
AN ALGORITHM AND ESTIMATES FOR THE

ERDŐS-SELFRIDGE FUNCTION

BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Abstract. Let p(n) denote the smallest prime divisor of the integer n. Define

the function g(k) to be the smallest integer > k + 1 such that p(
(g(k)

k

)
) > k.

We present a new algorithm to compute the value of g(k), and use it to both

verify previous work [2, 15, 11] and compute new values of g(k), with our

current limit being

g(375) = 12 86399 96537 88432 18438 16804 13559.

We prove that our algorithm runs in time sublinear in g(k), and under the
assumption of a reasonable heuristic, its running time is

g(k) exp[−c(k log log k)/(log k)2(1 + o(1))] for c > 0.

1. Introduction

As stated in the abstract above, let p(n) denote the smallest prime divisor of the
integer n, and define the function g(k) to be the smallest integer > k+ 1 such that

p(
(
g(k)
k

)
) > k. So we have g(2) = 6 and g(3) = g(4) = 7.

We begin with a discussion of previous work on g(k), then state our new results,
and finally outline the rest of this paper.

1.1. Previous Work. Paul Erdős introduced the problem of estimating the func-
tion g(k) in 1969 [4]. He, along with Ecklund and Selfridge [2] showed that
g(k) > k1+c for a small constant c, showed that g(k) < ek(1+o(1)), and tabulated
g(k) up to k = 40, plus g(42), g(46), and g(52).

Scheidler and Williams [15] described how to use Kummer’s theorem to construct
a sieving problem to compute g(k), and they proceeded to find g(k) for all k ≤ 140.
Five years later, Lukes, Scheidler, and Williams [11] improved their sieve, used
special-purpose hardware, and computed g(k) for all k ≤ 200.

Successive analytic improvements on lower bounds of g(k) have been proved by
[3, 6, 10], where the strongest result known, due to Konyagin, is

g(k) > kc log k for c > 0.

We are aware of no further results on g(k) that postdate 1999.

1.2. Definitions and New Results. In computing g(k) for k ≤ 200, the authors
of [15, 11] used Kummer’s Theorem to construct a sieving problem.

Theorem 1.1 (Kummer). Let k < n be positive integers, and let p be a prime ≤ k.
Let t be a positive integer with t ≥ blogp nc. Write

k =

t∑
i=0

aip
i and n =

t∑
i=0

bip
i

1

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

2 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

as the base-p representations of k and n respectively. Then p does not divide
(
n
k

)
if

and only if bi ≥ ai for i = 0, . . . , t.

For each prime p ≤ k, this theorem gives congruences g(k) must satisfy. Our
approach is similar to [15, 11], but we selectively choose enough prime power moduli
so that we expect g(k) to be among the residues. This approach is a search for a
least residue and avoids explicit sieving. We accomplish this by using the space-
saving wheel which was described in [16]. This wheel data structure has been
successfully used in other sieving problems [17, 18, 19] but we omit the “sieving”
part that occurs after the residue is constructed. Our resulting algorithm has, so
far, verified all previous computations for g(k), and extended them for all k ≤ 375.

Let Mk :=
∏
p≤k p

blogp kc+1 and let Rk denote the number of acceptable residues,

under Kummer’s theorem, modulo Mk. Then g(k) is the least residue (greater than
k + 1) among the Rk residues. Our uniform distribution heuristic (UDH) states
that the Rk residues are, in a sense, uniformly distributed. Under this assumption,
we expect g(k) to be roughly Mk/Rk. In fact, we define ĝ(k) := Mk/Rk. The
authors of [11] studied this approximating function; it plays a central role in the
analysis of our algorithm, but not in its correctness.

Assuming the UDH implies that with high probability, we have

log g(k) = log ĝ(k) +O(log k).

Let G(x, k) count the number of n ≤ x such that p(
(
n
k

)
) > k. We show uncondi-

tionally that, for x > x0(k),

G(x, k) = (x/ĝ(k))(1 + o(1)).

These results imply that ĝ(k) should approximate g(k) reasonably well. We then
show that

0.53068 . . .+ o(1) ≤ log ĝ(k)

k/ log k
≤ 1 + o(1).

We prove a running time for our algorithm of

g(k) exp

[
−ck log log k

(log k)2

]
for a constant c > 0. We also sketch a more general argument showing our algo-
rithm’s running time is sublinear in g(k), unconditionally.

1.3. Outline. Our paper is organized as follows. In §2 we present our algorithm,
including a description of the space-saving wheel data structure. In §3 we discuss
the knapsack subproblem and techniques for splitting prime rings when deciding the
sieving modulus for the algorithm. In §4 we demonstrate each of the above steps to
compute g(10) = 46. In §5 we provide some statistical evidence for the credibility
of the UDH, show that g(k) is roughly ĝ(k) with high probability, and we give an
easy proof of our estimate for G(x, k). In §6, we show log ĝ(k) is proportional to
k/ log k and bound the running time of our algorithm. In §7, we conclude with
some computational notes.

2. The Algorithm

The naive approach is to search through all the Rk admissible residues modulo
Mk to find the smallest > k+1. However, Rk is typically too large for this, making
this algorithm practical only for very small k.

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

THE ERDŐS-SELFRIDGE FUNCTION 3

Instead, we enumerate residues that satisfy the requirements of Kummer’s the-
orem modulo N , where N is a divisor of Mk that is larger than, but near to g(k).

(1) Compute Mk, Rk, and kĝ(k) = kMk/Rk.
(2) Choose a divisor N of Mk just above our estimate kĝ(k) with the property

that there is a minimal number of residues to check. Details of how to do
this are discussed in §3.

(3) Build a ring data structure for each prime power dividing N which is a list
of admissible residues as defined by Kummer’s theorem.

(4) Construct a wheel data structure 1 with jump tables to generate the residues
modulo N ; see [16]. A jump entry is the minimum amount to add that
preserves the residue class modulo earlier rings, and jumps to an admissible
residue for the current ring. 2

(5) Rings for the remaining prime powers are also created, but not a wheel
(the jumps are not needed). We refer to these rings as filters 2 . A residue
passes the filter if, when reduced modulo the ring size, the corresponding
admissible bit is set to one. The smallest residue generated from the wheel
that also passes all the filters is g(k).

Any prime power ring that is part of the wheel, where that prime power
fully divides Mk, is not needed as a filter. Or in other words, if a prime
divides N but not Mk/N , its prime power is not needed as a filter.

(6) Now that our data structures are initialized, we generate each residue mod-
ulo N from the wheel to see if it passes the filters. As we go, we maintain
the value of the minimum residue, so far, that passed all the filters. Once
every residue from the wheel is generated, this minimum is g(k).

If we run the whole algorithm and fail to find a residue that passes the filters,
this means g(k) > N . In this case, we simply multiply our previous estimate for
g(k) by k, choose a new, larger N , and try again.

Note that the problem of finding a solution below a given bound to a system of
pairwise coprime modular congruences is known to be NP-Complete. See [5, 12].

3. Prime Splitting and Knapsack

The purpose of this section is to look at how to choose N , a divisor of Mk

that is just larger than our estimate for g(k). We want to choose N so that the
prime powers dividing N give a very low filter rate, thereby giving fewer residues
to enumerate, which makes the algorithm faster.

Note that selecting prime power moduli based on filter rate alone is not optimal.
The size of the modulus matters as well; a smaller modulus with a higher but still
good filter rate can be preferable to a large modulus with a better filter rate.

3.1. Knapsack Problem Setup. Let tp := blogp kc + 1 be the number of digits
required to write k in base p, with the aip representing these digits, so that k =∑tp−1
i=0 aipp

i. We have tp ≥ 2, and for most primes tp = 2. Define Tp to be

1Any data structure that can access residues in constant time will suffice. An anonymous referee
kindly pointed out that doubly-focused enumeration[1] will work here as well. It will require more
space and the early abort strategy described in Section 4 is a little harder to implement.

2 The ordering of the rings does not matter for correctness. For speed, it is best to put the
ring with the most jump entries last and put the best filters first.

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

4 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

the maximum exponent of p so that pTp | N . This implies 0 ≤ Tp ≤ tp, and
N =

∏
p≤k p

Tp .

Let rip := p − aip, and let Rxp :=
∏
i<x rip. Then the number of acceptable

residues modulo pTp is RTpp. The running time of the algorithm is proportional to
the number of residues modulo N , which, by the Chinese remainder theorem, is∏

p≤k

RTpp =
∏
p≤k

pTp
RTpp

pTp
= N ·

∏
p≤k

RTpp

pTp
.

We want to minimize the product of the filtering rates for primes included in N ,
which is equivalent to maximizing the reciprocal, which we write this way:∏

p≤k

pTp

RTpp
= exp

∑
p≤k

log
pTp

RTpp
.

This allows us to set up a knapsack problem[9] for choosing prime powers to
include in N by setting the overall capacity of the knapsack to logN , and the size
and value of prime powers are set as follows:

size(pT) := log pT = T log p

value(pT) := log(modulus/# residues) = log(pT /RT) = T log p− logRT

The question, then, is how to set T for each prime p to give a good selection of
items to include in the knapsack. Also, we must ensure that the same prime p is
not chosen more than once, with different T values, for inclusion in the knapsack.

Asymptotically, we show in §6 that the expected size of logN is roughly k/ log k,
so that only roughly k/(log k)2 primes are needed in N , allowing an average filter
rate of about 1/ log k for each prime, and that Tp can be set to 1 for the primes
included in N .

3.2. Prime Splitting. In practice, we can often get better results by including
prime powers. So our approach is, for each prime p ≤ k, to compute an optimal
value for T based on filter rate, and then use a greedy algorithm to fill our knapsack.
We call computing this value for T splitting the prime power, and label this split
point sp. We then allow for up to three possible choices in the knapsack for each
prime p: set T = 0 (that is, omit p from N entirely), use T = sp (use the optimal
split point), or use T = tp, the maximum (note that sp = tp is possible).

Maximizing the value-to-size ratio, we get

value

size
=

T log p− logRTp
T log p

= 1− logRTp
T log p

.

So, in time linear in tp, we can try all possible T values and quickly find the
optimum, sp. Since 1 and log p do not change, it suffices to compute (1/T) logRTp
for each T to find the optimum.

3.3. The Greedy Knapsack Algorithm. After splitting, we have a list of can-
didate prime powers to include in N . We sort the list based on value-to-size ratio,
and choose enough to include in N based on the value of ĝ(k). In practice, this
simple and fast algorithm to construct N worked very well.

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

THE ERDŐS-SELFRIDGE FUNCTION 5

3.4. A Dynamic Programming Approach. An anonymous referee pointed out
an elegant way to find N .

Start with (N = 1, R = 1), where N is the modulus, and R the number of
admissible residues. For each prime power pt appearing in Mk, and for each (N,R)
value found so far, form new values (N · pi, R ·Rip) for 0 ≤ i ≤ t, where Rip is the
number of admissible residues modulo pi. Sort the new (N,R) values by increasing
value of R. For each (N,R), (N ′, R′) with R < R′, discard (N ′, R′) if N ′ < N ,
since (N,R) is always better. Also discard values (N ′, R′) if N ′ ≥ N ≥ kĝ(k).

This clever algorithm will create an optimal solution for N , but at first glance
appears to have a running time that is superpolynomial in k. We have not yet
implemented this, but it might be worth the effort.

4. Example for g(10)

As an example computation, we present each of the steps described above to
compute g(10) = 42.

We write 10 = 10102 = 1013 = 205 = 137. Kummer’s Theorem then says
that g(10) ≡ 10102, 10112, 11102, 11112 mod 16. Similarly, there are 12 residues
modulo 33, 15 residues modulo 52, and 24 residues modulo 72. In total, there are
R10 = 4·12·15·24 = 17280 admissible residues moduloM10 = 16·27·25·49 = 529200.
We compute 10 · ĝ(10) = 306.25 for use in our knapsack problem.

Considering the powers of 2 first, we compute r12 = 2, r22 = 1, r32 = 2, and
r42 = 1. This gives R12 = 2, R22 = 2, R32 = 4, and R42 = 4. We get value-to-size
ratios of 0, 1/2, 1/3, and 1/2. This implies s2 = 2 or 4. In practice, we normally
use the largest value for sp when several values give the same ratio, since it implies
a better filter rate.

For p = 3, we have k = 1013. We have r13 = 2, r23 = 3, and r33 = 2. This
gives R13 = 2, R23 = 6, and R33 = 12. The successive (1/T) logR values are log 2,
(1/2) log 6, and (1/3) log 12. Of these, log 2 is the smallest, giving s3 = 1. In a
similar fashion, we obtain s5 = 2 and s7 = 1.

We then construct the following table (using the natural logarithm):

p T value size ratio
2 4 log(24/4) log(24) 0.5
3 1 log(3/2) log 3 0.4009. . .
3 3 log(33/12) log(33) 0.246. . .
5 2 log(52/20) log(52) 0.069. . .
7 1 log(7/4) log 7 0.287. . .
7 2 log(72/24) log(72) 0.183. . .

We use a greedy algorithm to choose items to include in our knapsack of size
log 306. We first choose 24 = 16, leaving 306/16 ≈ 20 “room” in our knapsack;
then 3 is chosen next. This leaves about 20/3 ≈ 7 room. The choice of 7 fills all
remaining room, and gives N = 24 · 3 · 7.

Using N we set up the space saving wheel with rings that encode g(10) ≡
10, 11, 14, 15 (mod 16), g(10) ≡ 1, 2 (mod 3), and g(10) ≡ 3, 4, 5, 6 (mod 7). If
N is large enough, we expect g(10) to be among these 32 residues.

The jump tables are:

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

6 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Ring 16:
residue 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
admissible 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

jump +10 +9 +8 +7 +6 +5 +4 +3 +2 +1 +1 +3 +2 +1 +1 +11

Ring 3:
residue 0 1 2

admissible 0 1 1
jump +16 +16 +32

Ring 7:
residue 0 1 2 3 4 5 6

admissible 0 0 0 1 1 1 1

jump +48 +96 +144 +192 +48 +48 +48

We would also build filters for the prime power congruences not used in the jump
tables, but omit their explicit construction for the sake of brevity.

The smallest possible starting point is k + 2, or 12 in our example. Since 12 is
not admissible modulo 16, we apply the jump (+2) to get 14. We pass up to the
next ring. We find 14 mod 3 ≡ 2 is admissible. We pass to the next ring. Since
14 mod 7 ≡ 0 is not admissible, we jump (+48) to get 62. There are 4 total residues
in the 7 ring, so we also generate 62+48 = 110, 110+48 = 158, and 158+48 = 206.
All residues produced by the 7 ring are filtered:

62 mod 27 ≡ 8 = 223, fail 110 mod 27 ≡ 23, fail
158 mod 25 ≡ 8 = 135, fail 206 mod 25 ≡ 6 = 115, fail

We then backtrack to ring 3 at 14, and generate 14+32 = 46. We pass to ring 7.
The initial value in this ring, 46 mod 7 ≡ 4, is already admissible and is generated
first. We find that 46 passes all filters. We record this value as a candidate for g(10)
and continue the computation to see if a smaller value exists. Since, g(10) = 46,
no such value will be found. Note that nothing larger than N can be generated.

After 4 residues in the 7 ring, we drop down to the 3 ring, where we have already
done 2 residues, so we drop back to the 16 ring. At the 16 ring, we generate the
next residue 14 + 1 = 15, which is passed up to the 3 ring.

This implies that, at each ring, we need to keep track of the next residue to
generate, and how many have been generated so far so that we know when to back
up to a previous ring.

And so it goes. The amortized cost is a constant number of arithmetic operations
per residue generated by the outermost ring where they are filtered. If we apply
the filters in decreasing order of filter rate, on average, a residue is only tested
against a constant number of filters, and so again, the cost is a constant number of
arithmetic operations per residue modulo N .

By keeping track of the minimum residue that passes the filters, we do not have
to generate any residues larger than this minimum. In our example, once 46 passes
the filters, we don’t even generate the rest of ring 7. This optimization can make a
big difference in practice.

5. Uniform Distribution Heuristic

The Uniform Distribution Heuristic (UDH) states that the admissible residues
modulo Mk behave as if they are chosen at random from a uniform distribution
over the interval [1,Mk − 1]. It is not entirely dissimilar to Cramér’s random
model, the heuristic that integers ≤ x are prime with probability 1/ log x, and our
intention is that these two models be treated similarly, in that we know they are

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

THE ERDŐS-SELFRIDGE FUNCTION 7

not, strictly speaking, true, yet seem to have good predictive behavior under the
right circumstances.

With the help of Rasitha Jayasekare, a statistician at Butler University, we ran
statistical tests on the residues for 5 ≤ k ≤ 15. For each k we generated all Rk
admissible residues and used the the Anderson-Darling and Kolmogorov-Smirnov
tests to measure uniformity. Both tests confirm with a high probability that the
data comes from a uniform distribution.

Theorem 5.1. The UDH implies that, with probability 1− o(1), we have

ĝ(k)/k ≤ g(k) ≤ kĝ(k).

Proof. WLOG, we ignore residues ≤ k + 1 because k is asymptotically negligible
compared to Mk and Rk.

We have

Pr(g(k) ≤ x) = 1− Pr(all residues are > x)

= 1−
(
Mk − x
Mk

)Rk

= 1−
(

1− x

Mk

)Rk

For an upper bound, set x = (kMk)/Rk, to obtain

Pr(g(k) ≤ (kMk)/Rk) = 1−
(

1− k

Rk

)Rk

∼ 1− e−k = 1− o(1)

for large Rk (and Rk does get quite large).
For a lower bound, set x = Mk/(kRk) to obtain

Pr(g(k) ≤Mk/(kRk)) = 1−
(

1− 1

kRk

)Rk

∼ 1− e−1/k = o(1).

This completes the proof. �

So we have that, with high probability,

log g(k) = log ĝ(k) +O(log k)

if we assume the uniform distribution heuristic. This has worked well in practice;
the inequality in Theorem 5.1 is satisfied by all computed g(k) (excepting k = 99).

Recall that G(x, k) counts the integers n ≤ x such that p(
(
n
k

)
) > k. We conclude

this section with the following.

Theorem 5.2. If x is sufficiently large, then G(x, k) = (x/ĝ(k))(1 + o(1)).

Proof. Write x = q ·Mk + r using the division algorithm, with integers q, r > 0
and r < Mk. A contiguous interval of length Mk will have exactly Rk admissible
residues, so G(qMk, k) = qRk. The remaining interval of length r has at most Rk
residues, so G(x, k) = G(qMk, k) +O(Rk) = qRk +O(Rk) but q = bx/Mkc, so

G(x, k) = bx/MkcRk +O(Rk) = (x/ĝ(k))(1 + o(1)).

�

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

8 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

6. Analysis

The running time of our algorithm is linear in the number of residues modulo
N . Since we choose N based on ĝ(k), we need to estimate ĝ(k).

Theorem 6.1.

0.53068 . . .+ o(1) ≤ ĝ(k)

k/ log k
≤ 1 + o(1).

Applying the definitions for Mk and Rk above, we have

ĝ(k) =
Mk

Rk
=

∏
p≤k p

blogp kc+1∏
p≤k

∏blogp kc
i=0 (p− aip)

=
∏
p≤k

blogp kc∏
i=0

p

p− aip

=
∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
·
∏

√
k<p≤k

blogp kc∏
i=0

p

p− aip

=
∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
·
∏

√
k<p≤k

p

p− a1p
p

p− a0p
.

Here we observed that blogp kc+ 1 = 2 when p >
√
k.

We will show that the product on the factor involving a0p is exponential in
k/ log k, and is therefore significant; and the other two factors, the product on

primes up to
√
k, and the factor with a1p, are both only exponential in

√
k.

We bound the first product, on p ≤
√
k, with the following lemma.

Lemma 6.2. ∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
� e3

√
k(1+o(1)).

Proof. We note that aip ≤ p− 1, giving

∏
p≤
√
k

blogp kc∏
i=0

p

p− aip
≤

∏
p≤
√
k

pblogp kc+1 ≤
∏
p≤
√
k

p3blogp

√
kc.

From [7, Ch. 22] we have the bound

(6.1)
∑
p≤x

blogp xc log p = x(1 + o(1)).

Exponentiating and substituting
√
k for x gives the desired result. �

Next, we show that the product involving a1p is small.

Lemma 6.3. ∏
√
k<p≤k

p

p− a1p
� 2

√
k.

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

THE ERDŐS-SELFRIDGE FUNCTION 9

Proof. Observe that for any prime p with
√
k < p ≤ k, if a1p = a, then k/(a+ 1) <

p ≤ k/a. We have

∏
√
k<p≤k

p

p− a1p
=

b
√
kc∏

a=1

∏
k/(a+1)<p≤k/a

p

p− a
=

b
√
kc∏

a=1

∏
k/(a+1)<p≤k/a

(
1− a

p

)−1

=

b
√
kc∏

a=1

∏
a<p≤k/a

(
1− a

p

)−1
∏
a<p≤k/(a+1)

(
1− a

p

)−1
=

b
√
kc∏

a=1

(c(a) log(k/a))a(1 + o(1))

(c(a) log(k/(a+ 1)))a(1 + o(1))

= (1 + o(1))
log k

log(k/2)
·
(

log(k/2)

log(k/3)

)2

·
(

log(k/3)

log(k/4)

)3

· · ·

 log(k
b
√
kc)

log(k
b
√
kc+1

)

b
√
kc

= (1 + o(1))
log k

log
√
k
· log(k/2)

log
√
k
· log(k/3)

log
√
k
· · · log(k/b

√
kc)

log
√
k

� 2
√
k.

This used the following variant of Mertens’s theorem, which holds for b > 0, where
c(b) is a constant that depends only on b:

(6.2)
∏

b<p≤x

(
1− b

p

)
=

(
c(b)

log x

)b
(1 + o(1)).

This is readily proved following the arguments in Hardy and Wright [7, §22.7]. �

We now have

log ĝ(k) = log

 ∏
√
k<p<k

p

p− a0p

+O(
√
k).

The following lemma wraps up the proof of our theorem.

Lemma 6.4.

0.53068 . . . · k

log k
(1 + o(1)) ≤ log

 ∏
√
k<p≤k

p

p− a0p

 ≤ k

log k
(1 + o(1)).

Proof. Fix a1p = a. Then k/(a + 1) < p ≤ k/a, and a0p = k mod p = k − ap and
p− a0p = p− (k − ap) = (a+ 1)p− k. We have

log

 ∏
√
k<p≤k

p

p− a0p

 = log

√k∏
a=1

∏
k/(a+1)<p≤k/a

p

(a+ 1)p− k

=

√
k∑

a=1

∑
k/(a+1)<p≤k/a

(log p− log((a+ 1)p− k)) .

We split this sum into three pieces to start with:

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

10 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

(1) The outer sum for (log k)2 ≤ a ≤
√
k, and we show it is o(k/ log k).

(2) The log p term only, for a < (log k)2, and show it is k + o(k/ log k).
(3) The − log((a + 1)p − k) term, again for a < (log k)2, and show it is −k +

O(k/ log k).

For (1), we have
√
k∑

a=(log k)2

∑
k/(a+1)<p≤k/a

(log p− log((a+ 1)p− k)) ≤

√
k∑

a=(log k)2

∑
k/(a+1)<p≤k/a

log p

≤
∑

√
k<p≤k/(log k)2

log p

which is O(k/(log k)2) using
∑
p<x log p = x+ o(x/ log x). For (2), we have

(log k)2∑
a=1

∑
k/(a+1)<p≤k/a

log p =
∑

k/(log k)2<p≤k

log p

which is k + o(k/ log k). For (3), we have

(6.3) −
(log k)2∑
a=1

∑
k/(a+1)<p≤k/a

log((a+ 1)p− k).

Rewriting the inner sum as an integral, using a strong version of the prime
number theorem, we get

−
∑

k/(a+1)<p≤k/a

log((a+ 1)p− k)

= −
∫ k/a

k/(a+1)

log((a+ 1)t− k)

log t
dt+ o(k/(log k)3)

= − 1

log(k/(a+ α))

∫ k/a

k/(a+1)

log((a+ 1)t− k)dt+ o(k/(log k)3).

Here α is between 0 and 1, determined implicitly by the mean value theorem. The
precise value of α may depend on both k and a. We will use either α = 0 or α = 1,
depending on whether we want an upper or lower bound, respectively.

Using substitution, we can readily show that∫ k/a

k/(a+1)

log((a+ 1)t− k)dt =
k(log(k/a)− 1)

a(a+ 1)
.

We have for (3), then,

=

(log k)2∑
a=1

(
− k(log(k/a)− 1)

a(a+ 1) log(k/(a+ α))

)

= −k +
k

log k
·
(log k)2∑
a=1

1− log
(
1 + α

a

)
a(a+ 1)

·
(

1 +O

(
log log k

log k

))
.

The last step requires a bit of algebra, and the observation that 1/(u− v) = 1/u+
v/(u(u− v)).

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

THE ERDŐS-SELFRIDGE FUNCTION 11

To obtain the upper bound, set α = 0, and note that
∑

1/(a(a+1)) converges to
1. To obtain the lower bound, set α = 1, and note that

∑
(1−log(1+1/a))/(a(a+1))

converges to a constant near 0.53068 �

Algorithm Running Time.

Theorem 6.5. If the UDH is true, then with probability 1 − o(1), our algorithm
has a running time bounded by

g(k) · exp

[
−ck log log k

(log k)2
(1 + o(1))

]
where c > 2 is constant.

Proof. Without loss of generality, we assume that g(k) ≤ N < k · g(k), as we can
guess a smaller N , run the algorithm, and if it fails to find g(k), include another
prime p with k/2 < p < k in N , and repeat. Since N at least doubles each time we
do this, the cost of running the algorithm on all N < g(k), and failing, is bounded
by a factor of log g(k) times the cost of the final run with a value of N > g(k) that
succeeds. We absorb this multiplicative factor of log g(k) in the o(1) error term
in the exponent of the running time bound above as log g(k) = Θ(k/ log k) with
high probability. In particular, this gives us logN = (1 + o(1)) log g(k) with high
probability.

For the purposes of this proof, we choose N to be a product of some primes
between k/2 and k. This is conservative, as the choice of primes or prime powers for
inclusion in N , using the methods discussed earlier, will result in a faster algorithm
in practice. So we have ∏

p|N

p = N ≈ g(k)

and thus ∑
p|N

log p = logN ∼ log g(k)� k/ log k.

Since
∑
k/2<p≤k log p = (k/2)(1 + o(1)), we have more primes in this range than

we need for N by a factor of roughly (1/2) log k. Thus, we can choose the best
k/(log k)2 primes (roughly) below k of the k/ log k that are available. As a result,
we expect to get a filtering factor of 1/ log k for the primes we choose. Indeed, if
we choose all primes p with k/2 < p < k/2 + c1k/ log k, with c1 > 0 an appropriate
constant we fix later, this is the case.

Let’s check that this gives us a good value for N . We have

logN =
∑

k/2<p<k/2+c1k/ log k

log p

=
c1k

(log k)2
log(k/2)(1 + o(1)) =

c1k

log k
(1 + o(1)),

which is larger than log g(k) with high probability if we choose c1 > 2. (See [13,
(2.29)].)

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

12 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Now we address the filter rate, and hence the running time. For each such prime
p, k + 2c1k

log k > 2p > k, which implies k − p > p− 2c1k
log k so that

a0p = k mod p = k − p

> p− 2c1k

log k
> p− 4c1p

log k
= p

(
1− 4c1

log k

)
.

Our running time, then, is proportional to the number of acceptible residues modulo
N , which is ∏

k/2<p<k/2+c1k/ log k

(p− a0p) =
∏
p

(
p− p

(
1− 4c1

log k

))
=

∏
p

p · 4c1
log k

= N
∏
p

4c1
log k

≤ kg(k)

(
4c1

log k

)c1k/(log k)2(1+o(1))
= g(k) exp

[
−c1

k log log k

(log k)2
(1 + o(1))

]
.

�

The UDH is stronger than what we need to prove a sublinear running time. The
central issue is finding enough primes p with k/2 < p ≤ k/2 + ∆ such that the
product of these primes is roughly g(k). If the number of primes in this interval is
∆/ log k, then we can set ∆ ≈ log g(k). Pushing this through our argument above,
we obtain a running time of the form

g(k) · exp

[
−c∆
log k

log

(
4∆

k

)
(1 + o(1))

]
where c > 0 is constant. Observe that plugging in log g(k) ≈ k/ log k gives our
theorem, but this form is valid so long as we can find enough primes. In fact, if
log g(k) � kθ, with 7/12 < θ ≤ 1, we can use a result due to Heath-Brown [8] on
primes in short intervals to guarantee this is true.

If g(k) is smaller than this, we would choose ∆ = (log g(k)/ log k)E(k), where
E(k) is the error term for the prime number theorem for π(k), to give us the
needed log g(k)/ log k primes above k/2. (If we assumed the Riemann Hypothesis,
this would let us use a smaller E(k) term.) Pushing this through, we obtain a
weaker, but still sublinear, running time.

We were also able to show that

lim sup
k→∞

ĝ(k + 1)

ĝ(k)
=∞.

We omit the proof due to a lack of space, but the interesting case is when k + 1 is
prime. It is conjectured that the same holds true for g(k) itself, but that remains
an open problem [2].

7. Computations

We conclude with a brief discussion of the timing results. More detailed timing
results or a copy of the source code would be provided upon request made to the
second author.

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

THE ERDŐS-SELFRIDGE FUNCTION 13

7.1. Timing Results. We implemented our algorithm from §2 in C++. We
started with a sequential program, which we used to compute g(k) for all k ≤ 272,
thereby verifying all previous computations along the way [2, 14, 11]. None of these
smaller k values took more than a couple hours on a standard desktop computer.

We then parallelized our algorithm, using MPI, by having each core generate a
share of the residues. However, if a particular core found a new, smaller residue
that passed all filters, that new upper bound would not be communicated to all
the other cores for some time. This resulted in a fair amount of wasted work. On
the other hand, too-frequent inter-core communication would also slow down the
computation, since finding new upper bounds is a rare event. We found that our
computation distributed over 192 cores only performed about 40-50 times faster
than the single-core version.

Our parallel code took anywhere from under an hour to over 1300 hours to
compute each g(k) value. The timing results, in hours of wall time, are shown in
Figure 1. Here the y-axis on the left is in hours, and the y-axis on the right is used
for g(k) values, which are plotted on the same graph for comparison. In total, the
cluster was exclusively computing g(k) values for about 9 months. The cluster is
composed of Intel Xeon E5-2630 v2 processors, with 15MB cache, running at 2.3
GHz. Our algorithm uses very little memory, and so RAM is not an issue.

7.2. Verification is Faster. It is easy to verify that our claimed g(k) values all
satisfy Kummer’s Theorem and are new ĝ(k). However, we know of no way to
independently verify our computations except by repeating the search. Know-
ing a small admissible candidate gives two significant practical advantages in our
algorithm. First, you can work with a modulus N just larger than the candi-
date g(k) value, which is usually smaller than the suggested kĝ(k) value. Second,
you can input the claimed g(k) value as the starting upper bound for residues.
Take the computation of g(225) as an example. The initial search worked modulo
N = 1012 44299 87665 22178 24000 and went through at most 64 66521 60000
residues. The candidate for g(225) was updated three times and the computa-
tion took about 26 minutes. A verification computation was done working modulo
N = 2 95172 88593 77615 68000, had at most 1 19750 40000 residues to check,
and g(225) was an input for the initial upper bound. This second computation
completed in just 24 seconds. We note that a parallel version of a verification
computation can also avoid some of the communication overhead.

Acknowledgments. The first author was supported in part by the Butler Summer
Institute, by the Honors program, and by the Mathematics Research Camp at
Butler University. The second and third authors were supported in part by a grant
from the Holcomb Awards Committee at Butler University.

Special thanks to Rasitha Jayasekare, our friendly neighborhood statistician,
for helping us with uniform distribution statistical tests. Also thanks to Michael
Filaseta for his help with references.

Finally, thanks to Frank Levinson, who generously supports Butler University’s
computing research infrastructure.

References

[1] Daniel J. Bernstein. Doubly focused enumeration of locally square polynomial values. In High

primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams,
volume 41 of Fields Inst. Commun., pages 69–76. Amer. Math. Soc., Providence, RI, 2004.

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

14 BRIANNA SORENSON, JONATHAN P. SORENSON, AND JONATHAN WEBSTER

Figure 1. Running Time (wall time) in Hours

[2] E. F. Ecklund, Jr., P. Erdös, and J. L. Selfridge. A new function associated with the prime
factors of (nk). Math. Comp., 28:647–649, 1974.

[3] P. Erdős, C. B. Lacampagne, and J. L. Selfridge. Estimates of the least prime factor of a

binomial coefficient. Math. Comp., 61(203):215–224, 1993.
[4] Paul Erdős. Some problems in number theory. In A.O.L. Atkin and B.J. Birch, editors,

Computers in Number Theory, pages 405–414. Academic Press, 1971.

[5] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[6] Andrew Granville and Olivier Ramaré. Explicit bounds on exponential sums and the scarcity

of squarefree binomial coefficients. Mathematika, 43(1):73–107, 1996.
[7] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University

Press, 5th edition, 1979.

[8] D.R. Heath-Brown. The number of primes in a short interval. Journal für die reine und
angewandte Mathematik, 389:22–63, 1988.

[9] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin Heidelberg,
2013.

[10] S. V. Konyagin. Estimates of the least prime factor of a binomial coefficient. Mathematika,

46(1):4155, 1999.
[11] Richard F. Lukes, Renate Scheidler, and Hugh C. Williams. Further tabulation of the Erdős-

Selfridge function. Math. Comp., 66(220):1709–1717, 1997.

[12] Kenneth L. Manders and Leonard Adleman. NP-complete decision problems for binary
quadratics. Journal of Computer and System Sciences, 16(2):168 – 184, 1978.

[13] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.

Illinois Journal of Mathematics, 6:64–94, 1962.
[14] R. Scheidler and H. C. Williams. A public-key cryptosystem utilizing cyclotomic fields. Tech-

nical Report 15/92, University of Manitoba, Department of Computer Science, November

1992.
[15] Renate Scheidler and Hugh C. Williams. A method of tabulating the number-theoretic func-

tion g(k). Math. Comp., 59(199):251–257, 1992.
[16] Jonathan P. Sorenson. The pseudosquares prime sieve. In Florian Hess, Sebastian Pauli,

and Michael Pohst, editors, Proceedings of the 7th International Symposium on Algorithmic

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

THE ERDŐS-SELFRIDGE FUNCTION 15

Number Theory (ANTS-VII), pages 193–207, Berlin, Germany, July 2006. Springer. LNCS

4076, ISBN 3-540-36075-1.

[17] Jonathan P. Sorenson. Sieving for pseudosquares and pseudocubes in parallel using doubly-
focused enumeration and wheel datastructures. In Guillaume Hanrot, Francois Morain, and

Emmanuel Thomé, editors, Proceedings of the 9th International Symposium on Algorithmic

Number Theory (ANTS-IX), pages 331–339, Nancy, France, July 2010. Springer. LNCS 6197,
ISBN 978-3-642-14517-9.

[18] Jonathan P. Sorenson and Jonathan Webster. Strong pseudoprimes to twelve prime bases.

Math. Comp., 86(304):985–1003, 2017.
[19] Jonathan P. Sorenson and Jonathan Webster. Two algorithms to find primes in patterns.

arXiv:1807.08777, 2018.

Butler University, Indianapolis, IN 46208, USA
E-mail address: bsorenso@butler.edu

Butler University, Indianapolis, IN 46208, USA

E-mail address: sorenson@butler.edu

URL: blue.butler.edu/∼jsorenso

Butler University, Indianapolis, IN 46208, USA
E-mail address: jewebste@butler.edu

3 Jun 2020 10:18:39 PDT
200220-Webster Version 2 - Submitted to Open Book Series

