
COUNTING POINTS ON SUPERELLIPTIC CURVES IN AVERAGE POLYNOMIAL TIME

ANDREW V. SUTHERLAND

ABSTRACT. We describe the practical implementation of an average polynomial-time algorithm for counting points on
superelliptic curves defined over Q that is substantially faster than previous approaches. Our algorithm takes as input
a superelliptic curve ym = f (x) with m ≥ 2 and f ∈ Z[x] any squarefree polynomial of degree d ≥ 3, along with a
positive integer N . It can compute #X (Fp) for all p ≤ N not dividing m lc(f)disc(f) in time O(md3N log3 N log log N).
It achieves this by computing the trace of the Cartier–Manin matrix of reductions of X . We can also compute the Cartier–
Manin matrix itself, which determines the p-rank of the Jacobian of X and the numerator of its zeta function modulo p.

In memory of Peter L. Montgomery.

1. INTRODUCTION

Let X/k by a smooth projective curve of genus g > 0 whose function field is defined by an equation of the form

ym = f (x)

with m > 1 prime to the characteristic p of k and f ∈ k[x] a squarefree polynomial of degree d ≥ 3. We shall
call such a curve X a superelliptic curve. We note that not all authors require f to be squarefree or p - m, while
others require d and m to be coprime; our definition follows the convention in [26, 36] and is equivalent to the
class of cyclic covers of P1 considered in [3]. One can compute the genus of X as

(1) g =
(d − 2)(m− 1) +m− gcd(m, d)

2
via the Riemann-Hurwitz formula. Well known examples of superelliptic curves include elliptic curves, hyperel-
liptic curves, Picard curves, and Fermat curves.

We are primarily interested in k = Q where X has an associated L-function L(X , s) =
∑

ann−s that we would
like to “compute”. For us this means computing the integers an for all n up to a bound N that is large enough for
us to approximate special values of L(X , s) to high precision, and to compute upper bounds on its analytic rank
that we can reasonably expect to be sharp. This requires N to be on the order of the square root of the conductor
of the Jacobian of X , and in practice we typically take N to be about 30 times this value.

The fact that L(X , s) is defined by an Euler product implies that it suffices to compute an for prime powers
n ≤ N . Nearly all of the prime powers n ≤ N are in fact primes p, so this task is overwhelmingly dominated by
the time to compute ap for primes p ≤ N . Indeed, even if we spend O(pe log2 p) time computing each ape ≤ N
with e > 1 (which for primes of good reduction can be achieved by naïve point-counting), we will have spent only
O(N log N) time, which is roughly the time it takes just to write down all the an for n ≤ N . For primes of good
reduction for X , which includes all p - m lc(f)disc(f),1 we can compute ap as

ap = p+ 1−#X (Fp),

in other words, by counting points on the reduction of X modulo p. See [8] for a discussion of how primes of
bad reduction may be treated. Alternatively, if one is willing to assume that the Hasse-Weil conjecture for L(X , s)
holds, one can use the knowledge of an at powers of good primes to determine the an at powers of bad primes
(and in particular, the primes p|m not treated by [8]) by using the functional equation to rule out all but one
possibility; see [4, §5] for a discussion of this approach when g = 2.

Another motivation for computing ap for good primes p ≤ N is to compute the sequence of normalized Frobe-
nius traces ap/

p
p that appear in generalizations of the Sato-Tate conjecture. The moments of this distribution

encode certain arithmetic invariants of X , including, for example, the rank of the endomorphism ring of its Jaco-
bian [11, Prop, 1], as well as information about its Sato-Tate group [33, 13]. Indeed, the initial motivation for this

The author was supported by Simons Foundation grant 550033.
1When m divides d there may be good primes that divide lc(f), but to simplify the presentation we shall exclude them.

1

https://en.wikipedia.org/wiki/Peter_Montgomery_(mathematician)

work (and its first application) was to compute Sato-Tate distributions for the three types of genus 3 superelliptic
curves with (m, d) ∈ {(3,4), (4,3), (4,4)} that arise as smooth plane quartics in the database described in [35],
which played a role in the recent classification of Sato–Tate groups of abelian threefolds [14]. The sequence of
normalized Frobenius traces can also be used to numerically investigate the error term in the Sato-Tate conjec-
ture, and in particular, predictions regarding its leading constant [9]. The ability to efficiently compute many
integer values of ap also supports investigations of generalizations of the Lang-Trotter conjecture, as well as a
recent question of Serre regarding the density of “record” primes, those for which −ap > 2g

p
p− 1 [34].

The algorithm we present here actually does more than compute ap. For each good prime p we compute a
g× g matrix Ap giving the action of the Cartier–Manin operator on a basis for the space of regular differentials of
the reduction of X modulo p; see §2 for details. This matrix is the transpose of the Hasse–Witt matrix, and like
the Hasse–Witt matrix it satisfies the identity

det(I − TAp)≡ Lp(T)mod p,

where Lp(T) is the integer polynomial that appears in both the Euler product L(X , s) =
∏

p Lp(p−s)−1 and the
numerator of the zeta function of the reduction of X modulo p:

Zp(T) := exp

�

∑

n≥1

#X (Fpn)
T n

n

�

=
Lp(T)

(1− T)(1− pT)
.

In particular, we have ap ≡ tr Ap mod p, and for p > 16g2 this uniquely determines ap ∈ Z, since |ap| ≤ 2g
p

p, by
the Weil bounds. The matrix Ap is also of independent interest, since it can be used to compute the p-rank of the
reduction of X modulo p, something that cannot be deduced solely from Lp(T).

Our main result is the following theorem, in which ‖ f ‖ := log maxi | fi | denotes the logarithmic height of a
nonzero integer polynomial f (x) =

∑

i fi x
i .

Theorem 1. Given a superelliptic curve X : ym = f (x) with f ∈ Z[x] of degree d and N ∈ Z>0, the algorithm COM-
PUTECARTIERMANINMATRICES outputs the Cartier–Manin matrices Ap of the reductions of X modulo all primes p ≤ N
not dividing m lc(f)disc(f). If we assume m, d, ‖ f ‖ are bounded by O(log N) the algorithm runs in O(m2d3N log3N)
time using O(md2N) space; it can alternatively compute Frobenius traces ap ∈ Z for p ≤ N in time O(md3N log3N).

Remark 2. The assumption m, d,‖ f ‖= O(log N) ensures that the complexity of multiplying the integer matrices
used in the algorithm is dominated by the cost of computing FFT transforms of the matrix entries, which eliminates
any dependence on the exponent ω of matrix multiplication; one can replace d3 with dω+1 and then remove
this assumption. We note that our complexity bound relies on the recently improved M(n) = n log n bound
on integer multiplication [21]. While the algorithm that achieves this bound is not practical, many FFT-based
implementations effectively achieve this growth rate within the feasible range of computation, which for our
purposes, is certainly limited to integers that fit in random access memory; see [17, Alg. 8.25], for example.

We also obtain an algorithm that can be used to compute Ap for a single superelliptic curve X/Fp. The asymp-
totic complexity is comparable to that achieved in [3] which describes the algorithm that is now implemented
in version 9 of Sage [29]. We include this result because it contains several components that are used by the
average polynomial-time algorithm we present. We should emphasize that the algorithm in [3] can compute
Lp(T)mod pn for any n≥ 1, and taking n sufficiently large yields Lp ∈ Z[T], whereas we focus solely on the case
n= 1 (we gain a small but not particularly significant performance advantage in this case).

Theorem 3. Given a superelliptic curve X : ym = f (x) with f ∈ Fp[x] of degree d, the algorithm COMPUTECARTIER-
MANINMATRIX can compute the Cartier–Manin matrix of X in O(p1/2m(dω+1+ d3 log p) log p(log log p)) time using
O(p1/2md2log p) space, and also in O((p+ d)md2 log p log log p) time using O((md + d2) log p) space.

In the article [3] noted above the authors consider a particular curve

X : y7 = x3 + 4x2 + 3x − 1

for which they estimate that it would take approximately six months (on a single core) for their algorithm to
compute the L-polynomials Lp(T) for all primes p ≤ 224 of good reduction. This is an improvement over an
estimated three years for an earlier algorithm due to Minzlaff [27] that is implemented in Magma [5]. Computing
Lp(T)mod p is an easier problem that would likely take about a week or so using the algorithm in [3], based on

2

timings taken using a representative sample of p ≤ 224. The algorithm we present here can accomplish this task
in half an hour, and less than ten minutes if we only compute Frobenius traces.

See Tables 1 and 2 in §7 for detailed performance comparisons for various shapes of superelliptic curves.

2. THE CARTIER OPERATOR

For background on differentials of algebraic function fields we refer the reader to [10, §2] and [31, §4]. Let K
be a function field of one variable over a perfect field k of characteristic p > 0 that we assume is the full field of
constants of K . Let ΩK denote its module of differentials, which we identify with its module of Weil differentials
via [31, Def. 4.17] and [31, Rm. 4.3.7]. Let x ∈ K be a separating element, so that K/k(x) is a finite separable
extension, and let K p denote the subfield of pth powers. Then (1, x , . . . , x p−1) is a basis for K as a K p-vector space,
and every z ∈ K has a unique representation of the form

z = zp
0 + zp

1 x + · · ·+ zp
p−1 x p−1,

with z0, . . . , zp−1 ∈ K , and every rational differential form ω= zd x can be uniquely written in the form

ω= (zp
0 + zp

1 x + · · · zp
p−1 x p−1)d x .

The (modified) Cartier operator C : ΩK → ΩK is then defined by

C (ω) := zp−1d x .

The Cartier operator is uniquely characterized by the following properties:
(1) C (ω1 +ω2) =C (ω1) +C (ω2) for all ω1,ω2 ∈ ΩK ;
(2) C (zpω) = zC (ω) for all z ∈ K and ω ∈ ΩK ;
(3) C (dz) = 0 for all z ∈ K;
(4) C (dz/z) = dz/z for all z ∈ K×.

In particular, it does not depend on our choice of a separating element x . Moreover, it maps regular differentials
to regular differentials and thus restricts to an operator on the space ΩK(0) := {ω ∈ ΩK : ω = 0 or div(ω) ≥ 0},
which we recall is a k-vector space whose dimension g is equal to (and often used as the definition of) the genus
of K; see [31, Ex. 4.12-17] for these and other standard facts about the Cartier operator.

Definition 4. Let ω := (ω1, . . . ,ωg) be a basis for ΩK(0) and define ai j ∈ k via

C (ω j) =
g
∑

i=1

ai jωi .

The Cartier–Manin matrix of K (with respect to ω) is the matrix A := [ai j] ∈ kg×g .

If X/k is a smooth projective curve with function field k(X) = K , we also call A the Cartier–Manin matrix of
X . This matrix is closely related to the Hasse-Witt matrix B of X , which is defined as the matrix of the p-power
Frobenius operator acting on H1(X ,OX) with respect to some basis. As carefully explained in [1], the matrices A
and B can be related via Serre duality, and for a suitable choice of basis one finds that B = [ap

i j]
T. In the case

of interest to us k = Fp is a prime field and the Cartier–Manin and Hasse–Witt matrices are simply transposes
of eachother, hence have the same rank and characteristic polynomials, but we shall follow the warning/request
of [1] and call A the Cartier–Manin matrix, although one can find examples in the literature where A is called the
Hasse–Witt matrix (see [1] for a list).

We shall apply the method of Stöhr–Voloch [32] to compute the Cartier–Manin matrix of a smooth projective
curve X with function field K = k(X). Let us write K as k(x)[y]/(F), where x ∈ X is a separating element and y
is an integral generator for the finite separable extension K/k(x) with minimal polynomial F ∈ k[x][y]. We now
define the differential operator

∇ :=
∂ 2p−2

∂ x p−1∂ y p−1

which maps x (i+1)p−1 y (j+1)p−1 to x ip y jp and annihilates monomials not of this form; it thus defines a semilinear
map ∇: K → K p. Writing Fy for ∂

∂ y F ∈ k[x , y], for any h ∈ K we have the identity

(2) C
�

h
d x
Fy

�

=
�

∇(F p−1h)
�1/p d x

Fy
,

3

given by [32, Thm. 1.1]. If we choose a basis for ΩX (0) using regular differentials of the form hd x/Fy , we can
compute the action of the Cartier operator on this basis via (2). To construct such a basis we shall use differentials
of the form

(3) ωk` := x k−1 y`−1 d x
Fy

(k,`≥ 1, k+ `≤ deg(F)− 1).

Writing F(x , y)p−1 =
∑

i, j F p−1
i j x i y j (defining F p−1

i, j ∈ k for all i, j ∈ Z), for k,`≥ 1 one finds that

(4) ∇

∑

i, j≥0

F p−1
i j x i+k−1 y j+`−1

!

=
∑

i, j≥1

F p−1
ip−k, jp−`x

(i−1)p y (j−1)p.

Now F p−1
ip−k, jp−` is nonzero only if we have (i + j)p − (k + `) ≤ (p − 1)deg(F), and k + ` ≤ deg(F)− 1, so we can

restrict the sum on the RHS to i + j ≤ deg(F)− 1. From (2) and (4) we obtain

(5) C (ωk`) =
∑

i, j≥1

�

F p−1
ip−k, jp−`

�1/p
ωi j .

When X is a smooth plane curve the complete set ofωi j defined in (3) is a basis for ΩK(0) and we can read off the
entries of the Cartier–Manin matrix for X directly from (5). In general not all of the ωi j necessarily lie in ΩK(0),
some of them might not be regular, but the subset that do (those corresponding to adjoint polynomials) form a
basis for ΩK(0); see [18, 32]. In the case of superelliptic curves this subset is given explicitly by Lemma 6 below.

Definition 5. For a, b ∈ Z with b > 0 let a rem b := a− bba/bc denote the unique integer in [0, b−1]∩ (a+ bZ).

Lemma 6. Let k be a perfect field of positive characteristic p, let X/k be a superelliptic curve defined by F(x , y) :=
f (x) − ym = 0, let d := deg f , and for i, j ≥ 1 let ωi j := x i−1 y j−1d x/Fy ∈ ΩK , where K := k(x)[y]/(F) is the
function field of X . Then the set

ω := {ωi j : mi + d j < md},
is a k-basis for ΩK(0), with 1≤ i < d − bd/mc and 1≤ j < m− bm/dc. Moreover, if we define

(6) d j := d − bd j/mc − 1 and mi := m− bmi/dc − 1,

then the ωi j ∈ω are precisely those for which 1≤ i ≤ d j and 1≤ j ≤ mi .

Proof. Note that ωi j =
1
m x i−1 y j−md x , with p - m. It follows from [26, 3.8] (which treats X/C but whose proof

also works for X/k and can be independently derived using the methods of [18]) that the set

{x i−1 y−kd x : 1≤ i < d, 1≤ k ≤ m− 1, dk−mi ≥ gcd(m, d)}

is a basis for ΩK(0). Taking k = m− j and rearranging yields the basis

ω= {ωi j : mi + d j ≤ md − gcd(m, d)}= {ωi j : mi + d j < md},

and the bounds on i and j immediately follow. �

For X/k defined by F(x , y) = f (x)− ym = 0, if we let f n
a denote the coefficient of xa in f (x)n then

F p−1
ab =

¨

f p−1−b/m
a , if m | b and b ≤ m(p− 1),

0 otherwise,

(here we have used
�p−1

e

�

(−1)e ≡ 1 mod p), thus for all 1≤ i, k < d and 1≤ j,` < m we have

F p−1
ip−k, jp−` =

¨

f p−1−(jp−`)/m
ip−k if m | (jp− `),

0 otherwise.

Now 1≤ j,` < m and p - m, so whenever F p−1
ip−k, jp−` 6= 0 we must have `= jp rem m> 0 and

(7) n j := p− 1− (jp− `)/m=
(m− j)p− (m− `)

m
= p− 1− b jp/mc.

4

Let us order the basis for ΩK(0) given by Lemma 6 as ω = (ω11,ω21, . . . ,ω12, . . .) with the ωi j ordered first
by j and then by i. The Cartier–Manin matrix of X can then be described in block form with blocks indexed by j
and ` containing entries indexed by i and k:

Ap := [B j`] j` 1≤ j,`≤ µ := m1 = m− bm/dc − 1,(8)

B j` := [(b j`
ik)

1/p]ik 1≤ i ≤ d j and 1≤ k ≤ d`,

b j`
ik :=

¨

f
n j

ip−k if (jp− `)/m ∈ Z≥0,

0 otherwise.

The diagonal blocks B j, j are square but the others typically will not be square, since the bound on i depends on j
while the bound on k depends on `. We also note that there is at most one nonzero B j` in each row j, and in
each column ` of [B j`] j`, since any nonzero B j` must have `≡ jp mod m (there will be no nonzero B j` for j if no
`≤ µ satisfies `≡ jp mod m; this happens, for example, when j = 1 and d = m= 5 with p ≡ 4 mod 5).

Example 7. For m= 5 and d = 3 we have g = 4, and the 4× 4 matrix Ap consists of 3× 3= 9 blocks: one 2× 2,
two 2× 1, two 1× 2, and four 1× 1. For k = Fp, the matrices Ap for p ≡ 1,2, 3,4 mod 5 are

f (4p−4)/5
p−1 f (4p−4)/5

p−2 0 0

f (4p−4)/5
2p−1 f (4p−4)/5

2p−2 0 0

0 0 f (3p−3)/5
p−1 0

0 0 0 f (2p−2)/5
p−1

,

0 0 f (4p−3)/5
p−1 0

0 0 f (4p−3)/5
2p−1 0

0 0 0 0

f (2p−4)/5
p−1 b(2p−4)/5

p−2 0 0

,

0 0 0 f (4p−2)/5
p−1

0 0 0 f (4p−2)/5
2p−1

f (3p−4)/5
p−1 f (3p−4)/5

p−2 0 0
0 0 0 0

,

0 0 0 0
0 0 0 0

0 0 0 f (3p−2)/5
p−1

0 0 f (2p−3)/5
p−1 0

.

For m= 3 and d = 5 we also have g = 4 but now the 4× 4 matrix Ap consists of 2× 2= 4 blocks: one 3× 3, one
3× 1, one 1× 3, and one 1× 1. For k = Fp the matrices Ap for p ≡ 1,2 mod 3 are

f (2p−2)/3
p−1 f (2p−2)/3

p−2 f (2p−2)/3
p−3 0

f (2p−2)/3
2p−1 f (2p−2)/3

2p−2 f (2p−2)/3
2p−3 0

f (2p−2)/3
3p−1 f (2p−2)/3

3p−2 f (2p−2)/3
3p−3 0

0 0 0 f (p−1)/3
p−1

,

0 0 0 f (2p−1)/3
p−1

0 0 0 f (2p−1)/3
2p−1

0 0 0 f (2p−1)/3
3p−1

f (p−2)/3
p−1 f (p−2)/3

p−2 f (p−2)/3
p−3 0

.

In both cases tr Ap = 0 for p 6≡ 1 mod m, but this is not true in general (consider m= 4 and d = 3, for example).

The block form of the Cartier–Manin matrix Ap given by (8) implies the following theorem, which plays a key
role in our algorithm for computing Ap and may also be of independent interest.

Theorem 8. Let X : ym = f (x) be a superelliptic curve over a perfect field of characteristic p > 0 with d := deg(f).
Letω be the basis ofΩk(X)(0) given by Lemma 6, and for 1≤ j ≤ m1 = m−bm/dc−1, letω j := {ωi j′ ∈ω : j′ = j}. For
1≤ j ≤ m1 the Cartier operator maps the subspace spanned byω j to the subspace spanned byω`, with `≡ jp mod m,
and this action is given by the matrix B j` defined in (8). In particular, when p ≡ 1 mod m the Cartier operator fixes
each of the subspaces spanned by ω j .

Proof. This is an immediate consequence of (8). �

Remark 9. In [7, Lemma 5.1] Bouw gives formulas for the coefficients of the Hasse–Witt matrix of a general
cyclic cover Y : ym = f (x) of P1 in terms of the (possibly repeated) roots of the polynomial f ∈ k[x], where k is
an algebraically close field of characteristic p. When f is squarefree, Bouw’s formulas agree with (8), after taking
into account the transposition needed to get the Cartier–Manin matrix and a possible change of basis (I’m grateful
to Wanlin Li and John Voight for bringing this to my attention). One can compute analogs of the formulas in (8)
to handle f that are not squarefree that take into account the multiplicities of its root, but we do not consider this
case here. Note that the genus of Y and therefore the dimensions of Ap will be less than that given by (1) when f
is not squarefree, so while the formulas may be more involved, the problem is computationally easier.

5

3. LINEAR RECURRENCES

The results of the previous section imply that to compute the Cartier–Manin matrix Ap of a superelliptic curve
X : ym = f (x) over Fp it suffices to compute certain coefficients of certain powers of f (x). In this section we
derive linear recurrences that allow us to do this efficiently, both when f ∈ Fp[x] and when f ∈ Z[x] and we
wish to compute certain coefficients of certain powers of the reduction of f modulo many primes p. In this section
we generalize [25, §2], which treated the case m = 2, in which case Ap = B consists of a single block B11 (so
j = `= 1), the powers f n that appear in the matrix entries are always the same (n= (p−1)/2), and every prime
p - m is congruent to 1 modulo m. Here we allow all of these parameters to vary.

Let f ∈ Z[x] be a squarefree polynomial of degree d ≥ 3, which we shall write as f (x) = x ch(x) with c = 0,1
and h(0) 6= 0 (note that x2 - f).2 Let h(x) =

∑r
i=0 hi x

i , and for n ≥ 1 let hn
i denote the coefficient of x i in h(x)n.

As shown in [25, §2], the identities hn+1 = h · hn and (hn+1)′ = (n+ 1)h · hn yield the linear relation

(9)
r
∑

i=0

((n+ 1)i − k)hih
n
k−i = 0,

which is valid for all k ∈ Z and n ∈ Z≥0. Observing that n j = ((m− j)p− (m−`))/m is the exponent on f in every
entry of the nonzero block B j` defined in (8), let us set n= n j and rewrite (9) as

(10) 0=
r
∑

i=0

((m− j)p+ `)i −mk)hih
n j

k−i ≡
r
∑

i=0

(`i −mk)hih
n j

k−i mod p,

which is valid for all k ∈ Z. We now define

v
n j

k := [h
n j

k−r+1, . . . , h
n j

k] ∈ Zr ,

and put s := p − 1− cn j . The entries of vn
s mod p suffice to compute the first row of block B j` in Ap; note that n

(and potentially s) depend on j and will vary from block to block. We have v
n j

0 = [0, . . . , 0, h
n j

0] = h
n j

0 v0
0 , where

v0
0 := [0, . . . , 0, 1]. Noting that s < p and p - m and p - h0 (since f is squarefree), solving for hn

k in (10) yields

(11) v
n j
s ≡

v
n j

0

(mh0)ss!

s−1
∏

i=0

M `
i ≡ mcn j h

(c+1)n j

0 (−1)cn j+1(cn j)!v
0
0

s−1
∏

i=0

M `
i mod p,

where

(12) M `
i−1 :=

0 · · · 0 (`r −mi)hr
mih0 · · · 0 (`(r − 1)−mi)hr−1

...
. . .

...
...

0 · · · mih0 (`−mi)h1

is an integer matrix that depends on the integers i,`, m and the polynomial h of degree r, but is independent of p.
This independence is the key to obtaining an average polynomial-time algorithm.

Remark 10. Alternatively, if we define wn
k := [h

n j

k+r−1, h
n j

k+r−2, . . . , h
n j

k] and t := d j p − d` − cn j , the entries of wn
t

suffice to compute the last row of block B j` in Ap. Equivalently, if we put h̃(x) := x rh(1/x) (in other words,
reverse the coefficients of h) and define ṽn

k in terms of h̃n as above, it suffices to compute ṽn
s̃ where

s̃ := rn j − t = dn j − d j p+ d` = p− 1− b(d j rem m)p/mc(13)

When m - d j we will have s̃ < s if c = 0 (and possibly even if c = 1), in which case we can compute the last row
more efficiently than the first.

We have shown how to compute the first (or last) row of each of the blocks B j` that appear in the Cartier–
Manin matrix of the superelliptic curve X (either for X/Fp or for the reductions of X/Q modulo varying primes p)
by computing reductions of products of integer matrices modulo primes. To compute the remaining rows in the
same fashion would require working modulo powers of primes, which is something we wish to avoid. In the next
section we show how to efficiently reduce the computation of the remaining rows to the computation of the first
row using translated curves, which allows us to always work modulo primes.

2The reader may wish to assume c = 0 and f = h on a first reading.

6

4. TRANSLATION TRICKS

Let X : ym = f (x) be a superelliptic curve over Fp of genus g, with d := deg(f). Let Ap be the Cartier–Manin
matrix Ap, and for a ∈ Fp, let Ap(a) be the Cartier–Manin matrix of the translated curve Xa : ym = f (x+a), whose

blocks we denote B j`(a) with entries b j`
ik(a). We omit the exponent 1/p that appears in (8) because we are now

working over Fp. The curve Xa is isomorphic to X , which forces Ap and Ap(a) to be conjugate, but these matrices
are typically not equal. Our objective in this section is to show that we can compute B j` by solving a linear system
that involves the entries that appear in just the first rows of B j`(a), where a ranges over d j = d − bd j/mc − 1
distinct values of a ∈ Fp. Note that B j` has d j rows and d` columns, and we recall from (8) that the g × g matrix
Ap is made up of µ2 blocks B j`, where µ := m1 = m−bm/dc−1, and we have d1+ · · ·+ dµ = g. We shall assume
p ≥ d, so that d j < d distinct values of a exist in Fp; for p < d we can easily compute Ap directly from (8).

The results in this section generalize [25, §5], which treated the case m= 2, where µ= 1 and A= B11. In our
current setting Ap consists of µ×µ rectangular blocks B j` that need not be square.

For a ∈ Fp and 1≤ j ≤ µ we define the upper triangular d j × d j matrix

T j(a) := [t j
ik(a)]ik, t j

ik(a) :=
�

k− 1
i − 1

�

ak−i , 1≤ i, k ≤ d j .

We also define T (a) to be the g× g block diagonal matrix with the matrices T j(a) on the diagonal, for 1≤ j ≤ µ.
We note that T j(a)−1 = T j(−a) and T (a)−1 = T (−a), as the reader may verify (or see the proof below).

Lemma 11. For a ∈ Fp we have B j`(a)T `(a) = T j(a)B j` for all 1≤ j,`≤ µ, and Ap(a) = T (a)Ap T (−a).

Proof. From the block structure of Ap given by (8) it is clear that the first statement implies the second. Let
ω(a) = {ωi j(a)} be the basis given by Lemma 6 for Xa and define ω j(a) := {ωi j′(a) ∈ω : j′ = j}. By Theorem 8,
the Cartier operator of X maps the subspace spanned by ω j to the subspace spanned by ω` via the matrix B j`,
and the Cartier operator of Xa maps the subspace spanned by ω j(a) to the subspace spanned by ω`(a) via the
matrix B j`(a). We just need to check that the matrices T `(a) and T j(a) correspond to the change of basis that
occurs when we replace x with x + a. Noting that d(x + a) = d x and F(x + a)y = F(x)y , we have

ωk j(a) = (x + a)k−1 y j−1d x/Fy =
k
∑

i=1

�

k− 1
i − 1

�

ak−i x i−1 y j−1d x/Fy

=
k
∑

i=1

t j
ik(a)ωi j =

d j
∑

i=1

t j
ik(a)ωi j ,

and it follows thatω j(a) = T j(a)ω j (here we are viewingω j andω j(a) as column vectors). This holds for any j,
including `, and the lemma follows. �

Let us now consider the computation of the d j × d` block B j`. Computing the kth entry in the first row of both
sides of the identity B j`(a)T `(a) = T j(a)B j` given by Lemma 11 yields

d
∑̀

s=1

b j`
1s(a)t

`
sk(a) =

d j
∑

t=1

t j
1t(a)b

j`
tk,

which defines a linear equation with d j unknowns b j`
tk in terms of the b j`

1s(a) and matrices T j(a) and T `(a) we
assume are known. Taking d j distinct values of a, say (a1, . . . , ad j

) yields a linear system with d j equations and d j

unknowns that we can solve because the d j × d j matrix [t j
1t(ai)]i t = [at−1

i]i t is an invertible Vandermonde matrix
V (a1, . . . , ad j

). If we now define the d j × d` matrix

(14) B j`
1 (a1, . . . , ad j

) := [b j`
1s(ai)]is

and let W j`
1 be the d j × d` matrix whose ith row is the ith row of B j`

1 times T `(ai), we can compute B j` as

(15) B j` = V (a1, . . . , ad j
)−1W j`

1 .
7

Remark 12. If we use Remark 10 to compute the last row of B j` we can compute the first row of B j`(ai) for
a1, . . . , ad j−1 and use (15) to deduce the last row of W j`

1 from the last row of B j`. One might suppose that we

could instead compute the last rows of the B j`(ai) instead of their first rows, but this is not enough to deduce B j`.

Lemma 13. Let X : ym = f (x) be a superelliptic curve over Fp with d := deg(f), and let a1, . . . , ad1
be distinct

elements of Fp, where d1 = d − bd/mc − 1. Given the matrices B j`
1 (a1, . . . , ad j

) for 1≤ j ≤ µ= m1 = m− bm/dc − 1
with `≡ jp mod m, we can compute the Cartier–Manin matrix Ap of X using O(md3) ring operations in Fp and space
for O(md + d2) elements of Fp.

Proof. We can compute V (a1, . . . , ad j
)−1 using O(d2

j) ring operations in Fp [12], and we can compute T `(ai) in

O(d2
j) ring operations (using

�k
i

�

=
�k−1

i−1

�

+
�k−1

i

�

). The computation of W j` requires O(d jd
2
`
) Fp-operations, and

the matrix product in (14) uses O(d2
j dl) ring operations, so it takes O(d2

j d` + d`d
2
j) = O(d3) ring operations to

compute each B j`. There are at most µ < m nonzero B j` to compute, so the total cost of computing Ap given the

matrices B j`
1 (a1, . . . , ad j

) is O(md3) ring operations in Fp while storing O(md + d2) elements of Fp. �

Remark 14. In terms of the genus g ∼ md/2, the bound O(md3) is equivalent to O(gd2), which is always bounded
by O(g3) but can be as small as O(g) if d = O(1) (this assumes we use a sparse representation of Ap).

Remark 15. In addition to playing a key role in our strategy for computing Ap, using translated curves can improve
performance, as noted in the case of hyperelliptic curves in [25, §6.1]. In particular, if f (x) has a rational root a
then the translated curve Xa : ym = f (x + a) = xh(x) will have r = d − 1 and c = d − r = 1, reducing both the
dimension r and number t = p − 1− cn of matrices M `

k that appear in the product in (11). It thus makes sense
to choose our distinct translation points a to be roots of f (x) whenever possible. Additionally, if d is divisible by
m and f (x) has a rational root a, we can replace X with X ′ : ym = xd f (1/x + a) = g(x), where g(x) has degree
d − 1, and this also applies to all translated curves X ′a′ . This applies both locally (over Fp) and globally (over Q).

5. ACCUMULATING REMAINDER TREES AND FORESTS

In this section we briefly recall some background on accumulating remainder trees and related complexity
bounds. Given a sequence of r× r matrices M0, . . . , MN−1 and a sequence of coprime integers m1, . . . , mN we wish
to compute the sequence of reduced partial products

Ak := M0 · · ·Mk−1 mod mk

for 1≤ k ≤ N . For 0≤ k ≤ N/2 let Bk := M2k M2k+1 and bk := m2km2k+1 (MN := MN+1 := I and m0 := mN+1 = 1).
Then A1 = M0 mod m1, and if we recursively compute Ck := B0 · · ·Bk−1 mod bk = M0 · · ·M2k−1 mod m2km2k+1 for
1≤ k ≤ N/2, we can then compute

A2k = Ck mod m2k and A2k+1 = Ck M2k mod m2k+1,

omitting C2k+1 when k = N/2. This is the REMAINDERTREE algorithm given in [24]. In our setting we actually want
to compute products of the form V

∏

k Mk that involve a row vector V , and for this problem the REMAINDERFOREST

algorithm in [24] achieves an improved time (and especially) space complexity by splitting the remainder tree
into 2κ-subtrees, for a suitable choice of κ. We record the following result from [25], in which ‖x‖ denotes the
logarithm of the largest absolute value appearing in nonzero integer matrix or integer vector x , including the case
where x is a single nonzero integer.

Theorem 16 ([25]). Given V ∈ Zr , M1, . . . , MN ∈ Zr×r , and m1, . . . , mN ∈ Z, let n := dlog2 Ne, let B be an upper
bound on ‖

∏N
j=1 m j‖ such that B/2κ is an upper bound on ‖

∏st+t−1
j=st m j‖ for 1≤ s ≤ N/t, where t := 2n−κ. Let B′ be

an upper bound on ‖V‖, and let H be an upper bound on ‖mk‖,‖Ak‖ for 1≤ k ≤ N, such that log r ≤ H, and assume
that r = O(log N). The REMAINDERFOREST algorithm computes the vectors Vk := V M1 · · ·Mk mod mk ∈ (Z/mkZ)r

for 1≤ k ≤ N in
O(r2 M(B + NH)(n−κ) + 2κr2 M(B) + r M(B′))

time using space bounded by
O(2−κr2(B + NH)(n−κ) + r(B + B′)).

This theorem implies the following corollary, which is all we shall use.
8

Corollary 17. Fix an absolute constant c > 0. Let N be a positive integer, let m1, . . . , mN be a sequence of positive
coprime integers with log mk ≤ c log N, let M0, . . . , MN−1 ∈ Zr×r be integer matrices with r,‖Mk‖ ≤ c log N, and let
v0 ∈ Zr be a row vector with ‖v0‖= cN log N. We can compute the vectors

vk := v0

k−1
∏

i=0

Mi mod mk

for 1≤ k ≤ N in O(r2N log3N) time using O(r2N) space.

Proof. Applying Theorem 16 with κ := 2 log log N , B = cN log N , B′ = c log N , and H = c log N , yields an
O(r2 M(N log N) log N) time bound using O(r2N) space. Now apply M(N) = O(N log N) from [21]. �

6. ALGORITHMS

We now give our algorithms for computing the Cartier–Manin matrix Ap of a superelliptic curve X/Fp and for
the reductions of a superelliptic curve X/Q modulo all good primes p ≤ N . In the descriptions below, expressions
of the form “a rem m” denote the least nonnegative remainder in Euclidean division of a by m. As above we
assume X is defined by ym = f (x) with f (x) squarefree of degree d ≥ 3. We define µ := m − bm/dc − 1, and
for 1 ≤ j ≤ µ we put d j := d − bd j/mc − 1, with d1 ≥ d2 ≥ · · · dµ as in (6). Recall that the genus g of X is
g := ((d − 2)(m− 1) +m− gcd(m, d))/2, as in (1).

Algorithm COMPUTECARTIERMANINMATRIX

Given m ≥ 2 and squarefree f ∈ Fp[x] of degree 3 ≤ d ≤ p with p - m, compute the Cartier–Manin matrix
Ap ∈ Fg×g

p of X : ym = f (x) as follows:

1. Fix distinct a1, . . . , ad1
∈ Fp that include as many roots of f (x) as possible.

2. For j from 1 to µ such that ` := jp rem m≤ µ:

a. For i from 1 to d j:

i. Let f (x + ai) = x ch(x) ∈ Fp[x] with c ∈ {0,1} and put r := deg(h).
ii. Set n := ((m− j)p− (m− `))/m ∈ Z and s := p− 1− cn.

iii. Compute ws := v0
0

∏s−1
i=0 M `

i ∈ Fr
p, with M `

i ∈ Fr×r
p as in (12), and us := s! ∈ Fp.

iv. Compute α := vn
s = m−shn−s

0 u−1
s ws ∈ Fr

p via (11).

v. Let b j`
1 (ai) := [αr ,αr−1, . . .αr−d`+1] ∈ Fd`

p .

b. Let B j`
1 ∈ F

d j×d`
p be the matrix with ith row b j`

1 (ai) as in (14) and use B j`
1 to compute B j` ∈ F

d j×d`
p via (15).

3. Output Ap := [B j`] j` ∈ Fg×g
p defined as in (8), with B j` := 0 for ` 6≡ jp mod m.

There are two ways to compute ws in step iii. One is to compute s vector-matrix products wi+1 := wi M
`
i starting

with w0 := [0, . . . , 0, 1] ∈ Fr
p, which can be accomplished using O(pr) ring operations in Fp using O(r log p) space

(note that M `
i has only 2r−1 nonzero entries). Alternatively one can use the Bostan-Gaudry-Schost algorithm [6],

which uses an optimized interpolation/evaluation approach to compute products of matrices over polynomial
rings evaluated along an arithmetic progression; in our setting we view the M `

i as matrices of linear polynomials
in i evaluated along the arithmetic progression i = 0,1, 2, . . . , s − 1. This involves O(p1/2(rω + r2 log p) ring
operations in Fp using O(r2p1/2) space, via [6, Thm. 8] and [22], and we can similarly compute us = s! (but note
that us = −1 in the typical case where c = 0).

We now prove Theorem 3, which we restate here for convenience.

Theorem 3. Given a superelliptic curve X : ym = f (x) with f ∈ Fp[x] of degree d, the algorithm COMPUTECARTIER-
MANINMATRIX can compute the Cartier–Manin matrix of X in O(p1/2m(dω+1+ d3 log p) log p(log log p)) time using
O(p1/2md2log p) space, and also in O((p+ d)md2 log p log log p) time using O((md + d2) log p) space.

Proof. The theorem follows from Lemma 13, provided that we can compute the matrices B j`
1 (a1, . . . , ad j

)within the
stated complexity bounds. This computation is dominated by the cost of step iii, which is executed O(md) times.
The cost of a ring operation in Fp can be bounded by O(M(log p)) via [17, Thm. 9.9], which is O(log p log log p),

9

by [21]. The Bostan-Gaudry-Schost approach yields a bit-complexity of O(p1/2(dω+ d2 log p) log p log log p) time
and O(d2p1/2 log p) space per iteration, and the vector-matrix multiplication approach yields a bit-complexity of
O(pd log p log log p) and O(d log p) space per iteration; the theorem follows. �

We now present our main result, an average polynomial-time algorithm to compute the Cartier–Manin matrices
of the reductions of a superelliptic curve X/Q at all good primes p ≤ N .
Algorithm COMPUTECARTIERMANINMATRICES

Given m≥ 2 and squarefree f ∈ Z[x] of degree d ≥ 3, compute the Cartier–Manin matrices Ap of the reductions
of X : ym = f (x) modulo primes p ≤ N with p - m lc(f)disc(f) as follows:

1. For primes p ≤ N with p - m lc(f)disc(f) initialize Ap ∈ Fg×g
p to the zero matrix.

2. Fix distinct a1, . . . , ad1
∈ Z that include as many roots of f as possible.

3. For each pair of integers j,` ∈ [1,µ]:
a. Compute the set P = {p1, p2, · · · } of primes p ≤ N with jp ≡ `mod m

such that p - m lc(f)disc(f) and a1, . . . , ad1
are distinct modulo p.

b. If the set P is empty proceed to the next pair j,`.

c. For i from 1 to d j:

i. Let f (x + ai) = x ch(x) ∈ Z[x] with c ∈ {0,1} and put r := deg(h).
ii. Let N ′ := N if c = 0 and N ′ := b(jN − `)/m)c otherwise.

iii. Define coprime moduli m1, . . . , mN ′ as follows:
If c = 0 then mk := k+ 1 for k+ 1 ∈ P.
If c = 1 then mk := (mk+ `)/ j for (mk+ `)/ j ∈ P.
For any mk not defined above, let mk := 1.

For p ∈ P let k(p) denote the index k of the mk for which mk = p.

iv. Compute wk := v0
0

∏k−1
i=0 M `

i mod mk and uk := k! mod mk for 1≤ k ≤ N ′ as in Corollary 17.

v. For p ∈ P use wk(p), uk(p) to compute b j`
1 (ai) ∈ Fd`

p as in COMPUTECARTIERMANINMATRIX.

d. For p ∈ P, let B j`
1 ∈ F

d j×d`
p have rows b j`

1 (ai) ∈ Fd`
p as in (14), use B j`

1 to compute B j` ∈ F
d j×d`
p via (15), and

set the j,` block of Ap to B j` as in (8).

4. Let S be the set of primes p ≤ N satisfying p - m lc(f)disc(f) for which the a1, . . . ad1
are not distinct modulo p.

For p ∈ S compute Ap using algorithm COMPUTECARTIERMANINMATRIX if p ≥ d and otherwise compute Ap
directly from (8) by extracting coefficients of powers of f ∈ Fp[x].

5. Output Ap ∈ Fg×g
p for all primes p ≤ N such that p - m lc(f)disc(f).

Remark 18. To compute Frobenius traces ap ∈ Z, we modify step 3 to loop over integers j = ` ∈ [1,µ] and output
just the traces of the Ap in step 5. This gives the traces of Frobenius ap mod p. For p > 16g2 these determine
ap ∈ Z, by the Weil bounds, and for p ≤ 16g2 we can compute ap = p + 1−#X (Fp) by enumerating values of
f (x) and looking them up in a precomputed table of mth powers.

Remark 19. The inner loop in step 3.c is executed (up to) µg times. Each of these computations is completely
independent of the others, which makes it easy to efficiently distribute the work across µg threads. In principal
one can also parallelize the integer matrix multiplications performed by the REMAINDERFOREST algorithm in
step iv, but in practice it is extremely difficult to do this efficiently.

We now prove Theorem 1, which we restate for convenience.

Theorem 1. Given a superelliptic curve X : ym = f (x) with f ∈ Z[x] of degree d and N ∈ Z>0, the algorithm COM-
PUTECARTIERMANINMATRICES outputs the Cartier–Manin matrices Ap of the reductions of X modulo all primes p ≤ N
not dividing m lc(f)disc(f). If we assume m, d, ‖ f ‖ are bounded by O(log N) the algorithm runs in O(m2d3N log3N)
time using O(md2N) space; it can alternatively compute Frobenius traces ap ∈ Z for p ≤ N in time O(md3N log3N).

Proof. The total time to compute all the sets P using a sieve is bounded by O(N log N) time using O(N) space,
and this also bounds the total time and space for steps i, ii, iii, under our assumption that m, d,‖ f ‖ = O(log N).

10

Corollary 17 yields an O(d2N log3 N) bound on each of the O(m2d) iterations of step iv. This yields the claimed
time bound of O(m2d3N log3 N) for step 3.c, which we claim dominates. Lemma 13 implies that the total cost of
step 3.d is bounded by O(π(N)m2d3 log N), which is negligible, as is the cost of the rest of the algorithm. Note that
the cardinality of the set S in step 4 is at worst quadratic in d and log(N) under our assumption ‖ f ‖= O(log N),
so we can easily afford the calls to COMPUTECARTIERMANINMATRIX and use a brute force approach to compute Ap
for primes p < d of good reduction.

The space bound follows from the bound in Corollary 17, which covers steps iv (it is easy to see that all of the
other steps fit within the claimed bound).

To compute Frobenius traces ap ∈ Z we apply Remark 18 and note that restricting to j = ` in step 3 reduces
the number of iterations of the main loop by a factor of m. The cost of computing #X (Fp) by looking up values
of f (x) in a table of mth powers is O(pd) ring operations in Fp. The total time to compute ap = p+ 1−#X (Fp)
for good p ≤ 16g2 is then O(d g2π(g2) log g log log g) = O(d(log N)4 log log N), which is negligible. �

7. PERFORMANCE COMPARISON

Tables 1 and 2 compare the performance of the average polynomial-time algorithm COMPUTECARTIERMAN-
INMATRICES with the Õ(p1/2) algorithm for computing zeta functions of cyclic covers implemented in Sage ver-
sion 9.0. The Sage implementation provides the function CyclicCover which takes an integer m and a square-
free polynomial f ∈ Fp[x] and returns an object that represents a superelliptic curve ym = f (x) over Fp. Invoking
the frobenius_matrix method of this object with the p-adic precision set to 1 yields a matrix that encodes es-
sentially the same information as the Cartier–Manin matrix Ap; in particular it determines the p-rank of X and its
zeta function modulo p.

Each table lists the genus g and invariants m and d of a superelliptic curve X : ym = f (x) defined over Q with
f ∈ Z[x] of degree d. There is a row for every pair m ≥ 2 and d ≥ 3 for which m2d3 ≤ 65, which includes
all superelliptic curves of genus g ≤ 5 as well as plane quintics and sextics, and other curves of genus up to 15.
The times listed are average times in milliseconds for primes p ≤ N for increasing values of N . For each N three
times are listed: one to compute Frobenius matrices using Sage, one to compute Cartier–Manin matrices using
algorithm COMPUTECARTIERMANINMATRICES, and one to to compute Frobenius traces via Remark 18. For the
Sage timings we only computed Frobenius matrices for every nth good prime p ≤ N with n chosen so that the
computation would complete in less than a day (many of the computations would have taken months otherwise).

In Table 1 we show timings with f ∈ Z[x] having coefficients fd+1−n := pn for 1 ≤ n ≤ d, where pn is the nth
prime. These polynomials are all irreducible, so our algorithm was unable to choose any ai to be roots of f ; this
is the generic situation, and the worst case for our algorithm. In Table 2 we show timings with f ∈ Z[x] a product
of linear factors, which represents the best case for our algorithm.

11

N = 216 N = 220 N = 224 N = 228

g m d sage matrix trace sage matrix trace sage matrix trace sage matrix trace

1 2 3 21 0.01 0.01 27 0.05 0.05 67 0.13 0.13 230 0.30 0.30
1 2 4 27 0.04 0.04 41 0.17 0.16 120 0.42 0.42 454 0.95 0.93
1 3 3 27 0.02 0.02 46 0.08 0.08 141 0.20 0.20 499 0.48 0.49
2 2 5 30 0.08 0.08 55 0.38 0.38 163 0.92 0.92 580 2.02 2.01
2 2 6 42 0.16 0.16 83 0.73 0.74 280 1.77 1.77 1070 3.89 3.92
3 2 7 53 0.24 0.24 112 1.30 1.29 307 3.19 3.12 1217 6.47 6.71
3 2 8 74 0.34 0.34 169 2.15 2.07 528 5.02 4.94 2106 10.20 10.57
3 3 4 34 0.10 0.05 61 0.53 0.26 178 1.38 0.70 702 3.14 1.63
3 4 3 32 0.03 0.03 58 0.14 0.15 165 0.37 0.37 601 0.89 0.89
3 4 4 49 0.09 0.09 101 0.44 0.44 343 1.14 1.14 1283 2.55 2.63
4 2 9 96 0.43 0.44 194 3.22 3.24 576 7.65 7.70 2214 16.12 15.90
4 2 10 138 0.55 0.55 319 4.78 4.65 974 11.10 10.98 3693 22.13 22.79
4 3 5 47 0.22 0.11 93 1.29 0.65 287 3.37 1.67 1105 7.64 3.68
4 3 6 71 0.36 0.18 152 2.59 1.28 535 6.34 3.20 2121 14.04 7.07
4 5 3 37 0.08 0.03 68 0.40 0.13 200 1.19 0.40 778 2.96 0.99
4 6 3 49 0.05 0.06 112 0.24 0.24 313 0.64 0.64 1184 1.53 1.53
5 2 11 170 0.71 0.70 361 7.04 7.06 1024 16.57 16.30 3695 33.61 33.32
5 2 12 263 0.85 0.86 555 9.56 9.54 1537 21.84 22.23 5820 45.98 45.65
6 3 7 90 0.53 0.27 200 4.61 2.32 632 11.53 5.52 2360 24.18 12.18
6 4 5 63 0.31 0.20 130 1.71 1.08 424 4.37 2.73 1658 9.86 5.88
6 5 4 55 0.21 0.07 113 1.29 0.42 344 3.76 1.25 1358 9.08 3.03
6 5 5 90 0.39 0.13 201 3.06 1.02 671 8.98 2.92 2749 19.39 6.64
6 7 3 49 0.14 0.04 94 0.68 0.17 290 2.24 0.56 1146 5.57 1.39
7 3 8 134 0.75 0.38 294 8.17 4.05 835 19.07 9.38 3279 40.32 20.49
7 3 9 187 0.99 0.50 437 12.77 6.32 1462 28.54 14.50 5567 61.82 29.67
7 4 6 102 0.52 0.34 232 3.42 2.12 806 8.58 5.21 3160 18.99 11.54
7 6 4 75 0.21 0.15 153 1.08 0.77 524 2.79 2.00 2112 6.46 4.55
7 8 3 55 0.13 0.06 111 0.60 0.29 366 1.72 0.83 1333 4.32 2.00
7 9 3 67 0.16 0.06 140 0.82 0.26 479 2.64 0.82 1870 6.77 2.03
9 4 7 139 0.80 0.53 302 6.49 3.94 941 15.10 9.42 3566 32.97 20.43
9 7 4 75 0.40 0.08 156 2.77 0.56 510 9.14 1.78 2012 20.90 4.21
9 8 4 92 0.32 0.17 231 1.85 0.92 720 5.43 2.57 2941 12.58 6.12
9 10 3 65 0.16 0.08 137 0.76 0.34 429 2.29 1.01 1694 5.82 2.50

10 5 6 114 0.80 0.20 265 8.08 2.02 840 22.89 5.62 3256 51.62 12.42
10 6 5 97 0.43 0.32 206 2.51 1.83 701 6.28 4.61 2700 14.07 9.88
10 6 6 175 0.71 0.53 379 5.05 3.49 1278 11.95 8.59 5202 26.43 18.72
10 11 3 73 0.30 0.05 158 1.77 0.25 501 6.11 0.88 1878 15.32 2.12
10 12 3 91 0.17 0.11 187 0.80 0.49 636 2.35 1.39 2558 5.87 3.45
12 7 5 118 0.73 0.15 246 6.75 1.33 840 20.80 4.13 3228 48.09 9.23
12 9 4 94 0.43 0.14 199 2.88 0.87 657 8.87 2.64 2655 21.75 6.24
12 13 3 94 0.38 0.05 175 2.43 0.29 616 8.24 1.03 2244 20.02 2.49
13 10 4 117 0.47 0.19 264 2.90 1.09 1008 8.62 3.17 3762 20.08 7.47
13 14 3 90 0.30 0.09 193 1.58 0.43 619 5.01 1.36 2430 12.79 3.40
13 15 3 109 0.31 0.09 235 1.69 0.46 811 5.54 1.45 3238 13.99 3.72
15 11 4 111 0.81 0.10 252 6.29 0.79 839 22.76 2.84 3334 52.85 6.59
15 16 3 110 0.32 0.11 223 1.79 0.53 733 5.66 1.63 2805 14.16 4.13

TABLE 1. Comparison with Õ(p1/2) Sage 9.0 implementation [3] for superelliptic curves ym = f (x)
where f ∈ Z[x] is irreducible of degree d. Times are millisecond averages per prime p ≤ N for a single
thread running on a 2.8GHz Cascade Lake Intel CPU. The sage column lists the average time to execute
CyclicCover(m,f.change_ring(GF(p)).frobenius_matrix(1) in Sage 9.0, the matrix column
lists the average time to compute the Cartier–Manin matrix modulo p using algorithm COMPUTECARTIER-
MANINMATRICES, and the trace column is the average time to compute the trace of Frobenius via Remark 18.

12

N = 216 N = 220 N = 224 N = 228

g m d sage matrix trace sage matrix trace sage matrix trace sage matrix trace

1 2 3 20 0.01 0.01 28 0.01 0.01 73 0.04 0.04 230 0.09 0.08
1 2 4 26 0.01 0.01 43 0.04 0.05 119 0.12 0.12 456 0.28 0.27
1 3 3 27 0.00 0.00 45 0.01 0.01 131 0.02 0.02 500 0.05 0.05
2 2 5 29 0.03 0.03 53 0.11 0.12 151 0.31 0.30 583 0.72 0.72
2 2 6 41 0.05 0.06 84 0.26 0.28 267 0.66 0.64 1071 1.40 1.40
3 2 7 53 0.10 0.10 116 0.55 0.54 311 1.22 1.20 1219 2.58 2.59
3 2 8 77 0.13 0.14 164 0.94 0.92 532 2.06 2.04 2094 4.19 4.23
3 3 4 34 0.03 0.02 62 0.14 0.07 184 0.41 0.20 701 0.96 0.47
3 4 3 31 0.01 0.01 55 0.03 0.03 157 0.08 0.08 605 0.20 0.20
3 4 4 48 0.02 0.02 103 0.08 0.09 334 0.23 0.23 1286 0.55 0.54
4 2 9 94 0.19 0.19 199 1.50 1.47 586 3.48 3.41 2232 7.10 7.12
4 2 10 135 0.25 0.25 295 2.30 2.29 942 5.37 5.24 3816 10.53 10.37
4 3 5 46 0.07 0.04 92 0.38 0.19 283 1.06 0.51 1111 2.40 1.21
4 3 6 72 0.12 0.06 153 0.79 0.41 529 1.85 0.91 2098 3.96 1.99
4 5 3 38 0.02 0.01 68 0.05 0.02 202 0.16 0.05 780 0.39 0.13
4 6 3 48 0.01 0.01 95 0.03 0.03 301 0.09 0.09 1186 0.22 0.21
5 2 11 171 0.31 0.31 354 3.45 3.46 977 7.85 7.87 3682 15.94 15.85
5 2 12 246 0.37 0.40 530 5.11 5.12 1543 11.30 11.17 5857 22.61 22.62
6 3 7 89 0.19 0.10 192 1.47 0.72 605 3.57 1.78 2361 7.67 3.79
6 4 5 64 0.08 0.05 136 0.32 0.25 416 0.94 0.61 1660 2.17 1.43
6 5 4 55 0.07 0.03 108 0.30 0.10 348 1.00 0.32 1369 2.43 0.81
6 5 5 92 0.09 0.03 196 0.52 0.15 710 1.48 0.48 2755 3.49 1.16
6 7 3 50 0.03 0.01 96 0.06 0.02 296 0.23 0.06 1146 0.63 0.15
7 3 8 125 0.28 0.16 276 3.05 1.54 836 7.04 3.49 3234 15.09 7.64
7 3 9 193 0.35 0.18 427 4.09 2.16 1409 9.28 4.74 5551 21.20 10.35
7 4 6 98 0.17 0.12 227 0.98 0.65 774 2.30 1.48 3143 5.26 3.33
7 6 4 70 0.06 0.04 155 0.23 0.17 525 0.66 0.44 2108 1.53 1.04
7 8 3 55 0.02 0.02 111 0.06 0.04 343 0.20 0.12 1333 0.51 0.30
7 9 3 69 0.03 0.01 141 0.08 0.03 476 0.28 0.09 1876 0.76 0.23
9 4 7 127 0.30 0.19 289 1.85 1.23 917 4.56 2.88 3555 10.28 6.23
9 7 4 71 0.12 0.03 156 0.61 0.10 509 1.78 0.35 2007 4.47 0.88
9 8 4 93 0.09 0.04 211 0.33 0.18 752 1.05 0.50 2946 2.64 1.23
9 10 3 76 0.04 0.02 139 0.08 0.04 430 0.26 0.12 1694 0.66 0.31

10 5 6 115 0.25 0.07 253 2.08 0.52 825 5.96 1.49 3265 13.97 3.37
10 6 5 101 0.13 0.09 213 0.68 0.42 676 1.61 1.06 2693 3.83 2.43
10 6 6 155 0.19 0.15 365 1.23 0.86 1276 2.94 2.00 5195 6.46 4.34
10 11 3 74 0.05 0.01 154 0.14 0.02 477 0.52 0.08 1878 1.48 0.21
10 12 3 87 0.03 0.02 189 0.08 0.07 640 0.26 0.17 2552 0.63 0.42
12 7 5 113 0.18 0.04 242 1.22 0.24 879 3.99 0.77 3227 9.89 1.93
12 9 4 95 0.11 0.04 204 0.60 0.17 672 1.66 0.52 2663 4.30 1.26
12 13 3 83 0.06 0.01 175 0.19 0.02 569 0.71 0.09 2245 2.06 0.25
13 10 4 119 0.13 0.05 267 0.64 0.22 942 1.69 0.65 3779 4.32 1.56
13 14 3 92 0.05 0.02 191 0.14 0.05 617 0.47 0.15 2429 1.23 0.37
13 15 3 111 0.05 0.02 240 0.14 0.04 806 0.50 0.14 3246 1.35 0.36
15 11 4 119 0.20 0.04 251 1.15 0.14 836 3.92 0.49 3314 9.89 1.26
15 16 3 100 0.05 0.02 218 0.15 0.06 728 0.52 0.19 2797 1.37 0.48

TABLE 2. Timings for superelliptic curves X : ym = f (x) when f ∈ Z[x] splits into d dis-
tinct linear factors. Times are millisecond averages per prime p ≤ N for a single thread run-
ning on a 2.8GHz Cascade Lake Intel CPU. The sage column lists the average time to execute
CyclicCover(m,f.change_ring(GF(p)).frobenius_matrix(1) in Sage 9.0, the matrix column
lists the average time to compute the Cartier–Manin matrix modulo p using algorithm COMPUTECARTIER-
MANINMATRICES, and the trace column is the average time to compute the trace of Frobenius via Remark 18.

13

REFERENCES

[1] Jeffrey D. Achter and Everett W. Howe, Hasse–Witt and Cartier–Manin matrices: A warning and a request, Arithmetic Geometry: Com-
putations and Applications, Contemporary Mathematics 722 (2019), 1–18, American Mathematical Society. (MathSciNet: MR3896846,
arXiv: 1710.10726v5)

[2] Leonard M. Adleman and Ming-Deh Huang, Counting points on curves and abelian varieties over finite fields, International Algorithmic
Number Theory Symposium (ANTS I), LNCS 1122 (1996), 1–16, Springer. (MathSciNet: MR1446493)

[3] Vishal Arul, Alex J. Best, Edgar Costa, Richard Magner, Nicholas Triantafillou, Computing zeta functions of cyclic covers in large characteristic,
in Algorithmic Number Theory 13th International Symposium (ANTS XIII), Open Book Series 2 (2019), 37–53, Mathematical. Sciences.
Publishers. (MathSciNet: MR3952003, arXiv: 1806.02262)

[4] Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki A database of genus 2 curves over the ra-
tional numbers, Twelfth Algorithmic Number Theory Symposium (ANTS XII), LMS J. Comput. Math. 19a (2016), 235–254. (Math-
SciNet: MR3540958, arXiv: 1602.03715)

[5] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997),
235–265. (MathSciNet: MR1484478).

[6] Alan Bostan, Pierrick Gaudry and Éric Schost. Linear recurrences with polynomial coefficients and application to integer factorization and
Cartier–Manin operator, SIAM J. Comput. 36 (2007), 1777–1806. (MathSciNet: MR2299425, HAL-Inria: 00103401)

[7] Irene Bouw, The p-rank of ramified covers curves, Compositio Math. 126 (2001), 295–322. (MathSciNet: MR1834740)
[8] Irene Bouw, Stefan Wewers, Computing L-functions and semistable reduction of superelliptic curves, Glasg. Math. J. 59 (2017), 77-108.

(MathSciNet: MR3576328, arXiv: 1211.4459)
[9] Alina Bucur, Francesc Fité, and Kiran S. Kedlaya, Effective Sato-Tate conjecture for abelian varieties and applications, preprint, 2020.

(arXiv: 2002.08807)
[10] Claude Chevalley, Introduction to the theory of algebraic functions of one variable, Mathematical Surveys, 6 (1951), American Mathemat-

ical Society. (MathSciNet: MR0042164)
[11] Edgar Costa, Francesc Fité, and Andrew V. Sutherland, Arithmetic invariants form Sato–Tate moments, C.R. Math. Acad. Sci. Paris 357

(2019)), 823–826. (MathSciNet: MR4038255, arXiv: 1910.00518)
[12] Alfredo Eisinberg and Giuseppe Fedele, On the inversion of the Vandermonde matrix, Appl. Math. Comput. 174 (2006), 1384–1397.

(MathSciNet: MR2220623).
[13] Francesc Fité, Kiran S. Kedlaya, Victor Rotger, and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in

genus 2, Compositio Mathematica 148 (2012), 1390–1442. (MathSciNet: MR2982436, arXiv: 1110.6638)
[14] Francesc Fité, Kiran S. Kedlaya, and Andrew V. Sutherland, Sato–Tate groups of abelian threefolds: a preview of the classification, preprint,

2019. (arXiv: 1911.02071)
[15] Pierrick Gaudry and Nicolas Gürel, An extension of Kedlaya’s point-counting algorithm to superelliptic curves, Advances in Cryptology —

ASIACRYPT 2001, LNCS 2248 (2001), 480–494. (MathSciNet: MR1934859)
[16] Cécile Gonçalves, A point counting algorithm for cyclic covers of the projective line, Algorithmic Arithmetic, Geometry, and Coding Theory,

Contemp. Math. 637 (2015), 145–172, American Mathematical Society. (MathSciNet: MR3364447, arXiv: 1408.2095)
[17] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, third edition, Cambridge University Press, 2013. (Math-

SciNet: MR3087522)
[18] Daniel Gorenstein, An arithmetic theory of adjoint plane curves1, Trans. Amer. Math. Soc. 72 (1952), 414–436. (Math-

SciNet: MRMR0049591)
[19] Torbjörn Granlund, The GNU multiple precision arithmetic library (version 6.2.0), http://gmplib.org.
[20] David Harvey, Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc. 111 (2015), 1379–1401. (MathSciNet: MR3447797

arXiv: 1402.3439).
[21] David Harvey and Joris van der Hoeven, Integer multiplication in time O(n log n), preprint, 2019. (HAL: 02070778)
[22] David Harvey and Joris van der Hoeven, Polynomial multiplication over finite fields in time O(n log n), preprint, 2019. (HAL: 02070816)
[23] David Harvey, Maike Massierer, and Andrew V. Sutherland, Computing L-series of geometrically hyperelliptic curves of genus three,

in Algorithmic Number Theory 12th International Symposium (ANTS XII), LMS J. Comput. Math. 19A (2016), 220–234. (Math-
SciNet: MR3540957, arXiv: 1605.04708)

[24] David Harvey and Andrew V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, Algorithmic
Number Theory 11th International Symposium (ANTS XI), LMS J. Comput. Math. 17A (2014), 257–273. (MathSciNet: MR3240808,
arXiv: 1402.3246)

[25] David Harvey and Andrew V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, II, in Frobe-
nius Distributions: Lang–Trotter and Sato–Tate Conjectures, Contemp. Math. 663 (2016), 127–147, American Mathematical Society.
(MathSciNet: MR3502941 arXiv: 1410.5222)

[26] Pascal Molin and Christian Neurohr, Computing period matrices and the Abel-Jacobi map of superelliptic curves, Math. Comp. 88 (2019),
847–888. (MathSciNet: MR3882287, arXiv: 1707.07249)

[27] Moritz Minzlaff, Computing zeta functions of superelliptic curves in larger characteristic, Math. Comput. Sci. 3 (2010), 209–224. (Math-
SciNet: MR2608297)

[28] Jonathan Pila, Frobenius maps of abelian varieties and fining roots of unity in finite fields, Math. Comp. 55 (1990), 745–763 (Math-
SciNet: MR1035941)

[29] The Sage Developers, SageMath, the Sage Mathematics Software System Version 9.0, available at https://www.sagemath.org, 2019.
[30] René Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44 (1985), 483–494.
[31] Henning Stichtenoth, Algebraic function fields and codes, Springer, 2009. (MathSciNet: MR2464941)

14

https://www.ams.org/books/conm/722/14534
https://mathscinet.ams.org/mathscinet-getitem?mr=3896846
https://arxiv.org/abs/1710.10726v5
https://doi.org/10.1007/3-540-61581-4_36
https://mathscinet.ams.org/mathscinet-getitem?mr=1446493
https://msp.org/obs/2019/2-1/p03.xhtml
https://mathscinet.ams.org/mathscinet-getitem?mr=3952003
https://arxiv.org/abs/1806.02262
https://dx.doi.org/10.1112/S146115701600019X
https://dx.doi.org/10.1112/S146115701600019X
https://mathscinet.ams.org/mathscinet-getitem?mr=3540958
https://arxiv.org/abs/1602.03715
http://dx.doi.org/10.1006/jsco.1996.0125
https://mathscinet.ams.org/mathscinet-getitem?mr=1484478
https://doi.org/10.1137/S0097539704443793
https://doi.org/10.1137/S0097539704443793
https://mathscinet.ams.org/mathscinet-getitem?mr=2299425
https://hal.inria.fr/inria-00103401/
https://www.cambridge.org/core/journals/compositio-mathematica/article/prank-of-ramified-covers-of-curves/6D1BEC9200F6849339665AC4371AB7AF
https://mathscinet.ams.org/mathscinet-getitem?mr=1834740
https://doi.org/10.1017/S0017089516000057
https://mathscinet.ams.org/mathscinet-getitem?mr=3576328
https://arxiv.org/abs/1211.4459
https://arxiv.org/abs/2002.08807
https://arxiv.org/abs/2002.08807
https://doi.org/10.1090/surv/006
https://mathscinet.ams.org/mathscinet-getitem?mr=0042164
https://doi.org/10.1016/j.crma.2019.11.008
https://mathscinet.ams.org/mathscinet-getitem?mr=4038255
https://arxiv.org/abs/1910.00518
https://doi.org/10.1016/j.amc.2005.06.014
https://mathscinet.ams.org/mathscinet-getitem?mr=2220623
https://doi.org/10.1112/S0010437X12000279
https://doi.org/10.1112/S0010437X12000279
https://mathscinet.ams.org/mathscinet-getitem?mr=2982436
https://arxiv.org/abs/1110.6638
https://arxiv.org/abs/1911.02071
https://arxiv.org/abs/1911.02071
https://doi.org/10.1007/3-540-45682-1_28
https://mathscinet.ams.org/mathscinet-getitem?mr=1934859
https://doi.org/10.1090/conm/637/12754
https://mathscinet.ams.org/mathscinet-getitem?mr=3364447
https://arxiv.org/abs/1408.2095
https://doi.org/10.1017/CBO9781139856065
https://mathscinet.ams.org/mathscinet-getitem?mr=3087522
https://doi.org/10.2307/1990710
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0049591
https://gmplib.org/manual/
http://gmplib.org
https://doi.org/10.1112/plms/pdv056
https://mathscinet.ams.org/mathscinet-getitem?mr=3447797
https://arxiv.org/abs/1402.3439
https://hal.archives-ouvertes.fr/hal-02070778/document
https://hal.archives-ouvertes.fr/hal-02070778/
https://hal.archives-ouvertes.fr/hal-02070816/document
https://hal.archives-ouvertes.fr/hal-02070816/
https://doi,org/10.1112/S1461157016000383
https://mathscinet.ams.org/mathscinet-getitem?mr=3540957
https://arxiv.org/abs/1605.04708
https://dx.doi.org/10.1112/S1461157014000187
https://mathscinet.ams.org/mathscinet-getitem?mr=3240808
https://arxiv.org/abs/1402.3246
https://doi.org/10.1090/conm/663/13352
https://mathscinet.ams.org/mathscinet-getitem?mr=3502941
https://arxiv.org/abs/1410.5222
https://doi.org/10.1090/mcom/3351
https://mathscinet.ams.org/mathscinet-getitem?mr=3882287
https://arxiv.org/abs/1707.07249
https://link.springer.com/article/10.1007/11786-009-0019-4
https://mathscinet.ams.org/mathscinet-getitem?mr=2608297
https://doi.org/10.2307/2008445
https://mathscinet.ams.org/mathscinet-getitem?mr=1035941
https://www.sagemath.org
https://www.sagemath.org
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777280-6/
https://doi.org/10.1007/978-3-540-76878-4
https://mathscinet.ams.org/mathscinet-getitem?mr=2464941

[32] Karl-Otto Stöhr and José Felipe Voloch, A formula for the Cartier operator on plane algebraic curves, J. Reine Angew. Math. 377 (1987),
49–64. (MathSciNet: MR0887399)

[33] Jean-Pierre Serre, Lectures on NX (p), Research Notes in Mathematics 11, CRC Press, 2012.
[34] Jean-Pierre Serre, Record primes, personal communication, September 19, 2019.
[35] Andrew V. Sutherland, A database of nonhyerelliptic curves over Q, Thirteenth Algorithmic Number Theory Symposium (ANTS XIII), Open

Book Series 2 (2019), 443–459. (MathSciNet: MR3952027, arXiv: 1806.06289)
[36] Yuri G. Zarhin, Endomorphism algebras of abelian varieties with special reference to superelliptic Jacobians, in Geometry, Alge-

bra, Number Theory, and their Information Technology Applications, Springer Roc. Math. Stat. 251, 2018 (MathSciNet: MR3880401,
arXiv: 1706.00110)

15

https://doi.org/10.1515/crll.1987.377.49
https://mathscinet.ams.org/mathscinet-getitem?mr=0887399
http://www.crcnetbase.com/isbn/9781466501935
https://msp.org/obs/2019/2-1/p27.xhtml
https://mathscinet.ams.org/mathscinet-getitem?mr=3952027
https://arxiv.org/abs/1806.06289
https://link.springer.com/content/pdf/10.1007/978-3-319-97379-1.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=3880401
https://arxiv.org/abs/1706.00110

	1. Introduction
	2. The Cartier operator
	3. Linear recurrences
	4. Translation tricks
	5. Accumulating remainder trees and forests
	6. Algorithms
	7. Performance comparison
	References

