operatorname{Gal}(H_K(m)/K)$ s.t. $H_{\mathcal{K}}(m)^{J_m} = CM_{\mathcal{K}}(m)$.

CM fields examples

► CM fields of degree 2: $K = K_0(\sqrt{D}), D < 0, K_0 = \mathbb{Q},$ $K^r = K$, CM type Φ (one choice up to \sim) Let E be an ell curve of type Φ s.t. End $E \cong \mathcal{O}_{K^r}$ $\triangleright CM_{\mathcal{K}}(1) = \mathcal{K}(\mathbf{j}(\mathbf{E}))$ $j(E) \rightsquigarrow j$ -invariant of E $\triangleright CM_{\mathcal{K}}(m) = \mathcal{K}(j(E))(X_m)$ X_m is the set of 'normalized' *x*-coordinates of m-torsion points of E $\triangleright J_m = \langle 1 \rangle \quad \forall m \in \mathbb{Z}_{>0}$ $\rightsquigarrow H_{\mathcal{K}}(m) = \mathsf{CM}_{\mathcal{K}}(m) \checkmark$

Let *P* be the set of rational primes *p* below the prime

ideals in S. Then, \star_m holds for $m = 4 \prod_{p \in P} p$.

Key points of proof: \blacktriangleright to find S: unramified-outside-S emb. problem [3] to determine valuation at each $\mathfrak{p} \in S$: [2]

Computing $H_{\mathcal{K}}(1)$ when \star_m holds.

Assume K, primitive quartic CM field.

Computing $H_{K_0}(m)$. 1 Assume Stark's conjectures are true. 2 Solve for $H_{K_0}(m)$.

3 Verify if result is correct.

Computing $CM_{\mathcal{K}}(m)$

1) m = 1: use Igusa invariants, see [6, 12, 4]. 2 m = 2: use Rosenhain invariants [15]. \blacktriangleright *m* > 2: future work.

 $\checkmark G(H_{\kappa}(1))$ $\checkmark G(H_{K_0}(m))$

- 2 [1, 5] study group related to $G(CM_{\kappa}(1))$. We generalize method to find $G(CM_{K}(m))$. \bigcirc Compute \cap and check \supseteq to answer question.
- Implemented in PARI/GP [7] by the author.

References.

- [1] Reinier Bröker, David Gruenewald, and Kristin Lauter. Explicit CM theory for level 2-structures on abelian surfaces. In: Algebra & Number Theory 5.4 (Dec. 2011),
- Henri Cohen. Advanced topics in computational number theory. Graduate Texts in [2] Mathematics. New York: Springer, 2000.
- [3] Teresa Crespo. Embedding problems with ramification conditions. In: Arch. Math. (Basel) 53.3 (1989),
- [4] Régis Dupont. Fast evaluation of modular functions using Newton iterations and the AGM. In: Mathematics of Computation 80.275 (2011),
- Andreas Enge and Emmanuel Thomé. Computing class polynomials for abelian [5] surfaces. In: Experimental Mathematics 23 (2014),
- Jun-ichi Igusa. Modular forms and projective invariants. In: [6] American Journal of Mathematics 89.3 (1967),
- [7] PARI/GP version 2.11.2. available from http://pari.math.u-bordeaux.fr/. The PARI Group. Univ. Bordeaux, 2019.
- Xavier-François Roblot. Stark's conjectures and Hilbert's twelfth problem. In: [8] Experiment. Math. 9.2 (2000),

CM fields of degree 4 $K = K_0(\sqrt{\delta}), \delta \in K_0, \delta \ll 0,$ $K_0 = \mathbb{Q}(\sqrt{D}), D > 0.$ Reflex field? We can solve it! ▷ *j*-invariant analogue? Yes – Igusa invariants [6]. \triangleright $J_1 = \langle 1 \rangle$? No, not necessarily!

Computing $H_{\mathcal{K}}(1)$ if \star_m with $m \leq 2$. (1) Compute $H_{K_0}(m)$ and $CM_K(m)$.

2 Compute $H_{\kappa}(1)$ as a subfield of the compositum. Use Galois theory + explicit Shimura reciprocity [14].

Our SAGE [9] Implementation

...computes $H_{\mathcal{K}}(1)$ when \star_m holds, for examples where $Cl_{\kappa}(1)$ is cyclic and degree 32 within 15 minutes ...vs existing Kummer theory implementations PARI and MAGMA do not finish this computation within 4 hours.

- W.A. Stein et al. Sage Mathematics Software (Version 9.1). [9] http://www.sagemath.org. The Sage Development Team. 2020.
- [10] Goro Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Kanô memorial lectures. Princeton University Press, 1971.
- Goro Shimura. On the class-fields obtained by complex multiplication of abelian [11] varieties. In: Osaka Math. J. 14.1 (1962),
- Anne-Monika Spallek. Kurven vom Geschlecht 2 und ihre Anwendung in [12] Public-Key-Kryptosystemen. In: 1994.
- [13] H.M. Stark. Values of L-Functions at s = 1 I. L-Functions for quadratic forms. In: Advances in Mathematics 7.3 (1971),
- Marco Streng. An explicit version of Shimura's reciprocity law for Siegel modular [14] functions. 2011. arXiv: 1201.0020 [math.NT]
- [15] Paul B. van Wamelen. Examples of genus two CM curves defined over the rationals. In: Math. Comput. 68 (1999),

Credits. Poster template is a modified version of Dreuw and Deselaer's Poster template. Emojis are from Twitter's open-source emoji project, twemoji.

