
THE NEAREST-COLATTICE ALGORITHM
* * *

TIME-APPROXIMATION TRADEOFF FOR APPROX-CVP

THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

ABSTRACT. In this work, we exhibit a hierarchy of polynomial time algorithms solving approxi-

mate variants of the Closest Vector Problem (CVP). Our first contribution is a heuristic algorithm

achieving the same distance tradeoff as HSVP algorithms, namely ≈ β
n
2β covol(Λ)

1
n for a ran-

dom lattice Λ of rank n. Compared to the so-called Kannan’s embedding technique, our algo-

rithm allows using precomputations and can be used for efficient batch CVP instances. This implies

that some attacks on lattice-based signatures lead to very cheap forgeries, after a precomputation.

Our second contribution is a proven reduction from approximating the closest vector with a factor

≈ n
3
2 β

3n
2β to the Shortest Vector Problem (SVP) in dimension β.

1. INTRODUCTION

Lattices, CVP, SVP. In a general setting, a real lattice Λ is a finitely generated free Z-module,

endowed with a positive-definite quadratic form on its ambient space Λ ⊗Z R, or equivalently

is a discrete subgroup of a Euclidean space.

A fundamental lattice problem is the Closest Vector Problem, or CVP for short. The goal of this

problem is to find a lattice point that is closest to a given point in its ambient space. This problem

is provably difficult to solve, being actually a NP-hard problem. It is known to be harder than

the Shortest Vector Problem (SVP) [19], which asks for the shortest non-zero lattice point. SVP

is, in turn, the cornerstone of lattice reduction algorithms (see for instance [33, 20, 29]). These

algorithms are at the heart of lattice-based cryptography [31], and are invaluable in plenty of

computational problems, including Diophantine approximation, algebraic number theory or

optimization (see [30] for a survey on the applications of the LLL algorithm).

On CVP-solving algorithms. There are three families of algorithms solving CVP:

Enumeration algorithms: consisting in recursively explore all vectors in a set containing a clos-

est vector. Kannan’s algorithm takes time nO(n) and polynomial space [24]. This esti-

mate was later refined to n
n
2 +o(n) by Hanrot and Stehlé [21].

1

2 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

Voronoi cell computation: Micciancio and Voulgaris’ Voronoi cell algorithm solves CVP in time

(4 + o(1))n but uses a space of (2 + o(1))n [28].

Sieving algorithms: where vectors are combined in order to get closer and closer to the target

vector. Heuristic variants take time as low as (4/3 + o(1))
n
2 [7], but proven variants of

classical sieves [3, 8, 15] could only solve CVP with approximation factor 1+ϵ at a cost in

the exponent. In 2015, a (2 + o(1))n sieve for exact CVP was finally proven by Aggarwal,

Dadush and Stephen-Davidowitz [1] thanks to the properties of discrete Gaussians.

Many algorithms for solving its relaxed variant, APPROX-CVP, have been proposed. How-

ever, they come with caveats. For example, Dadush, Regev and Stephens-Davidowitz [10] give

algorithms for this problem, but only with exponential time precomputations. Babai [5, Theo-

rem 3.1] showed that one can reach an 2
n
2 -approximation factor for CVP in polynomial time. To

the authors’ knowledge, this has never been improved (while keeping the polynomial-time re-

quirement), though the approximation factor for SVP has been significantly reduced [33, 20, 29].

We aim at solving the relaxed version of CVP for relatively large approximation factors, and

study the tradeoff between the quality of the approximation of the solution found and the time

required to actually find it. In particular, we exhibit a hierarchy of polynomial-time algorithms

solving APPROX-CVP, ranging from Babai’s nearest plane algorithm to an actual CVP oracle.

Contributions and summary of the techniques. In Section 3 we introduce our so-called Nearest-
Colattice algorithm. Inspired by Babai’s algorithm, it shows that in practice, we can achieve the

performance of Kannan’s embedding but with a basis which is independent of the target vector.

Denote by T (β) (resp. TCVP(β)) the time required to solve
√
β-Hermite-SVP (resp. exactly solve

CVP) in rank β). Quantitatively, we show that:

Theorem 1.1 (Informal). Let β > 0 be a positive integer and B be a basis of a lattice Λ of rank n > 2β.

After precomputations using a time bounded by T (β)(n + log ∥B∥)O(1), given a target t ∈ ΛR and

under a heuristic on the covering radius of random lattice, the algorithm Nearest-Colattice finds a

vector x ∈ Λ such that

∥x− t∥ ≤ Θ(β)
n
2β covol(Λ)

1
n

in time TCVP(β)(n+ log ∥t∥+ log ∥B∥)O(1).

Furthermore, the structure of the algorithms allow time-memory tradeoff and batch CVP or-

acle to be used.

We believe that this algorithm has been in the folklore for some time, and it is somehow

hinted in ModFalcon’s security analysis [9, Subsection 4.2], but without analysis of the heuristics

introduced.

THE NEAREST-COLATTICE ALGORITHM 3

Our second contribution is an APPROX-CVP algorithm, which gives a time-quality tradeoff

similar to the one given by the BKZ algorithm [33, 21], or variants of it [17, 2]. Note how-

ever that the approximation factor is significantly higher than the corresponding theorems for

APPROX-SVP. Written as a reduction, we prove that, for a γ-HSVP oracle O:

Theorem 1.2 (APPROX-CVPP oracle from APPROX-SVP oracle). Let Λ be a lattice of rank n. Then one

can solve the (n
3
2 γ3)-closest vector problem in Λ, using 2n2 calls to the oracleO during precomputation,

and polynomial-time computations.

Babai’s algorithm requires that the Gram-Schmidt norms do not decrease by too much in the

reduced basis. While this is true for a LLL reduced basis [26], we do not know a way to guarantee

this in the general case. To overcome this difficulty, the proof technique goes as follows: first we

show that it is possible to find a vector within distance
√
nγ
2 λn(Λ) of the target vector, with the

help of a highly-reduced basis. This is not enough, as the target can be very closed compared to

λn(Λ). We treat this peculiar case by finding a short vector in the dual lattice and then directly

compute the inner product of the close vectors with our short dual vector. In the other case,

Banaszczyk’s transference theorem [6] guarantees that λn(Λ) is comparable to the distance to

the lattice, so that we can use our first algorithm directly.

Remark. Based on a result due to Kannan (see for instance [12]) that
√
nγ2 CVP reduces to γ-SVP.

Combined with the reduction from γ2-SVP to γ-HSVP of [27], we get a polynomial time reduction from
√
nγ4-CVP to γ-HSVP. Hence, our result is better whenăn

3
2 γ3 is smaller thană

√
nγ4, i.e., when n < γ.

2. ALGEBRAIC AND COMPUTATIONAL BACKGROUND

In this preliminary section, we recall the notions of geometry of numbers used throughout

this paper, the computational problems related to SVP and CVP, and a brief presentation of some

lattice reduction algorithms solving these problems.

Notations and conventions.

General notations. The bold capitals Z, Q and R refer as usual to the ring of integers and respec-

tively the field of rational and real numbers. Given a real number x, the integral roundings floor,

ceil and round to the nearest integer are denoted respectively by ⌊x⌋, ⌈x⌉, ⌊x⌉. All logarithms are

taken in base 2, unless explicitly stated otherwise.

Computational setting. The generic complexity model used in this work is the random-access

machine (RAM) model and the computational cost is measured in operations.

4 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

2.1. Euclidean lattices and their geometric invariants.

2.1.1. Lattices.

Definition 2.1 (Lattice). A (real) lattice Λ is a finitely generated free Z-module, endowed with a Eu-

clidean norm ∥.∥ on the real vector space ΛR = Λ⊗Z R.

We may omit to write down the norm to refer to a lattice Λ when any ambiguity is removed

by the context. By definition of a finitely-generated free module, there exists a finite family

(v1, . . . , vn) ∈ Λn such that Λ =
⊕n

i=1 viZ, called a basis of Λ. Every basis has the same number

of elements rk(Λ), called the rank of the lattice.

2.1.2. Sublattices, quotient lattice. Let (Λ, ∥ · ∥) be a lattice, and let Λ′ be a submodule of Λ. Then

the restriction of ∥ · ∥ to Λ′ endows Λ with a lattice structure. The pair (Λ′, ∥ · ∥) is called a

sublattice of Λ. In the following of this paper, we restrict ourselves to so-called pure sublattices,

that is such that the quotient Λ⧸Λ′ is torsion-free. In this case, the quotient can be endowed with

a canonical lattice structure by defining:

∥v + Λ′∥Λ/Λ′ = inf
v′∈Λ′

R

∥v − v′∥Λ.

This lattice is isometric to the projection of Λ orthogonally to the subspace of ΛR spanned by Λ′.

2.1.3. On effective lifting. Given a coset v+Λ′ of the quotient Λ⧸Λ′, we might need to find a repre-

sentative of this class in Λ. While any element could be theoretically taken, from an algorithmic

point of view, we shall take an element of norm somewhat small, so that its coefficients remain

polynomial in the input representation of the lattice. An effective solution to do so consists in

using for instance the Babai’s rounding or Babai’s nearest plane algorithms. For completeness pur-

pose we recast here the pseudo-code of such a Lift function using the nearest-plane procedure.

Algorithm 1: Lift (by Babai’s nearest plane)

Input: A lattice basis B = (v1, . . . , vk) of Λ′ in Λ, a vector t ∈ ΛR.
Result: A vector of the class t̃+ Λ′ ∈ Λ.

1 Compute the Gram-Schmidt orthogonalization (v∗1 , . . . , v
∗
k) of B

2 s← −t

3 for i = k downto 1 do
4 s← s−

⌊
⟨s,v∗

i ⟩
∥v∗

i ∥2

⌉
vi

5 end for
6 return t+ s

THE NEAREST-COLATTICE ALGORITHM 5

2.1.4. Orthogonality and algebraic duality. The dual lattice Λ∨ of a lattice Λ is defined as the mod-

ule Hom(Λ,Z) of integral linear forms, endowed with the derived norm defined by

∥φ∥ = inf
v∈ΛR\{0}

|φ(v)|
∥v∥Λ

for φ ∈ Λ∨. By Riesz’s representation theorem, it is isometric to:

{x ∈ ΛR | ⟨x, v⟩ ∈ Z,∀v ∈ Λ}

endowed with the dual of ∥ · ∥Λ.

Let Λ′ ⊂ Λ be a sublattice. Define its orthogonal in Λ to be the sublattice

Λ′
⊥ = {x ∈ Λ∨ : ⟨x,Λ′⟩ = 0}

of Λ∨. It is isometric to
(
Λ⧸Λ′

)∨
, and by biduality Λ′∨

⊥ shall be identified with Λ⧸Λ′.

2.1.5. Filtrations. A filtration (or flag) of a lattice Λ is an increasing sequence of submodules of

Λ, i.e. each submodule is a proper submodule of the next: {0} = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λk = Λ.

If we write the rk(Λi) = di, then we have: 0 = d0 < d1 < d2 < · · · < dk = rk(Λ), A filtration is

called complete if di = i for all i.

uv
µ(Λ)

FIGURE 1. Covering radius

µ(Λ) of a two dimensional

lattice Λ.

2.1.6. Successive minima, covering radius and transference. Let Λ be

a lattice of rank n. By discreteness in ΛR, there exists a vector of

minimal norm in Λ. This parameter is called the first minimum

of the lattice and is denoted by λ1(Λ). An equivalent way to de-

fine this invariant is to see it as the smallest positive real r such

that the lattice points inside a ball of radius r span a space of di-

mension 1. This definition leads to the following generalization,

known as successive minima.

Definition 2.2 (Successive minima). Let Λ be a lattice of rank n. For

1 ≤ i ≤ n, define the i-th minimum of Λ as

λi(Λ) = inf{r ∈ R|dim(span(Λ ∩B(0, r))) ≥ i}.

Definition 2.3. The covering radius a lattice Λ or rank n is defined as

µ(Λ) = max
x∈ΛR

dist(x,Λ).

It means that for any vector of the ambient space x ∈ ΛR there exists a lattice point v ∈ Λ at

distance smaller than µ(Λ).

We now recall Banaszczyk’s transference theorem, relating the extremal minima of a lattice

and its dual:

6 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

Theorem 2.1 (Banaszczyk’s transference theorem [6]). For any lattice Λ of dimension n, we have

1 ≤ 2λ1(Λ
∨)µ(Λ) ≤ n,

implying,

1 ≤ λ1(Λ
∨)λn(Λ) ≤ n.

2.2. Computational problems in geometry of numbers.

2.2.1. The shortest vector problem. In this section, we introduce formally the SVP problem and its

variants and discuss their computational hardness.

Definition 2.4 (γ-SVP). Let γ = γ(n) ≥ 1. The γ-Shortest Vector Problem (γ-SVP) is defined as follows.

Input: A basis (v1, . . . , vn) of a lattice Λ and a target vector t ∈ ΛR.

Output: A lattice vector v ∈ Λ \ {0} satisfying ∥v∥ ≤ γλ1(Λ).

In the case where γ = 1, the corresponding problem is simply called SVP.

Theorem 2.2 (Haviv and Regev [22]). APPROX-SVP is NP-hard under randomized reductions for

every constant approximation factor.

A variant of the problem consists of finding vectors within Hermite-like inequalities.

Definition 2.5 (γ-HSVP). Let γ = γ(n) ≥ 1. The γ-Hermite Shortest Vector Problem (γ-HSVP) is

defined as follows.

Input: A basis (v1, . . . , vn) of a lattice Λ.

Output: A lattice vector v ∈ Λ \ {0} satisfying ∥v∥ ≤ γ covol(Λ)
1
n .

There exists a simple polynomial-time dimension-preserving reduction between these two

problems, as stated by Lovász in [27, 1.2.20]:

Theorem 2.3. One can solve γ2-SVP using 2n calls to a γ-HSVP oracle and polynomial time.

This can be slightly improved in case the HSVP oracle is built from a HSVP oracle in lower

dimension [2].

2.2.2. An oracle for γ-HSVP. We note T (β) a function such that we can solve O
(√

β
)
-HSVP in time

at most T (β) times the input size. We have the following bounds on T , depending on if we are

looking at an algorithm which is:

Deterministic: T (β) = (4 + o(1))β/2, proven by Micciancio and Voulgaris in[28];

THE NEAREST-COLATTICE ALGORITHM 7

Randomized: T (β) = (4/3 + o(1))β/2 , introduced by Wei, Liu and Wang in [36];

Heuristic: T (β) = (3/2 + o(1))β/2 in [7] by Becker, Ducas, Gama, Laarhoven.

There also exists variants for quantum computers [25], and time-memory tradeoffs, such as [23].

By providing a back-and-forth strategy coupled with enumeration in the dual lattice, the self

dual block Korkine-Zolotarev (DBKZ) algorithm provides an algorithm better than the famous BKZ

algorithm.

Theorem 2.4 (Micciancio and Walter [29]). There exists an algorithm ouputting a vector v of a lattice

Λ satisfying:

∥v∥ ≤ β
n−1

2(β−1) · covol(Λ) 1
n .

Such a bound can be achieved in time (n + log ∥B∥)O(1)T (β), where B is the integer input basis repre-

senting Λ.

Proof. The bound we get is a direct consequence of [29, Theorem 1]. We only replaced the

Hermite constant γβ by an upper bound in O(β). ■

A stronger variant of this estimate is heuristically true, at least for “random” lattices, as it is

suggested by the Gaussian Heuristic in [29, Corollary 2]. Under this assumption, one can bound

not only the length of the first vector but also the gap between the covolumes of the filtration

induced by the outputted basis.

Theorem 2.5. There exists an algorithm ouputting a complete filtration of a lattice Λ satisfying:

covol(Λi⧸Λi−1
) ≈ Θ(β)

n+1−2i
2(β−1) covol(Λ)

1
n

Such a bound can be achieved in time (n+ log ∥B∥)O(1)T (β), where B is the integer-valued input basis.

Further, we have:

Θ(
√
β) covol

1
β

(
Λn⧸Λn−β

)
≈ covol

(
Λn−β+1⧸Λn−β

)
.

2.3. The closest vector problem. In this section we introduce formally the CVP problem and its

variants and discuss their computational hardness.

Definition 2.6 (γ-CVP). Let γ = γ(n) ≥ 1. The γ-Closest Vector Problem (γ-CVP) is defined as follows.

Input: A basis (v1, . . . , vn) of a lattice Λ and a target vector t ∈ Λ⊗R.

Output: A lattice vector v ∈ Λ satisfying ∥x− t∥ ≤ γminv∈Λ ∥v − t∥.

In the case where γ = 1, the corresponding problem is called CVP.

Theorem 2.6 (Dinur, Kindler and Shafra [11]). n
c

log log n -APPROX-CVP is NP-hard for any c > 0.

8 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

We let TCVP(β) be such that we can solve CVP in dimension β in running time bounded by

TCVP(β) times the size of the input. Hanrot and Stehlé proved ββ/2+o(β) with polynomial mem-

ory [21]. Sieves can provably reach (2 + o(1))β with exponential memory [1]. More importantly

for this paper, heuristic sieves can reach (4/3 + o(1))β/2 for solving an entire batch of 20.058β

instances [13].

3. THE NEAREST COLATTICE ALGORITHM

We aim at solving the γ−APPROX-CVP by recursively exploiting the datum of a filtration

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ

via recursive approximations. The central object used during this reduction is the nearest colattice

relative to a target vector.

In this section, and the next one, we assume that the size of the bases is always small, essen-

tially as small as the input basis. This is classic, and can be easily proven.

3.1. Nearest colattice to a vector.

Definition 3.1. Let 0 → Λ′ → Λ → Λ⧸Λ′ → 0 be a short exact sequence of lattices, and set t ∈ ΛR a

target vector. A nearest Λ′-colattice to t is a coset v̄ = v+Λ′ ∈ Λ⧸Λ′ which is the closest to the projection

of t in ΛR⧸Λ′
R

, i.e. such that:

v̄ = argmin
v∈Λ

∥(t− v) + Λ′∥ΛR/Λ′
R

This definition makes sense thanks to the discreteness of the quotient lattice Λ⧸Λ′ in the real

vector space ΛR⧸Λ′
R

.

Exemple. To illustrate this definition, we give two examples in dimension 3, of rank 1 and 2 nearest

colattices. Set Λ a rank 3 lattice, and fix Λ1 and Λ2 two pure sublattices of respective rank 1 and 2.

Denote by πi the canonical projection onto the quotient Λ⧸Λi
, which is of dimension 3− i for i ∈ {1, 2}.

The Λi-closest colattice to t, denoted by vi + Λi is such that πi(vi) is a closest vector to πi(t) in the

corresponding quotient lattice. Figures (A) and (B) respectively depict these situations.

Remark. A computational insight on Definition 3.1 is to view a nearest colattice as a solution to an

instance of exact-CVP in the quotient lattice Λ⧸Λ′.

Taking the same notations as in Definition 3.1, let us project t orthogonally onto the affine

space v +Λ′
R, and take w a closest vector to this projection. The vector w is then relatively close

to t. Let us quantify its defect of closeness towards an actual closest vector to t:

THE NEAREST-COLATTICE ALGORITHM 9

Λ/Λ2

t

v + Λ2

Λ2

t+ Λ2

0

π2(v)
π2(t)

(A) The Λ2-nearest colattice v + Λ2 relative to t, in green.

Λ1

t

π1(t)

t+ Λ1v + Λ1

Λ⧸Λ1

π1(v)0

(B) The Λ1-nearest colattice v + Λ1 relative to t.

Proposition 3.1. With the same notations as above:

∥t− w∥2 ≤ µ
(
Λ⧸Λ′

)2
+ µ(Λ′)

2

Proof. Clear by Pythagoras’ theorem. ■

By definition of the covering radius, we then have:

Corollary 3.1 (Subadditivity of the covering radius over short exact sequences). Let 0 → Λ′ →
Λ→ Λ⧸Λ′ → 0 be a short exact sequence of lattices. Then we have:

µ(Λ)2 ≤ µ
(
Λ⧸Λ′

)2
+ µ(Λ′)

2

This inequality is tight, as being an equality when there exists a sublattice Λ′′ such that Λ′ ⊕
Λ′′ = Λ and Λ′′ ⊆ Λ′

⊥.

3.2. Recursion along a filtration. Let us now consider a filtration

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ

and a target vector t ∈ ΛR. Repeatedly applying Corollary 3.1 along the subfiltrations 0 ⊂ Λi ⊂
Λi+1, yields a sequence of inequalities µ(Λi+1)

2 − µ(Λi)
2 ≤ µ(Λi+1/Λi)

2. The telescoping sum

now gives the relation:

µ(Λ)2 ≤
k∑

i=1

µ
(
Λi+1⧸Λi

)2
.

This formula has a very natural algorithmic interpretation as a recursive oracle for approx-CVP:

10 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

(1) Starting from the target vector t, we solve the CVP instance corresponding to π(t) in the

quotient Λk⧸Λk−1
with π the canonical projection onto this quotient to find v+Λk−1 the

nearest Λk−1-colattice to t.

(2) We then project t orthogonally onto v + (Λk−1 ⊗Z R). Call t′ this vector.

(3) A recursive call to the algorithm on the instance (t′−v,Λ0 ⊂ · · · ⊂ Λk−1)) yields a vector

w ∈ Λ2.

(4) Return w + v.

Its translation in pseudo-code is given in an iterative manner in the algorithm Nearest-
Colattice.

Algorithm 2: Nearest-Colattice

Input: A filtration {0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ, a target t ∈ ΛR

Result: A vector in Λ close to t.

1 s← −t

2 for i = k downto 1 do
3 s← s− Lift(argminh∈Λi/Λi−1

∥v − h∥)

4 end for
5 return t+ s

Proposition 3.2. Let B be a basis of a lattice Λ of rank n. Given a target t ∈ ΛR, the algorithm

Nearest-Colattice finds a vector x ∈ Λ such that

∥x− t∥2 ≤
k∑

i=1

µ
(
Λi+1⧸Λi

)2
in time TCVP(β)(n + log ∥t∥ + log ∥B∥)O(1), where β is the largest gap of rank in the filtration: β =

maxi(rk(Λi+1)− rk(Λi)).

Proof. The bound on the quality of the approximation is a direct consequence of the discussion

conducted before. The running time bound derives from the definition of TCVP and on the fact

that the Lift operations can be conducted in polynomial time. ■

Remark (Retrieving Babai’s algorithm). In the specific case where the filtration is complete, that is to

say that rk(Λi) = i for each 1 ≤ i ≤ n, the Nearest-Colattice algorithm coincides with the so-called

Babai’s nearest plane algorithm. In particular, it recovers a vector at distance√√√√ n∑
i=1

µ
(
Λi⧸Λi−1

)2
=

1

2

√√√√ n∑
i=1

covol
(
Λi⧸Λi−1

)2
,

THE NEAREST-COLATTICE ALGORITHM 11

by using that for each index i, we have µ
(
Λi⧸Λi−1

)
= 1

2 covol
(
Λi⧸Λi−1

)
as these quotients are one-

dimensional.

The bound given in Proposition 3.2 is not easily instantiable as it requires to have access to

the covering radius of the successive quotients of the filtration. However, under a mild heuristic

on random lattices, we now exhibit a bound which only depends on the parameter β and the

covolume of Λ.

3.3. On the covering radius of a random lattice. In this section we prove that the covering

radius of a random lattice behaves essentially in
√

rk(Λ).

In 1945, Siegel [34] proved that the projection of the Haar measure of SLn(R) over the quo-

tient SLn(R)/SLn(Z) is of finite mass, yielding a natural probability distribution νn over the

moduli spaceLn of unit-volume lattices. By construction this distribution is translation-invariant,

that is, for any measurable set S ⊆ Ln and all U ∈ SLn(Z), we have νn(S) = νn(SU). A random

lattice is then defined as a unit-covolume lattice in Rn drawn under the probability distribution

νn.

We first recall an estimate due to Rogers [32], giving the expectation1 of the number of lattice

points in a fixed set.

Theorem 3.1 (Rogers’ average). Let n ≤ 4 be an integer and ρ be the characteristic function of a Borel

set C of Rn whose volume is V , centered at 0. Then:

0 ≤
∫
Ln

ρ(Λ \ {0})dνn(Λ)− 2e−V/2
∞∑
r=0

r

r!
(V/2)r

≤ (V + 1)

(
6

(√
3

4

)n

+ 105 · 2−n

)
.

This allows to prove that the first minimum of a random lattice is greater than a multiple of
√
n.

Lemma 3.1. Let Λ be a random lattice of rank n. Then, with probability 1− 2−Ω(n), λ1(Λ) > c
√
n for

a universal constant c > 0.

Proof. Consider the ball C of volume 0.99n. It has a radius lower bounded by c
√
n. By Theo-

rem 3.1, the expectation of the number of lattice points in C is at most

128

(
3

4

)n
2

(V + 1) + V ∈ (1 + o(1))V.

1The result proved by Rogers is actually more general and bounds all the moment of the enumerator of lattice points.

For the purpose of this work, only the first moment is actually required.

12 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

This estimate thus bounds the probability that there exists a non-zero lattice vector in C by

1− 2−Ω(n), using Markov’s inequality. ■

Using the transference theorem, we then derive the following estimate on the covering radius

of a random lattice:

Theorem 3.2. Let Λ be a random lattice of rank n. Then, with probability 1− 2−Ω(n), µ(Λ) < d
√
n for

a universal constant d.

Proof. First remark that the dual lattice Λ∨ follows the same distribution. Hence, using the

estimate of Lemma 3.1, we know that with probability 1− 2−Ω(n), λ1(Λ
∨) > c

√
n. Banaszczyk’s

transference theorem indicates that in this case,

µ(Λ) ≤ n

λ1(Λ∨)
≤
√
n

c
,

concluding the proof. ■

This justifies the following heuristic:

Heuristic 3.1. In algorithm Nearest-Colattice, for any index i, we have µ
(
Λi+1⧸Λi

)
≤ cλ1

(
Λi+1⧸Λi

)
for some universal constant c.

The Gaussian heuristic suggests that “almost all” targets t are at distance (1 + o(1))λ1(Λ), so

that for practical purpose in the analysis we can take c = 1 in Heuristic 3.1.

3.4. Quality of the algorithm on random lattices.

Theorem 3.3. Let β > 0 be a positive integer and B be a basis of a lattice Λ of rank n > 2β. After

precomputations using a time bounded by T (β)(n + log ∥B∥)O(1), given a target t ∈ ΛR and under

Heuristic 3.1, the algorithm Nearest-Colattice finds a vector x ∈ Λ such that

∥x− t∥ ≤ Θ(β)
n
2β covol(Λ)

1
n

in time TCVP(β)(n+ log ∥t∥+ log ∥B∥)O(1).

Proof. We start by reducing the basis B of Λ using the DBKZ algorithm, and collect the vectors

in blocks of size β, giving a filtration:

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ,

for k =
⌈
n
β

⌉
and rk

(
Λi+1⧸Λi

)
= β for each index i except the penultimate one, of rank n −

β
⌊
n
β

⌋
. We define li as rk

(
Λi+1⧸Λi

)
. By Theorem 2.5 and finite induction in each block using the

THE NEAREST-COLATTICE ALGORITHM 13

multiplicativity of the covolume over short exact sequences, we have for i < k − 1

covol
(
Λi+1⧸Λi

) 1
li ≈ covol(Λ)

1
n

iβ+li−1∏
j=iβ

Θ(β)
n+1−2j
2(β−1)

 1
li

= Θ(β)
n+2−2iβ−li

2(β−1) covol(Λ)
1
n .

We also have

Θ(
√

β) covol
(
Λk⧸Λk−1

)1/β
≈ Θ(β)

n+1−2(n−β)
2(β−1) covol

1
n Λ

so that the previous approximation is also true for i = k−1. Using Heuristic 3.1 and Minkowski’s

first theorem, we can estimate the covering radius of this quotient as:

µ
(
Λi+1⧸Λi

)
≤ Θ(

√
li)Θ(β)

n+2−2iβ−li
2(β−1) covol

1
n Λ.

Using Proposition 3.2, now asserts that Nearest-Colattice returns a vector at distance from t

bounded by:

covol(Λ)
1
n

k∑
i=0

Θ(
√

li)Θ(β)
n+2−2iβ−li

2(β−1) = Θ(β)
n

2β−2 covol(Λ)
1
n

where the last equality stems from the condition n ≥ 2β, so that only the first term is significant.

■

Note that in the algorithm, all lattices depend only on Λ, not on the targets. Therefore, it is

possible to use CVP algorithms after precomputations. These algorithms are significantly faster;

we refer to [13] for heuristic ones and to [10, 35] for proven approximation algorithms.

4. PROVEN APPROX-CVP ALGORITHM WITH PRECOMPUTATION

In all of this section, let us fix an oracle O, solving the γ-HSVP. We solve APPROX-CVP with

preprocessing from the oracle O.

Theorem 4.1 (APPROX-CVPP oracle from HSVP oracle). Let Λ be a lattice of rank n. Then one can

solve the (n
3
2 γ3)-closest vector problem in Λ, using 2n2 calls to the oracleO during precomputation, and

polynomial time computations.

The first step of this reduction consists in proving that we can find a lattice point at a distance

roughly λn(Λ).

Theorem 4.2. Let Λ be a lattice of rank n and t ∈ Λ ⊗ R a target vector, then one can find a lattice

vector c ∈ Λ satisfying

∥c− t∥ ≤
√
nγ

2
λn(Λ),

using n calls to the oracle O during precomputation, and polynomial time computations.

14 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

Proof. We aim at constructing a complete filtration

{0} ⊂ Λ1 ⊂ · · · ⊂ Λn = Λ

of the input lattice Λ such that for any index 1 ≤ i ≤ n− 1, we have:

covol
(
Λi⧸Λi−1

)
≤ γλn(Λ).

We proceed inductively:

• By a call to the oracle O on the lattice Λ, we find a vector b1. Set Λ1 = b1Z the corre-

sponding sublattice.

• Suppose that the filtration is constructed up to index i. Then we call the oracle O on the

quotient sublattice Λ⧸Λi
(or equivalently on the projection of Λ orthogonally to Λi), and

lift the returned vector using the lift function in v ∈ Λ. Eventually we set Λi+1 = Λi⊕vZ.

At each index, we have by construction λn−i+1

(
Λ⧸Λi

)
≤ λn(Λ). As such, covol

(
Λ⧸Λi

)
≤

λn(Λ)
n−i+1, and, eventually, we have for each index i:

covol
(
Λi⧸Λi−1

)
≤ γ · λn(Λ).

As stated in Section 3.2, Babai’s algorithm on the point t returns a lattice vector c ∈ Λ such

that:

∥c− t∥ ≤

√√√√ n∑
i=1

µ
(
Λi⧸Λi−1

)2
≤
√
nγλn(Λ)

2
.

■

Remark (On the quality of this decoding). For a random lattice, we expect λn(Λ) ≈
√
n covol(Λ)

1
n ,

so that the distance between the decoded vector and the target is only a factor γ times larger than the

guaranteed output of the oracle.

We can now complete the reduction:

Proof of Theorem 4.1. Let Λ be a rank n lattice. Without loss of generality, we might assume

that the norm ∥.∥ of Λ coincides with its dual norm, so that the dual Λ∨ can be isometrically

embedded in ΛR. We first find a non-zero vector in the dual lattice: c ∈ Λ∨, where ∥c∥ ≤
γ2λ1(Λ

∨) using Lovász’s reduction stated in Theorem 2.3 on the oracle O. Define v ∈ Λ and

e ∈ Λ ⊗R to satisfy t = v + e with ∥e∥ minimal. We now have two cases, depending on how

large is the error term e:

Case ∥c∥∥e∥ ≥ 1/2 (large case): Then, by pluging Banaszczyk’s transference inequality to the

bound on ∥c∥we get:

∥e∥ ≥ 1

2γ2λ1(Λ∨)
≥ λn(Λ)

2nγ2
.

THE NEAREST-COLATTICE ALGORITHM 15

Thus, we can use Theorem 4.2 to solve APPROX-CVP with approximation factor equal to:
√
nγ

2

(
1

2nγ2

)−1

= n
3
2 γ3.

Case ∥c∥∥e∥ < 1/2 (small case):

Then, we have by linearity ⟨c, t⟩ = ⟨c, v⟩ + ⟨c, e⟩. Hence, by the Cauchy-Schwarz inequality and

the assumption on ∥c∥∥e∥we can assert that:

⌊⟨c, t⟩⌉ = ⟨c, v⟩.

Let Λ′ be the projection of Λ over the orthogonal space to c and denote by π the corresponding

orthogonal projection.

cR

(cR)⊥

π(t)

π(v)

D

t

v

⟨
c
,
t⟩

⟨
c
,
t⟩

−
12

⟨
c
,
t⟩

+
12

⟨
c
,
v⟩

⟨
c
,
v⟩

−
1

⟨
c
,
v⟩

+
1

p̃ π−1(p̃)

FIGURE 2. Illustration of the situation depicted

in the proof, in the two dimensional case.

Let us prove that π(v) is a closest vector

of π(t) in Λ′. To do so, let us take p̃ a

shortest vector π(t) in Λ. We now look

at the fibre (in Λ) above p̃ and take the

closest element p to t in this set. Then by

Pythagoras’ theorem, p is an element of

the intersection of π−1(p̃) with the convex

body D =
{
x | |⟨c, x⟩| < 1

2

}
. As the vector

c belongs to the dual of Λ, we have that

for any p1, p2 ∈ π−1(p̃), ⟨p1 − p2, c⟩ ∈ Z,

so that π−1(p̃) ∩ D is of cardinality

one. Write p for this point. Then,

⟨p, c⟩ = ⟨v, c⟩, as |⟨p− v, c⟩| < 1/2 and

is an integer. Now remark that by min-

imality of ∥v − t∥, we have by Pythago-

ras’ theorem that v = p, implying that

π(v) = p̃.

By induction, we find w ∈ Λ such that

∥π(w − t)∥ ≤ n3/2γ3∥π(v − t)∥

and since ⟨c, w − t⟩ = ⟨c, v − t⟩we obtain

∥w − t∥ ≤ n3/2γ3∥v − t∥.

■
Overall, we get the following corollary by using the Micciancio-Voulgaris algorithm for the or-

acle O:

16 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

Corollary 4.1. We can solve βO(n
β)-APPROX-CVP deterministically in time bounded by 2β times the

size of the input.

Remark. Using exactly the scheme proof scheme, we can refine the approximation factor to a n3/2γSγ

by using a separate γS-SVP oracle instead of using γ-HSVP as a γ2-SVP oracle.

5. CRYPTOGRAPHIC PERSPECTIVES

In cryptography, the BOUNDED DISTANCE DECODING (BDD) problem2 has a lot of impor-

tance, as it directly relates to the celebrated Learning With Error problem (LWE) [31]. This latter

problem can be reduced to APPROX-CVP, however our theoretical reduction with HSVP has a

loss which is too large to be competitive.

In the so-called GPV framework [18], instantiated in the DLP cryptosystem [14] and its follow-

ups Falcon [16], ModFalcon [9], a valid signature is a point close to a target, which is the hash of

the message. Hence, forging a signature boils down to finding a close vector to a random target.

Our first (heuristic) result implies that, once a reduced basis has been found, forging a message

is relatively easy. Previous methods such as in [16] used Kannan’s embedding [24] so that the

cost given only applies for one forgery, whereas a batch forgery is possible for roughly the same

cost.

The same remark applies for practically solving the BDD problem, and indeed the LWE prob-

lem. Once a highly reduced basis is found, it is enough to compute a CVP on the tail of the basis,

and finish with Babai’s algorithm. More precisely, by using the same notations an exploiting the

proof of Theorem 3.3, a sufficient condition for decoding will be:

∥π(e)∥ ≤ θ(β)
2β−n
2β covol(Λ)

1
n ,

where, π is the orthogonal projection onto Λ⧸Λk
and β is the rank of this latter lattice.

This trick seems to have been in the folklore for some time, and is the reason given by

NewHope [4] designers for selecting a random “a”, which corresponds to a random lattice (where

the authors of [4] claim that Babai’s algorithm is enough, but it seems to be practically true in

general for an extremely well reduced basis, i.e. with more precomputations performed).

ACKNOWLEDGMENTS

This work was done while the authors were visiting the Simons Institute for the theory of

computing in February 2020. They also thanks the anonymous reviewers for their insightful

comments on this work.

2This problem being defined as finding the closest lattice vector of a target, provided it is within a fraction of λ1(Λ).

THE NEAREST-COLATTICE ALGORITHM 17

REFERENCES

[1] D. Aggarwal, D. Dadush, and N. Stephens-Davidowitz. Solving the closest vector problem

in 2n time - the discrete Gaussian strikes again! In 56th FOCS. IEEE Computer Society

Press. 2015.

[2] D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz. Slide reduction, revisited—

filling the gaps in SVP approximation. arXiv preprint arXiv:1908.03724, 2019.

[3] M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and the closest lattice

vector problem. In Proceedings 17th IEEE Annual Conference on Computational Complexity.

IEEE, 2002.

[4] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A new

hope. In USENIX Security 2016.

[5] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,

6(1), 1986.

[6] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.

Mathematische Annalen, 296(1), 1993.

[7] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor

searching with applications to lattice sieving. In 27th SODA. ACM-SIAM, 2016.

[8] J. Blömer and S. Naewe. Sampling methods for shortest vectors, closest vectors and suc-

cessive minima. Theoretical Computer Science, 410(18) 2009.

[9] C. Chuengsatiansup, T. Prest, D. Stehlé, A. Wallet, and K. Xagawa. Modfalcon: compact

signatures based on module NTRU lattices. IACR Cryptology ePrint Archive, 2019.

[10] D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector problem with a

distance guarantee. In 2014 IEEE 29th Conference on Computational Complexity (CCC), IEEE,

2014.

[11] I. Dinur, G. Kindler, and S. Safra. Approximating-CVP to within almost-polynomial factors

is np-hard. In Proceedings 39th Annual Symposium on Foundations of Computer Science. IEEE,

1998.

[12] C. Dubey, and T .Holenstein. Approximating the closest vector problem using an approxi-

mate shortest vector oracle Approximation, Randomization, and Combinatorial Optimiza-

tion. Algorithms and Techniques. 2011

[13] L. Ducas, T. Laarhoven, and W. P. van Woerden. The randomized slicer for CVPP: sharper,

faster, smaller, batchier. Cryptology ePrint, Report 2020/120.

[14] L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based encryption over NTRU

lattices. In ASIACRYPT 2014. Springer 2014.

18 THOMAS ESPITAU⋇ AND PAUL KIRCHNER⋆

[15] F. Eisenbrand, N. Hähnle, and M. Niemeier. Covering cubes and the closest vector problem.

In the 27th symposium on Computational geometry, 2011.

[16] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset,

G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-fourier lattice-based compact signatures

over NTRU. Submission to the NIST’s post-quantum cryptography standardization process, 2018.

[17] N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In

40th ACM STOC. ACM Press, 2008.

[18] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-

graphic constructions. In 40th ACM STOC. ACM Press, 2008.

[19] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vec-

tors is not harder than approximating closest lattice vectors. Information Processing Letters,

71(2) 1999.

[20] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical

systems. In CRYPTO 2011. Springer, 2011.

[21] G. Hanrot and D. Stehlé. Improved analysis of kannan’s shortest lattice vector algorithm.

In CRYPTO 2007. Springer, 2007.

[22] I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within

almost polynomial factors. In 39th ACM STOC. ACM Press, 2007.

[23] G. Herold, E. Kirshanova, and T. Laarhoven. Speed-ups and time-memory trade-offs for

tuple lattice sieving. In PKC 2018. Springer, 2018.

[24] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of

operations research, 12(3) 1987.

[25] T. Laarhoven, M. Mosca, and J. Van De Pol. Finding shortest lattice vectors faster using

quantum search. Designs, Codes and Cryptography, 77(2-3) 2015.

[26] A. K. Lenstra, H. W. J. Lenstra, and L. Lovász. Factoring polynomials with rational coeffi-

cients. Math. Ann., 261 1982.

[27] L. Lovász. An algorithmic theory of numbers, graphs, and convexity. SIAM, 1986.

[28] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector

problem. In 21st SODA. ACM-SIAM, 2010.

[29] D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. In EURO-

CRYPT 2016. Springer, 2016.

[30] P. Q. Nguyen and B. Vallée. The LLL algorithm. Springer, 2010.

[31] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal

of the ACM (JACM), 56(6) 2009.

[32] C. A. Rogers et al. Mean values over the space of lattices. Acta mathematica, 94 1955.

THE NEAREST-COLATTICE ALGORITHM 19

[33] C. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Com-

put. Sci., 53 1987.

[34] C. L. Siegel. A mean value theorem in Geometry of Numbers. Annals of Mathematics, 46(2)

1945.

[35] N. Stephens-Davidowitz. A time-distance trade-off for GDD with preprocessing—

instantiating the DLW heuristic. arXiv preprint arXiv:1902.08340, 2019.

[36] W. Wei, M. Liu, and X. Wang. Finding shortest lattice vectors in the presence of gaps. In

CT-RSA 2015. Springer, 2015.

⋇ NTT CORPORATION, TOKYŌ, JAPAN, ⋆ RENNES UNIVERSITY, RENNES, FRANCE

Email address: t.espitau@gmail.com, paul.kirchenr@irisa.fr

	1. Introduction
	Lattices, CVP, SVP
	On CVP-solving algorithms
	Contributions and summary of the techniques

	2. Algebraic and computational background
	Notations and conventions
	2.1. Euclidean lattices and their geometric invariants
	2.2. Computational problems in geometry of numbers
	2.3. The closest vector problem

	3. The nearest colattice algorithm
	3.1. Nearest colattice to a vector
	3.2. Recursion along a filtration
	3.3. On the covering radius of a random lattice
	3.4. Quality of the algorithm on random lattices

	4. Proven approx-cvp algorithm with precomputation
	5. Cryptographic perspectives
	Acknowledgments
	References

