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ABSTRACT. Castryck, Decru, and Smith used superspecial genus-2 curves and their Richelot
isogeny graph for basing genus-2 isogeny cryptography, and recently, Costello and Smith de-
vised an improved isogeny path-finding algorithm in the genus-2 setting. In order to establish
a firm ground for the cryptographic construction and analysis, we give a new characterization
of decomposed Richelot isogenies in terms of involutive reduced automorphisms of genus-2
curves over a finite field, and explicitly count such decomposed (and non-decomposed) Rich-
elot isogenies between superspecial principally polarized abelian surfaces. As a corollary, we
give another algebraic geometric proof of Theorem 3 in the paper of Castryck et al.

1. INTRODUCTION

Isogenies of supersingular elliptic curves give a computationally intractable problem even
against quantum computers, and based on it, isogeny-based cryptosystems are now widely
studied as one candidate for post-quantum cryptography, e.g., [3, 5, 10, 2]. Recently, by
several authors, the cryptosystems are extended to higher genus isogenies, especially the
genus-2 case [15, 6, 1, 4].

In particular, Castryck, Decru, and Smith [1] showed that superspecial genus-2 curves and
their isogeny graphs give a correct foundation for constructing genus-2 isogeny cryptography.
In addition, the subgraph whose vertices consist of decomposed principally polarized abelian
varieties is important in cryptography since it was employed in the recent cryptanalysis by
Costello and Smith [4].

Castryck et al. also presented concrete algebraic formulas for computing (2, 2)-isogenies
by using the Richelot construction. In the genus-2 case, the isogenies may have decomposed
principally polarized abelian surfaces as codomain, and we call them decomposed isogenies.
In [1], the authors gave explicit formulas for the decomposed isogenies and a theorem stating
that the number of decomposed Richelot isogenies outgoing from the Jacobian J(C) of a
superspecial curve C of genus 2 is at most six (Theorem 3 in [1]), but they do not precisely
determine this number. Moreover, their proof is computer-aided, that is, using the Gröbner
basis computation.

Therefore, we revisit the isogeny counting based on an intrinsic algebraic geometric char-
acterization. In 1960, Igusa [9] classified the curves of genus 2 with given reduced group of
automorphisms, and in 1986, Ibukiyama, Katsura, and Oort [7] explicitly counted such super-
special curves according to the classification. Based on the classical results, we first count the
number of Richelot isogenies from a superspecial Jacobian to decomposed surfaces (Cases
(0)–(6) in Section 5) in terms of involutive (i.e., of order 2) reduced automorphisms which are
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called long elements. As a corollary, we give an algebraic geometric proof of Theorem 3 in [1]
together with a precise count of decomposed Richelot isogenies (Remark 5.1). Moreover, by
extending the method, we also count the total number of (decomposed) Richelot isogenies up
to isomorphism outgoing from irreducible superspecial curves of genus 2 (resp. decomposed
principally polarized superspecial abelian surfaces) in Theorem 6.2 (resp. Theorem 6.4).

Our paper is organized as follows: Section 2 gives mathematical preliminaries including
the Igusa classification and the Ibukiyama–Katsura–Oort curve counting. Section 3 presents
an abstract description of Richelot isogenies and Section 4 gives the main characterization
of decomposed Richelot isogenies in terms of reduced groups of automorphisms. Section 5
counts the number of long elements of order 2 in reduced groups of automorphisms based
on the results in Section 4. Section 6 gives the total numbers of (decomposed) Richelot
isogenies outgoing from the irreducible superspecial curves of genus 2 and products of two
elliptic curves, respectively. Section 7 gives some examples in small characteristic. Finally,
Section 8 gives a concluding remark.

For an abelian surface A or a nonsingular projective variety X , we use the following
notation:
A[n] : the group of n-torsion points of A,
At : the dual of A,
NS(A) : the Néron-Severi group of A,
Tv : the translation by an element v of A,
D ∼ D′ : linear equivalence for divisors D and D′ on X ,
D ≈ D′ : numerical equivalence for divisors D and D′ on X ,
idX : the identity morphism of a variety X .

2. PRELIMINARIES

Let k be an algebraically closed field of characteristic p > 5. An abelian surfaceA defined
over k is said to be superspecial if A is isomorphic to E1 ×E2 with Ei supersingular elliptic
curves (i = 1, 2). Since for any supersingular elliptic curves Ei (i = 1, 2, 3, 4) we have an
isomorphism E1 × E2

∼= E3 × E4 (cf. Shioda [14, Theorem 3.5], for instance), this notion
does not depend on the choice of supersingular elliptic curves. For a nonsingular projective
curve C of genus 2, we denote by J(C) the (canonically polarized) Jacobian variety of C.
The curve C is said to be superspecial if J(C) is superspecial as an abelian surface. We
denote by Aut(C) the group of automorphisms of C. Since C is hyperelliptic, C has the
hyperelliptic involution ι such that the quotient curve C/⟨ι⟩ is isomorphic to the projective
line P1:

ψ : C −→ P1.

There exist 6 ramification points on C. We denote them by Pi (1 ≤ i ≤ 6). Then, Qi =
ψ(Pi)’s are the branch points of ψ on P1. The group ⟨ι⟩ is a normal subgroup of Aut(C).
We put RA(C) ∼= Aut(C)/⟨ι⟩ and we call it the reduced group of automorphisms of C. We
call an element of RA(C) a reduced automorphism of C. For σ ∈ RA(C), σ̃ is an element
of Aut(C) such that σ̃ mod ⟨ι⟩ = σ.

Definition 2.1. An element σ ∈ RA(C) of order 2 is said to be long if σ̃ is of order 2.
Otherwise, an element σ ∈ RA(C) of order 2 is said to be short (cf. Katsura–Oort [11,
Definition 7.15]).

This definition does not depend on the choice of σ̃.

Lemma 2.2. If an element σ ∈ RA(C) of order 2 acts freely on 6 branch points, then σ is
long.



COUNTING RICHELOT ISOGENIES BETWEEN SUPERSPECIAL ABELIAN SURFACES 3

Proof. By a suitable choice of coordinate x of A1 ⊂ P1, taking 0 as a fixed point of σ, we
may assume σ(x) = −x, and Q1 = 1, Q2 = −1, Q3 = a, Q4 = −a, Q5 = b, Q6 = −b
(a ̸= 0,±1; b ̸= 0,±1; a ̸= ±b). Then, the curve is defined by

y2 = (x2 − 1)(x2 − a2)(x2 − b2),

and σ̃ is given by x 7→ −x, y 7→ ±y. Therefore, σ̃ is of order 2. □

Lemma 2.3. If RA(C) has an element σ of order 2, then there exists a long element τ ∈
RA(C) of order 2.

Proof. If σ acts freely on 6 branch points, then by Lemma 2.2, σ itself is a long element of
order 2. We assume that the branch point Q1 = ψ(P1) is a fixed point of σ. Since σ is of
order 2, it must have one more fixed point among the branch points, say Q2 = ψ(P2). By a
suitable choice of coordinate x of A1 ⊂ P1, we may assume Q1 = 0 and Q2 = ∞. We may
also assume Q3 = 1. Then, σ is given by x 7→ −x and the six branch points are 0, 1, −1, a,
−a, ∞ (a ̸= ±1). The curve C is given by

y2 = x(x2 − 1)(x2 − a2) (a ̸= 0,±1).

We consider an element τ ∈ Aut(P1) defined by x 7→ a
x . Then, we have an automorhisms τ̃

of C defined by x 7→ a
x , y 7→ a

√
ay

x3 . Therefore, we see τ ∈ RA(C). Since τ̃ is of order 2, τ
is long. □

RA(C) acts on the projective line P1 as a subgroup of PGL2(k). The structure of RA(C)
is classified as follows (cf. Igusa [9, p. 644], and Ibukiyama–Katsura–Oort [7, p. 130]):

(0) 0, (1)Z/2Z, (2)S3, (3)Z/2Z× Z/2Z, (4)D12, (5)S4, (6)Z/5Z.

We denote by ni the number of superspecial curves of genus 2 whose reduced group of au-
tomorphisms is isomorphic to the group (i). Then, ni’s are given as follows (cf. Ibukiyama–
Katsura–Oort [7, Theorem 3.3]):

(0) n0 = (p−1)(p2−35p+346)/2880−{1−(−1
p )}/32−{1−(−2

p )}/8−{1−(−3
p )}/9

+

{
0 if p ≡ 1, 2 or 3 (mod 5),
−1/5 if p ≡ 4 (mod 5),

(1) n1 = (p− 1)(p− 17)/48 + {1− (−1
p )}/8 + {1− (−2

p )}/2 + {1− (−3
p )}/2,

(2) n2 = (p− 1)/6− {1− (−2
p )}/2− {1− (−3

p )}/3,
(3) n3 = (p− 1)/8− {1− (−1

p )}/8− {1− (−2
p )}/4− {1− (−3

p )}/2,
(4) n4 = {1− (−3

p )}/2,
(5) n5 = {1− (−2

p )}/2,

(6) n6 =

{
0 if p ≡ 1, 2 or 3 (mod 5),
1 if p ≡ 4 (mod 5).

Here, for a prime number q and an integer a, (aq ) is the Legendre symbol. The total number
n of superspecial curves of genus 2 is given by

n = n0 + n1 + n2 + n3 + n4 + n5 + n6
= (p− 1)(p2 + 25p+ 166)/2880− {1− (−1

p )}/32 + {1− (−2
p )}/8

+{1− (−3
p )}/18 +

{
0 if p ≡ 1, 2 or 3 (mod 5),
4/5 if p ≡ 4 (mod 5).
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For an abelian surface A, we have At = Pic0(A) (Picard variety of A), and for a divisor
D on A, there exists a homomorphism

φD : A −→ At

v 7→ T ∗
vD −D.

If D is ample, then φD is surjective, i.e., an isogeny. We know (D · D)2 = 4 deg φD.
We set K(D) = Ker φD. If D is ample, then K(D) is finite and it has a non-degenerate
alternating bilinear form eD(v, w) on K(D) (cf. Mumford [13, Section 23]). Let G be an
isotropic subgroup scheme of K(D) with respect to eD(v, w). In case D is ample, G is finite
and we have an isogeny

π : A −→ A/G.

The following theorem is due to Mumford [13, Section 23, Theorem 2, Corollary]:

Theorem 2.4. Let G be an isotropic subgroup scheme of K(D). Then, there exists a divisor
D′ on A/G such that π∗D′ ∼ D.

Let n be a positive integer which is prime to p. Then, we have the Weil pairing en :
A[n] × At[n] −→ µn. Here, µn is the multiplicative group of order n. By Mumford [13,
Section 23 “Functional Properties of eL (5)”], we have the following.

Lemma 2.5. For v ∈ A[n] and w ∈ φ−1
D (At[n]), we have

en(v, φD(w)) = enD(v, w).

If D is a principal polarization, the homomorphism φD : A −→ At is an isomorphism.
Therefore, by this identification we can identify the pairing enD with the Weil pairing en.

3. RICHELOT ISOGENIES

We recall the abstract description of Richelot isogenies. (For the concrete construction of
Richelot isogenies, see Castryck–Decru–Smith [1, Section 3], for instance.)

Let A be an abelian surface with a principal polarization C. Then, we may assume that C
is effective, and we have the self-intersection number C2 = 2. It is easy to show (or as was
shown by A. Weil) that there are two cases for effective divisors with self-intersection 2 on
an abelian surface A:

(1) There exists a nonsingular curveC of genus 2 such thatA is isomorphic to the Jacobian
variety J(C) of C and that C is the divisor with self-intersection 2. In this case, (J(C), C)
is said to be non-decomposed.

(2) There exist two elliptic curvesE1,E2 with (E1 ·E2) = 1 such thatE1×{0}+{0}×E2

is a divisor with self-intersection 2 and thatA ∼= E1×E2. In this case, (A,E1×{0}+{0}×
E2) is said to be decomposed.

SinceφC is an isomorphism by the fact thatC is a principal polarization, we haveK(2C) =
Ker φ2C = Ker 2φC = A[2]. Let G be a maximal isotropic subgroup of K(2C) = A[2] with
respect to the pairing e2C . Since we have |G|2 = |A[2]| = 24 (cf. Mumford [13, Section 23,
Theorem 4]), we have |G| = 4 and G ∼= Z/2Z×Z/2Z. We have a quotient homomorphism

π : A −→ A/G.

By Theorem 2.4, there exists a divisor C ′ on A/G such that 2C ∼ π∗C ′. Since π is a
finite morphism and 2C is ample, we see that C ′ is also ample. We have the self-intersection
number (2C · 2C) = 8, and we have

8 = (2C · 2C) = (π∗C ′ · π∗C ′) = deg π (C ′ · C ′) = 4(C ′ · C ′).
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Therefore, we have (C ′ · C ′) = 2, that is, C ′ is a principal polarization on A/G. By the
Riemann–Roch theorem of an abelian surface for ample divisors, we have

dimH0(A/G,OA/G(C
′)) = (C ′ · C ′)/2 = 1.

Therefore, we may assume C ′ is an effective divisor.
Using these facts, we see that C ′ is either a nonsingular curve of genus 2 or E1 ∪E2 with

elliptic curves Ei (i = 1, 2) which intersect each other transeversely. In this situation, the
correspondence from (A,C) to (A/G,C ′) is called a Richelot isogeny. It is easy to show
that if there exists a Richelot isogeny from (A,C) to (A/G,C ′), then there exists a Richelot
isogeny from (A/G,C ′) to (A,C).

Now, we consider the case where A is a superspecial abelian surface. Then, since π is
separable, A/G is also a superspecial abelian surface. We will use this fact freely.

From here on, for abelian surface E1 × E2 with elliptic curves Ei (i = 1, 2) we denote
by E1 + E2 the divisor E1 × {0} + {0} × E2, if no confusion occurs. We sometimes call
E1 × E2 a principally polarized abelian surface. In this case, the principal polarization on
E1 × E2 is given by E1 + E2.

Definition 3.1. Let (A,C), (A′, C ′) and (A′′, C ′′) be principally polarized abelian surfaces
with principal polarizations C, C ′, C ′′, respectively. The Richelot isogeny π : A −→ A′ is
said to be isomorphic to the Richelot isogeny ϖ : A −→ A′′ if there exist an automorphism
σ ∈ A with σ∗C ≈ C and an isomorphism g : A′ −→ A′′ with g∗C ′′ ≈ C ′ such that the
following diagram commutes:

σ : A −→ A
π ↓ ↓ ϖ

g : A′ −→ A′′.

4. DECOMPOSED RICHELOT ISOGENIES

In this section, we use the same notation as in Section 3.

Definition 4.1. Let A and A′ be abelian surfaces with principal polarizations C, C ′, respec-
tively. A Richelot isogeny A −→ A′ is said to be decomposed if C ′ consists of two elliptic
curves. Otherwise, the Richelot isogeny is said to be non-decomposed.

Example 4.2. Let Ca,b be a nonsingular projective model of the curve of genus 2 defined by
the equation

y2 = (x2 − 1)(x2 − a)(x2 − b) (a ̸= 0, 1; b ̸= 0, 1; a ̸= b).

Let ι be the hyperelliptic involution defined by x 7→ x, y 7→ −y. RA(Ca,b) has an element
of order 2 defined by

σ : x 7→ −x, y 7→ y.

We put τ = ι ◦ σ. We have two elliptic curves Eσ = Ca,b/⟨σ⟩ and Eτ = Ca,b/⟨τ⟩. The
elliptic curve Eσ is isomorphic to an elliptic curve Eλ : y2 = x(x− 1)(x− λ) with

(4.1) λ = (b− a)/(1− a)

and the elliptic curve Eτ is isomorphic to an elliptic curve Eµ : y2 = x(x− 1)(x− µ) with

(4.2) µ = (b− a)/b(1− a).

The map given by (4.1) and (4.2) yields a bijection

{(a, b) | a, b ∈ k; a ̸= 0, 1; b ̸= 0, 1; a ̸= b, and J(Ca,b) is superspecial}
−→ {(λ, µ) | λ, µ ∈ k;λ ̸= µ;Eλ, Eµ are supersingular}
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(for the details, see Katsura–Oort [12, p. 259]). We have a natural morphism Ca,b −→
Eσ × Eτ and this morphism induces an isogeny

π : J(Ca,b) −→ Eσ × Eτ .

By Igusa [9, p. 648], we know Ker π ∼= Z/2Z × Z/2Z and Ker π consists of P1 − σ(P1),
P3 − σ(P3), P5 − σ(P5) and the zero point. Here, P1 = (1, 0), P3 = (a, 0), P5 = (b, 0).
Since Pi − σ(Pi) is a divisor of order 2, we have Pi − σ(Pi) ∼ σ(Pi)− Pi.

Comparing the calculation in Castryck–Decru–Smith [1, Proposition 1 (2)] with the one
in Katsura–Oort [12, Lemma 2.4], we see that π : J(Ca,b) −→ Eσ × Eτ is a decomposed
Richelot isogeny with C ′

a,b = Eσ+Eτ (also see Katsura–Oort [11, Proof of Proposition 7.18
(iii)]). We will use the bijection above to calculate decomposed Richelot isogenies.

Proposition 4.3. Let C be a nonsingular projective curve of genus 2. Then, the following
three conditions are equivalent.

(i) C has a decomposed Richelot isogeny outgoing from J(C).
(ii) RA(C) has an element of order 2.
(iii) RA(C) has a long element of order 2.

Proof. (i) ⇒ (ii). By assumption, we have a Richelot isogeny

(4.3) π : J(C) −→ J(C)/G

such that G is an isotropic subgroup of J(C)[2] with respect to 2C, and that C ′ is a principal
polarization consisting of two elliptic curves Ei (i = 1, 2) on J(C)/G with 2C ∼ π∗(E1 +
E2). Since C is a principal polarization, we have an isomorphism φC : J(C) ∼= J(C)t. In a
similar way, we have J(C)/G ∼= (J(C)/G)t. Dualizing (4.3), we have

η = πt : J(C)/G −→ J(C)

with J(C)/G ∼= E1 ×E2, C ′ = E1 +E2 and η∗(C) ∼ 2(E1 +E2). The kernel Ker η is an
isotropic subgroup of (E1 × E2)[2] with respect to the divisor 2(E1 + E2).

Denoting by ιE1 the inversion of E1, we set

τ̄ = ιE1
× idE2

.

Then, τ̄ is an automorphism of order 2 which is not the inversion of E1 × E2. By the
definition, we have

τ̄∗(E1 + E2) = E1 + E2.

Moreover, since Ker η consists of elements of order 2 and τ̄ fixes the elements of order 2, τ̄
preserves Ker η. Therefore, τ̄ induces an automorphism τ : J(C) ∼= (J(C)/G)/Ker η ∼=
(E1 × E2)/Ker η. Therefore, we have the following diagram:

E1 × E2
τ̄−→ E1 × E2

η ↓ ↓ η
J(C)

τ−→ J(C).

We have
η∗τ∗C = τ̄∗η∗C = τ̄∗(2(E1 + E2)) = 2(E1 + E2).

On the other hand, we have
η∗C = 2(E1 + E2).

Since η∗ is an injective homomorphism from NS(J(C)) to NS(E1 × E2), we have C ≈
τ∗C. Therefore, τ∗C − C is an element of Pic0(J(C)) = J(C)t. Since C is ample, the
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homomorphism
φC : J(C) −→ J(C)t

v 7→ T ∗
vC − C

is surjective. Therefore, there exists an element v ∈ J(C) such that

T ∗
vC − C ∼ τ∗C − C,

that is, T ∗
vC ∼ τ∗C. Since T ∗

vC is a principal polarization, we see

dimH0(J(C),OJ(C)(T
∗
vC)) = 1.

Therefore, we have T ∗
vC = τ∗C, that is, T ∗

−vτ
∗C = C. Since τ is of order 2, we have

(τ ◦ T−v)
2 = T−v−τ(v), a translation. Therefore, we have T ∗

−v−τ(v)C = C. However, since
C is a principal polarization, we have Ker φC = {0}. Therefore, we have T−v−τ(v) = id.
This means τ ◦T−v is an automorphism of order 2 ofC. By definition, this is not the inversion
ι. Hence, this gives an element of order 2 in RA(C).

(ii) ⇒ (iii) This follows from Lemma 2.3.
(iii) ⇒ (i) This follows from Lemma 2.2 and Example 4.2. □

Remark 4.4. In the proof of the proposition, the automorphism τ ◦ T−v really gives a long
element of order 2 in RA(C).

By Castryck–Decru–Smith [1, Subsection 3.3], if the curve C of genus 2 is obtained from
a decomposed principally polarized abelian surface by a Richelot isogeny, then the curve C
has a long reduced automorphism of order 2. As is well-known, for a curve C of genus 2, the
Jacobian variety J(C) has 15 Richelot isogenies (cf. Castryck–Decru–Smith [1, Subsection
3.2], for instance). If we have a Richelot isogeny (A,C) −→ (A′, C ′), then we also have a
Richelot isogeny (A′, C ′) −→ (A,C). Therefore, we have the following proposition.

Proposition 4.5. Let C be a nonsingular projective curve of genus 2. Among 15 Richelot
isogenies outgoing from J(C), the number of decomposed Richelot isogenies is equal to the
number of long elements of order 2 in RA(C).

In this proposition, we consider that a different isotropic subgroup gives a different Rich-
elot isogeny. However, two different Richelot isogenies may be isomorphic to each other by
a suitable automorphism (see Definition 3.1). From the next section, we will compute the
number of Richelot isogenies up to isomorphism.

5. THE NUMBER OF LONG ELEMENTS OF ORDER 2

In this section, we count the number of long elements of order 2 in RA(C). For an element
f ∈ RA(C), we express the reduced automorphism by

f : x 7→ f(x)

with a suitable coordinate x of A1 ⊂ P1. We will give the list of f(x) corresponding to
elements of order 2. Here, we denote by ω a primitive cube root of unity, by i a primitive
fourth root of unity, and by ζ a primitive sixth root of unity.
Case (0) RA(C) ∼= {0}.

There exist no long elements of order 2.
Case (1) RA(C) ∼= Z/2Z.

The curve C is given by y2 = (x2 − 1)(x2 − a2)(x2 − b2).
There exists only one long element of order 2 given by f(x) = −x.

Case (2) RA(C) ∼= S3.
The curve C is given by y2 = (x3 − 1)(x3 − a3).
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There exist three long elements of order 2 given by f(x) = a
x , ωa

x , ω2a
x .

Case (3) RA(C) ∼= Z/2Z× Z/2Z.
The curve C is given by y2 = x(x2 − 1)(x2 − a2).
There exist two long elements of order 2 given by f(x) = a

x , −a
x ,

and there exists one short element of order 2 given by f(x) = −x.
Case (4) RA(C) ∼= D12.

The curve is given by y2 = x6 − 1.
There exist four long elements of order 2 given by f(x) = −x, ζ

x , ζ3

x , ζ5

x ,

and there exist three short elements of order 2 given by f(x) = 1
x , ζ2

x , ζ4

x .
Case (5) RA(C) ∼= S4.

The curve C is given by y2 = x(x4 − 1).
There exist six long elements of order 2 given by f(x) = x+1

x−1 , −x−1
x+1 , i(x+i)

x−i , i
x ,− i

x ,− i(x−i)
x+i ,

and there exist three short elements of order 2 given by f(x) = −x, 1
x , − 1

x .
Case (6) RA(C) ∼= Z/5Z.

The curve is given by y2 = x5 − 1.
There exist no long elements of order 2.

Remark 5.1. By Proposition 4.5 and the calculation above, we see that for a curve C of genus
2, the number of outgoing decomposed Richelot isogenies from J(C) is at most six. This
result coincides with the one given by Castryck–Decru–Smith [1, Theorem 3].

6. COUNTING RICHELOT ISOGENIES

6.1. Richelot isogenies from Jacobians of irreducible genus-2 curves. Let C be a non-
singular projective curve of genus 2, and let J(C) be the Jacobian variety of C. For a fixed
C, we consider the set {(J(C), G)} of pairs of J(C) and an isotropic subgroup G for the
polarization 2C. The group Aut(C) acts on the ramification points of C −→ P1. Using this
action, Aut(C) induces the action on the set {(J(C), G)}. Since the inversion ι of C acts on
J(C)[2] trivially, the reduced group RA(C) of automorphisms acts on the set {(J(C), G)}
which consists of 15 elements.

Let Pi (i = 1, 2, . . . , 6) be the ramification points of ψ : C −→ P1. A division into the
sets of 3 pairs of these 6 points gives an isotropic subgroup G, that is,

{Pi1 − Pi2 , Pi3 − Pi4 , Pi5 − Pi6 , the identity}

gives an isotropic subgroup of J(C)[2]. The action of RA(C) on the set {(J(C), G)} is
given by the action of RA(C) on the set

{⟨(Pi1 , Pi2), (Pi3 , Pi4), (Pi5 , Pi6)⟩},

which contains 15 sets. Here, the pair (Pi, Pj) is unordered. In this section, we count the
number of orbits of this action for each case.

Let C be a curve of genus 2 with RA(C) ∼= Z/2Z. Such a curve is given by the equation

y2 = (x2 − 1)(x2 − a)(x2 − b)

with suitable conditions for a and b. The branch points Qi = ψ(Pi) are given by

Q1 = 1, Q2 = −1, Q3 =
√
a, Q4 = −

√
a, Q5 =

√
b, Q6 = −

√
b.

The generator of the reduced group RA(C) of automorphisms is given by

σ : x 7→ −x.
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Since the inversion ι acts trivially on the ramification points, RA(C) acts on the set of the
ramification points {P1, P2, P3, P4, P5, P6}, and the action of σ on the ramification points is
given by

P2i−1 7→ P2i, P2i 7→ P2i−1 (i = 1, 2, 3).

The isotropic subgroup which corresponds to ⟨(P1, P2), (P3, P4), (P5, P6)⟩ gives a decom-
posed Richelot isogeny and the other isotropic subgroups give non-decomposed isogenies.
Moreover, ⟨(σ(Pi1), σ(Pi2)), (σ(Pi3), σ(Pi4)), (σ(Pi5), σ(Pi6))⟩ gives the Richelot isogeny
isomorphic to the one given by ⟨(Pi1 , Pi2), (Pi3 , Pi4), (Pi5 , Pi6)⟩. We denote Pi by i for the
sake of simplicity. Then, the action σ is given by the permutation (1, 2)(3, 4)(5, 6), and by
the action of RA(C), the set {⟨(Pi1 , Pi2), (Pi3 , Pi4), (Pi5 , Pi6)⟩} of 15 elements is divided
into the following 11 loci:

{[(1, 2), (3, 4), (5, 6)]}, {[(1, 2), (3, 5), (4, 6)]}, {[(1, 2), (3, 6), (4, 5)]},
{[(1, 3), (2, 4), (5, 6)]}, {[(1, 3), (2, 5), (4, 6)], [(1, 6), (2, 4), (3, 5)]},
{[(1, 3), (2, 6), (4, 5)], [(1, 5), (2, 4), (3, 6)]}, {[(1, 4), (2, 3), (5, 6)]},
{[(1, 4), (2, 5), (3, 6)], [(1, 6), (2, 3), (4, 5)]}, {[(1, 4), (2, 6), (3, 5)], [(1, 5), (2, 3), (4, 6)]},
{[(1, 5), (2, 6), (3, 4)]}, {[(1, 6), (2, 5), (3, 4)]}.

The reduced automorphism σ is a long one of order 2 and the element [(1, 2), (3, 4), (5, 6)] is
pairwise fixed by σ. Therefore, the element [(1, 2), (3, 4), (5, 6)] gives a decomposed isogeny.
The other 10 loci give non-decomposed isogenies. In the same way, we have the following
proposition.

Proposition 6.1. Under the notation above, the number of Richelot isogenies up to isomor-
phism in each case and the number of elements in each orbit are listed as follows. Here, in
the list, for example, (1× 6, 2× 4)(1× 1) means that there exist 6 orbits which contain one
element and 4 orbits which contain 2 elements for non-decomposed Richelot isogenies, and
there exists one orbit which contains one element for decomposed Richelot isogenies.

(0) RA(C) ∼= {0}: 15 Richelot isogenies. No decomposed one.
(1× 15)(0).

(1) RA(C) ∼= Z/2Z: 11 Richelot isogenies. 1 decomposed one.
(1× 6, 2× 4)(1× 1).

(2) RA(C) ∼= S3: 7 Richelot isogenies. 1 decomposed one.
(1× 3, 3× 3)(3× 1).

(3) RA(C) ∼= Z/2Z× Z/2Z: 8 Richelot isogenies. 2 decomposed ones.
(1× 1, 2× 4, 4× 1)(1× 2).

(4) RA(C) ∼= D12: 5 Richelot isogenies. 2 decomposed ones.
(2× 1, 3× 1, 6× 1)(1× 1, 3× 1).

(5) RA(C) ∼= S4: 4 Richelot isogenies. 1 decomposed one.
(1× 1, 4× 2)(6× 1).

(6) RA(C) ∼= Z/5Z: 3 Richelot isogenies. No decomposed one.
(5× 3)(0).

Theorem 6.2. The total number of Richelot isogenies up to isomorphism outgoing from the
irreducible superspecial curves of genus 2 is equal to

(p− 1)(p+ 2)(p+ 7)

192
− 3{1− (

−1

p
)}/32 + {1− (

−2

p
)}/8.
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The total number of decomposed Richelot isogenies up to isomorphism outgoing from the
irreducible superspecial curves of genus 2 is equal to

(6.1)
(p− 1)(p+ 3)

48
− {1− (

−1

p
)}/8 + {1− (

−3

p
)}/6.

Proof. The total number of Richelot isogenies up to isomorphism outgoing from the irre-
ducible superspecial curves of genus 2 is equal to

15n0 + 11n1 + 7n2 + 8n3 + 5n4 + 4n5 + 3n6

and the total number of decomposed Richelot isogenies up to isomorphism outgoing from the
irreducible superspecial curves of genus 2 is equal to

n1 + n2 + 2n3 + 2n4 + n5.

The results follow from these facts. □
6.2. Richelot isogenies from elliptic curve products. Let E, E′ be supersingular elliptic
curves, and we consider a decomposed principal polarization E +E′ and a Richelot isogeny
(E×E′, E+E′) −→ (J(C), C). For the principally polarized abelian surface (E×E′, E+
E′), we put RA(E×E′) = Aut(E)/⟨ιE⟩×Aut(E′)/⟨ιE′⟩, and call it the reduced group of
automorhisms of E × E′. Let {P1, P2, P3} (resp. {P4, P5, P6}) be the 2-torsion points of E
(resp.E′). Then, the six points Pi (1 ≤ i ≤ 6) on E ×E′ play the role of ramification points
of irreducible curves of genus 2, and RA(E × E′) acts on the set {P1, P2, P3, P4, P5, P6}.
In this section, let E2 be the elliptic curve defined by y2 = x3 − x and E3 the elliptic curve
defined by y2 = x3 − 1. We know AutE2

∼= Z/4Z and AutE3
∼= Z/6Z. The elliptic

curve E2 is supersingular if and only if p ≡ 3 (mod 4) and E3 is supersingular if and only if
p ≡ 2 (mod 3). In this section, the abelian surface E ×E′ means an abelian surface E ×E′

with principal polarization E + E′.
Now, let E, E′ be supersingular elliptic curves which are neither isomorphic to E2 nor to

E3. We also assume E is not isomorphic to E′. Using these notations, we have the following
list of the orders of reduced groups of automorphisms.

|RA(E × E′)| = 1, |RA(E × E)| = 2, |RA(E × E2)| = 2, |RA(E × E3)| = 3,
|RA(E2 × E2)| = 8, |RA(E3 × E3)| = 18, |RA(E2 × E3)| = 6.

The isotropic subgroups for the polarization 2(E + E′) are determined in Castryck–Decru–
Smith [1, Subsection 3.3]. Using their results and the same method as in Subsection 6.1, we
have the following proposition.

Proposition 6.3. Let E, E′ be supersingular elliptic curves which are neither isomorphic to
E2 nor to E3 with E2 and E3 defined as above. We also assume that E is not isomorphic
to E′. The number of Richelot isogenies up to isomorphism outgoing from a decomposed
principally polarized superspecial abelian surface in each case and the number of elements
in each orbit are listed as follows. Here, in the list, for example, (1× 3, 2× 1)(1× 4, 2× 3)
means that there exist 3 orbits which contain one element and one orbit which contains 2
elements for non-decomposed Richelot isogenies, and there exist 4 orbits which contain one
element and 3 orbits which contain 2 elements for decomposed Richelot isogenies.

(i) E × E′ : 15 Richelot isogenies, 6 non-decomposed ones.
(1× 6)(1× 9).

(ii) E × E : 11 Richelot isogenies, 4 non-decomposed ones.
(1× 3, 2× 1)(1× 4, 2× 3).

(iii) E × E2 : 9 Richelot isogenies, 3 non-decomposed ones (p ≡ 3 (mod 4)).
(2× 3)(1× 3, 2× 3).
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(iv) E × E3 : 5 Richelot isogenies, 2 non-decomposed ones (p ≡ 2 (mod 3)).
(3× 2)(3× 3).

(v) E2 × E2 : 5 Richelot isogenies, 1 non-decomposed one (p ≡ 3 (mod 4)).
(4× 1)(1× 1, 2× 1, 4× 2).

(vi) E3 × E3 : 3 Richelot isogenies, 1 non-decomposed one (p ≡ 2 (mod 3)).
(3× 1)(3× 1, 9× 1).

(vii) E2 × E3 : 3 Richelot isogenies, 1 non-decomposed one (p ≡ 11 (mod 12)).
(6× 1)(3× 1, 6× 1).

Proof. We give a proof for the case (iv) (cf. Castryck–Decru–Smith [1, Subsection 3.3]). For
the other cases, the arguments are quite similar. Since the elliptic curve E3 is defined by
y2 = x3 − 1, the 2-torsion points (x, y) of E3 are given by P1 = (1, 0), P2 = (ω, 0) and
P3 = (ω2, 0). Here, ω is a primitive cube root of unity. We denote by P4, P5 and P6 the
2-torsion points of E. The automorphism of E3

σ : x 7→ ωx, y 7→ y

gives an element of the reduced group RA(E3) ∼= Aut(E3)/⟨ι⟩ of automorphisms of E3.
As in the case of Subsection 6.1, we describe the isotropic subgroups G. We know that a
division into the sets of 3 pairs of these 6 points Pi (1 ≤ i ≤ 6) on E ×E3 gives an isotropic
subgroup G, that is,

{Pi1 − Pi2 , Pi3 − Pi4 , Pi5 − Pi6 , the identity}
gives an isotropic subgroup of (E × E3)[2]. Here, we consider Pi (1 ≤ i ≤ 3) as the point
(0, Pi) on E × E3, and Pi (4 ≤ i ≤ 6) as the point (Pi, 0) on E × E3. This set contains
15 elements. In the case (iv), we have E ̸∼= E3. Therefore, by Castryck–Decru–Smith [1,
Subsection 3.3], among the 15 isotropic subgroups the 9 cases such that Pi1 , Pi2 , Pi3 ∈ E
and Pi4 , Pi5 , Pi6 ∈ E3 give the decomposed Richelot isogenies and the rest gives the non-
decomposed Richelot isogenies. For the abbreviation, we denote by Pi by i. Then, on the set
{1, 2, 3, 4, 5, 6}, idE × σ acts as the cyclic permutation (1, 2, 3). The isotropic subgroup G
is determined by the set of 3 pairs of 2-torsion points:

{(i1, i2), (i3, i4), (i5, i6)},
and the reduced group ⟨idE × σ⟩ of automorphisms induces the action on the set of the 15
isotropic subroups. By this action, the set of the 15 isotropic subgroups is divided into the
following 5 orbits:

{[(1, 2), (3, 4), (5, 6)], [(2, 3), (1, 4), (5, 6)], [(1, 3), (2, 4), (5, 6)]},
{[(1, 2), (3, 5), (4, 6)], [(2, 3), (1, 5), (4, 6)], [(1, 3), (2, 5), (4, 6)]},
{[(1, 2), (3, 6), (4, 5)], [(2, 3), (1, 6), (4, 5)], [(1, 3), (2, 6), (4, 5)]},
{[(1, 4), (2, 5), (3, 6)], [(1, 6), (2, 4), (3, 5)], [(1, 5), (2, 6), (3, 5)]},
{[(1, 4), (2, 6), (3, 5)], [(1, 5), (2, 4), (3, 6)], [(1, 6), (2, 5), (3, 4)]}.

By the criterion above, the first 3 sets correspond with the decomposed Richelot isogenies,
and the last 2 sets correspond with the non-decomposed Richelot isogenies. □

We denote by h the number of supersingular elliptic curves defined over k. Then, we know

h =
p− 1

12
+ {1− (

−3

p
)}/3 + {1− (

−1

p
)}/4

(cf. Igusa [8], for instance). We denote by h1 the number of supersingular elliptic curves with
trivial reduced group of automorphisms, h2 the number of supersingular elliptic curves with
Aut(E2) ∼= Z/4Z, h3 the number of supersingular elliptic curves with Aut(E3) ∼= Z/6Z.
We have h = h1 + h2 + h3 and h2 = {1− (−1

p )}/2 and h3 = {1− (−3
p )}/2.
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Theorem 6.4. The total number of non-decomposed Richelot isogenies up to isomorphism
outgoing from decomposed principally polorized superspecial abelian surfaces is equal to

(6.2)
(p− 1)(p+ 3)

48
− {1− (

−1

p
)}/8 + {1− (

−3

p
)}/6.

The total number of decomposed Richelot isogenies up to isomorphism outgoing from decom-
posed principally polorized superspecial abelian surfaces is equal to

(p− 1)(3p+ 17)

96
+ (p+ 6){1− (

−1

p
)}/16 + {1− (

−3

p
)}/3.

Proof. The total number of non-decomposed Richelot isogenies up to isomorphism outgoing
from decomposed principally polorized superspecial abelian surfaces is equal to

6{h1(h1 − 1)

2
}+ 4h1 + 3h2h1 + 2h3h1 + h2 + h3 + h2h3.

The total number of decomposed Richelot isogenies up to isomorphism outgoing from de-
composed principally polorized superspecial abelian surfaces is equal to

9{h1(h1 − 1)

2
}+ 7h1 + 6h2h1 + 3h3h1 + 4h2 + 2h3 + 2h2h3.

Since {1− (−1
p )}2 = 2{1− (−1

p )} and {1− (−3
p )}2 = 2{1− (−3

p )}, the result follows from
these facts. □

Remark 6.5. Since the total number of decomposed Richelot isogenies up to isomorphism
outgoing from the irreducible superspecial curves of genus 2 is equal to the total number of
non-decomposed Richelot isogenies up to isomorphism outgoing from decomposed princi-
pally polorized superspecial abelian surfaces, (6.1) and (6.2) give the same number.

7. EXAMPLES

By Ibukiyama–Katsura–Oort [7, Subsection 1.3], we have the following normal forms of
curves C of genus 2 with given reduced group RA(C) of automorphims:
(1) For S3 ⊂ RA(C), the normal form is y2 = (x3 − 1)(x3 − α).

This curve is superspecial if and only if α is a zero of the polynomial

g(z) =

[p/3]∑
l=0

(
(p− 1)/2

((p+ 1)/6) + l

)(
(p− 1)/2

l

)
zl.

(2) For Z/2Z× Z/2Z ⊂ RA(C), the normal form is y2 = x(x2 − 1)(x2 − β).
This curve is superspecial if and only if β is a zero of the polynomial

h(z) =

[p/4]∑
l=0

(
(p− 1)/2

((p+ 1)/4) + l

)(
(p− 1)/2

l

)
zl.

(3) For RA(C) ∼= D12, the normal form is y2 = x6 − 1.
This curve is superspecial if and only if p ≡ 5 (mod 6) (cf. Ibukiyama–Katsura–Oort [7,

Proposition 1.11]).
(4) For RA(C) ∼= S4, the normal form is y2 = x(x4 − 1).

This curve is superspecial if and only if p ≡ 5 or 7 (mod 8) (cf. Ibukiyama–Katsura–Oort
[7, Proposition 1.12]).
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Finally, the elliptic curve E defined by y2 = x(x− 1)(x− λ) is supersingular if and only
if λ is a zero of the Legendre polynominal

Φ(z) =

(p−1)/2∑
l=0

(
(p− 1)/2

l

)2

zl.

Using these results, we construct some examples.

7.1. Examples in characteristic 13. Assume the characteristic p = 13. Over k we have
only one supersingular elliptic curve E, and three superspecial curves C1, C2 and C3 of
genus 2 with RA(C1) ∼= S3, RA(C2) ∼= Z/2Z × Z/2Z and RA(C3) = S4, respectively
(cf. Ibukiyama–Katsura–Oort [7, Remark 3.4]). In characteristic 13, we know h(z) = 7z3 +

12z2 + 12z + 7, and the zeros are −1 and −5 ±
√
6. We also know g(z) = 2z4 + 3z3 +

4z2 + 3z + 2, and one of zeros is −4 +
√
2. The Legendre polynomial is given by Φ(z) =

z6 + 10z5 + 4z4 + 10z3 + 4z2 + 10z + 1, and one of zeros is 3 − 2
√
2. Using these facts,

we know that the curves above are given by the following equations:
(1) E: y2 = x(x− 1)(x− 3 + 2

√
2) (RA(E) ∼= {0}),

(2) C1: y2 = (x3 − 1)(x3 + 4−
√
2) (RA(C1) ∼= S3),

(3) C2: y2 = x(x2 − 1)(x2 + 5 + 2
√
6) (RA(C2) ∼= Z/2Z× Z/2Z),

(4) C3: y2 = x(x4 − 1) (RA(C3) ∼= S4).
Therefore, outgoing from super-
special curves of genus 2, we
have, in total, 1 + 2 + 1 =
4 decomposed Richelot isogenies
up to isomorphism by Proposition
6.1. On the other hand, outgo-
ing from the unique decomposed
principally polarized abelian sur-
face (E × E,E + E), we have
5 non-decomposed Richelot iso-
genies (not up to isomorphism)
(cf. Igusa [8] and Castryck–Decru–
Smith [1, Figure 1]). Using the
method in Castryck–Decru–Smith
[1, Subsection 3.3], as the images of
5 non-decomposed Richelot isoge-
nies, we have the following super-
special curves of genus 2:

p = 13

C3

C1

C2

E × E

4
1

3

2

3

2

3

2

6

1

1
11

1

2

2
2

11
1

1

1

4

1

1 3
4

1 2

2

(a) Ca: y2 = (x2 − 1)(x2 − 4 + 7
√
2)(x2 − 6 + 6

√
2) (RA(Ca) ∼= Z/2Z× Z/2Z),

(b) Cb: y2 = (x2 − 1)(x2 + 3− 2
√
2)(x2 − 4−

√
2) (RA(Cb) ∼= S4),

(c) Cc: y2 = (x2 − 1)(x2 + 3− 4
√
2)(x2 + 1 + 3

√
2) (RA(Cc) ∼= S3),

(d) Cd: y2 = (x2 − 1)(x2 − 3)(x2 + 3− 4
√
2) (RA(Cd) ∼= S3),

(e) Ce: y2 = (x2 − 1)(x2 − 6− 6
√
2)(x2 − 2 + 2

√
2) (RA(Ce) ∼= Z/2Z× Z/2Z).

We see that Ca
∼= Ce

∼= C2, Cc
∼= Cd

∼= C1 and Cb
∼= C3. As Richelot isogenies,

(E × E,E + E) −→ (J(Cc), Cc) is isomorphic to (E × E,E + E) −→ (J(Cd), Cd), but
(E × E,E + E) −→ (J(Ca), Ca) is not isomorphic to (E × E,E + E) −→ (J(Ce), Ce).
Compare our graph with Castryck–Decru–Smith [1, Figure 1]. In the graph the numbers
along the edges are the multiplicities of Richelot isogenies outgoing from the nodes.
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7.2. Examples in characteristic 11.
Assume the characteristic p = 11.
Over k we have two supersingular
elliptic curves E2,E3 and two su-
perspecial curves C1, C2 of genus
2 with RA(C1) ∼= S3, RA(C2) ∼=
D12, respectively (cf. Ibukiyama–
Katsura–Oort [7, Remark 3.4]). In
characteristic 11, we know

g(z) = 10(z3 + 5z2 + 5z + 1),

and the roots are −1, 3 and 4. Using
this fact, we know that the curves
above are given by the following
equations:

p = 11

C1 C2

E2 × E2 E3 × E3 E2 × E3

3 3
3 6

3 2

4

3

3

13

6

4
9

4
3

1

1

1
1

2

3

6

(1) E2: y2 = x3 − x (RA(E2) ∼= Z/2Z),
(2) E3: y2 = x3 − 1 (RA(E3) ∼= Z/3Z),
(3) C1: y2 = (x3 − 1)(x3 − 3) (RA(C1) ∼= S3),
(4) C2: y2 = x6 − 1 (RA(C2) ∼= D12).

We have three decomposed principally polarized abelian surfaces:

E2 × E2, E3 × E3, E2 × E3.

Therefore, from the superspecial curves of genus 2 we have, in total, 1 + 2 = 3 decomposed
Richelot isogenies up to isomorphism by Proposition 6.1. On the other hand, from the decom-
posed principally polarized abelian surfaces, we have 1+1+1 = 3 non-decomposed Richelot
isogenies up to isomorphism by Proposition 6.3 (cf. Castryck–Decru–Smith [1, Subsections
3.2 and 3.3]). For the decomposed principally polarized abelian surface E2 × E2 the im-
age of the only one non-decomposed Richelot isogeny is given by C2. For the decomposed
principally polarized abelian surface E3 × E3 the image of the only one non-decomposed
Richelot isogeny is also given by C2. For the decomposed principally polarized abelian sur-
face E2 × E3 the image of the only one non-decomposed Richelot isogeny is given by C1.
7.3. Examples in characteristic 7. Assume the characteristic
p = 7. Over k we have only one supersingular elliptic curve E2

and only one superspecial curves C of genus 2, which has the
reduced group RA(C) ∼= S4 of automorphisms (cf. Ibukiyama–
Katsura–Oort [7, Remark 3.4]).
They are given by the following equations:
(1) E2: y2 = x3 − x (RA(E2) ∼= Z/2Z),
(2) C: y2 = x(x4 − 1) (RA(C) ∼= S4).
We have only one decomposed principally polarized abelian sur-
face E2 ×E2. Therefore, outgoing from the superspecial curves
of genus 2 we have only one decomposed Richelot isogeny up
to isomorphism. From the decomposed principally polarized
abelian surface, we also have only one non-decomposed Rich-
elot isogeny up to isomorphism (cf. Castryck–Decru–Smith [1,
Subsections 3.2 and 3.3]). For the decomposed principally po-
larized abelian surface E2 × E2 the image of the only one non-
decomposed Richelot isogeny is given by C.

p = 7

C

E2 × E2

6

4

4

1 4

1
24

4
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8. CONCLUDING REMARK

Section 5 clarified a concrete situation on decomposed Richelot isogenies, and it gave a
firm understanding of the isogeny graph for genus-2 isogeny cryptography. Further applica-
tions (or implications) of our results to cryptography are left as an interesting open problem.

For example, a very recent cryptanalytic algorithm by Costello and Smith [4] is considered
as a promising target. They proposed a new isogeny path-finding algorithm in the genus-
2 superspecial Richelot isogeny graph. They reduced the original problem to the elliptic
curve path-finding problem and improved the time complexity of the original genus-2 path-
finding problem. The key ingredient of the reduction is a sub-algorithm for finding a path
connecting a given irreducible genus-2 curve and the (connected) subset consisting of elliptic
curve products.

In Proposition 4.3, we showed the equivalence of existence of a decomposed Richelot
isogeny outgoing from J(C) and existence of a (long) element of order 2 in the reduced
group of automorphisms ofC. It implies that the subset of elliptic curve products are adjacent
to genus-2 curves having involutive reduced automorphisms in the superspecial graph. We
expect this new characterization can be applied to improving the Costello–Smith attack.
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