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Abstract. We develop an algorithm to compute paramodular forms of weight

3 as orthogonal modular forms attached to positive definite quinary quadratic
forms. For square-free levels we expect that every paramodular form of weight

3 arises in this way.

Introduction

There are many efficient algorithms to compute classical (elliptic) modular forms
(the Eichler-Selberg trace formula [Wad71], the method of modular symbols [Cre97],
quaternion algebras and Brandt matrices [Piz80, Koh01], ternary quadratic forms
[Bir91, Tor05, Ram14, HTV20], etc.) These have been used to compute extensive
tables of modular forms ([BK75, Cre97, Ste12, Cre19, LMF20]).

Paramodular forms are Siegel modular forms for the paramodular group K(N)
(see [PY15]). They have gained attention in recent years due to the Paramodular
Conjecture of Brumer and Kramer [BK14, BK19] which relates them to abelian
surfaces (see [BPP+19, BK, BCGP, CCG] for recent progress on this conjecture).
Poor and Yuen computed in [PY15] paramodular forms of weight 2 for K(p) for
primes p < 600, and for square-free levels in [PSY17]. These methods compute
Fourier coefficients of paramodular forms; from those one can recover the Hecke
eigenvalues, although a large number of Fourier coefficients are needed. It is possible
to compute Hecke eigenvalues without computing Fourier coefficients by the method
of specialization as done in [BPP+19] but this is still expensive.

In this paper we develop an alternative algorithm to compute (Hecke eigenval-
ues of) paramodular forms of weight 3 using positive definite quinary quadratic
forms. This is a generalization of a method of Birch to compute classical modular
forms using ternary quadratic forms [Bir91, Hei16, HTV20]. Our method is based
on a conjecture of Ibukiyama [Ibu07] which generalizes Eichler correspondence to
paramodular forms. In principle it should be possible to extend this method for
arbitrary weights ≥ 3.

For prime levels, Ladd shows in his thesis [Lad18] that Ibukiyama Conjecture
implies that every orthogonal modular form corresponds to a paramodular form,
in the sense that computing orthogonal modular forms of level O(Λ) for a well
chosen lattice Λ recovers the Hecke eigenvalues of paramodular forms. However,
not every paramodular form of prime level comes from an orthogonal modular
form with trivial representation, as we show in Example 13. In fact only the forms
with sign +1 in the functional equation seem to arise in this way. We overcome
this limitation in Section 3 by using orthogonal modular forms with a nontrivial
character for the spinor norm (this idea has been proposed for ternary quadratic
forms in [Tor05, Ram14], and completed in [HTV20]). Based on the dimension
formulas of Ibukiyama [Ibu07] and on our computations of spaces of orthogonal
modular forms we are led to conjecture that every paramodular form of prime level
corresponds to some orthogonal modular form (see Theorem 14 and Conjecture 15).
We expect the same holds for composite square-free levels although we do not have
as much evidence for composite levels as we do for prime levels.
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An interesting feature of the space M(O(Λ̂)) of orthogonal modular forms with

trivial character is the existence of a map Θ fromM(O(Λ̂)) to the space of elliptic
modular forms of weight 5/2. Because of properties of this map with respect to

Hecke operators, when f is an eigenform in the cuspidal subspace S(O(Λ̂)) with
Θ(f) 6= 0, the Shimura lift of Θ(f) is a modular form of weight 4 whose Gritsenko
lift corresponds to f , as in the following diagram:

S(O(Λ̂)) S5/2(4N)

S3(K(N)) S4(N)

Θ

Ibukiyama Shimura

Gritsenko

For prime level Hein, Ladd and Tornaŕıa conjectured that, conversely, if Θ(f) = 0
then f corresponds to a paramodular form which is not a Gritsenko lift (see [Hei16,
Conjecture 3.5.6]). The analogue of this conjecture for composite levels fails as
shown in Example 10, due to the occurrence of eigenforms of Yoshida type. We
propose Conjecture 12 as an alternative.

With respect to computations, Hein [Hei16] computed, in the case of trivial
representation, the orthogonal modular forms with rational eigenvalues for quinary
lattices of prime discriminant with p < 200, which (conjecturally) correspond to
paramodular forms with +1 in the functional equation. This was extended by Ladd
[Lad18] for p < 400. Using our proposed algorithm we computed the orthogonal
modular forms, with the different characters of the spinor norm, for quinary lattices
of square-free discriminant D < 1000. We expect to have a complete list of all
paramodular forms for those levels. This computations can be found in [RT20].

This article is organized as follows. In section 1 we recall the basic notions of
neighbor lattices and orthogonal modular forms over Q. In section 2 we consider
quinary orthogonal modular forms over Q and define the L-functions associated to

a Hecke-eigenform in M(O(Λ̂)). We also generalize the conjecture of Hein, Ladd
and Tornaŕıa to square-free levels.

In section 3 we introduce a family of non trivial representations for O(5) using
characters of the spinor norm. We conjecture that with this representation we can
obtain all paramodular form of prime level. In section 4 we study the orthogonal
modular forms of discriminant 5 · 61, classify all the irreducible Hecke-submodules
and conjecture that S3(K(5 · 61)) is spanned by orthogonal modular forms.

In section 5 we match some hypergeometric motives with spaces of orthogonal
modular forms with non square-free discriminant. In section 6 we mention the
algorithms used to carry out our computations. Finally, in section 7 we include
tables of orthogonal modular forms for prime levels p, with p < 500.

1. Neighbor lattices and orthogonal modular forms

In this section we follow the article of Greenberg and Voight [GV14] and the
Ph.D. thesis of Hein [Hei16].

1.1. Neighbor lattices. We fix (V,Q), a positive definite Q-quadratic space.

Definition. Let Λ ⊂ V be a Z-lattice, and k ≥ 1 an integer. We say that the
Z-lattice Π is a pk-neighbor of Λ if Λq = Πq for all primes q 6= p and there exist
Z-module isomorphisms

Λ/(Λ ∩Π) ∼= Π/(Λ ∩Π) ∼= (Z/pZ)k.
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Remark 1. For k = 1 the previous definition agrees with the classical definition of
p-neighbors, see for example [Bir91].

Lemma 2. Let Λ,Π ⊂ V be two Z-lattices both locally unimodular at a prime p.
Then, Λ and Π are pk-neighbors if and only if Λq = Πq for all primes q 6= p and
there exists a basis of Vp

e1, . . . , ek, g1, . . . , gn−2k, f1, . . . , fk,

such that

(1) 〈ei, ej〉 = 〈fi, fj〉 = 0,
(2) 〈ei, fj〉 = δij,
(3) 〈ei, gj〉 = 〈fi, gj〉 = 0,
(4) e1, . . . , ek, g1, . . . , gn−2k, f1, . . . , fk is a Zp-basis of Λp, and
(5) pe1, . . . , pek, g1, . . . , gn−2k, p

−1f1, . . . , p
−1fk is a Zp-basis of Πp.

If Λ is unimodular at p, we say that a basis that satisfies conditions 1-4 of the
previous lemma is a pk-standard basis for Λp. Consider a hyperbolic lattice Hp =
Zpe ⊕ Zpf with 〈e, e〉 = 〈f, f〉 = 0, and 〈e, f〉 = 1. With respect to this basis, we

consider ω =

(
p 0
0 p−1

)
∈ O(Hp⊗Qp). We extend ω to ω⊕k = ω ⊕ · · · ⊕ ω︸ ︷︷ ︸

k

∈ O(Vp),

where the i-th entry in the direct sum acts upon the hyperbolic component {ei, fi}
given by a pk-standard basis of Λp.We have that Π is a pk-neighbor of Λ if and only

if there exists σ̂ in O(Λ̂) such that Π̂ = σ̂ω̂⊕kΛ̂. Also we have the following double
coset decomposition

(3) O(Λ̂)ω̂⊕k O(Λ̂) =
⊔
m

p̂m O(Λ̂),

where each p̂m corresponds to a pk-neighbor of Λ.

Lemma 4. Lattices (locally unimodular at p) in the same genus have the same
number of pk-neighbors.

The lemma allows us to define the integers N(Λ; p, k) = #Neighbors(Λ; p, k),
which are genus invariants. By [Hei16, Eq. 5.3.8] we haveN(Λ; p, k) = O(pk(n−k−1)).
When n = 5 we have a more precise formula, N(Λ; p, k) = pk−1(p3 + p2 + p+ 1) for
k = 1, 2 and Λ unimodular at p. When Λ is not unimodular at p, and p ‖ disc(Λ),
then N(Λ; p, 1) = (p3 + p2 + p)± p2.

1.2. Orthogonal modular forms. Let Λ ⊂ V be a Z-lattice with disc(Λ) = D,
let W a finite-dimensional Q-vector space, and let ρ : O(V ) → GL(W ) a finite-
dimensional representation. We define the space of orthogonal modular forms with

level O(Λ̂) and weight W to be the finite dimensional Q-vector space

M(O(Λ̂),W ) =

{
f : O(V̂ )→W

∣∣∣∣ f(σĝk̂) = ρ(σ)f(ĝ)

for all σ ∈ O(V ), ĝ ∈ O(V̂ ), k̂ ∈ O(Λ̂)

}
.

The class set of Λ is in bijection with O(V )\O(V̂ )/O(Λ̂) and we have the double
coset decomposition

O(V̂ ) =

h⊔
i=1

O(V )x̂i O(Λ̂),

where h is the class number of Λ, so the values of a modular form f ∈M(O(Λ̂),W )
are determined by the values f(x̂i), for i = 1, . . . , h, and the representation ρ. We
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also have the following isomorphism

M(O(Λ̂),W )
∼−→

h⊕
i=1

WO(Λi)

f 7−→ (f(x̂1), f(x̂2), . . . , f(x̂h))

where Λi = x̂iΛ̂ ∩ V , for i = 1, 2, . . . , h, are representatives of the class set of Λ.
If p is a prime such that Λ is unimodular at p, and k ≥ 1, we define the pk-Hecke

operator on M(O(Λ̂),W ) given by

(Tp,k f)(ĝ) =
∑
m

f(ĝp̂m),

where the p̂m are given by the coset decomposition in (3). The Hecke operators
Tp,k and Tq,k′ commute for all p 6= q primes.

We can define an inner product in M(O(Λ̂),W ) by

⟪f, g⟫ =

h∑
i=1

f(x̂i)g(x̂i)

# O(Λi)
,

note that # O(Λi) is finite because V is positive definite. The Hecke operators Tp,k
on M(O(Λ̂),W ) are self-adjoint with respect to ⟪−,−⟫.

We define the Eisenstein subspace, denoted by E(O(Λ̂),W ) ⊂ M(O(Λ̂),W ),

to be the subspace of constant functions of M(O(Λ̂),W ). The cuspidal subspace,

denoted by S(O(Λ̂),W ) ⊂M(O(Λ̂),W ), is the subspace orthogonal to E(O(Λ̂),W ).
The following lemma is clear.

Lemma 5. If ρ : O(V ) → GL(W ) is a nontrivial irreducible representation, then

M(O(Λ̂),W ) = S(O(Λ̂),W ).

We denote byM(O(Λ̂)) the space of orthogonal modular forms when W = Q and

ρ the trivial representation, and the cuspidal subspace by S(O(Λ̂)). Let f1, . . . , fh
be the indicator basis of M(O(Λ̂)), so that fj(x̂i) = δij . We have

(Tp,k fj)(x̂i) =
∑
m

fj(x̂ip̂m) =
∑
m

fj(x̂m∗) =
∑
m

δjm∗ ,

where x̂ip̂mΛ̂ = σx̂m∗Λ̂ for some σ ∈ O(V ) and some m∗. Let Nij(Λ; p, k) =
(Tp,k fj)(x̂i), the number of pk-neighbors of Λi which are isomorphic to Λj . Then,
we can compute Tp,k in the basis f1, . . . , fh by the formula

Tp,k fj =

h∑
i=1

Nij(Λ; p, k)fi.

By Lemma 4 we have

N(Λ; p, k) =

h∑
j=1

Nij(Λ; p, k),

for all i = 1, . . . , h, and f1 + · · ·+ fh is an eigenvector ofM(O(Λ̂)) with eigenvalue

N(Λ; p, k). Also, f1 + · · · + fh is a generator of E(O(Λ̂)), and we conclude that

dimM(O(Λ̂)) = dimS(O(Λ̂)) + 1.

We want to define Tp,1 for M(O(Λ̂)) when p ‖ D. Since Λ is not unimodular at
p, we cannot use Lemma 2, so we define it in the indicator basis

Tp,1 fj = fj +

h∑
i=1

Nij(Λ; p, 1)fi.
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This operator is well defined because Nij(Λ; p, 1) is well defined in all cases, see
[Tor05, Theorem 3.5.].

Sometimes it will be convenient to use the dual basis of M(O(Λ̂)), such that
ej = 1

# O(Λi)
fj . We define the theta series map as the linear map

Θ :M(O(Λ̂))→M5/2(4D) ,

given in the dual basis by

Θ(ei) = Θ(Λi) =
∑
v∈Λi

qQ(v) .

2. Orthogonal modular forms for O(5)

We consider now positive definite Q-quadratic spaces (V,Q) with dimV = 5.

In 2014 Hein, Ladd, and Tornaŕıa conjectured that, if f ∈ M(O(Λ̂)) is a Hecke-
eigenform, with disc(Λ) = p a prime, and Θ(f) = 0, then the L-function associated
to f is attached to a paramodular form of weight 3 which is not a Gritsenko lift.
This can be found in [Hei16, Conjecture 3.5.6]. Also, Hein [Hei16] computed the
good Euler factors for primes less than 100 for all the forms with rational eigenvalues
for prime levels up to 200, and Ladd [Lad18] computed the good Euler factors for
odd primes up to 31 for all the forms with rational eigenvalues for prime levels up
to 400.

As dimV = 5 we only have pk-neighbors for k = 1, 2. Given f ∈ M(O(Λ̂)) a
Hecke-eigenform and p prime, let λp,1 and λp,2 be the eigenvalues of Tp,1 and Tp,2
for f . We define its (spin) L-function by the Euler product

L(f, s) :=
∏

p prime

Lp

(
f, p−s

)−1
,

where the local Euler factors are given by

(6) Lp(f,X) := 1− λp,1X + (λp,2 + 1 + p2) pX2 − λp,1 p3X3 + p6X4, if p - D.

This is obtained by considering the Satake polynomial on SO(5), found in Murphy
[Mur13, pg. 76], with a suitable change of variable. And

(7) Lp(f,X) := (1 + εp pX)(1− (λp,1 + εp p)X + p3X2), if p ‖ D,
where the local root number εp = c(Vp). Here c(Vp) is the Witt invariant of V at
p as defined by Lam in [Lam05, p.117]. Note that for dimV = 5 it coincides for
all odd p with the Hasse invariant as defined in Cassels [Cas78, Chapter 4], but
is the opposite for p = 2 (see [Lam05, Proposition 3.20]). The last polynomial is
similar to the one found in [Ibu07, Theorem 4.1]. We define it this way, along Tp,1
for p ‖ D so that the analogue formula for Lp in the next section, in which we use
a non-trivial one dimensional representation, is symmetrical to this one.

When D is square-free it is conjectured that the L-functions satisfy the functional
equation

L̃(f, s) = L̃(f, 4− s),
where

(8) L̃(f, s) =

(
D

π2

)s/2

Γ

(
s− 1

2

)
Γ
(s

2

)2

Γ

(
s+ 1

2

)
L(f, s).

Example 9 (D = 61). Let the quadratic space V = Q5, and Q = x2 + xy − xt+
y2 − yt+ z2 + 2w2 −wt+ 3t2 a quadratic form of discriminant 61, and let Λ = Z5.
This is the first example of prime discriminant in O(5) for which the theta series
map on the genus has a nontrivial kernel, of dimension 1. As noted in [Hei16], there

exists a Hecke-eigenform f ∈ M(O(Λ̂)) such that Θ(f) = 0. Also the L factors of
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f for 2, 3, 5 match those of the non-lift paramodular form of level 61 as computed
by Ash, Gunnels and McConnell in [AGM08, §4] (see also Poor and Yuen [PY15,
§8]).

By the formulas of Ibukiyama [Ibu07] we have

dimS3(K(61)) = dimS(O(Λ̂)) = dimS−4 (61) + dim ker Θ.

Therefore we expect the correspondence from S(O(Λ̂)) to S3(K(61)) is a bijection.

Example 10 (D = 55). We consider the quadratic space V = Q5, Q = x2 + xy +
y2 + z2 + 2t2 + yw + zw + tw + 3w2, and Λ = Λ1 = Z5. The Hasse invariant of
the genus at 5 is +1, and at 11 is −1. There are 3 other Z-lattices in the genus
of Λ, namely Λ2,Λ3,Λ4. The quadratic forms associated to the bases of Λi, for
i = 2, 3, 4, are

Q2 = x2 + xy + y2 + xz + z2 + 3t2 + zw + 2tw + 3w2

Q3 = x2 + xy + y2 + xz + z2 + yt+ 3t2 + zw + 3w2

Q4 = x2 + y2 + 2z2 + yt+ 2zt+ 2t2 + xw + yw + zw + tw + 2w2.

Let f = 2e1 − 2e2 + e3 − e4 ∈ M(O(Λ̂)), which is a Hecke-eigenform, where

{e1, e2, e3, e4} is the dual basis ofM(O(Λ̂)). It is easy to see that Θ(f) = 2Θ(Λ1)−
2Θ(Λ2) + Θ(Λ3) − Θ(Λ4) = 0. This is because the Sturm bound for the space
M5/2(4 · 55) is 90 (note that the Sturm bound of half-integral weight is the same as
the integral case, see for example [GK13, Lemma 3.1]), and the first 90 coefficients
of Θ(f) are 0.

By [IK17] we know that dimS3(K(55)) = 3. On the other hand the space of
classical cusp forms of weight 4, level 55 and sign −1 has dimension 3, this can
be found in [LMF20]. There are two such forms, one of dimension 1, and one of
dimension 2. We conclude that the space S3(K(55)) is spanned by Gritsenko lifts.
We verified that f is not a Gritsenko lift by looking at its eigenvalues, and we
conclude that the conjecture mentioned is no longer valid when D is not prime.

We computed the eigenvalues of Tp,1 of f for p < 300, also the eigenvalues of
Tp,2 for p < 50, and we conclude.

Theorem 11. For p < 50, p 6= 5, 11

Lp(f,X) = (1− papX + p3X2)(1− bpX + p3X2),

where ap is the p-th Fourier coefficient of the Hecke-eigenform of weight 2 and level
11, g11, and bp is the p-th Fourier coefficient of the Hecke-eigenform of weight 4
and level 5, g5.

Also, for p < 300

Lp(f,X) = 1− (pap + bp)X +O(X2).

The above theorem leads us to conjecture that L(f, s) = L(g11, s − 1)L(g5, s),
so that f should correspond to some Siegel modular form of Yoshida type. By the
previous reasoning f cannot correspond to a form in S3(K(55)).

Conjecture 12. Let f ∈ M(O(Λ̂)) be a Hecke-eigenform, with D square-free and
Θ(f) = 0. Then f corresponds either to a paramodular form of weight 3 which is
not a Gritsenko lift or to a modular form of Yoshida type as in the example above.

Example 13. (D = 167) Let V = Q5 and Q167 = x2 +xy+y2 +z2 +xt+zt+ t2 +
tw + 34w2, quinary quadratic form with discriminant 167. The genus of Λ = Z5

has 19 isometry classes, so we have that dimS(O(Λ̂)) = 18. On the other hand

we have dimS3(K(167)) = 19, and we see that the correspondence from S(O(Λ̂))
into S3(K(167)) is not surjective. According to [GPY19, Table 1] this is the first
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known case of a paramodular newform of weight 3 with sign −1 in the functional
equation. See also [AGM10, Table 4].

3. The missing forms

As seen in the previous example, for a prime p, not all forms in S3(K(p)) corre-

spond to forms in S(O(Λ̂)), with disc(Λ) = p. Moreover, the forms in S(O(Λ̂)) have
sign +1 in their associated L-function. To find the remaining paramodular forms
we introduce a representation using the spinor norm. With this representation, we
can obtain orthogonal modular forms with sign −1 in their associated L-function.
See [HTV20] for a more detailed presentation of this idea in the case of ternary
quadratic forms.

If d | D, we define the character νd : Q×>0/Q
×2
>0 → {±1}, defined in primes by

νd(p) =

{
−1 if p | d
1 otherwise

.

We define the representation ρd : O(V )→ {±1} ⊂ Q× ∼= GL(Q) by

ρd(σ) = νd(θ(±σ)) if σ ∈ O±(V ),

where θ : O+(V )→ Q×/(Q×)2 is the spinor norm. We denote the space of orthog-

onal modular forms for this representation Md(O(Λ̂)), and the cuspidal subspace

by Sd(O(Λ̂)). In this case

Md(O(Λ̂)) ∼=
h⊕

i=1

QO(Λi),

where QO(Λi) = Q if and only if νd(σ) = 1 for all σ ∈ O+(Λi).

Let {t1 < · · · < thd
} =

{
t : QO(Λt) = Q

}
, and ftj ∈ Md(O(Λ̂)) such that

ftj (x̂i) = δtji, so {ft1 , . . . , fthd
} is a basis of Md(O(Λ̂)).

If p is a prime such that Λ is unimodular at p, and k ≥ 1, by definition of the
Hecke operator we have

(Tp,k ftj )(x̂i) =
∑
m

ftj (x̂ip̂m) =
∑
m

ρd(σ)ftj (x̂m∗) =
∑
m

ρd(σ)δtjm∗ ,

where x̂ip̂mΛ̂ = σx̂m∗Λ̂. Henceforth, to compute (Tp,k ftj )(x̂i), we sum ρd(σ) over

σ ∈ O(V ) such that σΠm = Λtj , where the Πm are the pk-neighbors of Λi, and we

define that sum as Nd
i tj

(Λ; p, k). We get the formula

Tp,k ftj =

hd∑
i=1

Nd
titj (Λ; p, k)fti .

We define Tp,1 for Md(O(Λ̂)) when p ‖ D by

Tp,1 ftj = νd(p)

(
ftj +

hd∑
s=1

Nd
titj (Λ; p, 1)fti

)
.

Given a Hecke-eigenform f ∈ Sd(O(Λ̂)) we want to define its (spin) L-function.
As before, we define it by the Euler product

L(f, s) =
∏
p

Lp

(
f, p−s

)−1

where Lp is defined with the same equation as (6), if p - D. When p ‖ D we use
(7), where the local root number is εp = νd(p) c(Vp). When D is square-free we
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p λp,1 p λp,1 p λp,1 p λp,1 p λp,1

2 −8 71 −481 167 −2707 271 2954 389 5316
3 −10 73 −744 173 −182 277 −8334 397 4324
5 −4 79 927 179 2568 281 −2942 401 −4679
7 −14 83 −632 181 −2804 283 6360 409 −3476

11 −22 89 −297 191 −3035 293 −856 419 −910
13 −4 97 2 193 583 307 3548 421 3552
17 −47 101 −992 197 2276 311 −6322 431 −4878
19 −12 103 −1222 199 6754 313 −9443 433 15213
23 41 107 1436 211 360 317 108 439 −6909
29 50 109 −954 223 3569 331 1596 443 −7130
31 −504 113 19 227 −3346 337 −2129 449 12908
37 −102 127 516 229 2220 347 1856 457 −4005
41 174 131 −258 233 −2780 349 480 461 −7334
43 30 137 1080 239 −3878 353 1704 463 −77
47 42 139 1030 241 −819 359 4601 467 12248
53 156 149 −974 251 6112 367 6298 479 6447
59 −252 151 −1119 257 −5343 373 −4998 487 −14197
61 472 157 1152 263 −808 379 7706 491 1960
67 106 163 108 269 3592 383 −18293 499 3288

Table 1. Hecke-eigenvalues of Tp,1 for f ∈ S167(O(Λ̂)), p < 500.

p λp,2 p λp,2 p λp,2 p λp,2 p λp,2

2 10 7 −9 17 260 29 −187 41 800
3 11 11 −67 19 41 31 2744 43 442
5 −44 13 −158 23 −198 37 −730 47 −5052

Table 2. Hecke-eigenvalues of Tp,2 for f ∈ S167(O(Λ̂)), p < 50.

conjecture that the L-function satisfy the functional equation

L̃(f, s) = νd(D) L̃(f, 4− s),
where L̃ is defined as (8).

Example 13 (D = 167, continued). For d = p we have dimS167(O(Λ̂)) = 1, and

dimS3(K(167)) = dimS(O(Λ̂)) + dimS167(O(Λ̂)).

Let f ∈ S167(O(Λ̂)), f 6= 0. It is a Hecke-eigenform because the dimension of the
space is 1. In Table 1 we show the Hecke-eigenvalues of Tp,1 for f with p < 500. And
in Table 2 the Hecke-eigenvalues of Tp,2 for f with p < 50. With the previous data
we constructed an L-function in PARI/GP [PAR18] using the routine lfuncreate

providing the first 502 Dirichlet coefficients, and verified by the lfuncheckfeq

routine, returning a verification accuracy of 90 bits of precision.

3.1. A conjecture for prime level. Let p prime, and Λp be a lattice in the unique
genus of quinary quadratic forms of discriminant p. We verified computationally
the following theorem.

Theorem 14. For p < 7000

dimS3(K(p)) = dimS(O(Λ̂p)) + dimSp(O(Λ̂p)).

Which leads us to the following conjecture.
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Conjecture 15. For prime p there is a Hecke-equivariant isomorphism

S3(K(p)) ∼= S(O(Λ̂p))⊕ Sp(O(Λ̂p)).

Also, S(O(Λ̂p)) correspond to the forms of S3(K(p)) such that their associated L-

function has sign +1 in its functional equation, and Sp(O(Λ̂p)) correspond to the
forms such that their associated L-function has sign −1 in its functional equation.

4. Composite levels

When D is composite, as already seen in Example 10, the space of orthogonal
modular forms includes Yoshida lifts, which do not correspond to paramodular
forms.

In this section we investigate orthogonal modular forms for D = 305 = 5 · 61.
We have two genera of quintic positive definite quadratic forms, namely, let Λ1 and
Λ2 be lattices of dimension 5 such that disc(Λi) = 5 · 61 and{

ε5(Λ1) = −1
ε61(Λ1) = +1

,

{
ε5(Λ2) = +1
ε61(Λ2) = −1

.

We computed Sd(O(Λ̂i)), for d ∈ {1, 5, 61, 5 · 61}, i = 1, 2, as well as Tp,1 and

Tp,2 for p prime p < 20, with the convention that S1(O(Λ̂i)) := S(O(Λ̂i)). The
decomposition of these spaces is shown in Table 3. We show the dimensions of the
subspaces, the local root numbers, for d = 1 whether they are in the kernel of the
theta map, and the traces of the eigenvalues λp,1 for p ≤ 11.

The subspaces A2 and D1 correspond to the classical modular forms of weight 4
and sign + of levels 61 and 5 respectively ( 61.4.a.b and 5.4.a.a in [LMF20]).
By this we mean that λp,1 = ap + p+ p2 where ap is the eigenvalue of the classical
modular form, just as for Gritsenko lifts, but since the sign is + they do not lift to
S3(K(D)).

The subspaces D5 and F1 are of Yoshida type as in Example 10 (D5 corresponds
to the pair 61.2.a.b and 5.4.a.a , and F1 corresponds to the pair 61.2.a.a

and 5.4.a.a ). By [Sch18] they also do not lift to S3(K(D)).
The subspaces A3, C4, D6, D8 and G2 correspond to classical modular forms

of weight 4 and sign − of level 61 (for D6) and 305 (for the other four), so they
appear as Gritsenko lifts in S3(K(D)). Also A3 and G2, C4 and D8 lift from the
same space.

The subspaces D2 and E1 come from the non-lift orthogonal modular form in

S(O(Λ̂61)) (see Example 9). The subspace D2 has sign −, and E1 has sign +, and
the eigenvalues λ5,1 are different, and they have the same eigenvalues otherwise.
The subspaces A1, B1, C1, C2, C3, D3, D4, D7, E2 and G1 are non lifts. Also, we
conjecture that A1 and G1, B1 and E2, C1 and D3, C2 and D4, and C3 and D7 are
isomorphic as Hecke-modules.

By the formulas found in [IK17] dimS3(5 · 61) = 53. By counting dimensions
and the previous descriptions, we conjecture

S3(K(5 · 61)) ∼= A1 ⊕B1 ⊕ C1 ⊕ C2 ⊕ C3 ⊕D2 ⊕ E1 ⊕ A3 ⊕ C4 ⊕D6

We expect that, for square-free D, the space S3(K(D)) is always spanned, as
Hecke module, by orthogonal modular forms corresponding to quinary lattices of
discriminant D as in this example, which would give a nice algorithm to compute
(the eigenvalues of) all paramodular forms of square-free level.

5. Hypergeometric motives

Hypergeometric motives with Hodge vector (1, 1, 1, 1) are geometric objects which
are (conjecturally) expected to correspond to Siegel modular forms of weight 3. For

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.4.a.b
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.2.a.b
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61.2.a.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5.4.a.a


10 GUSTAVO RAMA AND GONZALO TORNARÍA

A-L Traces
ε5 ε61 Dim ⊂ ker Θ λ2,1 λ3,1 λ5,1 λ7,1 λ11,1

S1(O(Λ̂1))

A1 − + 8 Yes 1 −21 12 −28 −10
A2 − + 9 No 57 119 69 505 1338
A3 − + 13 No 73 129 455 647 1660

S61(O(Λ̂1)) B1 − − 1 −4 −12 −4 9 −13

S5·61(O(Λ̂1))

C1 + − 1 −2 2 −2 −19 21
C2 + − 1 2 −6 10 −3 29
C3 + − 8 3 −27 −6 −58 −54
C4 + − 13 81 157 325 669 1652

S1(O(Λ̂2))

D1 + − 1 No 2 14 25 62 164
D2 + − 1 Yes −7 −3 28 −9 −4
D3 + − 1 Yes −2 2 −2 −19 21
D4 + − 1 Yes 2 −6 10 −3 29
D5 + − 3 Yes −10 12 −20 −3 239

D6 + − 6 No 29 59 314 309 612
D7 + − 8 Yes 3 −27 −6 −58 −54
D8 + − 13 No 81 157 325 669 1652

S5(O(Λ̂2))
E1 − − 1 −7 −3 −22 −9 −4
E2 − − 1 −4 −12 −4 9 −13

S61(O(Λ̂2))
F1 + + 1 −6 −4 −20 13 −23

S5·61(O(Λ̂2))
G1 − + 8 1 −21 12 −28 −10
G2 − + 13 73 129 455 647 1660

Table 3. Decomposition of Sd(O(Λ̂i)), with disc(Λi) = 5 · 61.

an introduction to Hypergeometric motives see [Rob15]. David Roberts has com-
puted a list of some such hypergeometric motives with conductors at most 400
[Rob]. David Yuen and Chris Poor have found matching Siegel modular forms for
four cases with square-free conductor: 182, 205, 255, and 257. Also, Ladd [Lad18,
Pg. 24] found an orthogonal modular form such that the odd Euler factors of its
L-function coincides with the Euler factors of the L-series of the hypergeometric
motive of conductor 257.

The remaining four cases provided by Roberts have not square-free conductors
128, 378, 384 and 256. For the first three we have found Hecke-eigenvectors f in

S(O(Λ̂)), such that the first 50 coefficients of the L-function of f coincide with the
coefficients of the L-function of H. The coefficients of the L-function of H were
computed using MAGMA [BCP97] as in [Rob15]. For the local Euler factors with
p2 | disc(Q) we used the one given by the L-function of the hypergeometric motive.

(1) For the hypergeometric motive H of conductor 128, with data A = [2, 2, 8],
B = [1, 1, 4, 4], t = 1, and L2(x) = 1 + 2x+ 8x2. The quadratic space is Q5

with Q = x2 +xy+ y2 + z2 +xt+ zt+ t2 + zw+ 26w2, disc(Q) = 128 = 27,
and Λ = Z5.

(2) For the hypergeometric motive H of conductor 378, with data A = [3, 2, 2],
B = [1, 1, 6], t = 64, and L3 = 1 + 3x. The quadratic space is Q5 with
Q = x2 +xy+ y2 + z2 +xt+ zt+ t2 + zw+ 76w2, disc(Q) = 378 = 2 · 33 · 7,
and Λ = Z5.
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(3) For the hypergeometric motiveH of conductor 384, with data A = [2, 2, 2, 2]
B = [1, 1, 1, 1], t = 1/4, and L2 = 1. The quadratic space is Q5 with
Q = x2 + xy+ y2 + xz+ 2z2 + xt+ 2t2 + 12w2, disc(Q) = 384 = 27 · 3, and
Λ = Z5.

We have not been able to find matching Hecke-eigenvectors in S(O(Λ̂)) for the
hypergeometric motive of conductor 256, with data A = [2, 2, 2, 2, 4], B = [1, 1, 8],
t = 1, and L2 = 1 − 2x. The Euler factors for this motive can be computed from
the given data using MAGMA:

> R<x> := PolynomialRing(Integers());

> L:=LSeries(HypergeometricData([2, 2, 2, 2, 4], [1, 1, 8]), 1:

> BadPrimes:=[<2, 8,1-2*x>]);

> EulerFactor(L, 3);

729*x^4 - 54*x^3 - 2*x^2 - 2*x + 1

As a reference, the first Euler factors are L2 = 1− 2x, L3 = 1− 2x− 2x2 − 54x3 +
729x4, L5 = 1 + 12x+ 142x2 + 1500x3 + 15625x4.

6. Algorithms

To carry out the computations mentioned throughout the article we relied on
[Hei16], and Greenberg and Voight [GV14]. Hein gives a very detailed description
to compute spaces of orthogonal modular forms over totally real number fields, as
well as their Hecke-operators for good primes.

We implemented the algorithms to compute M(O(Λ̂)) and Md(O(Λ̂)), as well
as Tp,k for k = 1, 2, in Sage [Sag19]. One of the most important parts of the algo-
rithm to compute Tp,k relies on isomorphism testing of quadratic forms, for which
Sage uses PARI [PAR18], which implements an algorithm of Plesken and Souvignier
[PS97]. To compute the representation given in Section 3, we implemented a func-
tion to compute the spinor norm based in Example 8 in [Cas78, p. 30]. Cassels give
an algorithm to decompose an autometry A of a positive definite quadratic space
V of dimension n as a product of at most n transpositions τvi , vi ∈ V . The spinor
norm is computed as the product of the norm of vi modulo squares. In our case,
any proper autometry is a product of at most 4 transpositions. The implemented
code can be found in [Ram20].

To do the computations of Theorem 14, we did a random search of quinary
positive definite quadratic forms of prime discriminant. For each prime p < 7000
we found a representative of the unique genus of discriminant p. To find the matches
of Hypergeometric Motives of Section 5, we used tables of Nipp of reduced regular
primitive positive-definite quinary quadratic forms over Z [Nip].

7. Tables

In Tables 4–7 we show the orthogonal modular forms from S(O(Λ̂p)), Sp(O(Λ̂p))
for p < 500 that are not Gritsenko lifts. We include the dimension and the traces
of λp,1 for p ≤ 13 and λp,2 for p ≤ 5. The rational ones for d = 1 and p < 200 were
first computed by Hein [Hei16], and for p < 400 by Ladd [Lad18].
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

61 1 61a 1 −7 −3 3 −9 −4 −3 7 −9 −9
73 1 73a 1 −6 −2 0 7 −66 16 6 −9 0
79 1 79a 1 −5 −5 3 15 26 −15 2 4 −10
89 1 89a 1 −4 −6 16 −17 −2 −46 2 −6 27
97 1 97a 2 −9 −4 −4 16 −64 24 6 −14 4
101 1 101a 2 −7 −11 22 −32 46 −54 2 0 −21
103 1 103a 2 −9 −2 −15 26 −9 29 5 −10 −30
109 1 109a 3 −10 −15 −7 37 27 20 −3 7 −20
113 1 113a 1 −3 −4 8 4 −4 −40 2 −4 −4
127 1 127a 3 −9 −9 −12 45 18 69 0 6 −12
131 1 131a 2 −6 −4 8 −10 64 −84 4 −8 −4
137 1 137a 2 −4 −10 12 0 16 −8 0 8 12
139 1 139a 4 −14 −4 −22 14 −6 76 4 −10 −26
149 1 149a 4 −6 −23 16 −17 77 −9 −6 12 −15
151 1 151a 5 −12 −17 −33 57 81 75 −9 12 −28

157
1 157a 2 6 2 −14 8 −36 46 2 −22 −12
1 157b 5 −15 −12 0 −11 9 217 3 16 −78

163 1 163a 4 −10 −4 −16 38 4 84 2 −8 −12

167
167 167a 1 −8 −10 −4 −14 −22 −4 10 11 −44
1 167b 1 −2 0 −2 2 −14 −34 2 −17 16
1 167c 2 −3 −9 2 3 92 −41 −3 12 −28

173
173 173a 1 −8 −9 −10 −4 −4 −72 10 7 −3
1 173b 1 −2 −1 0 −16 −24 2 0 −23 −9
1 173c 4 −7 −15 14 −27 92 43 −2 22 −90

179 1 179a 4 −6 −10 −6 2 134 −134 −2 −8 −32
181 1 181a 10 −27 −16 −14 −38 59 249 0 −24 −91

191
1 191a 2 −3 −6 −7 −23 93 −19 −5 12 −10
1 191b 4 −6 −10 8 10 126 −136 2 −12 −52

193 1 193a 10 −15 −26 −38 56 −78 200 −11 −2 26

197

197 197a 1 −7 −10 −8 5 2 −66 7 14 −2
1 197b 1 1 −8 9 23 −12 −38 1 6 −24
1 197c 2 −4 −4 0 −20 78 −10 −4 −6 −42
1 197d 3 −2 −13 0 −19 25 101 −5 14 −6

199 1 199a 10 −27 −8 −43 41 33 170 1 −22 −120
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

211 1 211a 10 −18 −16 −48 38 24 118 −12 −8 16

223
223 223a 1 −6 −11 6 −28 8 −42 6 13 −33
1 223b 1 −2 1 −8 −6 −30 36 −2 −17 5
1 223c 10 −22 −4 −47 72 40 175 2 −6 −74

227
227 227a 2 −13 −18 −14 −22 −56 −15 13 12 16
1 227b 6 −7 −8 −6 −14 92 −85 −3 −12 −46

229
1 229a 1 −2 −1 −9 −2 −13 24 −5 −12 −18
1 229b 1 0 −5 17 −40 57 10 −1 −4 30
1 229c 14 −33 −18 −17 7 −64 316 2 −20 −136

233

233 233a 1 −6 −10 −7 4 −22 −40 5 10 22
1 233b 1 0 −2 8 −6 −38 32 2 −14 −6
1 233c 4 −4 −12 −4 −28 24 −96 0 0 −8
1 233d 5 −2 −16 −9 −10 72 76 −6 14 −18

239
239 239a 1 −6 −9 −8 10 −49 7 6 13 −13
1 239b 10 −5 −30 −14 −9 266 −164 −14 1 −75

241 1 241a 18 −31 −32 −38 −14 −146 302 −14 −54 −88

251
251 251a 1 −6 −8 −11 6 −63 2 6 3 −15
1 251b 1 −2 −2 9 −20 39 18 −4 3 17
1 251c 10 −14 −4 −4 −36 222 −202 6 −28 −62

257
1 257a 1 −1 0 −4 −8 24 12 −2 −8 −52

257 257b 2 −13 −13 −26 −16 −9 −51 14 0 18
1 257c 12 −13 −23 24 −82 1 −23 −5 −28 −6

263
263 263a 2 −11 −20 −15 −3 −10 −23 7 26 −2
1 263b 11 −7 −25 −8 −10 206 −78 −10 6 −14

269

269 269a 1 −7 −4 −20 −4 4 49 8 0 23
269 269b 1 −5 −10 −8 20 −60 −75 4 12 −25
1 269c 1 −1 2 −1 8 21 30 1 6 −10
1 269d 15 −20 −28 67 −145 114 14 −3 −52 −77

271
271 271a 1 −5 −10 2 −10 −27 −25 5 13 −25
1 271b 19 −35 −19 −70 81 −20 245 −13 −25 −83

277
277 277a 1 −5 −10 −1 −10 38 −94 4 13 0
1 277b 22 −25 −35 −44 48 −104 438 −19 −7 −56

281
281 281a 1 −6 −6 −16 6 −26 14 6 2 29
1 281b 18 −4 −50 8 −116 142 −96 −23 −20 −42

283

283 283a 1 −6 −6 −6 −29 15 −47 7 −4 −24
283 283b 1 −4 −14 8 −17 −15 −33 1 22 8
1 283c 1 −2 −2 6 −7 −11 33 −5 0 −24
1 283d 17 −26 2 −74 85 −95 213 1 −36 −82

293
293 293a 4 −24 −27 −57 −14 −7 −94 21 13 36
1 293b 17 −13 −36 49 −117 37 99 −14 −11 −80

Table 5. Forms in Sd(O(Λ̂p)) for d = 1, p and 200 < p < 300.
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

307
307 307a 3 −14 −29 0 −60 −30 −87 11 27 −39
1 307b 21 −28 1 −84 60 −92 319 −13 −41 −43

311
311 311a 3 −16 −21 −28 −12 −78 49 15 18 8
1 311b 19 −21 −11 13 −82 340 −225 −6 −38 −132

313
313 313a 1 −5 −8 −4 −21 42 −48 4 3 4
1 313b 29 −37 −16 −54 31 −264 410 −7 −71 −142

317

317 317a 1 −4 −12 −4 −1 29 −16 0 19 1
1 317b 1 0 2 4 −21 5 46 2 −15 −13
1 317c 2 0 −8 8 −36 −68 14 −8 −12 16

317 317d 3 −18 −15 −48 0 −9 −72 18 3 18
1 317e 16 −8 −29 15 −18 224 −41 −11 15 −88

331
331 331a 1 −4 −10 1 −10 −20 12 3 12 −2
1 331b 1 −2 6 −13 4 −6 100 −1 4 6
1 331c 26 −26 −22 −94 62 120 −4 −28 −54 2

337
337 337a 1 −4 −10 −3 −7 31 −71 2 11 3
1 337b 34 −23 −34 −93 67 −251 493 −30 −43 −7

347
347 347a 5 −22 −44 −40 −15 −82 −25 12 46 42
1 347b 19 −4 −20 −28 −27 228 −145 −18 −30 −36

349
1 349a 1 −4 7 −13 16 11 −32 −1 1 13

349 349b 2 −9 −15 −12 −17 6 −86 8 13 −8
1 349c 36 −46 −55 3 −46 −219 547 −26 −58 −207

353
1 353a 1 −1 2 −2 0 8 2 −2 0 −40

353 353b 5 −27 −30 −56 −44 −18 −82 24 13 8
1 353c 25 −13 −34 54 −138 −2 −40 −13 −67 −62

359
1 359a 1 1 −2 7 −3 −14 44 0 0 −18

359 359b 4 −19 −28 −41 0 −115 51 15 27 36
1 359c 25 −4 −37 −26 −60 484 −328 −23 −9 −86

367
367 367a 2 −11 −25 6 −31 −2 2 0 33 −34
367 367b 2 −11 −10 −14 −56 68 −88 10 −2 −14
1 367c 33 −45 9 −84 174 −76 343 −5 −57 −194

373
373 373a 3 −13 −23 −17 −39 72 −166 9 17 28
1 373b 41 −27 −40 −79 58 −215 706 −39 −19 −148

379
379 379a 1 −5 −5 −5 −25 −1 40 5 2 −5
379 379b 1 −3 −11 −3 3 −21 −52 1 12 −13
1 379c 36 −30 −8 −130 84 142 192 −34 −52 −48

383
383 383a 8 −40 −54 −66 −106 −34 44 30 36 −44
1 383b 26 −14 −10 7 −47 274 −246 −16 −44 −114

389
389 389a 4 −18 −25 −63 33 −61 −1 11 20 63
1 389b 36 −14 −55 96 −172 276 −172 −17 −50 −113

397
397 397a 5 −22 −34 −32 −78 121 −252 17 20 −31
1 397b 44 −47 −16 −22 25 −213 700 −20 −66 −199

Table 6. Forms in Sd(O(Λ̂p)) for d = 1, p and 300 < p < 400.
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p d label dim λ2,1 λ3,1 λ5,1 λ7,1 λ11,1 λ13,1 λ2,2 λ3,2 λ5,2

401
401 401a 4 −19 −22 −46 −6 −75 36 16 16 42
1 401b 38 −2 −48 38 −184 257 −216 −27 −84 −86

409
409 409a 2 −8 −14 −14 −20 14 −48 6 14 6
1 409b 52 −50 −50 −50 −14 −360 436 −41 −126 −156

419
419 419a 1 −5 −5 −9 −15 −18 85 3 3 15
419 419b 6 −24 −41 −65 −5 −174 −39 17 25 35
1 419c 35 −21 8 4 −136 498 −354 −12 −60 −174

421

421 421a 1 −4 −7 −6 −12 31 3 2 9 14
421 421b 1 −4 −5 −12 −4 1 −43 4 −3 −2
1 421c 2 −2 4 −17 53 −30 −68 −2 −12 49
1 421d 52 −40 −58 −27 −30 24 489 −44 −58 −241

431

431 431a 1 −5 −5 −13 −10 −39 60 2 −4 −10
431 431b 1 −5 −5 −7 −15 11 45 3 9 −30
1 431c 1 −1 1 −5 −18 19 −12 −6 −12 6

431 431d 6 −25 −40 −56 −12 −160 31 21 44 103
1 431e 37 5 −40 −24 −43 485 −369 −29 −35 −149

433
1 433a 1 −1 −2 2 11 −16 −3 −6 0 −48

433 433b 4 −15 −29 −29 −53 83 −171 8 16 3
1 433c 55 −43 −3 −83 6 −399 746 −20 −120 −157

439
439 439a 6 −23 −42 −30 −85 −24 −35 17 35 −48
1 439b 51 −56 −17 −127 183 −128 318 −43 −73 −240

443
443 443a 9 −35 −64 −82 −43 −128 −52 19 48 44
1 443b 35 −5 −6 −28 −81 390 −232 −27 −52 −96

449
449 449a 3 −14 −10 −52 −1 −58 −24 12 −6 70
449 449b 3 −11 −23 −23 −2 −34 30 5 27 12
1 449c 48 −2 −51 61 −221 256 −302 −32 −111 −62

457
457 457a 4 −15 −28 −18 −56 61 −125 10 21 14
1 457b 62 −21 −46 −98 146 −471 655 −46 −79 −138

461

1 461a 1 0 3 −5 12 8 −53 −1 0 3
1 461b 2 −4 5 −12 18 125 −70 2 −2 42

461 461c 10 −43 −56 −134 9 −183 −86 29 38 83
1 461d 47 −18 −77 199 −267 −21 46 −30 −88 −196

463

463 463a 1 −2 −12 −7 1 22 −47 −2 17 −13
463 463b 2 −8 −16 10 −50 −16 −70 8 22 −14
463 463c 2 −8 −15 −1 −70 30 65 1 3 7
463 463d 2 −8 −8 −22 −16 28 8 8 4 −8
1 463e 53 −33 −13 −122 317 −49 263 −34 −70 −218

467
467 467a 12 −48 −82 −111 −102 −186 −49 27 44 28
1 467b 40 −18 16 13 −118 352 −251 −19 −72 −176

479
479 479a 2 −7 −14 −18 −17 −12 27 2 6 6
479 479b 10 −43 −56 −98 −59 −296 130 33 46 35
1 479c 48 −14 −23 44 −100 499 −442 −29 −64 −181

487
487 487a 9 −33 −64 −32 −166 76 −119 18 57 −65
1 487b 58 −31 −2 −137 323 −17 309 −41 −89 −191

491

491 491a 1 −4 −7 −12 −2 −35 73 −1 4 8
491 491b 1 −4 −4 −18 −2 −59 40 2 −11 26
1 491c 1 0 −1 4 −18 7 25 −5 −4 8
1 491d 1 0 5 −12 −20 55 55 −3 4 0

491 491e 3 −11 −19 −40 11 −91 −8 5 15 13
491 491f 5 −15 −39 −32 −8 −103 −44 11 52 1
1 491g 48 2 −27 −20 −85 580 −629 −25 −72 −54

499
499 499a 2 −4 −20 −10 0 10 −22 0 26 −22
499 499b 4 −15 −23 −22 −72 −59 36 10 11 16
1 499c 64 −37 −3 −150 160 161 98 −50 −95 −146

Table 7. Forms in Sd(O(Λ̂p)) for d = 1, p and 400 < p < 500.
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[Tor05] Gonzalo Tornaŕıa. The Brandt module of ternary quadratic lattices. Thesis (Ph.D.). The

University of Texas at Austin, 2005. http://hdl.handle.net/2152/2129.
[Wad71] Hideo Wada. Tables of Hecke operations. I. In Seminar on Modern Methods in Number

Theory (Inst. Statist. Math., Tokyo, 1971), Paper No. 39, page 10. 1971.

Universidad de la República, Montevideo, Uruguay

Email address: grama@fing.edu.uy

Universidad de la República, Montevideo, Uruguay

Email address: tornaria@cmat.edu.uy

https://escholarship.org/uc/item/6wd46709
http://www.lmfdb.org
http://purl.stanford.edu/pv404zw1184
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/nipp5.html
http://pari.math.u-bordeaux.fr/
http://www.cmat.edu.uy/biblioteca/monografias-y-tesis/tesis-de-maestria/modulo-de-brandt-generalizado-gustavo-rama.pdf
http://www.cmat.edu.uy/biblioteca/monografias-y-tesis/tesis-de-maestria/modulo-de-brandt-generalizado-gustavo-rama.pdf
https://gitlab.fing.edu.uy/grama/quinary
http://cda.morris.umn.edu/~roberts/dpr/Research_files/ICERM2.pdf
http://www.cmat.edu.uy/cnt/omf5
https://www.sagemath.org
http://wstein.org/Tables
http://hdl.handle.net/2152/2129

	Introduction
	1. Neighbor lattices and orthogonal modular forms
	1.1. Neighbor lattices
	1.2. Orthogonal modular forms

	2. Orthogonal modular forms for `39`42`"613A``45`47`"603AO(5)
	3. The missing forms
	3.1. A conjecture for prime level

	4. Composite levels
	5. Hypergeometric motives
	6. Algorithms
	7. Tables
	References

