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Abstract. A Howe curve is a curve of genus 4 obtained as the fiber product of

two genus-1 double covers of P1. In this paper, we present a simple algorithm
for testing isomorphism of Howe curves, and we propose two main algorithms

for finding and enumerating these curves: One involves solving multivariate

systems coming from Cartier–Manin matrices, while the other uses Richelot
isogenies of curves of genus 2. Comparing the two algorithms by implementa-

tion and by complexity analyses, we conclude that the latter enumerates curves

more efficiently. However, in order to say that the latter strategy outputs all
superspecial Howe curves, we require a conjecture that all superspecial curves

of genus 2 in characteristic p > 2 are connected by a path of Richelot isoge-

nies. Given a prime p, the algorithm verifies this conjecture before producing
output.

1. Introduction

1.1. Background and motivation. Let K be an algebraically closed field of char-
acteristic p > 0. A nonsingular curve over K is called superspecial (resp. super-
singular) if its Jacobian variety is isomorphic (resp. isogenous) to a product of
supersingular elliptic curves. Superspecial curves are not only theoretically inter-
esting in algebraic geometry and number theory but also have many applications
in coding theory, cryptology and so on, because they tend to have many rational
points and their Jacobian varieties have big endomorphism rings. However, it is
not always easy to find such curves, and there are only finitely many superspecial
curves for a given genus and characteristic. One method of constructing superspe-
cial curves is to consider fiber products of superspecial curves of lower genera. In
this paper, we demonstrate that this method can be efficient by considering the
simplest example in which the genus is at least 4: the case of Howe curves. A Howe
curve1 is a curve of genus 4 obtained as the fiber product of two genus-1 double
covers E1 → P1 and E2 → P1. In [9], the third author studied these curves in
order to quickly construct genus-4 curves with many rational points.

1.2. Related works. The reason that we consider the case of genus g ≥ 4 is that
the enumeration of the isomorphism classes of superspecial curves with g ≤ 3 has
already been done, by Deuring [4] for g = 1, by Ibukiyama–Katsura–Oort [12] for
g = 2, and by Brock [3] for g = 3; see also Ibukiyama [11] and Oort [23] for the
existence of such curves for g = 3. In contrast to the case g ≤ 3, the existence or
non-existence of a superspecial curve of genus 4 in general characteristic is an open
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problem, although some results for specific small p are known; see [5, Theorem 1.1]
for the non-existence for p ≤ 3 and [17, Theorem B] for the non-existence for p = 7.
As for enumeration, computational approaches have been proposed recently in [16],
[17] and [18] in the case of genus 4. The main strategy common to these papers is to
parametrize a family of curves (canonical curves in the first two papers, hyperelliptic
curves in the third), and then to find the superspecial curves X in these families
by computing the zeros of a multivariate system derived from the condition that
the Cartier–Manin matrix of X is zero. With computer algebra techniques such
as Gröbner bases, the authors of these papers enumerated superspecial canonical
curves for p ≤ 11 in [16] and [17] and superspecial hyperelliptic curves for p ≤ 23
in [18]. However, results for larger p have not been obtained yet due to the cost
of solving multivariate systems, and no complexity analysis is given in [16], [17]
or [18].

Now we turn our attention to Howe curves. Recently, it was proven in [20]
that there exists a supersingular Howe curve in every positive characteristic. In
particular, the authors of [20] reduce the existence of such a curve to the existence
of a zero of a certain multivariate system, as follows: They study a family of Howe
curves realized as E1 : z2 = f1(x) and E2 : w2 = f2(x) for cubic polynomials
f1 and f2 parametrized by elements (λ : µ : ν) of P2. Let C be the genus-2
curve y2 = f1f2. The supersingularity of H is equivalent to that of E1, E2 and
C, because there exists an isogeny of 2-power degree from the Jacobian J(H) to
E1 × E2 × J(C) [9, Theorem 2.1]). Thus, once supersingular isomorphism classes
of E1 and E2 are given, finding supersingular curves H is reduced to finding values
of the parameter (λ : µ : ν) that satisfy a multivariate system derived from the
supersingularity of C. The authors of [20] deduced the existence of such a zero
(λ : µ : ν) from various algebraic properties of the defining polynomials of the
system.

The above reduction is applicable also for the superspecial case, but the method
used in [20] to prove the existence of solutions does not carry over well. For this
reason, the superspecial case is still open, and we are left to ask: For which primes
p > 7 are there superspecial Howe curves in characteristic p?

1.3. Our contribution. We study the existence of superspecial Howe curves by
creating efficient algorithms to produce and enumerate them. The following theo-
rems summarize some of what we have found.

Theorem 1.1. For every prime p with 7 < p < 20000 or with p ≡ 2 mod 3 and
p 6= 2, there exists a superspecial Howe curve in characteristic p.

Theorem 1.2. For every prime p with 7 < p ≤ 199, the number of isomorphism
classes of superspecial Howe curves in characteristic p is given in Table 1.

The upper bounds on p in these two theorems can easily be increased. For
example, on a 2.8 GHz Quad-Core Intel Core i7 with 16GB RAM, computing the
8351 superspecial Howe curves in characteristic 199 using method (B) below took
124 seconds in Magma. Finding examples of superspecial Howe curves for every p
between 7 and 20000 took 680 minutes on the same machine.

In this paper we discuss two strategies, (A) and (B) below, to find superspecial
Howe curves. We also show how isomorphisms between Howe curves can be easily
detected from the data that defines them (C).
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Table 1. For each prime p from 11 to 199, we give the number
n(p) of superspecial Howe curves over Fp, and the ratio of n(p) to
the heuristic prediction p3/1152 (see Section 5).

p n(p) Ratio p n(p) Ratio p n(p) Ratio

11 4 3.462 67 260 0.996 137 2430 1.089
13 3 1.573 71 742 2.388 139 2447 1.050
17 10 2.345 73 316 0.936 149 3082 1.073
19 4 0.672 79 595 1.390 151 3553 1.189
23 33 3.125 83 655 1.320 157 3427 1.020
29 45 2.126 89 863 1.410 163 3518 0.936
31 59 2.281 97 802 1.012 167 6268 1.550
37 41 0.932 101 1207 1.350 173 4780 1.064
41 105 1.755 103 1151 1.213 179 5771 1.159
43 79 1.145 107 1237 1.163 181 5419 1.053
47 235 2.608 109 1193 1.061 191 9610 1.589
53 167 1.292 113 1323 1.056 193 6298 1.009
59 259 1.453 127 2013 1.132 197 6839 1.030
61 243 1.233 131 2606 1.335 199 8351 1.221

(A) (E1, E2)-first, using Cartier–Manin matrices. In this strategy, we use
the same realization of Howe curves as in [21], i.e., the fiber product of E1 : z2y =
x3 + A1µ

2xy2 + B1µ
3y3 and E2 : w2y = (x − λ)3 + A2µ

2(x − λ)y2 + B2µ
3y3 over

P1 = ProjK[x, y]. We enumerate pairs (E1, E2) of supersingular elliptic curves
so that C is superspecial. We first discuss the field of definition of superspecial
Howe curves (cf. Proposition 4.1), which enables us to reduce the size of our search
space drastically. Specifically, the coordinates A1, B1, A2, B2, λ, µ, ν belong to
Fp2 , whereas in the supersingular case [20] these coordinates can generate larger

subfields of Fp. For the test of superspeciality, we use the criterion that the Cartier–
Manin matrix of C must be zero [12, Lemma 1.1, (i)]. This reduces the enumeration
problem to solving a system of algebraic equations. See Section 4 for the details
with complexity analysis for this strategy.

(B) C-first, using Richelot isogenies. The second strategy first enumerates
superspecial curves C : y2 = f(x) of genus 2 with f(x) of degree 6 and then
enumerates decompositions f(x) = f1(x)f2(x) with fi(x) of degree 3 so that both
of Ei : y2 = (x − b)fi(x) are supersingular for some b. The moduli space of
curves of genus 2 is of dimension 3. As this dimension is bigger than the space of
(λ : µ : ν) ∈ P2 considered in (A), this strategy, a priori, looks inefficient. But,
surprisingly, we conclude that strategy (B) enumerates superspecial Howe curves
much more efficiently than does (A). The advantage of (B) comes from making
use of Richelot isogenies. Specifically, we construct some superspecial curves of
genus 2 by gluing supersingular elliptic curves together along their 2-torsion [10,
§3], and then produce more such curves by applying Richelot isogenies to the curves
already produced. This procedure terminates because there are only finitely many
superspecial curves of genus 2, and we conjecture (Conjecture 5.1) that in fact we
obtain all isomorphism classes of superspecial curves of genus 2 in this way. For
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any given p we can verify the conjecture, thanks to the Ibukiyama–Katsura–Oort
mass formula for nonsingular superspecial curves of genus 2 [12, Proposition 3.1].

(C) A new isomorphism test for Howe curves. Strategy (A) above produces
many not-necessarily-distinct Howe curves, so to prevent overcounting we are left
with the task of producing a unique representative for each isomorphism class.
As every Howe curve is canonical (cf. Proposition 2.1), one may check whether two
Howe curves are isomorphic by using the isomorphism test for canonical curves given
in [17, 6.1], whose implementation is found in [16, 4.3]. This turns out to be very
costly, because it uses many Gröbner basis computations. Our Corollary 3.3 gives
a much simpler isomorphism test, based on the observation that a Howe curve is
completely determined (up to isomorphism) by the degree-2 map to a genus-2 curve
it is provided with by virtue of its definition as a fiber product. This isomorphism
test is added on as a separate step in strategy (A), but is baked into the algorithm
we use for strategy (B).

Acknowledgments. The first and the second authors thank Everett Howe for
joining as the third author; he told them the second strategy (B), which had not
been considered in the earlier version [19]. The third author thanks Professors Kudo
and Harashita for inviting him to join them in this work. The authors thank the
referees for their careful reading and for helpful suggestions and comments. This
work was supported by JSPS Grant-in-Aid for Scientific Research (C) 17K05196,
JSPS Grant-in-Aid for Research Activity Start-up 18H05836 and 19K21026, and
JSPS Grant-in-Aid for Young Scientists 20K14301.

2. Howe curves and their superspeciality

In this section, we recall the definition of Howe curves, show that they are canon-
ical, and give a computational criterion for their superspeciality.

Let K be an algebraically closed field of characteristic p 6= 2. A Howe curve
over K is a curve which is isomorphic to the desingularization of the fiber product
E1 ×P1 E2 of two genus-1 double covers Ei → P1 ramified over Si, where each Si
consists of 4 points and where |S1 ∩ S2| = 1.

Given a Howe curve, there is an automorphism of P1 that takes the common
ramification point of the two genus-1 double covers to infinity. Then the curves
Ei can be written w2 = f1 and z2 = f2 for separable monic cubic polynomials
fi ∈ K[x] that are coprime to one another, where x generates the function field
of P1.

Lemma 2.1. Every Howe curve is a canonical curve of genus 4.

Proof. Let H be a Howe curve, normalized as above so that it is given as the fiber
product of w2 = f1 and z2 = f2 for coprime separable monic cubic polynomials f1
and f2. For each i let fhi := y3fi(x/y) ∈ K[x, y] be the homogenous cubic obtained

from fi, and let H ′ be the curve defined in P3 = ProjK[x, y, z, w] by

z2 − w2 = q(x, y)

z2y = f
(h)
1 (x, y),

where q(x, y) is the quadratic form

q(x, y) = (f
(h)
1 (x, y)− f (h)2 (x, y))/y.
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Note that H ′ and E1 ×P1 E2 are isomorphic if the locus y = 0 is excluded. It is
straightforward to see that H ′ is nonsingular, since f1 and f2 are separable and
are coprime. Hence H and H ′ are isomorphic to one another (cf. [25, Chap. II,
Prop. 2.1]).

It is well-known that any nonsingular curve defined by a quadratic form and a
cubic form in P3 is a canonical curve of genus 4 [6, Chap. IV, Exam. 5.2.2]. �

To study the superspeciality of Howe curves, we first look at the decomposition
of their Jacobians. Let f1 and f2 be coprime separable monic cubic polynomials,
as above. Let f = f1f2 and consider the hyperelliptic curve C of genus 2 defined
by u2 = f. By [9, Theorem 2.1], there exist two isogenies

ϕ : J(H) −→ E1 × E2 × J(C)

ψ : E1 × E2 × J(C) −→ J(H)

such that ϕ ◦ ψ and ψ ◦ ϕ are both multiplication by 2.
Suppose now that the characteristic p of K is an odd prime. Then ϕ and ψ give

isomorphisms between the p-kernels of J(H) and E1 ×E2 × J(C), whence J(H)[p]
and E1[p]×E2[p]× J(C)[p] are isomorphic. Hence H is superspecial if and only if
E1 and E2 are supersingular and C is superspecial.

Now we recall a criterion for the superspeciality of C. Let γi be the coefficient
of xi in f (p−1)/2, and set

a = γp−1, b = γ2p−1, c = γp−2 and d = γ2p−2.

Let M be the matrix

(2.1) M :=

(
ap cp

bp dp

)
.

Then M is a Cartier–Manin matrix for C, that is, there is a basis for H0(C,Ω1
C)

so that left multiplication by M represents the (semi-linear) action of the Cartier
operator; here Ω1

C is the sheaf of differential 1-forms on C. (For information about
Cartier–Manin matrices, see [1], which addresses issues with earlier literature, in-
cluding the standard reference [26, §2].)

Lemma 2.2. Let H be a Howe curve as above. Then H is superspecial if and only
if E1 and E2 are supersingular and a = b = c = d = 0.

Proof. We already noted that H is superspecial if and only if E1 and E2 are su-
persingular and C is superspecial. But C is superspecial if and only if the Cartier
operator acts trivially on H0(C,Ω1

C) [22, Theorem. 4.1]. �

3. Detecting isomorphisms of Howe curves

In this section, we give an efficient criterion for determining whether two Howe
curves are isomorphic or not. This criterion will be used in both the first and the
second approach to enumerating superspecial Howe curves over a finite field.

We continue to work over an algebraically closed field of characteristic p 6= 2.
Recall from Section 2 that a Howe curve is the desingularization of the fiber product
of two genus-1 double covers of P1, where the ramification loci of the two covers
overlap in exactly one point. This means that a Howe curve is precisely a genus-4
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curve D that fits into a V4-diagram of the following form, where C is a curve of
genus 2 and E1 and E2 are curves of genus 1:

D

ww ''��
E1

&&

C

��

E2

xx
P1.

If E1 → P1 ramifies at points P , Q1, Q2, and Q3, and if E2 → P1 ramifies at P ,
R1, R2, and R3, then the Weierstrass points of C are the points lying over Q1, Q2,
Q3, R1, R2, and R3. On the other hand, the point P splits in the cover C → P1,
and we let P1 and P2 be the points of C lying over P .

Thus, to specify a Howe curve, it is enough to provide three pieces of information:

(1) A genus-2 curve C.
(2) An unordered pair of disjoint sets {W1,W2}, each consisting of three Weier-

strass points of C.
(3) An unordered pair of distinct points {P1, P2} on C that are mapped to one

another by the hyperelliptic involution.

These three things determine the V4-diagram above, and hence also determine
the double cover η : D → C, which we call the structure map for the given data.
Of course, if α is an automorphism of C then {α(W1), α(W2)} and {α(P1), α(P2)}
will give us a double cover D → C that is isomorphic to η, namely αη.

Lemma 3.1. The data specifying a Howe curve is recoverable (up to automorphisms
of C) just from the structure map η : D → C.

Proof. The map C → P1 is unique (up to automorphism of P1), so we recover the
entire map D → C → P1 from η. This map is a Galois extension with group V4,
so we recover the genus-1 curves in the extension, and hence the division of the
Weierstrass points of C. The pair of points {P1, P2} is simply the set of ramification
points of η. �

Theorem 3.2. Assume the characteristic of K is either 0 or at least 7. Then two
structure maps η1 : D → C1 and η2 : D → C2 starting from the same curve D are
isomorphic to one another. That is, there is an isomorphism γ : C1 → C2 and an
automorphism δ : D → D such that the following diagram commutes:

D
δ //

η1
��

D
η2
��

C1
γ // C2.

Proof. Let U1 and U2 be the V4-subgroups of G := AutD specified by η1 and η2,
and let S be the 2-Sylow subgroup of G that contains U1. By conjugating U2 by
an automorphism δ (and thereby replacing η2 with η2δ) we may assume that U2 is
also contained in S. Let α1 and α2 be the involutions of D corresponding to the
double covers η1 and η2, and for each i let βi and γi be the other nonzero elements
of Ui.

If α2 = α1, we are done. Indeed, if α1 and α2 are conjugate to one another in
G, we are done. So assume, to get a contradiction, that α2 and α1 lie in different
conjugacy classes of G.
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We know that the quotient of D by the subgroup 〈αi〉 has genus 2, while the
quotients of D by 〈βi〉 and by 〈γi〉 have genus 1. The same is true for all of the
conjugates of αi, βi, and γi in G. Moreover, if we have any V4-subgroup of G,
giving rise to a diagram

D

xx &&��
Y1

&&

Y2

��

Y3

xx
X,

(3.1)

then none of the curves Yi can have genus 0 (by Lemma 2.1), and so the only
possibilities are that (a) all of the Yi have genus 2 and X has genus 1, or (b) one of
the Yi has genus 2, the other two have genus 1, and X has genus 0. (This follows
from the fact that in any diagram such as (3.1), the genus of D is the sum of the
genera of the Yi minus twice the genus of X; this follows, for instance, from [14,
Theorem B].) Thus, given two commuting involutions in G, if we know the genera
of the quotients of D they produce, we can deduce the genus of the quotient of D
by their product.

Our strategy, then, will be to enumerate all possible automorphism groups for
a non-hyperelliptic curve D of genus 4, along with all possible pairs U1 and U2

of V4-subgroups of a fixed Sylow 2-subgroup of G that contain elements α1 and
α2 that are not conjugate in G. We will assume that α1 and α2 generate genus-2
curves, while the other involutions in U1 and U2 generate genus-1 curves. Given
these assumptions, we deduce, for as many involutions as we can, the genera of the
curves associated to these involutions.

Suppose δ is an involution in G for which we know that the quotient Y := D/〈δ〉
has genus 2. Let H be the centralizer of δ in G, and let I be the quotient H/〈δ〉.
Then I is contained in the automorphism group of the genus-2 curve Y . Using
Igusa’s classification of the automorphism groups of genus-2 curves [13, § 8], we
can show that there are only eight 2-groups that appear as subgroups of the auto-
morphism groups of genus-2 curves. If I is not one of these groups, then we have
shown that the values of U1, U2, α1, and α2 cannot correspond to two different
realizations of D as a Howe curve.

We implemented this computation in Magma; the code is available on the third
author’s web site. Given our assumptions on the characteristic of K and the fact
that a Howe curve is not hyperelliptic, we know that # AutD satisfies the Hurwitz
bound # AutD ≤ 84(g − 1) = 252 (see [24]). We ran our code on all groups of
order at most 252, and the only group not eliminated was G ∼= (Z/2Z)3.

For this G, our computation shows that of the seven involutions in G, three give
genus-2 quotients and four give genus-1 quotients, and the three elements that give
genus-2 quotients sum to zero. Now consider the seven V4-subgroups H of G. Each
such H gives us a diagram like (3.1) above. For the H that contains the three
genus-2 involutions, the genus of D/H is 1, while for the other six V4-subgroups H,
the genus of D/H is 0.

Let us consider the diagram of subextensions between D and its quotient D/G ∼=
P1. We label the elements of G by vectors in F3

2, and we label the V4-subgroups
in the same way, with the convention that a V4-subgroup labeled by v contains the
elements with labels g such that the dot product of v and g is 0. Then the diagram
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of subextensions, with their genera, is as follows:

D
genus 4

001
genus 2

010
genus 2

011
genus 2

100
genus 1

101
genus 1

110
genus 1

111
genus 1

001
genus 0

010
genus 0

011
genus 0

100
genus 1

101
genus 0

110
genus 0

111
genus 0

P1

genus 0

(For visual clarity, we have left off the heads of the arrows, and omitted the 21
arrows between the middle layers.) But this configuration of genera is not possible;
consider for example the following subdiagram:

100
genus 1

001
genus 0

010
genus 0

011
genus 0

P1

genus 0

This diagram violates the genus property we mentioned below diagram (3.1).
This contradiction shows that the involutions α1 and α2 corresponding to the

structure maps η1 and η2 lie in the same conjugacy class of AutD, so that η1 = η2δ
for an automorphism δ of D. �

Corollary 3.3. Assume the characteristic of K is either 0 or at least 7. If two
triples (C, {W1,W2}, {P1, P2}) and (C ′, {W ′1,W ′2}, {P ′1, P ′2}) give isomorphic Howe
curves, then there is an isomorphism C → C ′ that takes {W1,W2} to {W ′1,W ′2}
and {P1, P2} to {P ′1, P ′2}. �

This isomorphism test is very fast; it simply requires determining whether there
are any automorphisms of P1 that respect the sets of Weierstrass points and their
divisions, and that take the x-coordinate of P1 and P2 to that of P ′1 and P ′2.

4. First approach: Reduction to solving multivariate systems

In this section and the next, we present two approaches to solving the problem
of enumerating superspecial Howe curves. As we mentioned in Section 1, the first
approach, described in this section, enumerates pairs of supersingular elliptic curves
E1 : w2 = f1 and E2 : z2 = f2 such that C : y2 = f1f2 is superspecial. For this,
we shall apply a construction of Howe curves given in [20]. While this construction
is different from the original one of [9], it can easily reduce our problem to finding
roots of polynomial systems.

4.1. Reduction to solving multivariate systems over finite fields. Let K be
an algebraically closed field in characteristic p > 3. In [20], the authors parametrize
the space of all Howe curves by the projective plane P2. We here briefly recall the
parametrization; see [20, Section 2] for more details. Let y2 = x3 + Aix + Bi
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(i = 1, 2) be two (nonsingular) elliptic curves, where A1, B1, A2, B2 ∈ K. Let
λ, µ, ν be elements of K such that (i) µ 6= 0 and ν 6= 0, and (ii) f1 and f2 are
coprime, where

f1(x) = x3 +A1µ
2x+B1µ

3,(4.1)

f2(x) = (x− λ)3 +A2ν
2(x− λ) +B2ν

3.(4.2)

A point (λ : µ : ν) ∈ P2(K) satisfying (i) and (ii) is said to be of Howe type in
[20]. Note that the isomorphism classes of E1 and E2 are independent of the choice
of (λ, µ, ν) provided µ 6= 0 and ν 6= 0. Then the desingularization H of the fiber
product E1 ×P1 E2 is a Howe curve, and vice versa.

This parametrization, together with the criterion of superspeciality in Section 2,
enables us to reduce the search for superspecial Howe curves into solving multi-
variate systems over K; it suffices to compute the solutions (λ : µ : ν) ∈ P2(K)
(of Howe type) to a = b = c = d = 0, where a, b, c and d are the entries of the
Cartier–Manin matrix of the hyperelliptic curve C : y2 = f1f2. Note that a, b, c
and d are homogeneous as polynomials in λ, µ and ν, and that ord∗(−) = O(p) for
∗ = λ, µ, ν and for − = a, b, c, d.

Note that the multivariate systems above are zero-dimensional, since there are
only finitely many points (λ : µ : ν) parameterizing supersingular Howe curves
(cf. [20]), whence the same thing holds for superspecial cases. In fact, we may
assume that the coordinates A1, B1, A2, B2, λ, µ and ν belong to Fp2 :

Proposition 4.1. Any superspecial Howe curve is K-isomorphic to H obtained as
above for A1, B1, A2, B2, µ, ν and λ belonging to Fp2 .

Proof. It suffices to consider the case of K = Fp2 , since every supersingular elliptic
curve can be defined over Fp2 and (λ, µ, ν) is a solution of a = b = c = d = 0. Let

H ′ be a superspecial Howe curve over K = Fp2 . Choose E′1 and E′2 over K so that
H ′ is the normalization of E′1×P1 E′2. It is well-known that H ′ descends to a curve
H over Fp2 such that the Frobenius map F (the p2-power map) on Jac(H) is p or −p
and all automorphisms of H are defined over Fp2 (cf. the proof of [5, Theorem 1.1]).
Let E1 and E2 be the quotients of H corresponding to E′1 and E′2. The quotient Ei
of H is obtained by an involution ιi ∈ Aut(H), and therefore is defined over Fp2 .

The quotient of H by the group generated by ι1 and ι2 is isomorphic to P1 over
Fp2 . Let Si be the set of the ramified points of Ei → P1. Since S1 ∩ S2 consists
of a single point, this point is an invariant under the action by the absolute Galois
group of Fp2 and therefore is an Fp2-rational point. An element of PGL2(Fp2) sends

this point to the infinite point of P1. Since the Frobenius map F on Ei is also ±p,
the other elements P of Si (which are 2-torsion points on Ei) are also Fp2 -rational
by F (P ) = ±pP = P . This implies the desired result. �

4.2. Concrete algorithm. Based on the reduction described in the previous sub-
section, we present a concrete algorithm (Algorithm 4.2 below).

Algorithm 4.2.

Input: A rational prime p > 3.
Output: A listH(p) of superspecial Howe curves, each of which is represented

by a pair (f1, f2) of polynomials f1, f2 ∈ Fp2 [x].

(1) Compute the set S(p) of representatives of the Fp-isomorphism classes of
supersingular elliptic curves in characteristic p so that each representative
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is given in Weierstrass form EA,B : y2 = fA,B(x) := x3 +Ax+B by a pair
(A,B) of elements in Fp2 .

(2) Set H0(p) ← ∅. For each pair of EA1,B1 and EA2,B2 in S(p), possibly
choosing (A1, B1) = (A2, B2), conduct the following (2-1)-(2-3) to compute
all (λ, µ, ν) ∈ (Fp2)3 of Howe type such that the desingularization H of
E1 ×P1 E2 is superspecial, where E1 : w2 = f1 (resp. E2 : z2 = f2) is an
elliptic curve Fp2-isomorphic to EA1,B1

(resp. EA2,B2
).

(2-1) Compute the Cartier–Manin matrix M given in (2.1).
(2-2) Compute the set V(A1, B1, A2, B2) of elements (λ, µ, ν) ∈ (Fp2)3 (with

ν = 1) such that M = 0.
(2-3) For each (λ, µ, ν) ∈ V(A1, B1, A2, B2): If µ 6= 0 and ν 6= 0, set H0(p)

← H0(p) ∪ {(f1, f2)}, where f1 and f2 are as in (4.1) and (4.2).
Note: By Lemma 4.4 and Proposition 4.6 in [20], for each root (λ, µ, ν)
computed in Step (2-2), the cubics f1 and f2 are coprime if µ 6= 0 and
ν 6= 0. Moreover, it suffices to compute elements (λ, µ, ν) with ν = 1, see
Remark 4.2 of [19] for more details.

(3) Set H(p) ← ∅. For each (f1, f2) ∈ H0(p): If the Howe curve H represented
by (f1, f2) is not isomorphic to any Howe curve of H(p), set H(p)← H(p)∪
{H}.

The complexity of this algorithm is estimated as Õ(p6), as long as #H0(p) =
O(p3), see Subsection 4.3 below for more details.

Remark 4.3. If one would search for a single example of a superspecial Howe curve
(or determine the non-existence of such a curve), it suffices to decide the (non)-
existence of a root in Step (2-2). In this case, it will be estimated in the next

subsection that the complexity is Õ(p5).

4.3. Complexity of the first approach. We here briefly discuss the complexity
of Algorithm 4.2 together with considerable variants of computing the roots of a
multivariate system in Step (2-2). For reasons of space, we give only a summary of
the estimation of the complexity, and refer to [19, Section 5.1] for most of details.
In the following, all time complexity bounds refer to arithmetic complexity, which
is the number of operations in Fp2 . We denote by M(n) the time to multiply two
univariate polynomials over Fp2 of degree n.

For Step (1), one can check that its complexity is dominated by the cost of
computing all supersingular j-invariants in characteristic p. This cost is bounded

by O(log2(p)M(p)) = Õ(p), see [19, Subsection 5.1.1] for details.
For Step (2), clearly the complexities of Steps (2-1) and (2-2) are larger than

that of Step (2-3). In Step (2-1), we compute the Cartier–Manin matrix M from
f := f1f2 with indeterminates λ and µ. The cost of computing M is bounded

by Õ(p3), see Remark 4.4 below. In Step (2-2), there are three variants (i)-(iii)
to compute all (λ, µ, ν) ∈ (Fp2)3 with ν = 1 such that M = 0, where M is the
Cartier–Manin matrix as in (2.1) with entries a, b, c and d.

(i) Use brute force to enumerate all (λ, µ) ∈ (Fp2)2 to check M = 0 or not.
(ii) Regard one of λ and µ as a variable. For simplicity, regard λ as a variable.

For each µ ∈ Fp2 , compute the roots in Fp2 of G := gcd(a, b, c, d) ∈ Fp2 [λ].
(iii) Regarding both λ and µ as variables, use an approach based on resultants.

It is estimated that the complexity of (i) is O(p5), and that those of (ii) and

(iii) are bounded by the same bound Õ(p4); more precisely the upper-bound of the
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complexity of (ii) is less than that of (iii) if we consider logarithmic factors, see [19,
Subsection 5.1.2].

From this, we adopt the fastest variant (ii) with complexity Õ(p4) in our im-
plementation. The number of (λ, µ, ν) with ν = 1 computed in Step (2-2) is
≤ p2 × deg(G) = O(p3). Since the number of possible choices of (EA1,B1

, EA2,B2
)

is #S(p) = O(p2), computing (λ, µ, ν) with ν = 1 for all (EA1,B1 , EA2,B2) is done

in #S(p)× Õ(p4) = Õ(p6) operations in Fp2 .
For Step (3), the complexity of this step heavily depends on the number of super-

special Howe curves obtained in Step (2), that is, #H0(p). Since each isomorphism
test is done in O(1), the complexity of Step (3) is O((#H0(p))2). As of this writing,
we have not succeeded in finding any sharp bound on #H0(p). We can naively esti-
mate #H0(p) = O(p5) from the complexity analysis of Step (2), whereas we expect
#H0(p) = O(p3) from the practical behavior [19, Subsection 4.2, Table 1]. Thus,
the complexity of Step (3) is naively O(p10), but in practice O(p6) which does not
exceed the complexity of Steps (1)-(2).

Note that to determine the (non-)existence of a superspecial Howe curve, it is
not necessary to compute a root in Step (2-2), but it suffices to compute the gcd

G only. Since each gcd can be computed in time Õ(p) by fast gcd algorithms, one

can verify that the total complexity of this variant of Algorithm 4.2 is Õ(p5).

Remark 4.4. In Step (2-1), we compute a Cartier–Manin matrix over Fp2 [λ, µ].
Bostan, Gaudry, and Schost showed that in general, computing the Cartier–Manin
matrix M of a hyperelliptic curve y2 = f(x) defined over a field K can be accom-
plished by multiplying matrices obtained from recurrences for the coefficients of
f(x)n; see [2, Section 8] or [8, Section 2] for details. The algorithm of Harvey and
Sutherland [8], which is an improvement of their earlier algorithm [7] presented at
ANTS XI, is also based on this reduction, and it is the fastest algorithm to com-
pute M for the case of K = Fp. From this, we suspect that one of the best ways
to compute M in Step (2-1) would be to extend the Harvey–Sutherland algorithm
[8] to the case of Fp2(λ, µ). However, since we have not yet succeeded in making
this extension, we compute M using the reduction mentioned above, or by using
formulae given in [20, Section 4] for M specific to Howe curves. It is estimated
(to appear in a revised version of [19]) that the complexity of the latter method is

bounded by Õ(p3), which is less than or equal to that of Step (2-2).

5. Second approach: Use of Richelot isogenies of genus-2 curves

In this section we propose another approach to enumerating superspecial Howe
curves. As opposed to the approach in Section 4, this second approach starts with
a superspecial genus-2 curve C, and then looks to see whether it will fit into a
V4-diagram with supersingular elliptic curves. While this is precisely the structure
of the algorithm in [9], a problem is left: How can we quickly produce a list of all
of the superspecial genus-2 curves? We begin by addressing this question.

5.1. Computing superspecial curves of genus 2. Each superspecial genus-2
curve has a unique model defined over Fp2 that is maximal over Fp2 . Given one
such curve, all of the curves that are Richelot isogenous to it are also maximal
superspecial curves. Thus, given a not-necessarily-complete list of maximal super-
special curves, we can add curves to the list as follows: We go through the list one
curve at a time. For each C we compute the curves that are Richelot isogenous to
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it, and we add each such curve to the list if it is not already on it. To seed our
list, we can use the curves that are (2, 2)-isogenous to a product of maximal elliptic
curves.

Conjecture 5.1. If we seed the list of curves as above, and then take the closure
of the list under Richelot isogenies, we will obtain all superspecial genus-2 curves.

Note that the algorithm we just sketched to produce this list of curves is essen-
tially a variant of [14, Algorithm 5.7]. We may hope that some version of [14, The-
orem 5.8] holds, which would prove Conjecture 5.1.

Fortunately, we do not need to prove this conjecture in general, because for any
specific p we can verify it computationally. Once we have produced the list L of
maximal superspecial genus-2 curves as above, we can check to see whether∑

C∈L

1

# RedAutC
=

(p− 1)(p− 2)(p− 3)

2880
,

where RedAutC denotes the reduced automorphism group of C — that is, the
quotient of the full automorphism group by the order-2 subgroup containing the
hyperelliptic involution. If equality holds, and if the Igusa invariants of the curves
on the list are distinct, then [16, Proposition 3.1] tells us that our list contains a
unique representative for every superspecial curve.

Since most genus-2 curves have trivial reduced automorphism group, this result
also says that we expect there to be approximately p3/2880 superspecial curves of
genus 2.

5.2. Testing whether a genus-2 curve fits into a V4-diagram. For each C ∈ L,
given by an equation

y2 = (x− a1)(x− a2)(x− a3)(x− a4)(x− a5)(x− a6),

we would like to try to fit C into a Howe curve diagram. For each of the ten
ways of splitting the Weierstrass points into two groups of three (for example, into
{{a1, a2, a3}, {a4, a5, a6}}), we could then ask for the values of b such that the two
genus-1 curves

(5.1) y2 = (x− b)(x− a1)(x− a2)(x− a3)

and

(5.2) y2 = (x− b)(x− a4)(x− a5)(x− a6)

are both supersingular. (We also consider “b = ∞,” corresponding to the curves
y2 = (x − a1)(x − a2)(x − a3) and y2 = (x − a4)(x − a5)(x − a6). Since there
are about p/12 supersingular j-invariants and hence about p/2 supersingular λ-
invariants, there are about p/2 values of b that will make the first curve (5.1)

supersingular, and we can compute these values in time Õ(p). For each b, we then
check whether the second curve (5.2) is supersingular. If we were to model this as
choosing a random λ-invariant in Fp2 and asking whether it is supersingular, we
would expect success with probability around 1/(2p).

It is easy to incorporate isomorphism testing into this algorithm so that it pro-
duces each superspecial Howe curve exactly once: All we have to do is keep track
of how the automorphism group of C acts on the divisions of its Weierstrass points
and on the good values of b.
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Thus, in time Õ(p4), we can produce unique representatives for each superspecial
Howe curve. Heuristically, the number of superspecial curves we find should be
the number of superspecial genus-2 curves, times the number of Weierstrass point
divisions, times the number of b that make the first elliptic curve supersingular,
times the probability that the second curves is supersingular. This works out to be
approximately

p3

2880
· 10 · p

2
· 1

2p
=

p3

1152
.

5.3. Concrete algorithm.

Algorithm 5.2.

Input: A rational prime p > 3.
Output: A listH(p) of superspecial Howe curves, each of which is represented

by a pair (f1, f2) of polynomials f1, f2 ∈ Fp2 [x], corresponding to the curve
y2 = f1, z

2 = f2.

(1) Compute the set MaxEll(p2) of Fp2 -isomorphism classes of Fp2 -maximal
elliptic curves over Fp2 . Since every supersingular curve has a unique max-
imal twist, this can be done as in Step (1) of Algorithm 4.2.

(2) L ← ∅. For each pair (E,E′) of elements in MaxEll(p2), compute the (at
most 6) curves C whose Jacobians are (2, 2)-isogenous to E × E′ (see [10,
§3]). Adjoin each of these to L if it is not isomorphic to an element of L.

(3) Write L = {C1, . . . , Cn}. Set i = 1.
(a) For each nonsingular curve C ′ which is Richelot isogenous to Ci: If C ′

is not isomorphic to any element of L, setN ← |L| and put CN+1 := C ′

and L ← L ∪ {CN+1}.
(b) If i < |L|, set i← i+ 1 and go to (3a).
(c) Compute the sum

∑
C∈L 1/# RedAutC. If the result is not equal to

(p− 1)(p− 2)(p− 3)/2880, report an error and stop.
(4) Set H(p)← ∅.
(5) For each C ∈ L: Check whether C fits into a Howe curve diagram with

supersingular double covers Ei → P1.
(a) For each splitting of the Weierstrass point of C into two disjoint three-

element sets, compute the j-invariants of the genus-1 curves (5.1) and
(5.2), as functions of the indeterminate b. Find the values of b that
make the first curve supersingular, and for each, check to see whether
the second is supersingular. Record each b for which both curves are
supersingular.

(b) Using Corollary 3.3, find unique representatives y2 = f1, z
2 = f22 for

the curves produced in the previous step, and adjoin (f1, f2) to H(p).

We noted in the previous subsection that Step (5) takes Õ(p4) arithmetic oper-
ations over Fp2 , and the other steps clearly take less than this.

6. Implementations and proofs

In this section, we describe our implementations of the algorithms in the previous
sections and our proofs of the main results stated in the Introduction. As mentioned
there, there are two approaches to enumerating superspecial Howe curves: (A)
(E1, E2)-first and (B) C-first. The arguments in the previous sections show that
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(B) has an advantage in the complexity analysis. Here we see that (B) is much
superior to (A) also when we execute their implementations. Indeed, Theorems
1.1 and 1.2 in the Introduction were obtained by Magma implementations based
on (B) that were run on a PC with ubuntu 16.04 LTS OS at 3.40GHz CPU (Intel
Core i7-6700) and 15.6 GB memory. The same result for p ≤ 53 was obtained by
implementing the method (A) over Magma with an execution by the same PC.
Although it took 11871 seconds to obtain Theorem 1.2 for p ≤ 53 by (A), the
second strategy (B) finishes the enumeration for p ≤ 199 only in 924 seconds; see
Table 2 for benchmark timing data for small p. The code for our implementations

Table 2. Benchmark timing data for (A) Algorithm 4.2 and (B)
Algorithm 5.2. All times shown are in seconds.

p 5 7 11 13 17 19 23 29 31 37 41 43 47 53
(A) 0.02 0.01 0.17 0.76 3.92 6.14 27.59 114.70 193.82 617.23 1118.63 1423.26 2686.17 5678.32
(B) 0.08 0.01 0.04 0.05 0.09 0.12 0.21 0.31 0.34 0.54 0.71 0.80 1.03 1.46

is available on the first author’s web site for (A) and on the third author’s web
site for (B). In case (A), it is very costly to find Cartier–Manin matrices, and in
addition to that there are many pairs (E1, E2) of supersingular elliptic curves. This
fact is consistent with the complexity analysis in Section 4.3. On the other hand,
the method (B) contains few intensive computations and it enables us to find and
enumerate superspecial Howe curves very efficiently.

The preceding remarks prove the computational results in Theorems 1.1 and 1.2,
and we are left to prove the statement in Theorem 1.1 concerning odd primes p ≡
2 mod 3. This fact is shown by using the Howe curve defined by E1 : z2y = x3 + y3

and E2 : w2y = x3 + ay3 with a ∈ {−1, 1/4}. Indeed, if p is odd and p ≡ 2 mod 3,
then these are supersingular and moreover y2 = (x3+1)(x3+a) is superspecial. This
can be checked by observing that the curve has two nonhyperelliptic involutions,
given by (x, y) 7→ (a1/3/x,±a1/2y/x3), so that its Jacobian is (2, 2)-isogenous to
a product of elliptic curves. For a = −1 we find that these two curves are both
isomorphic to the j = 0 curve with CM by −3, and for a = 1/4 we find that they
are both isomorphic to the j = −12288000 curve with CM by −27. In both cases,
these elliptic curves are supersingular for odd primes p ≡ 2 mod 3.

We remark that this curve for a = 1/4 is isomorphic to the curve X3+Y 3+W 3 =
2YW + Z2 = 0 in P3 studied by the first author in [15], by the correspondence

x = X, y = Y + W , z =
√
−3/2Z and w =

√
−3/4(Y −W ). Indeed, x3 + ay3 −

w2y = X3+Y 3+W 3 and x3+y3−z2y = X3+Y 3+W 3+(3/2)(Y +W )(2YW+Z2).
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