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Abstract. Linear Legendre pseudorandom functions were introduced in 1988
by Damg̊ard, and higher degree generalisations were introduced by Russell and
Shparlinski in 2004. We present new key recovery methods that improve the
state of the art for both cases. For degree r ≥ 3 we give an attack that
runs in time O(pr−3) after O(p3) precomputation for the most relevant high
degree case; it is based on the action of the group of Möbius transformations
on degree r polynomials. For r < 3 we give an O(pr/2) attack with O(pr/4)
oracle queries. In the linear case we recovered the keys for the 64, 74 and
84-bit prime Ethereum challenges, being the first to solve the 84-bit case.

1. Introduction

The usage of Legendre symbols in a pseudorandom function (PRF) is an idea
originally proposed by Damg̊ard [3]. Further generalisations with higher degree
polynomials were proposed by Russell and Shparlinski [9]. In both cases a prime p is
given and the Legendre PRF is modelled as an oracle O that on input x outputs the

Legendre symbol
󰀃f(x)

p

󰀄
, where f(x) ∈ Fp[x] is a secret key. Damg̊ard conjectured

that when f is linear, given a sequence of Legendre symbols of consecutive elements
it is hard to predict the next one. Similar problems conjectured to be hard were
also proposed [7], such as finding the secret polynomial while being given access
to O and distinguishing O from a random function. So far no polynomial time
algorithms were found for either of these problems and it is believed that they
are hard. Until recently practical applications have been limited, primarily due to
availability of much faster alternatives.

A recent result by Grassi et al. [7] sparked an interest in the linear Legendre
PRF because it was found suitable as a multi-party computation (MPC) friendly
pseudorandom generator. This is mainly due to the homomorphic property of
the Legendre symbol and the possibility of evaluating it with only three modular
multiplications in arithmetic circuit multi-party computations, which makes it a
very efficient MPC friendly PRF candidate.

There are plans to use this construction as a PRF for a proof of custody scheme in
the Ethereum blockchain [6]. The proof of custody scheme requires a “mix” function
i.e., a pseudorandom function that produces one bit of output. For this purpose
the Legendre PRF was shown to be a great candidate because of its efficiency. In
comparison, SHA256 requires tens of thousands of multiplications while AES needs
290 in the MPC setting [6].
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In order to raise interest for this construction, Ethereum research posted a num-
ber of challenges [6]. The goal is to recover the secret key given 220 consecutive
Legendre symbols, for primes of size varying from 64 to 148 bits.

1.1. Contribution. In this paper we analyse the action of the group of Möbius
transformations on monic polynomials of degree r, and we use it to give an improved
attack on the Legendre pseudorandom function. For polynomials of degree r ≥ 3
modulo a prime p we distinguish three types of polynomials and for the most
relevant case we give an O(pr−3) attack after an O(p3) precomputation with p
oracle queries. For degree r < 3 an O(pr/2) attack is given with pr/4 queries.

If the number of queries M is limited, we give an O(p
r log p
M2 ) attack. These are

improvements with respect to the previous algorithms [2],[8] of factor from p up to
p3 in the general case, even higher for a new family of bad keys. In the linear and
limited query case a factor of log p fewer trials in the search phase are needed.

We also give the solutions to challenges 0, 1 and 2 of the Ethereum research
linear Legendre PRF for 64, 74 and 84-bit primes. In all cases we were given access
to 220 Legendre symbols.

2. Background

Let p be an odd prime. Throughout the paper we suppose that the prime is
public1. We denote with Fp the field of cardinality p.

2.1. Notation.

Definition 2.1 (Pseudorandom Functions). A pseudorandom function family {Ok}k
is a set of functions with the same domain and codomain indexed by a set of keys
k such that a function Ok chosen randomly over the set of k-values cannot be
distinguished from a random function.

Definition 2.2 (Legendre symbol). We define the Legendre symbol by setting
󰀕
x

p

󰀖
= x

p−1
2 =

󰀝
1 if x ∈ Fp is a square mod p

−1 if x ∈ Fp is not a square mod p.

In general the Legendre symbol is defined by setting
󰀃
0
p

󰀄
= 0, which makes the

symbol multiplicative. However this comes at a cost of increasing the size of the
codomain. In practice

󰀃
0
p

󰀄
= 1 is used.

We will assume that the multiplicative property of the Legendre symbol stands.
This is a non-problem and the reader should be easily convinced that the algorithms
we give terminate in the same expected time and with the same probability.

Definition 2.3 (Legendre sequence). We define a Legendre sequence with start-
ing point a and length L to be the sequence of Legendre symbols evaluated at L
consecutive elements starting from a. We denote it with {a}L:

{a}L ..=

󰀕
a

p

󰀖
,

󰀕
a+ 1

p

󰀖
,

󰀕
a+ 2

p

󰀖
, . . . ,

󰀕
a+ L− 1

p

󰀖
.

1Originally, as proposed by Damg̊ard, the prime was considered secret. We chose only to
pursue the case of a public prime, as in the MPC use case.
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Every a fully determines its sequence of length L, but not vice versa – that
property depends on L. In general, these sequences are as well distributed as one
can hope them to be. We know already that when L = 1 “half” of the a-values
give 1, and the other “half” give −1. Similar properties are true for larger L, and
in general, following a theorem of Davenport, around one in 2L elements of Fp is a
starting point of a given sequence of length L.

Theorem 2.4 (Davenport, 1933 [4]). Let S be a finite sequence of ±1’s of length
L. Then the number of elements of Fp whose sequence is equal to S satisfies

#
󰁱
a ∈ Fp

󰀏󰀏󰀏{a}L = S
󰁲
=

p

2L
+O(pε)

where 0 < ε < 1 is a constant depending only on L.

Throughout the paper we assume that L is such that {a}L uniquely defines a,
i.e., that the following holds

{a}L = {b}L if and only if a = b.(2.1)

It is easy to see that if we want this property to hold, we need L = Ω(log2 p).
The only provable upper bound we have comes from the Weil bound [10] and is
L = O(

√
p log p) which is exponential.

Our computational results, together with other statistical data on the distri-
bution of Legendre sequences [3], indicate that on average over all sequences S of
length L, there are p

2L
+O(1) elements whose Legendre sequences are equal to S. In

other words, for a random S and a random j we have {j}L = S with probability 1
2L

.
A good estimate of L in terms of p is L = [2 log2 p].

2.2. The Legendre pseudorandom function. In this section we define the Le-
gendre pseudorandom function, and its higher degree generalisation.

Definition 2.5 (Legendre PRF). The Legendre pseudorandom functions are func-
tions Ok from Fp to {−1, 1} indexed by k ∈ Fp and defined as

Ok(x) =

󰀕
x+ k

p

󰀖
.

Definition 2.6 (Higher degree Legendre PRF). The Legendre pseudorandom func-
tions of degree r are a family of functions Of from Fp to {−1, 1} indexed by
f = krx

r + . . .+ k1x+ k0 ∈ Fp[x] and defined as

Of (x) =

󰀕
f(x)

p

󰀖
.

The degree r is assumed to be polylogarithmic in p.

Two oracles Of (x) and Of/kr
(x) are the same up to multiplication by

󰀃
kr

p

󰀄
and

therefore we can assume the polynomial f to be monic. The case of linear f(x)
reduces to the standard Legendre PRF which we thus from now on refer to as the
linear Legendre PRF.

The polynomial f(x) is considered up to multiplication by a square since the
Legendre symbol is invariant under square factors of f(x). This is not entirely true
as a square linear factor introduces a zero and may change the output of the oracle
at one point, but the reader should be convinced that this can be safely ignored.
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The secret key space, i.e., the space from which we choose f(x) is the space
of monic polynomials modulo squares. The number of such polynomials equals
pr − pr−1 for r > 1 (see [1], problem 3.3) and p for r = 1.

Definition 2.7 (Generalised Legendre sequence). The length L Legendre sequence
of a polynomial f(x) is denoted by {f}L and defined as

{f}L ..=

󰀕
f(0)

p

󰀖
,

󰀕
f(1)

p

󰀖
,

󰀕
f(2)

p

󰀖
, . . . ,

󰀕
f(L− 1)

p

󰀖
.

As a generalisation to Theorem 2.4 and property (2.1) we assume that L is such
that {f}L uniquely defines f , i.e., that the following holds

{f}L = {g}L if and only if f = g.(2.2)

With r the degree of f we have L = Ω(r log p). We assume that property (2.2)
holds for L = Θ(r log p). A reasonable estimate is L = [2r log p]. Throughout the
paper we include the dependence on L in the complexity of our algorithms.

2.3. Hard Problems. There are three main problems conjectured to be hard, and
on which the security of the Legendre PRF is based.

Definition 2.8 (Generalised Legendre Symbol Problem - GLSP). Let f be a uni-
formly random monic square-free polynomial. Given access to an oracle O that on

input x ∈ Fp computes O(x) =
󰀃f(x)

p

󰀄
, find f .

Definition 2.9 (Decisional Generalised Legendre Symbol Problem - DGLSP). Let
f be a uniformly random monic square-free polynomial. Let O0 be an oracle that

on input x ∈ Fp computes O0(x) =
󰀃f(x)

p

󰀄
, and let O1 be an oracle that on input

x outputs a random value in {−1,+1}. Given access to Ob where b is an unknown
random bit, find b.

Definition 2.10 (Next Symbol Problem - NSP). Given a Legendre sequence {f}M
of M = polylog(p) symbols, find

󰀃f(M)
p

󰀄
, or equivalently find {f}M+1.

It is easy to see that the GLSP and NSP are at least as hard as DGLSP. In the
other direction, following a theorem of Yao [11] on general pseudorandom functions,
predicting the next bit of a pseudorandom function is as hard as distinguishing it
from a truly random one. Therefore NSP = DGLSP ≤ GLSP , under polynomial
time reductions.

3. Group action on polynomials

Möbius transformations act naturally on rational functions of P1, changing the
argument and preserving their degrees. We show how this action can be exploited
in order to connect oracles of monic polynomials that are in the same orbit.

3.1. Möbius transformations. Let M be the group of Fp-rational automor-
phisms of P1. It is known that M is isomorphic to PGL2(Fp) and that this group
has order p3 − p. The elements of M are Möbius transformations. Given a matrix
m =

󰀃
a b
c d

󰀄
∈ PGL2(Fp) there is a unique Möbius transformation ϕm given by

ϕm : P1 −→ P1

[x : y] 󰀁−→ [ax+ by : cx+ dy],

and function composition satisfies ϕm1 ◦ ϕm2 = ϕm1m2 . We drop the notion of ϕm

and only use m from now on.
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3.2. Action of M on monic polynomials. The action of a Möbius transforma-
tion m =

󰀃
a b
c d

󰀄
∈ M on a polynomial f is denoted by m · f = fm and defined

as

m · f = fm(x) ..= f

󰀕
ax+ b

cx+ d

󰀖
(cx+ d)r

f(ac )c
r

.(3.1)

The corrective factors (cx + d)r and f(ac )c
r are introduced in order to make fm a

polynomial and to make it monic correspondingly.
There is another way to look at this action – if α is a root of f then m−1(α) is

a root of fm, where m−1 =
󰀃

d −b
−c a

󰀄
is the inverse of the Möbius transformation m.

Thus, if f(x) =
󰁔r

i=1(x− αi) then

fm(x) =

r󰁜

i=1

(x−m−1αi) =

r󰁜

i=1

(x− dαi − b

−cαi + a
).(3.2)

Therefore the group M of Möbius transformations has left (covariant) action on
the roots of polynomials in Fp[x] and right (contravariant) action on polynomials.

3.3. Obtaining oracles of polynomials in the orbit. Suppose we are given
access to O, the oracle of f . Following (3.1) we can mimic the oracle of fm with

󰀕
fm(x)

p

󰀖
= O

󰀕
ax+ b

cx+ d

󰀖󰀕
cx+ d

p

󰀖r

O
󰀓a
c

󰀔󰀕
c

p

󰀖r

.

Therefore we can obtain {fm}L by computing L+1 Legendre symbols and querying
the oracle L+1 times. If c = 0 then O(ac )(

c
p )

r
is substituted with (ap )

r
. If cx+d = 0

for some x ∈ [0, L), then we substitute O(ax+b
cx+d )(

cx+d
p )

r
by (ax+b

p )
r
.

3.4. Polynomial types. We divide the key space into three sets based on re-
ducibility of the polynomials and the size of their orbit given by the action of M.
The following lemma helps characterise these sets.

Lemma 3.1. Let M = PGL2(Fp) and f ∈ Fp[x] an irreducible polynomial of degree
r with 3 ≤ r < p. Then, the stabiliser of f is a cyclic group of order r′ for some
r′ | r. Furthermore r′ | p2 − 1.

Proof. Let Stab(f) = {m ∈ M|f = fm} be the stabiliser of f , and let m ∈ Stab(f).
By property (3.2) the roots of fm are m−1αi implying that m permutes the roots

of f . Let Gal(f) = {φi
..= x 󰀁→ xpi |i ∈ Z/r} be the Galois group of f , and let α

be any root of f . Then mα = φi(α) for some i ∈ Z/r. Furthermore m(φj(α)) =
φj(mα) = φj(φi(α)) = φi(φj(α)) since m is rational and it commutes with the
Frobenius. Therefore each element of the stabiliser acts on the roots as an element
of Gal(f). This gives rise to a homomorphism from Stab(f) to Gal(f) which is
injective since two Möbius transformations with the same action on a set of r ≥ 3
points have to be equal. Therefore Stab(f) is a subgroup of Gal(f) ∼= Z/r, so it is
isomorphic to Z/r′ for some r′ | r. The stabiliser is naturally a subgroup of M, so
its order divides #M = p(p2 − 1). Since r′ < p we have r′ | p2 − 1. □

Definition 3.2. We call irreducible polynomials with a trivial stabiliser “good”, ir-
reducible polynomials with a stabiliser of size r′ > 1 are called “bad”, and reducible
polynomials are called “ugly”.
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4. Algorithm

We give an algorithm for solving the Generalised Legendre Symbol Problem. We
start by querying the oracle O(x) at all x ∈ Fp, and computing

󰀃
x
p

󰀄
for all x ∈ Fp.

These results are then saved in a table and whenever we need an oracle query or
a Legendre symbol we read them instead of computing an expensive symbol or
querying the oracle multiple times.

The general idea is to do a table-based collision search. We make a table con-
taining {fm}L for some m ∈ M, and we try random g until {g}L = {fm}L for some
m. This gives us f = gm−1 . The tables and the trials differ for different polynomial
types, so we give three separate algorithms for good, bad and ugly polynomials.

4.1. Good polynomials algorithm. We recall that f is good if it is an irreducible
polynomial of degree r ≥ 3 and the stabiliser of f is trivial.

4.1.1. Precomputation. In the precomputation stage we generate a table T contain-
ing {fm}L and a description of m for all Möbius transformations m as described in
Section 3.3. Since f is good, the table T contains p3 − p different sequences.

4.1.2. Search. The search is done by trying random g(x) of degree r and computing
{g}L until we find a hit, which we expect to find after O(pr−3) trials. For each trial
g is evaluated at L points, and L Legendre symbols are extracted, so the run time
can be measured in the number of Legendre symbols extracted which is O(pr−3L).

4.2. Bad polynomials algorithm. We recall that f is bad if it is an irreducible
polynomial of degree r ≥ 3 and the stabiliser of f is non-trivial. It follows from
Lemma 3.1 that Stab(f) is isomorphic to Z/r′.

4.2.1. Precomputation. We start by finding Stab(f), the stabiliser of f . A straight-
forward way to find it in O(p3) is by enumerating M and isolating the matrices
that fix f . Appendix A describes a non-trivial way to find it in O(p2 log r) steps.

Call m any generator of Stab(f). The matrix m is rational so it has a Jordan
canonical form of one of the following three types:

󰀕
a 0
0 b

󰀖 󰀕
λ 0
0 µ

󰀖 󰀕
a 1
0 a

󰀖

Type 1 Type 2 Type 3

where a, b ∈ Fp \ {0} and λ, µ ∈ Fp2 \Fp, conjugates of each other. We can exclude
Type 3 matrices since they have order p, while m has order r′ < p.

Let D be a diagonal matrix of order r′ and P a change of basis matrix (these can
be chosen uniquely from a set of representatives given in Appendix A) such that

m = P D P−1.

Following from D ·fP = (PD) ·f = (mP ) ·f = P ·fm = P ·f = fP , the polynomial
fP is stabilised by D. Therefore fP satisfies fP (

r
sx)(

s
r )

r = fP (
r
sx) = fP (x) where

(r, s) = (a, b) or (λ, µ). This sets the following constraints on the coefficients of fP

fP (x) = xr + kr−1x
r−1 + . . .+ k2x

2 + k1x+ k0 = xr +

r−1󰁛

i=0

kix
i

(D · fP )(x) = xr + kr−1(
r
s )

r−1xr−1 + . . .+ k1(
r
s )x+ k0 = xr +

r−1󰁛

i=0

ki(
r
s )

ixi
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from which it follows that

ki = ki(
r
s )

i for i = 0, 1, . . . , r − 1.(4.1)

Since r
s has order r′ we have ki = 0 for all i that are not multiples of r′.

We create a table T of size O(p) containing polynomials t in the orbit of f with
tP satisfying (4.1). The process differs for the two types of matrices so we treat
them separately.

Type 1. When D is rational, P is rational too, so the polynomial fP is in the
orbit of f . If C is a rational diagonal matrix, C ·fP is another polynomial in the orbit
of f satisfying (4.1). The total number of such polynomials is p−1

r′ since matrices
C can be chosen up to stabiliser of fP which is 〈D〉. A set of representatives is

C1 =

󰀝󰀕
gi 0
0 1

󰀖 󰀏󰀏󰀏g ∈ F∗
p generator, 0 ≤ i < p−1

r′

󰀞
.(4.2)

The table T contains {PCP−1 · f}L together with a description of C for all C in
C1. It has p−1

r′ elements, and for all polynomials t in the table, tP satisfies (4.1).
Type 2. When D is irrational, P is too, so fP is not in the orbit of f . There

are additional constraints on fP following from the rationality of m:

m = P

󰀕
λ 0
0 µ

󰀖
P−1 = m = P

󰀕
λ 0
0 µ

󰀖
P

−1
= P

󰀕
µ 0
0 λ

󰀖
P

−1
.

Let AP
..= P−1P . From the definition of AP and the above formulas it follows that

A−1
P = AP

󰀕
λ 0
0 µ

󰀖
AP = AP

󰀕
µ 0
0 λ

󰀖
.

These constraints imply that AP =
󰀃

0 α
1/α 0

󰀄
for some α ∈ Fp2 . The action of AP is

the same as the action of
󰀃
0 s
1 0

󰀄
where s = αα ∈ Fp. Note that s can be computed

and, up to choosing a different representative for P , can be set to be equal to 1.
We further have

AP · fP (x) = fPAP
(x) = fP (x) = P · f(x) = P · f(x) = P · f(x) = fP (x),

which gives new constraints on the coefficients of fP (x):

fP (x) = xr + kr−1x
r−1 + . . .+ k2x

2 + k1x+ k0 = xr +

r−1󰁛

i=0

kix
i

(AP · fP )(x) = xr + k1s
k0

xr−1 + . . .+ kr−1s
r−1

k0
x+ sr

k0
= xr +

r−1󰁛

i=0

kr−is
r−i

k0
xi.

This translates to

kp+1
0 = sr

kr−i =
k0ki
sr−i

(4.3)

kp−1
r/2 =

sr/2

k0
if r is even.
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The polynomial fP is not the only polynomial satisfying (4.1) and (4.3). Cer-
tainly (4.1) is satisfied for every C · fP where C is a diagonal matrix. In order for
C · fP to satisfy (4.3) we need AP · fPC = fPC , which implies

(CAC
−1

) · fP (x) = fP (x).

This condition, together with C being diagonal implies that C is contained in
󰀝󰀕

c 0
0 c

󰀖 󰀏󰀏󰀏c ∈ F∗
p2

󰀞
.

Multiplying C on the right by a rational scalar matrix or by an element of Stab(fP ) =
〈D〉 does not change the polynomial C · fP . Therefore C can be chosen from a re-
duced set of representatives, for example the following:

C2 =

󰀝󰀕
gi 0
0 g i

󰀖 󰀏󰀏󰀏g generator of F∗
p2 , 0 ≤ i < p+1

r′′

󰀞
,

where p+1
r′′ = gcd(p + 1, p2−1

r′ ), in other words r′′ = r′

gcd(r′,p−1) . The choice of r′′

follows from the exponents of g being chosen modulo p+1 (action of F∗
p) and modulo

p2−1
r′ (action of r′’th roots of unity).

The table T contains {PCP−1 · f}L together with a description of C for all C
in C2 (note that PCP−1 is rational). It has p+1

r′′ elements, and for all polynomials
t in the table, tP satisfies (4.1) and (4.3).

4.2.2. Search. In the search phase we go over g(x) = xr +
󰁓r/r′−1

i=0 gix
i that satisfy

(4.1) and compute {gP−1}L until we find a hit in T . In that case f = g(PC)−1 .
For Type 1, the coefficients gi are in Fp. The total number of polynomials g is

pr/r
′
and we expect to find a hit after O(pr/r

′−1r′) trials.
For Type 2, the coefficients gi are in Fp2 and they satisfy (4.3). Therefore there

are p + 1 choices for g0, the gi with 1 ≤ i < r/2 can be chosen freely, giving p2

choices each, and the gj for r/2 < j are constrained to one value for each choice of
the previous coefficients. If r is even, gr/2 has p − 1 choices. The total number of

polynomials g is O(pr/r
′
) and we expect to find a hit after O(pr/r

′−1r′′) trials.

4.3. Ugly polynomials algorithm. We recall that f is ugly if it is a reducible
polynomial of degree r ≥ 3. Write f(x) = l(x)h(x) where rh = deg(h(x)) ≥ r/2.

The Legendre symbol is multiplicative, and Möbius transformations are homo-
morphic with respect to polynomial multiplication, so we have {fm}L = {lm}L{hm}L,
where the multiplication is element-wise. It follows that {fm}L{lm}L = {hm}L.

4.3.1. Precomputation. We create two tables, T1 containing {fm}L for all m ∈ M,
and T2 containing sequences of all polynomials g(x) of degree r−rh (the candidates
for lm(x)). The main table T is a product of T1 and T2, i.e., a table of size
O(pr−rh+3) containing {fm}L{g}L for all m ∈ M and all g.

4.3.2. Search. The search phase constitutes of trying random polynomials t(x) of
degree rh until we find a hit in T . This gives {t}L = {fm}L{g}L, and implies that
t(x) = hm(x), g(x) = lm(x), and finally f(x) = gm−1(x)tm−1(x). We expect to find
a solution in O(prh−3) trials.
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The above description glosses over a number of minor details that one needs to be
careful about. The run time is actually prh divided by the size of the orbit of h(x).

If h is good, then its orbit is maximal and we are good.
If h is bad, we can test all bad h in time O(prh/r

′
L) for each r′h | rh, so in total

O(prh/2L). For both Type 1 and Type 2 we can enumerate all polynomials h in

time O(prh/r
′
h−1r′′hL) with r′′h defined as in (4.2).

If h is ugly, we analyse two cases:

1.) h has an irreducible factor of degree at least 3.
Suppose h = h1h2 of degrees r1 and r2. We select a set of O(pr1−3) repre-
sentatives for h1, multiply them with polynomials of degree r2 and search
for {h}L = {h1}L{h2}L in T , achieving an O(prh−3) run time.

2.) h has all factors of degree ≤ 2.
There are three subcases to consider:

- h is divisible by a product of three linear polynomials. Then at least
one hm is divisible by x(x−1)(x−2), so we test for h = x(x−1)(x−2)h2

where h2 are of degree rh − 3.
- h is divisible by a linear and quadratic polynomial. Then one of hm is
divisible by x(x2 − u) where u is a chosen non-square, so we test for
h = x(x2 − u)h2 where h2 are of degree rh − 3.

- h is divisible by two quadratic polynomials. Then one of them can be
considered to be x2−u where u is a non-square, and the other one has
only 1 degree of freedom. We test for h = (x2 − u)h1h2 where h1 is
selected from O(p) quadratic polynomials and h2 is of degree rh − 4.

Therefore if f is ugly we can find it in O(prh−3) trials irrespective of the type of h.

Table 1. Comparisons of best known algorithms for solving the
degree r ≥ 3 Legendre PRF, in big-O’s. Size of the stabiliser of f is
denoted with r′, and r′′ = r′ if r′ | p−1 and r′′ = r′/ gcd(r′, p− 1)
otherwise. We denote with rh the degree of a factor of f which
is at least r/2. Complexity is given in the number of Legendre
symbols computed/extracted. In all cases we need p queries.

good polynomials search precomputation memory
Khovratovich [8] pr−1r log p r log p r log p

Beullens et al. [2] pr−2r2 log2 p p2 p2

Our algorithm pr−3r log p p3r log p p3r log p

bad polynomials search precomputation memory
Khovratovich [8] pr−1r log p r log p r log p

Beullens et al. [2] pr−2r2 log2 p p2 pr−rhr log p

Our algorithm pr/r
′−1r′′r log p p2r log p (p/r′′)r log p

ugly polynomials search precomputation memory
Khovratovich [8] pr−1r log p r log p r log p
Beullens et al. [2] prhr log p pr−rhr log p pr−rhr log p
Our algorithm prh−3r log p pr−rh+3r log p pr−rh+3r log p

4.4. Time-memory tradeoff for low degrees. The run time of the algorithm
depends mainly on the search stage. However for some low degree polynomials,
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the precomputation may take longer than the search stage. In some cases a time-
memory tradeoff allows to reduce the complexity further.

4.4.1. Good polynomials. For r ≥ 6, the table-based collision search with an O(p3)
table and O(pr−3) trials is optimal. For 3 ≤ r ≤ 5, a tradeoff with an O(pr/2) table
and O(pr/2) trials is better.

4.4.2. Bad polynomials. If r/r′ − 1 < 2 then the bottleneck is the precomputation
phase that takes O(p2 log r) steps. This can happen when r′ = r/c for c = 1, 2.
Not much can be done to reduce the precomputation cost since testing badness
costs O(p2 log r). For r = 3 we can lower the attack complexity to O(p1.5) with
table-based collision search for good polynomials.

4.4.3. Ugly polynomials. We test if f is ugly by trying to find it using the ugly
polynomials algorithm for each rh = ⌈r/2⌉, . . . , r − 1. The precomputation cost is
O(pr−rh+3) and the search cost is O(prh−3).

If r − rh + 3 > rh − 3, i.e., rh < r/2 + 3, then we can do a tradeoff. Call
ε ..= rh − r/2 < 3. We compute only the action of pε many matrices on f , and
after multiplying with the table T2 of pr−rh sequences, obtain a table of size pr/2.
We expect to finish the search phase in O(prh−ε) = O(pr/2) if a collision exists.
Otherwise we assume that f does not have a factor of degree rh and move to rh+1.

4.5. Security recommendations. Following our argumentation, the most secure
PRFs are the ones coming from good polynomials. While we can test for irreducibil-
ity in polynomial time, the only way to distinguish good and bad polynomials is by
means of the O(p2 log r) algorithm from Appendix A. The number of bad polyno-
mials is small, and can be shown to be bounded from above by

󰁛

r′|gcd(r,p2−1)
r′>1

−µ(r′)pr/r
′+1r′ = O(pr/2+1r).

The easiest way to assure that our secret polynomial is not bad is to choose p and
r such that gcd(r, p2 − 1) = 1.

4.6. Degree r = 2. If r = 2 all polynomials are bad or ugly. There is a deter-
ministic O(p) algorithm for finding f in this case – we first precompute the action
of {

󰀃
1 a
0 1

󰀄
|a ∈ Fp} on the polynomial f , which assures that the precomputed table

contains the Legendre sequence of a polynomial of the form x2 − c:
󰀃
1 a
0 1

󰀄
· (x2 − tx+ n) = x2 − (t− 2a)x+ (n+ a2 − ta).

Then we test all p such polynomials until we find f .

5. Limited query case and the linear Legendre PRF

In the Section 4 we query the oracle at all elements of Fp and then extract up
to p3 − p sequences. The reader should be convinced that the same argumentation
works with p−o(p/L) queries, as we still have access to Ω(p3) sequences. When the
secret polynomial is linear doing more than O(p1/2L) queries is wasteful. Indeed
creating a table with O(p1/2) sequences by doing L queries per sequence allows us
to find the secret polynomial after O(p1/2) trials. This is essentially the algorithm
in [8], where the author further provides a memoryless approach.
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The main difference in the linear case with respect to the higher degree case is
that we are allowed M ≤ √

pL queries to the oracle. How many different group
actions can we obtain from only M queries? The same question can be asked in the
higher degree case, and the algorithm we provide can be directly applied in that
scenario. One would expect a cubic increase, as with full access to the oracle, but
this seems to be out of reach.

5.1. Linear shifts subgroup. Let G be the subgroup of M consisting only of
linear Möbius transformations,

G =

󰀝󰀕
d i
0 1

󰀖 󰀏󰀏󰀏d ∈ F∗
p, i ∈ Fp

󰀞
󰃑 PGL2(Fp).

An element (i, d) ..=
󰀃
d i
0 1

󰀄
sends f(x) to fi,d(x). In order to extract {fi,d(x)}L from

the oracle O of f , we compute
󰀕
fi,d(x)

p

󰀖
= O

󰀕
dx+ i

0x+ 1

󰀖󰀕
0x+ 1

p

󰀖r󰀕
d

p

󰀖r

= O (dx+ i)

󰀕
d

p

󰀖r

for all x ∈ [0, L). If O is queried in [0,M), then we can extract all fi,d such that
dx+ i ∈ [0,M) for all x ∈ [0, L). This creates the following constraints on i, d:

󰀫
d = 1, 2, . . . ,

󰁭
M−1
L−1

󰁮

i = 0, 1, . . . ,M − 1− (L− 1)d
or

󰀫
d = −1,−2, . . . ,−

󰁭
M−1
L−1

󰁮

i = (L− 1)(−d), . . . ,M − 1.

The total number of eligible (i, d) ∈ G is

󰁭
M−1
L−1

󰁮

󰁛

d=1

2(M − (L− 1)d) =
M2

L− 1
−M +O(L)

with the constant in O(L) being at most 2.
The limited query algorithm works as follows:

5.1.1. Precomputation. Query O at [0,M). Extract O(M
2

L ) Legendre sequences
{fi,d}L and save them in a table T together with descriptions of (i, d).

5.1.2. Search. Search is done by trying random polynomials until we find a hit

in the table, which is expected after O(p
rL
M2 ) trials, in particular O( pL

M2 ) for the
linear PRF.

5.1.3. Further improvements. The cost of the precomputation is M queries and

O(M
2

L ) sequence extractions. The cost of the search is O( pL
M2 ) trials. A straightfor-

ward way to do a sequence extraction is to read the pre-saved queries L times. Due
to the nature of the sequences, this cost can be amortised to O(1) per sequence.
Doing a trial constitutes of evaluating the polynomial in L places and computing L
Legendre symbols. Again, this cost can be amortised to O(logL) per trial. These
implementational improvements are not within the scope of this paper, and they
are explained in detail in [5].
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5.2. Algorithm comparison. The first algorithm by Khovratovich [8] computes
sequences with on-the-go queries, and directly computes Legendre symbols. The
main benefit of this approach is that it is memoryless. This was improved on in [2]
by extracting sequences rather than querying/computing symbols, and increasing
the sequence yield to M2/L2. In our terminology, the authors of [2] use the same
group G but only elements (i, d) such that i < d , leading them to a table which is
a factor of L smaller with respect to ours. Using the full group G as in 5.1 comes
with cheaper sequence extraction in the precomputation stage, but more expensive
sequence extraction in the search stage thus the log log p factor in Table 2. A more
detailed analysis is given in [5].

Table 2. Comparisons of best known algorithms for the linear Le-
gendre PRF challenge, in big-O’s and Θ(log p)-bit word operations.
We denote with t the time to compute a Legendre symbol

Algorithm search precomputation memory optimal run time

Khovratovich [8] p t log2 p
M M log p

√
p t log p

Beullens et al. [2] p log2 p
M2 M2 M2

log p

√
p log p

Our algorithm p log p log log p
M2

M2

log p M2
√
p log log p

5.3. Experiments. Ethereum research posted a number of challenges [6] for break-
ing the linear Legendre PRF. In each challenge we are given a prime p of size varying
from 64 to 148 bits, and M = 220 bits of the sequence {k}M as defined in Section
2.3. The challenge is to recover the key k. In each case we were able to precompute
a table with ∼ 234 sequences. The most interesting is of course challenge #2 since
it had not been solved before. The actual number of trials performed in challenge
#2 is 246.97 = 1.38e14 which is far less than expected. This can be explained by
large variance and by sheer luck. The two most difficult challenges (#3 and #4)
are out of reach with the proposed attack and its implementation. An in-depth
explanation of the experiments is given in [5]. The code and the keys of the first
three challenges can be found at

https://github.com/nKolja/LegendrePRF.

Table 3. Results and estimates for solving the Legendre PRF
challenges [6].

Challenge Prime Expected Observed Expected Observed
bit size # trials # trials core-hours core-hours

0 64 230 230.78 290 sec 490 sec
1 74 240 239.53 82 59
2 84 250 246.97 1.4e5 1.72e4
3 100 266 - 9.1e9 -
4 148 2114 - 2.5e24 -
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Appendix A. Computing the stabiliser Stab(f) of f

Let m ∈ Stab(f) be a matrix of order r′. Following the same argumentation from
Section (4.2) there exists a change of coordinate matrix P such that D = P−1mP
is a diagonal matrix. We give a set of representatives for matrices D and P such
that for each m there is a single pair D,P in that set satisfying

m = P D P−1.

This property can be used to argue that we need only to find one mr of order pr for
any prime divisor pr | r′. Given mr, an element mi of order p

i
r is simply P i

√
DP−1,

and an element mq of order qr for some other divisor qr | r′ is PDqP
−1 for the

corresponding matrix Dq of order qr. Furthermore, an element of order prqr can
be found by computing mu

rm
v
q with upr + vqr = 1. Therefore in order to find the

full stabiliser group we need only to find one element of prime order. This is done
by searching for elements of order q in the stabiliser, for each prime q | r, so we
assume that we know r′.

The search for m is done by going through the conjugacy class of a matrix D
of order r′, until we find a matrix that stabilises f . The conjugacy class has size
Θ(p2) so we expect to find m in p2 steps, but we have to be careful and go through
the whole class without repetitions.

The process is explained separately for Type 1 and Type 2 matrices.

A.1. Matrices of Type 1. If m is of Type 1 then for some P ∈ GL2(Fp)

m = P

󰀕
a 0
0 b

󰀖
P−1
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where a, b ∈ Fp non-zero such that ξ ..= a/b has order r′. Since m is defined up to
scalar multiplication in F∗

p, we may suppose that a = ξ and b = 1, so D =
󰀃
ξ 0
0 1

󰀄

for some ξ primitive r′’th root of unity in Fp. There are in total ϕ(r′) different ξ
values to consider, however each one will give rise to a different generator of the
stabiliser of f , so the choice of ξ does not matter.

The search for m is done by enumerating PDP−1, where matrices P are chosen
from GL2(Fp) up to right multiplication by an element of Z(D) = {

󰀃
a 0
0 b

󰀄
| ab ∕= 0},

the centraliser of D. In total there are p2 + p elements in GL2(Fp)/Z(D). One set
of representatives can be chosen to be

{
󰀃
0 1
1 d

󰀄
,
󰀃
1 0
c 1

󰀄
,
󰀃
1 1
c d

󰀄
| c, d ∈ Fp such that the determinants are non-zero}.

When r′ = 2, so D =
󰀃−1 0

0 1

󰀄
, the set of representatives is halved because

󰀃
0 1
1 0

󰀄
∈

Z(D) after projecting on PGL2(Fp). In that case we give the following of (p2+p)/2
representatives for the matrices P :

{
󰀃
0 1
1 d

󰀄
,
󰀃
1 1
c d

󰀄
| c < d ∈ Fp}

where the ordering of elements of Fp is induced from the lift to {0, 1, . . . , p− 1}.

A.2. Matrices of Type 2. If m is of Type 1 then for some P ∈ GL2(Fp2)

m = P

󰀕
λ 0
0 µ

󰀖
P−1

where λ, µ ∈ Fp2 are conjugate roots of an irreducible second degree polynomial
such that ξ ..= λ/µ is a primitive r′’th root of unity.

Lemma A.1. The diagonal matrix D defined above is unique in GL2(Fp2)/F∗
p.

Proof. Since ξ = µ/µ = µp−1 we have ξp+1 = 1. Due to the primitivity of ξ it
follows that r′ | p+ 1.

If ξ ∈ Fp then ξ2 = 1 so ξ = −1 and r′ = 2. In that case λ = −µ, so the minimal
polynomial of λ is x2− c for some non-square c. Up to multiplying D by a constant
in F∗

p, we may suppose λ =
√
u for a fixed non-square u, and therefore there is only

one such matrix.
If ξ is not rational, then ξ = ξp = 1/ξ, so ξξ = 1. From λ = ξµ we have

D =
󰀃
ξµ 0
0 µ

󰀄
. The determinant and the trace of D are the same as those of m, so

in particular they are rational. This means that

µ(ξ + 1) ∈ Fp

ξµ2 ∈ Fp

from which it follows that µ = a
ξ+1 and λ = ξa

ξ+1 for some a ∈ Fp. For any

choice of a, the second condition follows from ξξ = 1. Multiplying λ and µ by
any non-zero rational constant does not change the property of D being conjugate
to m ∈ PGL2(Fp), to them being irrational conjugates of each other or to their

quotient being equal to ξ. Therefore we may suppose λ = ξ
ξ+1 and µ = 1

ξ+1 . □

We start by computing a primitive root of unity ξ of order r′, and set D as
above. As before, the choice of ξ does not matter.

The search for m follows by going through P D P−1 where the matrices P are
chosen such that PDP−1 is rational and up to right multiplication by Z(D), the
centraliser of D.
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A.2.1. Rational PDP−1. If PDP−1 is rational we have PDP−1 = P D P
−1

, so

(P−1P )
󰀃
µ 0
0 λ

󰀄
=

󰀃
λ 0
0 µ

󰀄
(P−1P ).

Define AP
..= P−1P . The matrix AP satisfies A−1

P = AP , so it has to satisfy

AP =

󰀕
0 α

1/α 0

󰀖

for some non-zero α in Fp2 . From P = PAP we have some constraints on P ,

P ∈
󰀝󰀕

q qα
r rα

󰀖 󰀏󰀏󰀏 q, r ∈ Fp2 , qr ∕= 0, qp−1 ∕= rp−1

󰀞
.

A.2.2. The centraliser Z(D). The matrix D is diagonal with different eigenvalues,
so

Z(D) =

󰀝󰀕
x 0
0 y

󰀖 󰀏󰀏󰀏 x, y ∈ Fp2 , xy ∕= 0

󰀞
.

Multiplying a P on the right by an element of the centraliser gives
󰀕
q q α
r r α

󰀖󰀕
x 0
0 y

󰀖
=

󰀕
qx q α y
rx r α y

󰀖
=

󰀕
qx qx (αyx )

rx rx (αyx )

󰀖
,

which sends (q, r) to (qx, rx) and α to α y
x , so we may assume that q = α = 1. A

set of p2 − p representatives for matrices P is
󰀝󰀕

1 1
r r

󰀖 󰀏󰀏󰀏r ∈ Fp2 \ Fp

󰀞
.

When r′ = 2, so D =
󰀃√

u 0

0 −
√
u

󰀄
for some rational non-square u, the set of

representatives is halved because
󰀃
0 1
1 0

󰀄
∈ Z(D) after projecting on GL2(F2

p)/F∗
p. In

that case we give the following (p2 − p)/2 representatives for matrices P :
󰀝󰀕

1 1
r r

󰀖 󰀏󰀏󰀏 r = a
√
u+ b , 1 ≤ a ≤ p−1

2 , 0 ≤ b < p

󰀞
.
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