
DIVISOR CLASS GROUP ARITHMETIC ON

NON-HYPERELLIPTIC GENUS 3 CURVES

EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

Abstract. We present novel explicit formulas for arithmetic in the divisor
class group of a C3,4 curve. Our formulas handle all cases of inputs and

outputs without having to fall back on a generic method. We also improve on

the most commonly occurring case by reducing the number of required field
inversions to one at the cost of a small number of additional field operations,

resulting in running times that are between 11 and 21% faster than the prior

state-of-the-art depending on the field size, and even more for small field sizes
when non-typical cases frequently arise.

1. Introduction

Computing in the divisor class group of an algebraic curve is a non-trivial com-
ponent in computing L-series. L-series in turn are at the heart of the Sato-Tate
conjecture and related conjectures. The Sato-Tate conjecture has been proved for
elliptic curves with complex multiplication, but its analogues for other classes of
algebraic curves remains open [14]. In order to test these conjectures for other
curve families, it is desirable to have efficient algorithms to perform divisor class
group arithmetic; see, for example, [7], [6], and [13].

Fast explicit formulas exist to perform divisor class group arithmetic for genus
1 and genus 2 curves. However, the picture for genus 3 curves is incomplete. Ex-
isting explicit formulas for arithmetic on the non-hyperelliptic genus 3 curves, the
C3,4 curves, were developed with cryptographic applications in mind, where the
curves are defined over very large finite fields of characteristic greater than 3. A
C3,4 curve over such a field is isomorphic to one given by a short-form equation
(see §2), yielding faster arithmetic. Moreover, with very high probability, one will
only encounter “typical” divisors (see §2) and many degenerate cases need not be
considered. When these assumptions are violated, one may fall back on slower
divisor addition algorithms that work on any algebraic curve.

In [2], Arita specialized the algorithm for addition in the class group of a gen-
eral Ca,b curve in [1] to the C3,4 case. He classified divisors of C3,4 curves into 19
types based on the forms of their Gröbner bases representations. The method al-
lows addition of divisors of any type, although it handles this in a recursive manner
that does not terminate for some curves over very small finite fields; Arita was
predominantly interested in the cryptographic setting over a large finite field where
this does not present a problem. However, number theoretic applications require
extensive curve arithmetic over far smaller finite fields.

Other algorithms are less general but much faster. In [8], the most recent of these,
Khuri-Makdisi, building upon the work of Flon et al. [4] and Abu Salem and Khuri-
Makdisi [11] assumed a C3,4 curve defined by a short-form polynomial equation.

1



2 EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

In addition to restricting to disjoint divisors without multiple points, they assume
that divisors being added or doubled are typical. They represent divisors by a pair
of polynomials of minimal degree and obtain sums of divisors by computing kernels
of maps between vector spaces. This yields the most efficient explicit formulas,
describing the operation as an optimized sequence of field operations instead of
via polynomial arithmetic or linear algebra, for the typical case. Thus, prior to
our work herein, the state-of-the-art for C3,4 curves was the addition and doubling
procedures of [11] and the reduction method of [8]. Both of these are limited to
typical divisors; and one had to resort to general arithmetic for all other cases.

Our contribution is to marry the methods of Abu Salem/Khuri-Makdisi — who
have the fastest explicit formulas to date — with the methods of Arita — whose
formulas are the most general — in order to produce fast and fully general explicit
formulas that cover all cases of C3,4 curve arithmetic. This approach is facilitated
by the fact that Salem/Khuri-Makdisi’s representation of typical divisors resembles
type 31 divisors from Arita’s classification. Our algorithms work in full generality:
the curve may be defined over a field of any size and any characteristic, including
0, 2, and 3 (our implementation only extends to finite fields), the curve equation
may be in long or short form (see Section 2), divisors may be typical or atypical,
non-disjoint, and have multiple points, and all our algorithms provably terminate.

We extend the approach of [11] for finding the kernel of the aforementioned
matrix to computing its image as well and are thus able to handle atypical and
non-disjoint divisors. We also improve on the state-of-the-art of [8, 11] for typical
divisors. Fully general algorithms for adding, doubling, and reducing divisors are
presented in §3, §4 and §5, respectively. These algorithms are used to develop fast
explicit formulas in §6 that handle the most typical cases arising in C3,4 curve
divisor arithmetic, specifically, adding/doubling disjoint typical divisors on a curve
in short form over a field of characteristic greater than 3. The operation counts of
these formulas are summarized in Table 1.1, where I, M, S, A refer to the number
of field inversions, multiplications, squarings, and additions in the base field of the
curve1. Our formulas improve on the prior state-of-the-art by requiring only a single
field inversion at the cost of a sufficiently small number of other field operations.
Experiments confirm an overall running time speed-up by approximately 11–21%
depending on the size of the field. Our algorithms are also used to produce explicit
formulas for all atypical cases, including non-disjoint or atypical divisors and curves
of arbitrary form and in any characteristic. These cases are so numerous that we
choose instead to publish them in the form of Sage code on GitHub [9] and present
their operation counts in §7.

Table 1.1. Comparison of operation counts in prior work

Add Double
I M S A I M S A

Arita [2] 5 204 – – 5 284 – –
Flon et al [4] 2 148 15 – 2 165 20 –
Khuri-Makdisi/Abu Salem [8, 11] 2 97 1 132 2 107 3 155
This work 1 111 3 99 1 127 4 112

1Arita did not distinguish between field multiplications and squarings, and neither Arita nor
Flon et al. counted field additions in their work.



ARITHMETIC ON NON-HYPERELLIPTIC GENUS 3 CURVES 3

By improving upon the typical case and completing the picture for the atypical
cases, our results will have a significant impact on number theoretic computations
heavy on arithmetic in the divisor class group of a C3,4 curve. As in [14] for
example, one may wish to take a curve over Q, reduce it modulo all primes up to
some bound, and compute the order of the divisor class group of that reduced curve.
The improvement in the typical case remains significant over all the computations,
while the completion of the atypical cases becomes more significant over the smaller
fields, where one frequently encounters these atypical cases.

2. Preliminaries

Let K be a perfect field. A C3,4 curve is a non-singular non-hyperelliptic projec-
tive curve C of genus 3 whose affine model is given by F (x, y) = 0 where F ∈ K[x, y]
is of the form

F (x, y) = y3 + x4 + c8xy
2 + c7x

2y + c6x
3 + c5y

2 + c4xy + c3x
2 + c2y + c1x+ c0 .

We denote the unique point at infinity on C by P∞. When K has characteristic 0
or at least 5, the curve isomorphism (x, y) 7→ (x−a/4, y− (c8/3)x+ (ac8−4c5)/3),
a = (27c6− 9c7c8 + 2c38)/27 over K transforms the polynomial F to the short form

F (x, y) = y3 + x4 + c7x
2y + c4xy + c3x

2 + c2y + c1x+ c0 .

Let Div0
K(C) denote the group of degree zero divisors on C defined over K.

Elements of Div0
K(C) are of the form

D =
∑

P∈C(K̄)−{P∞}

ordP (D)P − nP∞ , n =
∑

P∈C(K̄)−{P∞}

ordP (D) ,

where the sum defining D is fixed under Galois automorphisms on K̄. For brevity,
we identify D with its finite part and refer to n = deg(D) as its degree. A divisor
D is effective if ordP (D) ≥ 0 for all P ∈ C(K̄)−{P∞} and reduced if in addition n
is minimal among the degrees of all the divisors in the linear equivalence class of D.
If D is reduced, then deg(D) ≤ 3. Every element of Div0

K(C) is linearly equivalent
to an effective divisor and to a unique reduced divisor in Div0

K(C).
For any two effective divisors D,D′ ∈ Div0

K(C), define

lcm(D,D′) =
∑

P∈C(K̄)−{P∞}

max{ordP (D), ordP (D′)}(P − P∞) ,

gcd(D,D′) =
∑

P∈C(K̄)−{P∞}

min{ordP (D), ordP (D′)}(P − P∞) .

Then D +D′ = gcd(D,D′) + lcm(D,D′).
There is a canonical isomorphism from Div0

K(C) to the group of fractional K[C]-
ideals, written as D 7→ ID, with inverse I 7→ div(I). When D is effective, ID is
integral. If g1, g2, . . . ∈ K[C] are polynomials, then we write div(g1, g2, . . .) in place
of div(〈g1, g2, . . .〉).

In [2], Arita described a monomial order on K[C] induced by the pole orders
ordP∞(x) = −3 and ordP∞(y) = −4. Every ideal I of K[C] has a unique reduced
Gröbner basis with respect to this ordering that contains the minimum polynomial
of I, i.e. the unique polynomial fI in any Gröbner basis of I with the smallest leading
monomial and leading coefficient 1. Under this isomorphism, we have the following
correspondence between effective divisors and their associated K[C]-ideals:



4 EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

Divisors D +D′ lcm(D,D′) gcd(D,D′) D D ≤ D′
Ideals IDID′ ID ∩ ID′ ID + ID′ fID : ID ID ⊇ ID′

Here, fID : ID is the unique K[C]-ideal satisfying ID(fID : ID) = 〈fID 〉, the
principal ideal generated by fID . The corresponding divisor D = div(fID : ID) is
the flip of D; it is equivalent to −D and is reduced. It follows that D is reduced

if and only if D = D, and D is the reduction of D, i.e. the unique reduced divisor
linearly equivalent to D. This gives rise to the following high-level algorithm for
addition in the degree zero divisor class group of a C3,4 curve, found also in [2].
Given two reduced divisors D and D′, represented by the reduced Gröbner bases
of their respective ideals ID and ID′ , perform the following:

(1) Compute the reduced Gröbner basis of J := IDID′ .
(2) Compute the reduced Gröbner basis of J∗ := fJ : J .
(3) Compute the reduced Gröbner basis of J∗∗ := fJ∗ : J∗.

Then div(J∗∗) is the unique reduced divisor equivalent to D + D′. In [8], Khuri-
Makdisi showed how to combine the last two steps into a single efficient step.

Following [8], an effective divisor D is said to be semi-typical if the reduced
Gröbner basis of ID consists of three polynomials, i.e. ID = 〈f, g, h〉. A divisor is
typical if it is semi-typical with h ∈ 〈f, g〉, where h is the generator with the largest
pole order at infinity. A divisor that is not typical is called atypical. All typical
divisors are semi-typical, but atypical divisors may or may not be semi-typical.

In [2], Arita classified all divisors of degree ≤ 6 into 19 types according to the
leading monomials of their reduced Gröbner bases. Table 2.1 reproduces Arita’s
classification, along with a 20th type corresponding to the zero divisor. Note that
a divisor of degree d ≤ 6 is semi-typical if and only if it is of type 31, 41, 51, or 61,
and a type 31 divisor D is typical if and only if f2, the coefficient of y in fID , is

non-zero (see [8, Prop. 2.12]). The types of D and D are determined by the type
of D as summarized in Table 2.2. Examples of computing the type of D are found
in §7.3 of [10]. A divisor is reduced if and only if it is of type 0, 11, 21, 22 or 31; in
particular, all divisors of degree d ≤ 2 are reduced.

3. Addition

In this section, we describe how to add two distinct reduced divisors. Analogous
to [11], we make use of certain Riemann-Roch spaces. For any non-zero function
f ∈ K[C], denote by LM(f) the leading monomial of f . Let m ∈ K[C] be a
monomial and D an effective divisor in Div0

K(C). Define

Wm = L(− ordP∞(m)P∞) = {f ∈ K[C] | LM(f) ≤ m} ,
Wm
D = L(− ordP∞(m)P∞ −D) = {f ∈ ID | LM(f) ≤ m} = Wm ∩ ID .

Given a reduced Gröbner basis for ID, it is easy to construct an echelon basis for
Wm
D by taking monomial multiples of the basis elements and removing all those

that result in duplicate leading monomials. Given an echelon basis for Wm
D with m

sufficiently large, a reduced Gröbner basis for ID can be obtained by removing any
basis element whose leading monomial is divisible by that of another basis element.

Now let D,D′ be distinct reduced divisors of respective degrees d = deg(D) and
d′ = deg(D′), with d ≥ d′. Let m be the largest monomial appearing in the reduced
Gröbner basis of any ideal I such that div(I) has degree d + d′. For example, if
d+ d′ = 6, then the reduced Gröbner basis of an ideal of a type 64 divisor contains



ARITHMETIC ON NON-HYPERELLIPTIC GENUS 3 CURVES 5

Table 2.1. Arita’s classification of divisors into types

Deg Type Gröbner Basis Deg Type Gröbner Basis

0 0 1

5

51

y2 + f4xy + f3x
2 + f2y + f1x+ f0,

1 11
x+ f0 x3 + g4xy + g3x

2 + g2y + g1x+ g0,

y + g0 x2y + h4xy + h3x
2 + h2y + h1x+ h0

2

21
y + f1x+ f0,

52
xy + f3x

2 + f2y + f1x+ f0,

x2 + g1x+ g0 y2 + g3x
2 + g2y + g1x+ g0

22
x+ f0,

53
xy + f3x

2 + f2y + f1x+ f0,

y2 + g2y + g0 x3 + g5y
2 + g3x

2 + g2y + g1x+ g0

3

31

x2 + f2y + f1x+ f0,
54

x2 + f2y + f1x+ f0,

xy + g2y + g1x+ g0, xy2 + g5y
2 + g4xy + g2y + g1x+ g0

y2 + h2y + h1x+ h0

6

61

x3 + f5y
2 + f4xy + f3x

2 + f2y + f1x+ f0,

32
y + f1x+ f0, x2y + g5y

2 + g4xy + g3x
2 + g2y + g1x+ g0,

x3 + g3x
2 + g1x+ g0 xy2 + h5y

2 + h4xy + h3x
2 + h2y + h1x+ h0

33 x+ f0 62
y2 + f4xy + f3x

2 + f2y + f1x+ f0,

4

41

xy + f3x
2 + f2y + f1x+ f0, x3 + g4xy + g3x

2 + g2y + g1x+ g0

y2 + g3x
2 + g2y + g1x+ g0,

63
y2 + f4xy + f3x

2 + f2y + f1x+ f0,

x3 + h3x
2 + h2y + h1x+ h0 x2y + g6x

3 + g4xy + g3x
2 + g2y + g1x+ g0

42
x2 + f1x+ f0,

64
xy + f3x

2 + f2y + f1x+ f0,

xy + g2y + g1x+ g0 x4 + g6x
3 + g5y

2 + g3x
2 + g2y + g1x+ g0

43
x2 + f2y + f1x+ f0, 65 x2 + f2y + f1x+ f0

y2 + g4xy + g2y + g1x+ g0

44 y + f1x+ f0

Table 2.2. Divisor types and the type of their flip and double flip

Divisor Type

D 0 11 21 22 31 32 33 41 42 43 44 51 52 53 54 61 62 63 64 65

D 0 22 21 11 31 11 0 31 22 21 0 31 22 21 11 31 22 21 11 0

D 0 11 21 22 31 22 0 31 11 21 0 31 11 21 22 31 11 21 22 0

a polynomial with leading monomial m = x4, and no other degree 6 divisor type
has a larger monomial.

Put L = lcm(D,D′) and G = gcd(D,D′). The divisors L and G arise from
the kernel and image, respectively, of the matrix M in the diagram below. Here, ι
denotes inclusion and π is the natural projection.

Wm
L Wm

D Wm Wm

Wm
D′

Wm
G

Wm
D′

kerM ι

M

π imM

A proof of this crucial result can be found in [10, Thm. 8.7]. This is a generalization
of the addition procedure of [11], where the authors compute kerM for m = x2y
only. This is sufficient when D and D′ are disjoint (or equivalently, G = 0) and
typical, but their approach fails otherwise. A larger bounding monomial m can
handle atypical divisor sums, and computing the image imM allows non-disjoint
input divisors D,D′.

The kernel and image of M are obtained by first computing the reduced row
echelon form of M , denoted RREF(M), which in particular reveals the rank of M



6 EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

as well as the dimensions of its kernel and image. If M has full rank, which is
typically the case, then G = 0 and kerM produces a reduced Gröbner basis for
IL = ID+D′ . If M has rank 0, then D′ < D, in which case we find the divisor A

such that D = D′ + A and return 2D′ + A via a call to the doubling algorithm

in §4. Otherwise, we recursively compute the sum L+G. In this recursive call, one
of the input divisors has degree strictly less than d′, so this recursion terminates.
Details of the algorithm and toy examples can be found in [10, Ch. 8].

4. Doubling

Doubling a reduced divisor D is similar to adding two distinct reduced divisors.
Here, we find a (not necessarily reduced) divisor A 6= D equivalent to D and com-

pute the reduction A+D = 2D using the addition algorithm from §3. We describe
an optimized approach for finding A that represents a significant improvement over
the doubling method presented in [10, Ch. 9].

We begin with the most common case when D is a type 31 divisor. Let {f, g, h}
be a reduced Gröbner basis of its associated ideal ID.

Lemma 4.1. Let D be of type 31. Then there exist polynomials

r = y + r0 , s = −(x+ s0) , t = t0 ,

r′ = x2 + r′2y + r′1x+ r′0 , s′ = s′0 , t′ = y + t′0 ,

r′′ = r′′0 , s′′ = y + s′′0 , t′′ = x+ t′′0

in K[C] such that rf + sg + th = 0, r′f + s′g + t′h = F and r′′f + s′′g + t′′h = 0.

Proof. Explicit formulas for r, s, t, r′, s′, t′ are given in Table 6.2. The polynomials
r′′ = h1, s′′ = y− g1 +h2 and t′′ = −x− g2, with g1, g2, h1, h2 as given in (6.1), are
easily verified to satisfy the third identity. �

The quantities r′′, s′′, t′′ are only auxiliary to the proof of Proposition 4.2. Put

(4.1) A = div(f̃ , g̃, h̃) with f̃ = st′ − ts′ , g̃ = tr′ − rt′ , h̃ = rs′ − sr′ .

Then the leading monomials of f̃ , g̃, h̃ are xy, y2, x3, respectively, so A is of type 41
by Table 2.1. It is easy to verify that fg̃ = gf̃ and fh̃ = hf̃ in K[C]. It follows

that f̃ ID = fIA and hence div f +A = div f̃ +D, so A is equivalent to D.
The following proposition shows that A and D are typically disjoint. If not, we

have D 6≤ A. Either way, we may add D and A using the addition algorithm from
the previous section.

Proposition 4.2. Let D be of type 31 and put G = gcd(D,A). If D is typical,
then G = 0, otherwise G has degree 1.

Proof. We have deg(G) ≤ deg(D) = 3. Suppose deg(G) ≥ 2. Then D−G and A−G
are equivalent divisors of degree ≤ 2. So these two divisors are reduced and hence
equal, which is impossible since deg(D) 6= deg(A). It follows that deg(G) ≤ 1.

Suppose deg(G) = 1. Then deg(D−G) = 2, deg(A−G) = 3 andD −G = A−D,
which by Table 2.2 forces D −G to be of type 22 and A−G to be of type 32. Let
x+ a and x+ b be the minimum polynomials of IG and ID−G, respectively. Then
f = (x+ a)(x+ b) ∈ ID. Appealing to the form of ID characterized in Table 2.1, f
is the minimum polynomial of ID and has a vanishing y-coefficient, so D is atypical.



ARITHMETIC ON NON-HYPERELLIPTIC GENUS 3 CURVES 7

Conversely, suppose that D is atypical. Referring to the quantities of Lemma 4.1,
we have t = −f2 = 0. Put I = 〈r, s〉. Then I is a prime ideal of degree 1. From (4.1),
we see that IA ⊆ I. A simple symbolic computation yields f = st′′, g = rt′′ and
h = r′′s− s′′r, so ID ⊆ I. It follows that IG = IA + ID ⊆ I, so div(I) ≤ G, which
in turn implies deg(G) ≥ 1, and hence deg(G) = 1.

�

An optimization is possible when computing the kernel of M in

Wm
L Wm

A Wm Wm

Wm
D

Wm
G

Wm
D

kerM ι

M

π imM .

The kernel consists of K[C]-linear combinations on {f̃ , g̃, h̃} that are in Wm
L . How-

ever, the following theorem shows that when D is typical, we may instead perform
our computations on f, g, h. The latter have fewer monomials, so the resulting
linear combinations are faster to generate.

Theorem 4.3. Let D be of type 31, L = lcm(D,A) and G = gcd(D,A). Let

a, b, c ∈ K[C]. Then af + bg + ch ∈ I2D−G if and only if af̃ + bg̃ + ch̃ ∈ IL.

Proof. We have 2D−G+div(f̃) = L+D−A+div(f̃) = L+div(f). Since fg̃ = gf̃

and fh̃ = hf̃ , the claim follows. �

If D is typical, then I2D−G = I2D by Proposition 4.2.
Next, we provide analogous results for divisors D of types 11, 21, and 22. Here,

ID = 〈f, g〉.

Theorem 4.4. Let D be of type 11, 21, or 22, and write ID = 〈f, g〉. Then there

exist non-zero polynomials f̃ , g̃ ∈ K[C] such that fg̃+gf̃ = F and f̃〈f, g〉 = f〈f̃ , g̃〉.
The divisor A = div(f̃ , g̃) is equivalent to D and gcd(A,D) = 0. Finally, for any

a, b ∈ K[C], we have af + bg ∈ I2D if and only if af̃ + bg̃ ∈ IA+D.

Proof. The first assertion follows from F ∈ 〈f, g〉. Since fg̃ = −gf̃ in K[C], we

have f̃〈f, g〉 = 〈ff̃ , gf̃〉 = 〈ff̃ , f g̃〉 = f〈f̃ , g̃〉, so div(f̃) + D = div(f) + A. This
identity also yields the last assertion, provided that gcd(A,D) = 0.

Suppose first that D is of type 11. Then the leading monomials of f and g
are x and y, respectively. A solution to fg̃+ gf̃ = F then requires that the leading
monomials of f̃ and g̃ are y2 and x3, respectively. Therefore A = div(f̃ , g̃) is a type
62 divisor. Suppose gcd(A,D) 6= 0. Then A − D would be a principal divisor of
degree 5 which is impossible by Table 2.1.

Likewise, suppose D is of type 21. Then A = div(f̃ , g̃) is of type 43. Suppose
G = gcd(A,D) 6= 0. Since A−G ≡ D −G, we either have a degree 3 divisor that
is equivalent to a degree 1 divisor, or a degree 2 divisor that is equivalent to 0,
depending on the degree of G. Appealing to Table 2.1, we see that both cases are
impossible. The case when D is of type 22 is similar. �

Our addition and doubling routines call one another, but this process terminates.
The doubling routine terminates on all inputs except atypical type 31 divisors

(Prop. 4.2), in which case we must add L+G where degG = 1 and there is no need
to subsequently double another type 31 divisor. Furthermore, the addition routine
may call itself, but the degree of the smaller divisor strictly decreases, forcing it to
eventually terminate.



8 EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

5. Reduction

Reducing a divisor may be accomplished by flipping it twice, as was done in [2,
11]. However, in [8], it was shown that for typical degree 6 divisors, both flips can
be combined into a single operation that is more efficient than even just the first
flip. Below, we generalize this result to all typical and non-semi-typical divisors (of
any degree). The remaining divisors, those that are semi-typical but atypical, are
addressed in Theorem 5.2.

Theorem 5.1. Let D be an effective divisor on C and let {u, v} be any gener-
ating set for ID such that u is the minimum polynomial of ID. Then there exist

polynomials f, g ∈ K[C] such that fv = gu in K[C] and D = div(f, g).

Proof. Let f be the minimum polynomial of the colon ideal u : v. Then there exists
g ∈ K[C] such that fv = gu in K[C]. The divisor A = div(f, g) is equivalent to D
since uIA = 〈fu, gu〉 = 〈fu, fv〉 = fID. The minimality of u and f implies that A
is reduced and is hence the reduction of D. �

In particular, Theorem 5.1 makes efficient reduction of all divisors listed in Ta-
ble 2.1 straightforward, except for atypical semi-typical divisors, where ID might
be generated by no two of its Gröbner basis elements. Given ID = 〈u, v〉, the

type of D is first read from Table 2.2. Then the leading monomials of f, g, with
I
D

= 〈f, g〉, are obtained from Table 2.1. The coefficients of f, g are now easily

computed by equating coefficients in the relation fv ≡ gu (mod F ) and solving the
resulting system of linear equations. Reduction of atypical semi-typical divisors is
done via Theorem 5.2 which represents an improvement for type 41 and 51 divisors
over the method presented in [10, Sec. 10.1].

Theorem 5.2. Let D be an atypical semi-typical divisor, and write ID = 〈f, g, h〉.
Put I = 〈f, g〉. Then there exist K-rational points P , Q on C such that div(I) =

D + (P − P∞) and div(I) = Q− P∞.

Proof. We have deg div(I) = dimK(K[C]/I) and degD = dimK(K[C]/ID). Com-
puting these dimensions for each atypical case using Table 2.1 (the dimensions are
determined by the leading coefficients of f and g) yields deg div(I) = degD + 1
which establishes the existence of P .

Analogous to Lemma 4.1, there exist polynomials r = x+ r0, s = y+ s1x+ s0 ∈
K[C] such that fs + gr = F when D is of type 51 and fs = gr otherwise. Since
div(r, s) has degree 1, it is reduced and of the form Q − P∞. As in the proof of
Theorem 5.1, we see that I is equivalent to 〈r, s〉, which is hence the reduction of
div(I). �

Corollary 5.3. D = (Q− P∞) + P − P∞.

Proof. By Theorem 5.2, D = div(I) − (P − P∞) and div(I) = Q − P∞. The

reduced divisor equivalent to −(P −P∞) is P − P∞. It follows that D is equivalent

to (Q− P∞) + P − P∞. Since D is reduced and both D and (Q− P∞) + P − P∞
have the same degree, they must both be reduced and therefore equal. �

Obtaining P amounts to finding polynomials p = x + p0 and q = y + q1x + q0

such that hp, hq ∈ I. The polynomials r and s of Theorem 5.1 determine Q.



ARITHMETIC ON NON-HYPERELLIPTIC GENUS 3 CURVES 9

6. Explicit Formulas for Typical Divisors

Here, we derive explicit formulas handling the most typical cases in C3,4 arith-
metic: adding disjoint type 31 divisors whose sum is typical, and doubling a typical
type 31 divisor whose double is typical. If ever we detect that we are outside these
cases, we may fall back on another series of explicit formulas.

Let D and D′ be typical type 31 divisors, with respective associated ideals and
Gröbner bases ID = 〈f, g, h〉 and 〈f ′, g′, h′〉, where

f = x2 + f2y + f1x+ f0 , f ′ = x2 + f ′2y + f ′1x+ f ′0 ,

g = xy + g2y + g1x+ g0 , g′ = xy + g′2y + g′1x+ g′0 ,(6.1)

h = y2 + h2y + h1x+ h0 , h′ = y2 + h′2y + h′1x+ h′0 .

The optimal choice of monomial in the addition and doubling algorithms of §3
and §4 is m = x2y. Bases for the vector spaces W x2y

D and W x2y
D′ are {f, g, h, xf, xg}

and {f ′, g′, h′, xf ′, xg′}, respectively. The matrix

M =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


for adding D and D′ is constructed by reducing the former basis modulo the latter;
e.g the reduction of f modulo {f ′, g′, h′, xf ′, xg′} is (f2−f ′2)y+(f1−f ′1)x+(f0−f ′0),
so a1 = f0 − f ′0, a6 = (f1 − f ′1), etc. Computing the first three columns requires
only subtractions (counted as additions). The right two columns are given in terms
of the first three by a4 a5

a9 a10

a14 a15

 =

0 −f ′0 −g′0
1 −f ′1 −g′1
0 −f ′2 −g′2

 a1 a2 a3

a6 a7 a8

a11 a12 a13

 .

For doubling D, we construct the divisor A defined in §4 using the polynomials
defined in (4.1) and Lemma 4.1. Then the left three columns of the matrix M

used in the computation of D + A are the reductions of f̃ , g̃, h̃ modulo f, g, h. Let
e1 = −(f1 + g2) and e2 = r′2 − f2. Then the left three columns of M aret′0s0 + s′0t0 − g0 t′0r0 + t0(f0 − r′0)− h0 f0e1 + g0e2 − s′0r0 − r′0s0

t′0 − g1 t0(f1 + f1)− h1 f1(e1 + s0) + g1e2 − r′0 + f0

s0 − g2 t′0 − h2 + r0 − t0e2 f2(e1 − g2) + r′2(g2 − s0)− s′0

 .

The right two columns relate to the first three as above, with D in place of D′.
If the first column is zero, then D + D′ (or D + A) is atypical and we must

fall back on other formulas. Otherwise, we assume a1 6= 0 by swapping rows if
necessary. Then elementary row operations convert M into row echelon form: a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15

 −→
a1 a2 a3 a4 a5

0 b1 b2 b3 b4
0 0 b5 b6 b7

 .

If b1 or b5 are zero, then D + D′ (or D + A) either contains points of multiplicity
exceeding 1 or is atypical. To avoid an expensive inversion operation, we compute a
scalar multiple of the reduced row echelon form RREF(M) and defer the necessary



10 EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

inversion until later:a1 a2 a3 a4 a5

0 b1 b2 b3 b4
0 0 b5 b6 b7

 −→
Z 0 0 A1 A2

0 Z 0 B1 B2

0 0 Z C1 C2

 .

Now ker(M) = SpanK{U, V }, where

U = Zxf − C1h−B1g −A1f , V = Zxg − C2h−B2g −A2f .

Let U = Zx3 +U5y
2 + · · ·+U0 and V = Zx2y+V5x

2y+ · · ·+V0. Formulas for the
coefficients Ui, Vi are found in Table 6.3, although note that the constant coefficients
U0 and V0 are not needed and therefore not computed. Let u0, . . . , u5, v0, . . . v5 be
the coefficients of u := U/Z and v := V/Z. To compute ui, vi, we will need the
inverse of Z. However, we will also need the inverse of f ′′2 = u2

5 + u4 − v5 later on.
We compute both inverses at once with only a single inversion using a variation
of Montgomery’s Trick. Formulas for ζ := Z−1 and τ := (f ′′2 )−1 are found in
Table 6.3. We note that the intermediate value z0 is equal to Z2f ′′2 . If this is zero,
then the sum is atypical and we fall back on other formulas. Once ζ is known, we
compute ui = ζUi and vi = ζVi for i = 1, . . . , 5.

Now ID+D′ (or I2D) is generated by {u, v}. We apply Theorem 5.1 and find
polynomials f ′′ = x2 + f ′′2 y + f ′′1 x + f ′′0 and g′′ = xy + g′′3x

2 + g′′2 y + g′′1x + g′′0
satisfying f ′′v ≡ g′′u (mod F ). We would then have to reduce g′′ modulo f ′′ to
eliminate the x2 term in g′′. Since g′′3 = u5, this means subtracting u5 times f ′′

from g′′. We avoid this by instead finding g′′ = xy + g′′2 y + g′′1x + g′′0 such that
f ′′v ≡ (g′′+ u5f

′′)u (mod F ), thereby saving a multiplication and a few additions.
The third polynomial in the Gröbner basis of ID+D′ (or I2D) is

h′′ = τ ((y + g′′1 )f ′′ − (x+ f ′′1 − g′′2 )g′′) .

Explicit formulas and operation counts for all the quantities above are given in
Tables 6.1, 6.2, and 6.3.

Table 6.1. Construction of matrix M — typical addition

Addition 12M+17A
Input: ID = 〈f, g, h〉, ID′ = 〈f ′, g′, h′〉
f = x2 + f2y + f1x+ f0 f ′ = x2 + f ′2y + f ′1x+ f ′0
g = xy + g2y + g1x+ g0 g′ = xy + g′2y + g′1x+ g′0
h = y2 + h2y + h1x+ h0 h′ = y2 + h′2y + h′1x+ h′0

Output: Madd =

(
a1 a2 a3 a4 a5
a6 a7 a8 a9 a10
a11 a12 a13 a14 a15

)
Compute elements ai of Madd 12M+17A
a1 = f0 − f ′0 a2 = g0 − g′0 a3 = h0 − h′0 a6 = f1 − f ′1
a7 = g1 − g′1 a8 = h1 − h′1 a11 = f2 − f ′2 a12 = g2 − g′
a13 = h2 − h′2 a4 = −f ′0a6 − g′0a11 a5 = −f ′0a7 − g′0a12
a9 = a1 − f ′1a6 − g′1a11 a10 = a2 − f ′1a7 − g′1a12
a14 = −f ′2a6 − g′2a11 a15 = −f ′2a7 − g′2a12
If a1 = a6 = a11 = 0, then abort.
If a1 = 0 is zero but a6 6= 0 or a11 6= 0, then swap rows so a1 6= 0.

Table 6.2. Construction of matrix M — typical doubling



ARITHMETIC ON NON-HYPERELLIPTIC GENUS 3 CURVES 11

Doubling 28M+1S+41A
Input: ID = 〈f, g, h〉
f = x2 + f2y + f1x+ f0, g = xy + g2y + g1x+ g0

h = y2 + h2y + h1x+ h0

Output: Mdoub =

(
a1 a2 a3 a4 a5
a6 a7 a8 a9 a10
a11 a12 a13 a14 a15

)
Compute polynomials r = y + r0, s = −(x+ s0), t = t0
such that rf + sg + th = 0 1A
r0 = g1 s0 = f1 − g2 t0 = −f2
Compute polynomials r′ = x2 + r′2y + r′1x+ r′0 ,
s′ = s′0, t

′ = y + t′0 such that r′f + s′g + t′h = F 2M+1S+7A
r′2 = c7 − f2 r′1 = −f1 t′0 = −h2 − f2r′2
s′0 = c4 − h1 + f1(f2 − r′2) r′0 = c3 + f2

1 − f0

Compute reductions f̃ = f̃2y + f̃1x+ f̃0,

g̃ = g̃2y + g̃1x+ g̃0, h̃ = h̃2y + h̃1x+ h̃0 14M+25A
e1 = −f1 − g2 e2 = r′2 − f2
f̃2 = s0 − g2 f̃1 = t′0 − g1
f̃0 = t′0s0 + s′0t0 − g0 g̃2 = t′0 − h2 + r0 − t0e2
g̃1 = t0(f1 + f1)− h1 g̃0 = t′0r0 + t0(f0 − r′0)− h0

h̃2 = f2(e1 − g2) + r′2(g2 − s0)− s′0
h̃1 = f1(e1 + s0) + g1e2 − r′0 + f0

h̃0 = f0e1 + g0e2 − s′0r0 − r′0s0
Compute matrix Mdoub 12M+8A

a1 = f̃0 a2 = g̃0 a3 = h̃0 a6 = f̃1 a7 = g̃1

a8 = h̃1 a11 = f̃2 a12 = g̃2 a13 = h̃2
a4 = −f0a6 − g0a11 a5 = −f0a7 − g0a12
a9 = a1 − f1a6 − g1a11 a10 = a2 − f1a7 − g1a12
a14 = −f2a6 − g2a11 a15 = −f2a7 − g2a12
If a1 = a6 = a11, then abort.
If a1 = 0 but a6 6= 0 or a11 6=, then swap rows so a1 6= 0.

Table 6.3. Computing kerM

Computing kerM 1I+99M+3S+72A
Input: ID = 〈f, g, h〉, M
f = x2 + f2y + f1x+ f0, g = xy + g2y + g1x+ g0

h = y2 + h2y + h1x+ h0

M =

(
a1 a2 a3 a4 a5
a6 a7 a8 a9 a10
a11 a12 a13 a14 a15

)
Output: ID+D′ = 〈f ′′, g′′, h′′〉 (or I2D = 〈f ′′, g′′, h′′〉)
f ′′ = x2 + f ′′2 y + f ′′1 x+ f ′′0 , g′′ = xy + g′′2 y + g′′1x+ g′′0
h′′ = y2 + h′′2y + h′′1x+ h′′0

Compute row echelon form of M 21M+12A
d1 = a1a12 − a2a11 d2 = a6a12 − a7a11
b1 = a1a7 − a2a6 b5 = b1a13 − d1a8 + d2a3
b2 = a1a8 − a3a6 b6 = b1a14 − d1a9 + d2a4
b3 = a1a9 − a4a6 b7 = b1a15 − d1a10 + d2a5
b4 = a1a10 − a5a6



12 EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

Compute Z · RREF(M) 18M+6A
Y = a1b1 e1 = b3b5 − b2b6 Z = Y b5 e2 = b4b5 − b2b7
A1 = b1(a4b5 − b6a3)− a2e1 B1 = a1e1 C1 = Y b6
A2 = b1(a5b5 − b7a3)− a2e2 B2 = a1e2 C2 = Y b7

Compute ker(M) 18M+14A
U1 = Zf0 − C1h1 −B1g1 −A1f1 U2 = −C1h2 −B1g2 −A1f2

V1 = Zg0 − C2h1 −B2g1 −A2f1 V2 = −C2h2 −B2g2 −A2f2
U3 = Zf1 −A1 U4 = Zf2 −B1 U5 = −C1

V3 = Zg1 −A2 V4 = Zg2 −B2 V5 = −C2

Compute ζ = Z−1, τ = (f ′′2 )
−1 1I+5M+2S+3A

z0 = U2
5 + Z(U4 − V5) z1 = Zz0 z2 = z−1

1 z3 = Zz2

ζ = z0z2 τ = Z2z3

Compute u1, . . . , u5, v1, . . . , v5 10M
u1 = ζU1 u2 = ζU2 u3 = ζU3 u4 = ζU4 u5 = ζU5

v1 = ζV1 v2 = ζV2 v3 = ζV3 v4 = ζV4 v5 = ζV5

Compute f ′′, g′′, h′′ 27M+1S+37A
f ′′2 = u2

5 + u4 − v5 r0 = u5(f
′′
2 + u4 − c7) + u3 − v4

r1 = f ′′2 (f
′′
2 − u4) g′′1 = r1 − u5(u3 + r0) + v3

g′′2 = −u4u5 + v4 − r0 + τ(u4r0 − u5g
′′
1 − u2) f ′′1 = r0 + g′′2

f ′′0 = −c7(r1 + g′′2u5) + u5(f
′′
2 u3 + f ′′1 u4 − c4 + u2)

+ g′′2u3 + g′′1u4 − f ′′2 v3 − f ′′1 v4 + u1 − v2
g′′0 = u5(c3 − f ′′0 − u1 − f ′′1 u3)− g′′1u3 + f ′′1 v3 + v1
h′′0 = τ(f ′′0 g

′′
1 − g′′0 r0) h′′1 = τ(g′′1 g

′′
2 − g′′0 )

h′′2 = g′′1 + τ(f ′′0 − g′′2 r0)

7. Implementation and Testing

A Sage implementation of C3,4 curve arithmetic based on the algorithms in this
paper is available at [9]. This implementation includes optimized addition and dou-
bling subroutines fast add 31 31, fast add 31 31 high char, fast double 31,
and fast double 31 high char. The high characteristic versions assume that
the curve equation is given in short form and implement the formulas in Tables 6.1,
6.2, and 6.3. The other versions implement similar formulas with no assumptions
on the coefficients c5, c6, and c8. The optimized subroutines assume the typical
cases described in §6. When any of these assumptions are violated, an exception is
thrown, and a less-optimized subroutine is called instead.

The less-optimized subroutines are nonetheless implemented via explicit formu-
las. These include addition subroutines for every pair of reduced divisor types (e.g.
add 31 21), a doubling subroutine for every reduced divisor type (e.g. double 31),
and a reduction subroutine for every unreduced divisor type (e.g. reduce 61).

Addition subroutines, given input divisors D and D′, compute L = lcm(D,D′)
and G = gcd(D,D′) by computing the kernel and image of a matrix as described
in §3. If G = 0, then the reduction of L is computed via the appropriate subroutine

and L is returned. Otherwise L and G are added by calling another addition
subroutine. The cost of evaluating D + D′ depends on the type of L. Costs are
given in Table 7.1a for the cases when G = 0. When G > 0, one or more recursive
calls must be made. A full analysis of the cost in these cases was not done, due to
the large number of sub-cases that can occur.



ARITHMETIC ON NON-HYPERELLIPTIC GENUS 3 CURVES 13

Doubling subroutines, given an input divisor D, find generators for a divisor A
equivalent to D, and compute G = gcd(A,D) and 2D − G as outlined in §4. We

recursively compute 2D −G + G. The cost depends on the type of 2D − G, if
G = 0, and if a recursive call must be made. Table 7.1b contains the costs for the
cases where G = 0. Here, “t” and “a” under the type column refer to typical and
atypical divisors, respectively.

Table 7.1. Operation counts for C3,4 arithmetic

(a) Addition

Op count Type
Subroutine I M S A of L
add 11 11 1 3 0 4 21
add 11 11 0 1 0 3 22
add 21 11 1 13 0 14 31
add 21 11 0 12 0 17 32
add 21 21 2 68 1 58 41-t
add 21 21 2 67 0 58 41-a
add 21 21 1 27 0 19 42
add 21 21 1 39 0 32 43
add 21 21 0 12 0 9 44
add 21 22 2 40 1 41 41-t
add 21 22 2 39 0 41 41-a
add 21 22 0 2 0 2 42
add 22 11 1 5 0 5 31-a
add 22 11 0 1 0 3 33
add 22 22 1 11 0 17 43
add 31 11 2 43 1 49 41-t
add 31 11 2 22 0 49 41-a
add 31 11 0 6 0 10 42
add 31 11 1 16 0 32 43
add 31 21 2 80 1 77 51-t
add 31 21 2 78 1 74 51-a
add 31 21 1 35 1 33 52
add 31 21 1 57 1 51 53
add 31 21 1 43 1 41 54
add 31 22 2 69 0 64 51-t
add 31 22 2 67 0 61 51-a
add 31 22 1 24 0 20 52
add 31 22 1 46 0 38 53
add 31 22 1 36 0 29 54
fast add 31 31 1 111 3 99 61-t

high char
fast add 31 31 1 114 2 102 61-t
add 31 31 2 127 0 110 61-a
add 31 31 1 69 0 54 62
add 31 31 1 85 0 67 63
add 31 31 1 94 0 75 64
add 31 31 0 32 0 28 65

(b) Doubling

Op count Type of
Subroutine I M S A 2D −G
double 11 1 15 1 20 21
double 11 0 8 1 13 22
double 21 2 86 1 85 41-t
double 21 2 85 0 85 41-a
double 21 1 50 0 47 42
double 21 1 60 0 60 43
double 21 0 7 0 12 44
double 22 1 22 0 22 42
double 22 1 25 0 29 43
fast double 31 1 127 4 112 61

high char
fast double 31 1 138 2 130 61
double 31 2 159 0 156 61-t
double 31 2 152 0 149 61-a
double 31 1 94 0 90 62
double 31 1 110 0 103 63
double 31 1 119 0 111 64
double 31 0 57 0 64 65

(c) Reduction

Op count
Subroutine I M S A
reduce 32 0 8 0 11
reduce 33 0 0 0 0
reduce 41t 1 23 1 28
reduce 41a 1 22 0 28
reduce 42 0 0 0 1
reduce 43 0 6 0 11
reduce 44 0 0 0 0
reduce 51t 1 24 0 32
reduce 51a 1 22 0 29
reduce 52 0 1 0 3
reduce 53 0 12 0 14
reduce 54 0 7 0 10
reduce 61t 1 35 0 46
reduce 61a 1 28 0 39
reduce 62 0 2 0 5
reduce 63 0 8 0 13
reduce 64 0 12 0 21
reduce 65 0 0 0 0

Our operation counts for the high characteristic formulas compare to the previous
state-of-the-art in [8] as follows:

Addition Doubling
Khuri-Makdisi [8] 2I+97M+1S+132A 2I+107M+3S+155A
This work 1I+111M+3S+99A 1I+127M+4S+112A



14 EVAN MACNEIL, MICHAEL J. JACOBSON JR. AND RENATE SCHEIDLER

These counts include a trade-off of one inversion for several multiplications. An
inversion is generally considered to be as expensive as 80 multiplications, depending
on implementation and environment details [3, 5]. However, we note also that our
formulas significantly decrease the number of additions required, and that the total
number of field operations in both of our formulas is less than that of [8]. Over
large fields such as those considered in [8], additions are generally considered to have
negligible cost compared to multiplications and inversions, but in number theoretic
computations such as [13] over smaller (typically word-sized) primes, this has been
observed to not be the case.

To verify that our results represent an improvement over the previous state-of-
the-art, we implemented the formulas from [11] and [8] in Sage and ran benchmark
tests as follows. Given a prime p, choose a random C3,4 curve C over Fp (with
defining polynomial in short form) and two random divisors D1 and D2 on C.
Details on random divisor generation are given in Section 12.2 of [10]. We counted
how many terms in the Fibonacci-like sequence Di+2 = Di+1 + Di, i ≥ 1 (for
addition) and the sequence Di+1 = 2Di, i ≥ 1 (for doubling) each algorithm is
able to compute in 10 minutes. We chose to run these tests over the first 23
primes greater than 228, as primes on this order are of interest in number theoretic
applications (see [14], for example), and because degenerate cases are so rare that we
can strictly compare our formulas to those of [11] and [8]. Any time we encountered
a degenerate case, we began a new trial with a different curve and initial divisors.
In the tens of millions of divisors we added, this only occurred a few times. Our
algorithm computed 126,310,162 additions as compared to 112,041,012 using the
algorithm from [8], for a speedup of 12.74%. Similarly, our algorithm computed
120,827,482 doublings as compared to 108,489,487 for a speedup of 11.37%.

This benchmark was repeated over the first 11 primes larger than 2255, where we
found a more significant speed-up, likely due to the increasing cost of inverting in
large finite fields. Our algorithm computed 63,151,623 additions versus 52,185,141
using the algorithm from [8], for a speedup of 21.01%. Similarly, our algorithm
computed 56,795,783 doublings as compared to 48,395,712 for a speedup of 17.36%.

We found the most significant speed-up over very small primes, where atypical
cases are frequently encountered and our explicit formulas are much faster than
generic arithmetic. Over the ten largest primes under 28, we compared our formulas
against those of [11] and [8], falling back on Sage’s generic ideal arithmetic for cases
not handled by those papers. Our algorithm computed 53,670,222 additions as
compared to 31,685,426 using the algorithm from [8], for a speedup of 69.38%, and
48,156,514 doublings as compared to 39,152,564 for a speedup of 23.00%.

Correctness testing was accomplished by a combination of unit testing and ran-
dom testing. Unit tests were constructed testing every branch of code in the addi-
tion, doubling, and reduction subroutines. These subroutines were also tested via
hundreds of thousands of random inputs and the results were compared against
Sage’s vetted ideal arithmetic.

8. Conclusion

By generalizing the techniques of Abu Salem and Khuri-Makdisi [11] to atypical
divisors as classified by Arita [2], we provided a fully general framework for efficient
divisor arithmetic on C3,4 curves. Taken together with our additional improvements
to the setting of typical divisors, we obtain speedups of between 11- and 21-%



ARITHMETIC ON NON-HYPERELLIPTIC GENUS 3 CURVES 15

depending on the field size, and even more for small fields were atypical cases arise
more frequently.

There is room for further speed advances in C3,4 curve arithmetic, and work
on this topic is ongoing. In our formulas for atypical divisors, addition/doubling
and reduction are performed separately. Savings could be effected by combining
these into a single optimized subroutine, as was done in §6 for the typical case.
It may also be possible to eliminate all inversions using an analogue of projective
coordinates, but this likely would not help with number-theoretic computations
where frequent equality tests of divisors are required

Arithmetic on C3,4 curves continues to be significantly more expensive than
arithmetic on genus 3 hyperelliptic curves. Preliminary results indicate that Shanks’
NUCOMP algorithm [12] achieves significant savings in the latter setting, which
raises the question whether a NUCOMP-like idea may be applied to C3,4 curve
arithmetic as well.

References

[1] Seigo Arita. Algorithms for computations in Jacobian group of Ca,b curve and their applica-
tion to discrete-log-based public key cryptosystems. Conference on the Mathematics of Public

Key Cryptography, pages 165–175, 1999.

[2] Seigo Arita. An addition algorithm in Jacobian of C3,4 curve. IEICE Trans. Found., E88-A,
NO.6:1589–1598, 2005.

[3] Erik Dahmen, Katsuyuki Okeya, and Daniel Schepers. Affine precomputation with sole in-

version in elliptic curve cryptography. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson,
editors, Information Security and Privacy, pages 245–258, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

[4] Stéphane Flon, Roger Oyono, and Christophe Ritzenthaler. Fast addition on non-hyperelliptic
genus 3 curves. In Algebraic geometry and its applications, Proceedings of the first SAGA

conference, Ser. Number theory and its applications, volume 4, pages 1–28. World Sci. Publ.,
2008.

[5] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptogra-

phy. Springer-Verlag, 2004.
[6] David Harvey, Maike Massierer, and Andrew S. Sutherland. Computing L-series of geomet-

rically hyperelliptic curves of genus three. LMS J. Comput. Math., 19(suppl. A):220–234,

2016.
[7] Kiran S. Kedlaya and Andrew V. Sutherland. Computing L-series of hyperelliptic curves. In

Algorithmic Nnumber Theory, volume 5011 of Lecture Notes in Comput. Sci., pages 312–326.
Springer, Berlin, 2008.

[8] Kamal Khuri-Makdisi. On Jacobian group arithmetic for typical divisors on curves. Research

in Number Theory, 4, no. 1, article 3, 2018.

[9] Evan MacNeil. c34-curves. https://github.com/emmacneil/c34-curves, 2019.
[10] Evan MacNeil. Divisor Class Group Arithmetic on C3,4 Curves. Master’s thesis, Univer-

sity of Calgary, Canada, 2019. https://github.com/emmacneil/c34-curves/blob/master/

thesis-pdf/ucalgary_2020_macneil_evan.pdf.

[11] Fatima Abu Salem and Kamal Khuri-Makdisi. Fast Jacobian group operations for C3,4 curves

over a large finite field. LMS J. Comput. Math., 10:307–328, 11 2007.
[12] Daniel Shanks. On Gauss and composition i, ii. In Proc. NATO ASI on Number Theory and

Applications, pages 163–204. Kluwer Academic Press, 1989.

[13] Andrew V. Sutherland. Fast Jacobian arithmetic for hyperelliptic curves of genus 3. In Pro-
ceedings of the Thirteenth Algorithmic Number Theory Symposium, volume 2 of The Open

Book Ser., pages 425–442. Math. Sci. Publ., Berkeley, CA, 2019.

[14] Andrew V. Sutherland. Sato-Tate distributions. In Analytic methods in arithmetic geometry,
volume 740 of Contemp. Math., pages 197–248. Amer. Math. Soc., Providence, RI, 2019.

https://github.com/emmacneil/c34-curves
https://github.com/emmacneil/c34-curves/blob/master/thesis-pdf/ucalgary_2020_macneil_evan.pdf
https://github.com/emmacneil/c34-curves/blob/master/thesis-pdf/ucalgary_2020_macneil_evan.pdf

	1. Introduction
	2. Preliminaries
	3. Addition
	4. Doubling
	5. Reduction
	6. Explicit Formulas for Typical Divisors
	7. Implementation and Testing
	8. Conclusion
	References

