
REDUCTIONS BETWEEN SHORT VECTOR PROBLEMS AND

SIMULTANEOUS APPROXIMATION

DANIEL E. MARTIN

Abstract. In 1982, Lagarias showed that solving the approximate Shortest

Vector Problem also solves the problem of finding simultaneous Diophantine
approximations [21]. Here we provide a deterministic, dimension-preserving

reduction in the reverse direction. It has polynomial time and space complex-

ity, and it is gap-preserving under the appropriate norms. We also give an
alternative to the Lagarias algorithm by first reducing the version of simulta-

neous approximation in [21] to one with no explicit range in which a solution

is sought.

1. Introduction

Our primary result is to show that a short vector problem reduces determin-
istically and with polynomial complexity to a single simultaneous approximation
problem as presented in the definitions below. We use min× to mean nonzero mini-
mum, {x} ∈ (−1/2, 1/2]n to denote the fractional part of x ∈ Rn, and [x] to denote
the set {1, ..., bxc} for x ∈ R.

Definition 1.1. A short vector problem takes input α ∈ [1,∞) and nonsingular
M ∈ Mn(Z). A valid output is q0 ∈ Zn with 0 < ‖Mq0‖ ≤ αmin×q∈Zn‖Mq‖. Let
svp denote an oracle for such a problem.

Definition 1.2. A good Diophantine approximation problem takes input α,N ∈
[1,∞) and x ∈ Qn. A valid output is q0 ∈ [αN] with ‖{q0x}‖ ≤ αminq∈[N]‖{qx}‖.
Let gda denote an oracle for such a problem.

Our reduction asserts that if we can find short vectors in a very restricted family
of lattices then we can find them in general—behind a good Diophantine approxi-
mation problem is the lattice generated by Zn and just one additional vector, x.

Literature more commonly refers to a short vector problem as a Shortest Vector
Problem when α = 1 and an approximate Shortest Vector Problem otherwise (often
unrestricted to sublattices of Zn, though we have lost no generality). A brief expo-
sition can be found in [26]. See [14] or [24] for a more comprehensive overview, [27]
for a focus on cryptographic applications, [19] for a summary of hardness results,
and [6] for relevance and potential applications to post-quantum cryptography.

Regarding simultaneous approximation, Brentjes highlights several algorithms in
[7]. For a sample of applications to attacking clique and knapsack-type problems see
[13], [20], and [31]. Examples of cryptosystems built on the hardness of simultaneous
approximation are [2], [4], and [16]. This version is taken from [9] and [29].

Date: June 4, 2020.
2010 Mathematics Subject Classification. Primary: 52C07, 11H06, 68W25.
Key words and phrases. lattice reduction, Shortest Vector Problem, simultaneous Diophantine

approximation.

1

2 DANIEL E. MARTIN

The reduction, given in Algorithm 3, preserves the gap α when the `∞-norm is
used for both problems. This means the short vector problem defined by α and
M is solved by calling gda(α,x, N) for some x ∈ Qn and N ∈ R. It is the re-
verse of Lagarias’ 1982 reduction from good Diophantine approximation to svp.
(See Theorem B in [21], which refers to the problem as good simultaneous approx-
imation. We borrow its name from [9] and [29].) Though there is an important
contextual distinction: [21] relates simultaneous approximation under the `∞-norm
to lattice reduction under the `2-norm, whereas all reductions in this paper assume
a consistent norm.

Under Lagarias’ setup (the most common)—the `∞-norm for gda and the `2-
norm for svp—we are not the first to go the reverse direction. In a seminar posted
online from July 1, 2019, Agrawal presented an algorithm achieving this reduction
which was complete less some minor details [1]. Tersely stated, he takes an upper
triangular basis for a sublattice of Zn and transforms it inductively, using inte-
ger combinations and rigid rotations with two basis vectors at time, into a lattice
(a rotated copy of the original) whose short vectors can be found via simultane-
ous approximation. The short vector problem defined by α and M gets reduced
to gda(α/

√
2n,x, N), called multiple times in order to account for the unknown

minimal vector length which is used to determine x.
In contrast, the reduction here takes a completely different approach. It finds a

sublattice which is nearly scaled orthonormal, so that only one additional vector is
needed to generate the original lattice. This extra vector is the input for gda. We
note that when switching between norms, our reduction is also not gap-preserving.
To use Algorithm 3 to solve a short vector problem with respect to the `2-norm via
gda with respect to the `∞-norm, the latter must be executed with the parameter
α/
√
n to account for the maximum ratio of nonzero norms ‖q‖2/‖q‖∞.

The relationship between the two problems in Definitions 1.1 and 1.2 will be
studied through the following intermediary.

Definition 1.3. A simultaneous approximation problem takes input α ∈ [1,∞)
and x ∈ Qn. A valid output is q0 ∈ Z with 0 < ‖{q0x}‖ ≤ αmin×q∈Z‖{qx}‖. Let
sap denote an oracle for such a problem.

This problem prohibits only the trivial solution, the least common denominator
of x’s entries, while “N” in a good Diophantine approximation problem is generally
more restrictive.

Section 2 explores the relationship between the two versions of simultaneous
approximation given in Definitions 1.2 and 1.3. Among the results, only Proposi-
tion 2.1 in Subsection 2.1 is required to verify the final reduction of a short vector
problem to either version of simultaneous approximation. Subsection 2.2 contains
Algorithm 1. It reduces a good Diophantine approximation problem to polyno-
mially many sap calls, each executed with the parameter α/3.06. So while this
reduction is not gap-preserving, the inflation is independent of the input.

Section 3 reduces both versions of simultaneous approximation to svp. It begins
with Algorithm 2, which solves Definition 1.3’s version. We remark at the end
of Subsection 3.1 how this reduction adapts to the inhomogeneous forms of these
problems, meaning the search for q0 ∈ Z or q0 ∈ Zn that makes q0x−y or Mq0−y
small for some y ∈ Qn. (In this case the latter is known as the approximate Closest
Vector Problem. See chapter 18 of [14], for example.) Then Subsection 3.2 combines

SHORT VECTOR PROBLEMS AND SIMULTANEOUS APPROXIMATION 3

Algorithms 1 and 2 to solve Definition 1.2’s version of simultaneous approximation
using svp. This is our alternative to the Lagarias reduction.

Finally, Algorithm 3 in Section 4 reduces a short vector problem to gda or
sap. It also adapts to the inhomogeneous versions of svp and sap (not gda, as
mentioned at the end of Subsection 4.3). In Corollary 4.9 we observe that Algorithm
3 facilitates a simpler proof that gda is NP-hard under an appropriate bound on
α, a result first obtained in [9]. Then we combine Algorithms 2 and 3 in Subsection
4.2 to solve a simultaneous approximation problem with gda. In particular, we
give all six reductions among the defined problems, as shown in the diagram below.

sap

gda

svpAlg 3
§4.2

Alg 3
§4.2

§3.2

Alg 2
§3.1

Alg 1
§2.2

§2.1

Figure 1. Algorithm and sub-
section number of reductions.

The two reductions in Figure 1 without al-
gorithm numbers are achieved by following the
two arrows that combine to give the same
source and target. Dashed arrows indicate a
norm restriction. Each must be executed un-
der either the `1, `2, or `∞-norm. However, we
point out in Subsection 4.3 how the restriction
can be alleviated to any `p-norm provided we
accept additional gap inflation by a constant
arbitrarily close to 1.

The results are summarized by the following
table. It uses m and d to denote the maximal
magnitude among input integers and the least
common denominator of the input vector, re-

spectively. The matrix or vector dimension is n, and p defines the norm. Trivial
cases that cause logarithms to equal 0 are ignored. Column descriptions follow.

Reduction Operations Integers Inflation Calls
gda→ sap n logm n logm 3.06 dlog2d/αNe
sap→ svp (n+ logm)2 n logm 1 1
gda→ svp (n+ logm)2 n logm 3.06 dlog2d/αNe
svp→ gda n4 logmn n4 logmn n1/p 1
svp→ sap n4 logmn n4 logmn 1 1
sap→ gda n5 logm n5 logm n1/p 1

Table 1. Summary of reduction complexities and gap inflations.

Operations: Big-O bound on the number of arithmetic operations per oracle call.
Integers: Big-O bound on the length of integers used throughout the reduction.
Inflation: Maximum gap inflation. For example, to solve a good Diophantine
approximation problem with some α using Algorithm 1, sap is called with α/3.06.
Calls: Upper bound on the number of required calls to the oracle.

2. Versions of simultaneous approximation

2.1. SAP to GDA. Rather than give a complete reduction from a simultaneous
approximation problem to gda, which is postponed until the end of Subsection 4.2,
the purpose of this subsection is to observe a condition on the input that makes
these two versions of simultaneous approximation nearly equivalent.

4 DANIEL E. MARTIN

Proposition 2.1. Suppose the ith coordinate of x is of the form xi = 1/d, where
d ∈ N makes dx ∈ Zn. Under an `p-norm, gda(α,x, N) solves the simultaneous

approximation problem defined by αn1/p and x with N = d/2α.

Proof. Let qmin ∈ [d/2] be such that ‖{qminx}‖ is the nonzero minimum. A vector’s
fractional part is in (−1/2, 1/2]n, making its length at most n1/p/2. So we may
assume that ‖{qminx}‖ < 1/2α, since otherwise every integer in [N] = [d/2α] solves
the simultaneous approximation problem defined by αn1/p and x.

Under an `p-norm, ‖{qminx}‖ is an upper bound for its ith coordinate, qmin/d.
Combined with the assumption ‖{qminx}‖ < 1/2α, this gives qmin ∈ [d/2α] =
[N], which implies minq∈[N]‖{qx}‖ = min×q∈Z‖{qx}‖. And because αN < d, it is

guaranteed that gda(α,x, N) is not a multiple of d. �

Note that without an assumption on x like the one used in this proposition, there
is no natural choice for N that makes gda solve a simultaneous approximation
problem. If we set it too small, say with N < d/2, then minq∈[N]‖{qx}‖ may be

unacceptably larger than min×q∈Z‖{qx}‖, potentially making gda’s approximation

poor. If we set it too large, say with N ≥ d/α, then gda may return d, which is
not a valid output for the initial simultaneous approximation problem.

To get around this, our strategy is to first reduce a simultaneous approximation
problem to svp with Algorithm 2. Then in Algorithm 3, which reduces a short
vector problem to sap, we are careful to produce an input vector for the oracle that
satisfies the hypothesis of Proposition 2.1 in order to admit gda.

2.2. GDA to SAP. Let d continue to denote least common denominator of x.
The problem faced in this reduction is that outputs for a good Diophantine ap-
proximation problem are bounded by αN , which may be smaller than d/2. This
leaves no guarantee that sap(α,x), call this integer d1 ∈ [d/2], is a solution. But
knowing that x is very near a rational vector x1 with least common denominator
d1 allows us to call sap again, now on x1 to get d2 ∈ [d1/2]. This is the least
common denominator of some x2 near x1, and we continue in this fashion until
the bound αN has been reached. To facilitate this, we adopt the convention that
modular reduction returns an integer with magnitude at most half the modulus.

Algorithm 1: A reduction from a good Diophantine approximation problem to
multiple calls to sap under a consistent norm.

input: α,N ∈ [1,∞), x = (x1, ..., xn) ∈ Qn

output: q0 ∈ [αN] with ‖{q0x}‖ ≤ αminq∈[N]‖{qx}‖
1: d← lcd(x1, ..., xn) > 0
2: while d > αN do
3: d← |sap(α/3.06,x) mod d| . good, but large approximation
4: x← x− {dx}/d . now lcd(x) = d, at most half of
5: return d the previous iteration’s lcd

Proposition 2.2. The output of Algorithm 1 solves the initial good Diophantine
approximation problem.

Proof. Let di and xi denote the values of “d” and “x” after i while loop iterations
have been completed. In particular, d0 and x0 are defined by the input. Also let
I + 1 be the total number of iterations executed, so the output is dI+1.

SHORT VECTOR PROBLEMS AND SIMULTANEOUS APPROXIMATION 5

The triangle inequality gives

(2.1) ‖{dI+1x}‖ ≤ ‖{dI+1xI}‖+ dI+1

I∑
i=1

‖xi − xi−1‖.

With λi = minq∈[N]‖{qxi}‖, the choice of dI+1 bounds the first summand by αλI/c,
where c = 3.06 in the algorithm but is left undetermined for now. Similarly, the
choice of di = sap(α/c,xi−1) and the fact that di−1 > αN ≥ N make

(2.2) ‖xi − xi−1‖ =
‖{dixi−1}‖

di
≤
αmin×q∈Z‖{qxi−1}‖

cdi
≤ αλi−1

cdi
.

So to bound (2.1) it must be checked that the λi’s are not too large. To this end,
fix some i ≤ I and let qmin ∈ [N] satisfy ‖{qminxi−1}‖ = λi−1. Then we have the
following upper bound on λi, where the three inequalities are due to the triangle
inequality, inequality (2.2), and qmin ≤ N < dI/α ≤ di/2I−iα, respectively.

‖{qminxi}‖ ≤ λi−1 + qmin‖xi − xi−1‖ ≤ λi−1
(

1 +
αqmin

cdi

)
< λi−1

(
1 +

1

2I−ic

)
.

Inductively, this gives

(2.3) λi < λ0

i∏
j=1

(
1 +

1

2I−jc

)
.

Now the three numbered inequalities above can be combined to get

‖{dI+1x}‖ ≤
αdI+1

c

I∑
i=0

λi
di+1

≤ α

c

I∑
i=0

λi
2I−i

≤ αλ0
c

I∑
i=0

1

2I−i

i∏
j=1

(
1 +

1

2I−jc

)
.

Thus the output approximation quality, ‖{dI+1x}‖, is at most αminq∈[N]‖{qx}‖
= αλ0 provided c satisfies

1 ≥ 1

c

∞∑
i=0

1

2i

∞∏
j=i

(
1 +

1

2jc

)
.

This justifies our choice of c = 3.06 in line 3. �

Proposition 2.3. Let m > 1 be the maximum magnitude among integers defining
x, and let d > 1 be its least common denominator. The reduction in Algorithm 1
requires an initial O(n logm) operations plus O(n) operations for each call to sap,
of which there are at most dlog2(d/αN)e, on integers of length O(n logm).

Proof. Repeated applying the Euclidean algorithm computes d with O(n logm)
operations on integers of length O(n logm). Modular reduction in line 3 decreases
each successive least common denominator by at least a factor of 1/2. This bounds
the number of while loop iterations by dlog2(d/αN)e. �

3. Reducing to svp

First we restrict attention to Definition 1.3’s version of simultaneous approxima-
tion (sap) in Algorithm 2. Then we will compare the combination with Algorithm
1 to Lagarias’ reduction in [21] from a good Diophantine approximation problem.

6 DANIEL E. MARTIN

3.1. SAP to SVP. Here we replace the n+ 1 vectors associated to simultaneous
approximation, namely x and a basis for Zn, with n vectors generating the same
lattice. There are algorithms for which this a byproduct, like Pohst’s modified (to
account for linearly dependent vector inputs) LLL algorithm [23] or Kannan and
Bachem’s Hermite normal form algorithm [18]. But as a consequence of achieving
additional basis properties, they are more complicated and require more opera-
tions than necessary. We briefly present an alternative because the improved time
complexity is relevant to the next subsection.

Algorithm 2: A gap-preserving reduction from a simultaneous approximation
problem to one call to svp under a consistent norm.

input: α ∈ [1,∞), x = (x1, ..., xn) ∈ Qn

output: q0 ∈ Z with 0 < ‖q0x‖ ≤ αmin×q∈Z‖qx‖
1: d← lcd(x1, ..., xn)
2: xn ← xn + a with a an integer that makes . make sure dx extends to a basis

gcd(dx1, ..., dxn−1, d(xn + a)) = 1 for Zn

3: M ← SLn(Z) matrix with first column dx
4: M ←M with last n−1 columns scaled by d . generates scaled original lattice
5: return svp(α,M)1 . first coordinate is a solution

Proposition 3.1. The output of Algorithm 2 solves the initial simultaneous ap-
proximation problem.

Proof. First note that a in line 2 exists. As d is the least common denominator,
gcd(dx1, ..., dxn) and d are coprime. So take a to be divisible by those primes which
divide gcd(dx1, ..., dxn−1) but not dxn. Also, since a is an integer, the new value
of x defines the same simultaneous approximation problem as the input.

Coprime entries means x extends to some M ∈ SLn(Z). (One method is men-
tioned in the next proof.) Now, the columns of dM generate dZn, so the same is
true if we only scale the last n− 1 columns by d. In particular, the columns of the
new M in line 4 generate dx and dZn, which in turn generate each column. Thus
M defines a basis for the original simultaneous approximation lattice scaled by d.

Finally, the last n− 1 columns of M are vectors in dZn, so that Msvp(α,M) ≡
svp(α,M)1dx mod dZn. This verifies that svp(α,M)1 is the integer we seek. �

Proposition 3.2. Let m > 1 be the maximum magnitude among integers defining
x. The reduction in Algorithm 2 requires O((n+ logm)2) operations on integers of
length O(n logm).

Proof. As with Algorithm 1, line 1 requires O(n logm) operations on and resulting
in integers of length O(n logm).

Skipping line 2 for now, the ith column (for i ≥ 2) of M in line 3 can be set to(
b1dx1

gcd(dx1, ..., dxi−1)
, ...,

b1dxi−1
gcd(dx1, ..., dxi−1)

, b2, 0, ..., 0

)
,

where b2gcd(dx1, ..., dxi−1) − (−1)ib1dxi = gcd(dx1, ..., dxi). The determinant of
the top, left i × i minor is then gcd(dx1, ..., dxi) by induction. To find b1 and b2
we execute the Euclidean algorithm on gcd(dix1, ..., dixi−1) and dixi, where di =
lcd(x1, ..., xi). But gcd(dix1, ..., dixi−1) is at most m times gcd(di−1x1, ..., di−1xi−1),

SHORT VECTOR PROBLEMS AND SIMULTANEOUS APPROXIMATION 7

which divides the greatest common divisor of the numerators of x1, ..., xi. So for
each i the Euclidean algorithm needs O(logm) operations.

Before computing the last column of M , we find a in line 2 to ensure a determi-
nant of 1. As discussed in the last proof, we can start with a = gcd(dx1, ..., dxn−1)
and replace it with a/gcd(a, dxn) until nothing changes. This requires O(log a) =
O(logm) executions of the Euclidean algorithm, each taking O(logm) operations.

Scaling all but the first column by d in line 4 takes n2 − n operations. �

We remark that this algorithm adapts to inhomogeneous forms of these problems.
To find q0 ∈ Z with 0 < ‖{q0x − y}‖ ≤ αmin×q∈Z‖{qx − y}‖ when qx − y ∈ Zn

has no solution, we can perform the same reduction and finish by calling an oracle
which solves the approximate Closest Vector Problem defined by α, M , and dy.

3.2. GDA to SVP. Combining Algorithms 1 and 2 gives an alternative to the La-
garias reduction from good Diophantine approximation to svp in [21]. We execute
Algorithm 1, but use Algorithm 2 to compute sap(α/3.06,x) in line 3. By Proposi-
tion 2.3, this requires at most dlog2(d/αN)e calls to svp. And Proposition 3.2 states
that each call requires O((n+ logm)2) operations on integers of length O(n logm).

Recall that switching from `2 to `∞ decreases a nonzero norm by at most a
factor of 1/

√
n. In particular, by executing this combination of Algorithms 1 and 2

with respect to the `2-norm, we get an `∞ solution to the initial good Diophantine
approximation problem provided we use α/3.06

√
n for svp.

Lagarias achieves this reduction with the now well-known trick from [22] of re-
ducing the lattice generated by Zn and x, bumped up a dimension by putting 0
in every (n + 1)th coordinate but x’s. The ideal value for the last coordinate of

x, which is guessed at using bn + log2 dNc calls of the form svp(α/
√

5n,M) for
varying M , is minq∈[N]‖{qx}‖/N . (The gap inflation approaches

√
n as our guesses

get better.) The Lagarias reduction requires an initial O(n logm) arithmetic op-
erations to compute the least common denominator, d, then only one additional
operation per call. The integers involved have input length O(logmnN).

Whether the benefit of fewer calls to svp outweighs the increased operations per
call depends on the complexity of the oracle. Ours is an asymptotic improvement
when the number of operations performed by svp exceeds O((n+ logm)2).

4. Reducing to gda or sap

We begin again by focusing first on the reduction to sap.

4.1. Intuition. Consider an input matrix M ∈ Mn(Z) for a short vector problem.
Let d = detM , and let e1, ..., en denote the standard basis vectors for Zn. If there
were one vector, call it b ∈ Zn, for which the set {Mb, de1, ..., den} generated
the columns of M , our reduction would just amount to finding it. This is exactly
the setup for simultaneous approximation: n + 1 vectors, n of which are scaled
orthonormal. A solution could be obtained by doing simultaneous approximation
on Mb/d, scaling the resulting short vector by d, and applying M−1 (to comply
with Definition 1.1). Unfortunately, unless n ≤ 2 or d = ±1, such a b does not
exist. Indeed, the adjugate matrix, adjM = dM−1, has at most rank 1 over Z/pZ
for a prime p dividing d. So at least n − 1 additional vectors are required to have
full rank modulo p, a prerequisite to having full rank over Q. But asking that
Mb generate the columns of M alongside de1, ..., den is equivalent to asking that
b generate Zn alongside the columns of adjM .

8 DANIEL E. MARTIN

What mattered is the matrix with columns de1, ..., den being scaled orthonor-
mal. As such, multiplying by it or its inverse has no effect on a vector’s relative
length. So we plan to find a different set of n column vectors—a set for which
just one additional Mb is needed to generate the original lattice—which is nearly
scaled orthonormal, making the effect of its corresponding matrix multiplication
on α negligible. The initial short vector problem becomes a search for an integer
combination of Mb and these columns, say c1, ..., cn. We can therefore solve the si-
multaneous approximation problem defined by α and [c1 · · · cn]−1Mb. This works
as long as multiplying by [c1 · · · cn] changes the ratio between the lengths of the
shortest vector and our output by less than whatever is afforded by the fact that
lattice norms form a discrete set.

An arbitrary lattice may have all of its scaled orthonormal sublattices contained
in dZn. So as candidates for the matrix [c1 · · · cn], we look for something of the
form cd Id +MA = M(c adjM +A) for some c ∈ Z and A ∈ Mn(Z). If the entries
of A are sufficiently small, then multiplication by this matrix has a similar effect
on relative vector norms as multiplying by cd Id, which has no effect.

We will tailor our choice of c and A so that a coordinate of the simultaneous
approximation vector, (c adjM+A)−1b, is 1/ det(c adjM+A). This admits Propo-
sition 2.1 and hence gda.

4.2. SVP to GDA or SAP. Algorithm 3 uses the following.

Notation 4.1. For polynomials f1 =
∑

i f1,ix
i and f2 =

∑
i f2,ix

i with maximum
degree d, let C(f1, f2) denote the matrix of their coefficients,

f1,d 0 f2,d 0
...

. . .
...

. . .

f1,1 · · · f1,d f2,1 · · · f2,d
f1,0 · · · f1,d−1 f2,0 · · · f2,d−1

. . .
...

. . .
...

0 f1,0 0 f2,0

.

The matrix above can determine when f1 and f2 are coprime over Q(x) in
lieu of polynomial long division, where coefficient growth is exponential without
complicated mitigations as in [8]. We demonstrate this now to give some clarity to
the meaning behind lines 5 and 6 of Algorithm 3.

Lemma 4.2. Let f1, f2 ∈ Z[x], not both constant. As an ideal in Z[x], (f1, f2)
contains detC(f1, f2), which is nonzero if and only if f1 and f2 have no common
root in the algebraic closure of Q.

Proof. Let d = max(deg f1,deg f2). Consider the vector in Z2d whose only (per-
haps) nonzero entry is detC(f1, f2) in the last coordinate. This is the image under
C(f1, f2) of some nonzero integer vector. We can split the entries of this vector
down the middle to get coefficients for g1, g2 ∈ Z[x] that have degree at most d− 1
and satisfy detC(f1, f2) = f1g1 + f2g2 ∈ (f1, f2).

Plugging a common root of f1 and f2 into this last equation, should one exist,
shows that detC(f1, f2) = 0. Conversely, suppose f1g1+f2g2 = 0 and that deg f1 =
d ≥ 1. Then g2 must be nonzero to avoid the same being true of g1, contradicting
our choice of nonzero coefficient vector. But g2 has degree at most d − 1. So
f1g1 = −f2g2 implies that at least one of f1’s d roots must be shared by f2. �

SHORT VECTOR PROBLEMS AND SIMULTANEOUS APPROXIMATION 9

Notation 4.3. For a matrix M , let Mi,j denote the entry in its ith row and jth

column, and let M̌ i denote its top, left i× i minor.

Line 1 of the next algorithm requires knowing the position of a nonzero entry
in the input matrix, and line 8 requires knowing the maximum magnitude among
entries. For notational convenience, we assume that Mn,1 is the nonzero maximum.

Algorithm 3: A reduction from a short vector problem with n ≥ 2 to one call to
sap (gap-preserving) or gda under a consistent `p-norm with p ∈ {1, 2,∞}.

input: a≥ b ∈ N (α= a/b), M∈Mn(Z) with 0 6= detM and Mn,1= maxi,j |Mi,j |
output: q0 ∈ Zn with 0 < ‖Mq0‖ ≤ αmin×q∈Zn‖Mq‖

1: p ← least prime not dividing Mn,1 detM
2: M ← x adjM + p Id . M = M(x) has linear polyno-
3: for i← 2 to n do mial entries
4: Mi,1 ←Mi,1 + p
5: Mi,i−1 ←Mi,i−1+pj with j>0 minimal . need not compute determinant

so detC((adj M̌ i)i,1, (adj M̌ i)i,2) 6= 0 to test each j—see Theorem 4.8
6: c← detC((adjM)n,1, (adjM)n,2)
7: c← c/pj with j maximal or p+1 if |c| = pj . make c coprime to p
8: M ←M(cj) with j =

⌈
log|c|a

2(2Mn,1n)3n
⌉

. substitute for x so M ∈ Mn(Z)

9: b1, b2 ← integers with |b1| minimal so 1 = . that these exist guarantees Mx
b1(adjM)n,1 + b2(adjM)n,2 (line 10) and M generate Zn

10: x←M−1(b1, b2, 0, ..., 0)
11: q0 ← sap(α,x) or gda(α/n1/p,x, N) with . gda works since xn = 1/detM ,

N = n1/p detM/2α recall Proposition 2.1
12: return M{q0x}

Let us show that the for loop can always be completed.

Lemma 4.4. For i = 2, ..., n, there is some j ≤ 2i − 2 satisfying the criterion of
line 5 in the for loop iteration corresponding to i.

Proof. When i = 2 we are asked to find j for which the linear polynomials M1,1 and
M2,1 + pj do not share a root (by Lemma 4.2). The constant term of M1,1 is p by
line 2, meaning it has at most one root. So asking that j ≤ 2i− 2 = 2 gives enough
space to avoid the at-most-one value of j that fails. Now suppose i ≥ 3 and that
the claim holds for i − 1. Let M be its value after line 4 in the for loop iteration
corresponding to i, and let f1 = (adj M̌ i−1)i−1,1 and f2 = (adj M̌ i−1)i−1,2.

By assumption there are g1, g2 ∈ Z[x] with g1f1 + g2f2 = detC(f1, f2) 6= 0.
Fix an integer j, and let h1 = (adj M̌ i)i,1 − pjf1 and h2 = (adj M̌ i)i,2 − pjf2, the
polynomials we hope to make coprime with the appropriate choice of j. We have[

f2 −f1
g1 g2

] [
h1
h2

]
=

[
f2(adj M̌ i)i,1 − f1(adj M̌ i)i,2

g1(adj M̌ i)i,1 + g2(adj M̌ i)i,2 − pj detC(f1, f2)

]
.

In the column on the right, where we now focus our attention, pj has been isolated.
For each root of the top polynomial, there is at most one value of j that makes

it a root of the bottom. Thus it suffices to show that f2(adj M̌ i)i,1 − f1(adj M̌ i)i,2
is not the zero polynomial. Then its degree, which is at most 2i − 3, bounds how
many values of j can make the right-side polynomials share a root. As this occurs
whenever h1 and h2 share a root, Lemma 4.2 would complete the proof.

10 DANIEL E. MARTIN

To show that f2(adj M̌ i)i,1 − f1(adj M̌ i)i,2 is nonzero, we compute its constant
term from the following matrix:

(4.1)

p 0 · · · 0 0 0

p+ pj2 p 0 0

p pj3 0
...

. . .
...

p 0 pji−1 p 0

p 0 · · · 0 pj p

.

These are the constants in M̌ i after adding pj in the i, i − 1 position—the main
diagonal comes from line 2, the first column comes from line 4, and the second
diagonal comes from line 5. To compute h1 or h2, we use cofactor expansion along
the bottom row after deleting the last column and the first or second row. The
(i−2)× (i−2) minor determinants that are multiplied by the bottom row constant
pj are exactly f1 and f2 up to a sign. What remains sums to (adj M̌ i)i,1 and
(adj M̌ i)i,2. So the constant terms of (adj M̌ i)i,1, (adj M̌ i)i,2, and f2 are pi−1,
0, and p to the power 1 + j3 + · · · ji−1, respectively. This makes p to the power
i+ j3 + · · ·+ ji−1 the constant term of f2(adj M̌ i)i,1 − f1(adj M̌ i)i,2. �

We remark that by using a large integer instead of x in line 2, the for loop
could successively make pairs of integers coprime rather than polynomials. Then
the Euclidean algorithm could test j in line 5; determinants involving polynomial
entries need not be computed. We might expect such an algorithm to require
O(n3 logMn,1n) operations (this uses that the average ratio with Euler’s phi func-
tion, ϕ(n)/n, is a positive constant), but the provable worst case is bad. The best
current asymptotic upper bound on the size of the interval that must be sieved or
otherwise searched to find j is due to Iwaniec [17]. It only limits the algorithm
to O(n7 logMn,1n) operations. We favored the polynomial approach because of an
easier bound on j (Lemma 4.4) and a better provable worst case (Theorem 4.8).

The next lemma allows the vector in line 10 to pass as “b” from Subsection 4.1.

Lemma 4.5. With M denoting its value in line 9, gcd((adjM)n,1, (adjM)n,2) = 1.

Proof. By Lemma 4.2, it suffices to prove gcd((adjM)n,1, (adjM)n,2, c) = 1 with
c as in line 6. Now let c′ be c/pj or p + 1 as in line 7. Recall the constant terms
displayed in (4.1), which show that (adjM)n,2 is a power of p modulo c′. This
implies gcd((adjM)n,1, (adjM)n,2, c) is a power of p since p - c′. But the constants
added throughout the for loop are multiples of p. So before substituting for x, only
the leading term of (adjM)n,1 might have been nonzero modulo p. With M now
the original input matrix, this leading term is Mn,1 detMn−2xn−1. By line 1 this
is coprime to p whenever the same is true of the integer substituted for x. �

Lemma 4.6. Let M be the input matrix, let cj be as in line 8, and let A be such
that cjadjM + A is the value of “M” in line 9. Then ‖MA‖op < (2nMn,1)3n/5n
under any `p-norm.

Proof. The operator norm is max‖u‖=1‖MAu‖. Using ‖u‖∞ ≤ 1 gives

(4.2) ‖MAu‖ ≤ n‖MAu‖∞ ≤ n2 max
i,j∈[n]

|(MA)i,j |.

We refer back to (4.1), which displays the entries of A when i = n. Lemma 4.4 says

SHORT VECTOR PROBLEMS AND SIMULTANEOUS APPROXIMATION 11

ji ≤ 2i− 2, so the entries of MA are bounded in magnitude by

(4.3) max
i,j∈[n]

|Mi,j |max(np+ p2, p+ p2n−2) ≤ 2Mn,1p
2n−2 ≤ 2M3

n,1p
2n−2.

(Recall that n ≥ 2 for this inequality.) Here np + p2 comes from the first column
of A, and p+ p2n−2 comes from the (n− 1)th column.

Now we turn to the size of p. If x ∈ R is such that x#, the product of primes not
exceeding x, is larger than Mn,1|detM |, then it must be that p < x. Rosser and
Schoenfeld’s lower bound on Chebyshev’s theta function, ϑ(x) =

∑
p≤xlog p, gives

ϑ(x) > 0.231x when x ≥ 2 [28]. For the determinant we use Hadamard’s bound:
|detM | ≤ (Mn,1

√
n)n [15]. So take x = (logM3n

n,1n
n)/0.462 (note that x ≥ 2 even

when n = 2 and Mn,1 = 1, allowing for the Rosser, Schoenfeld bound) to get

log x# = ϑ(x) > 0.231x = 1
2 logM3n

n,1n
n ≥ logMn+1

n,1 nn/2 ≥ logMn,1|detM |.

Combining p < x with (4.2) and (4.3) gives ‖MA‖op < 2M3
n,1n

2x2n−2. We must

show that this is less than the stated bound of (2nMn,1)3n/5n. To do this, raise

both expressions to the power 1/(n−1) and use (5/4)1/(n−1) ≤ 5/4. This simplifies
the desired inequality to (logM3

n,1n)2 < 1.366M3
n,1n, which is true. �

Theorem 4.7. Under the `1, `2, or `∞-norm, the output of Algorithm 3 solves the
initial short vector problem.

Proof. There are two parts to the proof: 1) showing that the algorithm replaces
the columns of M with n+ 1 vectors that define the same lattice, n of them being
“nearly” scaled orthonormal, and 2) showing that nearly scaled orthonormal is
as good as being scaled orthonormal. Throughout the proof, let M be the input
matrix, let cj be as in line 8, let M ′ be the value of “M” in line 9, and let A =
M ′ − cj adjM be the matrix of constants added throughout the for loop (as used
in Lemma 4.6 and as shown in (4.1) when i = n).

For part 1), with b = (b1, b2, 0, ..., 0) as in line 10, Lemma 4.5 gives

x = M ′−1b =
(x1, x2, ..., 1)

detM ′
.

By Cramer’s rule [10], the 1 in the last coordinate is the determinant after replacing
the last column of M ′ by b, so that these n columns generate Zn. This in turn
shows that the columns of MM ′ and Mb generate the input lattice. Also note, by
Proposition 2.1, that the 1 in the last coordinate of detM ′ · x allows for gda in
place of sap with N set to n1/p detM ′/2α and the gap scaled by 1/n1/p.

Instead of finding a short integer combination of Mb and the columns of

(4.4) MM ′ = cjdetM Id +MA,

Algorithm 3 uses (MM ′)−1(Mb) = x and the columns of (MM ′)−1(MM ′) = Id.
Then MM ′{q0x} is proposed as a short vector. It is indeed an element of the
original lattice as the coordinates of M ′{q0x} ≡ q0b mod Zn are all integers. But
it must be checked is that MM ′{q0x} is short whenever {q0x} is. Part 2) of the
proof is to make precise the insignificance of the second matrix summand, MA, in
(4.4). We begin by computing how much multiplication by the full matrix in (4.4)
is allowed to inflate the gap without invalidating the output of gda or sap.

By Minkowski’s theorem [25], the magnitude of the shortest vector in the orig-
inal lattice with respect to the `∞-norm is not more than |detM |1/n. So un-
der an `p-norm with p ∈ N, the shortest vector has some magnitude, say λ,

12 DANIEL E. MARTIN

with (n1/p|detM |1/n)p ≥ λp ∈ Z. In particular, n|detM |2/n ≥ λ2 ∈ Z when
p ∈ {1, 2,∞}. Now, if q ∈ Zn is such that ‖Mq‖2 < (a2λ2 + 1)/b2, then it must
be that ‖Mq‖ ≤ aλ/b since there are no integers strictly between (aλ/b)2 and
(a2λ2 + 1)/b2. Thus multiplication by MM ′ must inflate the gap between the
norms of our output vector and the shortest vector by less than

(4.5)

√
a2λ2 + 1

bαλ
=

√
a2λ2 + 1

aλ
≥
√
a2n|detM |2/n + 1

a
√
n|detM |1/n

.

Scaling does not affect the ratio of vector norms, so to determine the effect of
multiplication by (4.4) it suffices to consider the matrix

(4.6) Id +MA/cjdetM

instead. If qmin is a shortest nonzero vector in the simultaneous approximation
lattice generated by Zn and x, then the shortest vector after applying (4.6) to this
lattice has norm at least (1 − ‖MA‖op/|cj detM |)‖qmin‖. Similarly, the vector
{q0x} obtained using q0 from line 11 increases in norm by at most a factor of
(1+‖MA‖op/|cj detM |). Combining this with our conclusion regarding (4.5) shows
that it suffices to verify that the following inequality holds:

(4.7)
1 + ‖MA‖op/|cj detM |
1− ‖MA‖op/|cj detM |

≤
√
a2n|detM |2/n + 1

a
√
n|detM |1/n

.

Now solve for |cj | to get a lower bound of√
a2n|detM |2/n + 1 + a

√
n|detM |1/n√

a2n|detM |2/n + 1− a
√
n|detM |1/n

· ‖MA‖op
|detM |

<
(5a2n|detM |2/n)‖MA‖op

|detM |
.

Ignoring the powers of |detM | since 2/n ≤ 1, we see that j in line 8 is chosen
to make the bound above agree exactly with Lemma 4.6. �

Theorem 4.8. Let m = max(a1/n
3

,Mn,1). The reduction in Algorithm 3 requires
O(n4 logmn) operations on integers of length O(n4 logmn).

Proof. We will use that finding determinants, adjugates, inverses, or characteristic
polynomials of n×n matrices with entry magnitudes bounded by m requires O(n3)
operations on integers of length O(n logmn). For example, see Danilevskii’s method
for the characteristic polynomial [11] and the Bareiss algorithm for the others [5].
Note that we may then compute determinants of matrices with linear polynomial
entries in O(n3) operations provided the matrix of linear terms or the matrix of
constant terms is invertible.

In the proof of Lemma 4.6 we showed that the prime from line 1 is less than
(logM3n

n,1n
n)/0.462. So finding it does not contribute to asymptotic complexity.

Now consider the for loop, where we must avoid recomputing the determinant
in line 5 for each value of j in order to meet the prescribed bound on operations.

Let i ≥ 3 and fix some notation: M is its value after line 4, f1 =(adj M̌ i−1)i−1,1
and f2 = (adj M̌ i−1)i−1,2, g1 and g2 have degree at most i−3 and f1g1 +f2g2 =
detC(f1, f2) 6=0, and for some j, h1 =(adj M̌ i)i,1−pjf1 and h2 =(adj M̌ i)i,2−pjf2.
Note for computing (adj M̌ i)i,2 that the constant term matrix is not invertible,
which may also be true of the linear term matrix. Because this complicates com-
bining the Bareiss and Danivelskii algorithms, we could find (adj M̌ i)i,2 indirectly
by computing h2 for two values of j that produce an invertible constant term matrix
(recall from (4.1) that f2 has nonzero constant term), then solve for it.

SHORT VECTOR PROBLEMS AND SIMULTANEOUS APPROXIMATION 13

Call the polynomials in the resulting column vector below h′1 and h′2:

(4.8)

[
f2 + pjg1x

2i−3 −f1 + pjg2x
2i−3

g1 g2

] [
h1
h2

]
=

[
f2(adj M̌ i)i,1 − f1(adj M̌ i)i,2 − pj detC(f1, f2)x2i−3

g1(adj M̌ i)i,1 + g2(adj M̌ i)i,2 − pj detC(f1, f2)

]
.

Note that if j makes h′1 and h′2 avoid a common root, then it does so for h1 and h2.
View C(h′1, h

′
2) as a matrix with linear polynomial entries where pj is the vari-

able. This variable only appears in the leading term of h′1 and the constant term
of h′2. So pj only occurs on the main diagonal of C(h′1, h

′
2), where its coefficient is

nonzero. In particular, the polynomial detC(h′1, h
′
2) can be found in O(n3) opera-

tions. Substituting different values of pj into this polynomial until one is nonzero
avoids repeatedly finding determinants. And note that we still need only test up to
j = 2i−2 as stated in Lemma 4.4 because the determinant of the matrix in (4.8) is
a constant (a unit in Q(x)). Thus each for loop iteration requires O(n3) operations.

The integers composing the linear polynomial matrix entries that begin each
for loop iteration are small powers of p = O(n logMn,1n) and entries in the adju-
gate of the input matrix, M . By Hadamard’s bound they are thus O(n logMn,1n)
in length. Hadamard’s bound also applies to the coefficients of (adj M̌ i)i,1 and
(adj M̌ i)i,2, making their lengths O(n2 logMn,1n). And it applies again to make
detC((adj M̌ i)i,1, (adj M̌ i)i,2)) have length O(n3 logMn,1n). This is our bound on
the length of c in line 6 and hence the length of c in line 7. The length of cj in line
8 is then O(max(log a2(2Mn,1n)3n, log |c|)) = O(n3 logmn), with the maximum ac-
commodating the ceiling function. Then a final application of Hadamard’s bound
for lines 9 and 10 makes integer lengths O(n4 logmn). This is therefore a bound
on the number of operations required by the Euclidean algorithm in line 9. �

In [12], Dinur proves the NP-hardness of short vector problems under the `∞-
norm when α = nc/ log logn for some c > 0 by giving a direct reduction from the
Boolean satisfiability problem (sat). As a consequence, Theorems 4.7 and 4.8 prove
the same for both good Diophantine approximation and simultaneous approxima-
tion problems. (There is no gap inflation for gda in line 11 under the `∞-norm.)

Corollary 4.9. Good Diophantine approximation and simultaneous approximation
problems are NP-hard under the `∞-norm with α = nc/ log logn for some c > 0. �

This result is known for good Diophantine approximation [9], though the re-
duction sat → svp → gda completed here is simpler. In [9], Chen and Meng
adapt the work of Dinur as well as Rössner and Seifert [30] to reduce sat to finding
short integer vectors that solve a homogeneous system of linear equations (hls). It
works by first reducing to the problem of finding pseudo-labels for a regular bipar-
tite graph (psl) with an algorithm in [3]. From hls, [30] is further employed to
reduce the number of equations in the system to one (sir), which is then reduced
to gda in a different paper of Rössner and Seifert [29]. Each of the reductions,
sat→ psl→ hls→ sir→ gda, is gap-preserving under the `∞-norm.

Short vector problems are only known to be NP-hard under the `∞-norm. But
there are other hardness results under a general `p-norm for which Theorems 4.7
and 4.8 can be considered complementary. See [19] for an exposition.

Another corollary is the reduction from a simultaneous approximation problem to
gda, giving the final row of Table 1. By Proposition 3.2, Algorithm 2 results in one

14 DANIEL E. MARTIN

call to svp with integers of length O(n logm), where we can take m to be the maxi-

mum magnitude among a1/n
4

(still α = a/b) and the integers defining x. Then The-
orem 4.8 implies the reduction to gda requires O(n4 logmnn) = O(n5 logm) (ab-
sorbing the operations required by Algorithm 2) on integers of length O(n5 logm).

4.3. Further discussion. The last algorithm was restricted to an `p-norm for
p ∈ {1, 2,∞}. So we will discuss what happens with a more general approach.

Multiplication by MM ′, shown in (4.6), may change the gap between the length
of the shortest vector in the simultaneous approximation lattice and that of the
vector output by gda or sap. That this potential inflation does not invalidate
our output relies on the set of vector norms being discrete and α being rational—
facts that were exploited to produce the expression in (4.5). The idea behind that
paragraph is to find a nonempty interval (αλ, α′λ), where λ = min×q∈Zn‖Mq‖, that

contains no norms from the lattice defined by M (or even Zn for the interval tacitly
given in the proof). This creates admissible inflation, α′/α, which is (4.5).

The purpose of restricting to `1, `2, or `∞ is to facilitate finding this interval.
Knowing that (bαλ)2 ∈ Z for some b ∈ Z simplifies the search for α′. The same is
true for any `p-norm with p ∈ N. But the immediate analogs of (4.5), (4.6), and
(4.7) lead to a replacement for the very last bound used in the proof of the form

(5papn|detM |p/n)‖MA‖op
2|detM |

.

This makes the number of operations needed to execute line 9 depend exponentially
on the input length log p. We have not taken into account, however, the possibility
of a nontrivial lower bound for the difference between large consecutive integers
which are sums of n perfect pth powers. Such a bound would allow for a longer
interval, (αλ, α′λ), that provably contains no lattice norms.

These arguments are all in effort to preserve the gap when reducing to sap
or, when p = ∞, gda. The situation clarifies if a small amount of inflation is
allowed. To solve a short vector problem with gap α using sap with gap α′ < α,
the inequality (4.7) becomes

1 + ‖MA‖op/|cj detM |
1− ‖MA‖op/|cj detM |

≤ α

α′
.

We still need to substitute of power of c for x in line 8 for the purpose of Lemma
4.5. Given these two constraints, it is sufficient in line 8 to take M ←M(cj) for

j =

⌈
log|c|

(α+ α′)‖MA‖op
(α− α′)|detM |

⌉
,

which can be made explicit with Lemma 4.6. There is no need to insist that α is
rational or impose restrictions on p ∈ [1,∞] defining the norm.

As a final note, the reduction to sap adapts to the inhomogeneous forms of
these problems while the reduction to gda does not. If y ∈ Zn (or y ∈ Rn if
we do not intend to preserve the gap as discussed above), then the reduction can
end by solving the simultaneous approximation problem of finding q0 ∈ Z with
‖{q0x − (MM ′)−1y}‖ ≤ αmin×q∈Z‖{qx − (MM ′)−1y}‖, using the matrix from

(4.6). But unless we know that the first coordinate of (MM ′)−1y is an integer,
there is no clear modification to Proposition 2.1 that permits the use of gda.

SHORT VECTOR PROBLEMS AND SIMULTANEOUS APPROXIMATION 15

References

[1] M. Agrawal. Simultaneous Diophantine approximation and short lattice vectors. https:

//www.youtube.com/watch?v=7SGCXbim6Ug, 2019. Accessed: 2019-12-01.

[2] F. Armknecht, C. Elsner, and M. Schmidt. Using the inhomogeneous simultaneous approxi-

mation problem for cryptographic design. In Africacrypt, pages 242–259. Springer, 2011.
[3] S. Arora, L. Babai, J. Stern, and E. Sweedyk. The hardness of approximate optima in lattices,

codes, and systems of linear equations. J. Comput. System Sci., 54(2):317–331, 1997.

[4] W. Baocang and H. Yupu. Public key cryptosystem based on two cryptographic assumptions.
IEE Proc. Comms., 152(6):861–865, 2005.

[5] E. H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Math. Comp., 22(103):565–578, 1968.

[6] D. J. Bernstein and T. Lange. Post-quantum cryptography. Nature, 549(7671):188–194, 2017.

[7] A. J. Brentjes. Multi-dimensional continued fraction algorithms. MC Tracts, 1981.
[8] W. S. Brown. On Euclid’s algorithm and the computation of polynomial greatest common

divisors. J. ACM, 18(4):478–504, 1971.

[9] W. Chen and J. Meng. An improved lower bound for approximating Shortest Integer Relation
in `∞-norm (SIR∞). Inform. Process. Lett., 101(4):174–179, 2007.

[10] G. Cramer.Introduction à l’analyse des lignes courbes algébriques.Cramer & Cl. Philibert,1750.

[11] A. Danilevskii.On the numerical solution of the secular equation. Mat. Sb.,44(2):169–172,1937.
[12] I. Dinur. Approximating SVP∞ to within almost-polynomial factors is NP-hard. Theor.

Comput. Sci., 285(1):55–71, 2002.

[13] A. Frank and É. Tardos. An application of simultaneous Diophantine approximation in

combinatorial optimization. Combinatorica, 7(1):49–65, 1987.
[14] S. D. Galbraith. Mathematics of public key cryptography. Cambridge University Press, 2012.

[15] J. S. Hadamard. Résolution d’une question relative aux determinants. B. Sc. Math., 2:240–

246, 1893.
[16] H. Inoue, S. Kamada, and K. Naito. Simultaneous approximation problems of p-adic numbers

and p-adic knapsack cryptosystems—Alice in p-adic numberland. p-Adic Numbers Ultramet-

ric Anal. Appl., 8(4):312–324, 2016.
[17] H. Iwaniec. On the problem of Jacobsthal. Demonstr. Math., 11(1):225–232, 1978.

[18] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite

normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.
[19] R. Kumar and D. Sivakumar. Complexity of SVP. SIGACT News, 32(3):40–52, 2001.

[20] J. C. Lagarias. Knapsack public key cryptosystems and Diophantine approximation. In

Eurocrypt, pages 3–23. Springer, 1984.
[21] J. C. Lagarias. The computational complexity of simultaneous Diophantine approximation

problems. SIAM J. Comput., 14(1):196–209, 1985.
[22] H. W. Lenstra, A. K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.

Math. Ann., 264(4):515–534, 1982.
[23] M. Pohst. A modification of the LLL reduction algorithm. J. Sym. Comp., 4(1):123–127, 1987.
[24] D. Micciancio and S. Goldwasser. Complexity of lattice problems: a cryptographic perspective,

volume 671. Springer Science & Business Media, 2012.

[25] H. Minkowski. Geometrie der zahlen, volume 40. R. G. Teubner: Leipzig/Berlin, 1910.
[26] P. Nguyen. Lattice reduction algorithms: Theory and practice. In Eurocrypt, pages 2–6.

Springer, 2011.
[27] C. Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci., 10(4):283–

424, 2016.

[28] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.

Illinois J. Math., 6(1):64–94, 1962.
[29] C. Rössner and J.-P. Seifert. Approximating good simultaneous Diophantine approximations

is almost NP-hard. In MFCS, pages 494–505. Springer, 1996.
[30] C. Rössner and J.-P. Seifert. On the hardness of approximating shortest integer relations

among rational numbers. Theor. Comput. Sci., 209(1-2):287–297, 1998.

[31] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem.
In FOCS, pages 145–152. IEEE, 1982.

University of Colorado, Boulder, CO, United States

Email address: daniel.e.martin@colorado.edu

https://www.youtube.com/watch?v=7SGCXbim6Ug
https://www.youtube.com/watch?v=7SGCXbim6Ug

	1. Introduction
	2. Versions of simultaneous approximation
	2.1. SAP to GDA
	2.2. GDA to SAP

	3. Reducing to svp
	3.1. SAP to SVP
	3.2. GDA to SVP

	4. Reducing to gda or sap
	4.1. Intuition
	4.2. SVP to GDA or SAP
	4.3. Further discussion

	References

