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Abstract. Up to isomorphism, every simple principally polarized abelian
variety over C of dimension 3 is the Jacobian of a smooth projective curve
of genus 3. Furthermore, this curve is either a hyperelliptic curve or a plane
quartic. To define hyperelliptic class polynomials, we note that given a hy-
perelliptic Jacobian with CM, all principally polarized abelian varieties that
are Galois conjugated to it are hyperelliptic. Using Shimura’s reciprocity law,
we then compute approximations of the invariants of the initial curve, as well
as their Galois conjugates. We show examples of class polynomials computed
using this method for the Shioda and Rosenhain invariants.

1. Introduction

Shimura and Taniyama’s complex multiplication theory shows that it is possible
to construct certain abelian extensions of CM fields by computing the values of
Siegel modular functions evaluated at points with CM in the Siegel upper half-
space. In addition, the effective computation of these modular forms makes it
possible to compute models for CM curves, and also to effectively construct the
related class fields.

For example, in genus one, the field of modular functions of level 1 is generated
by the j-invariant. It is well known that the j-invariant of an elliptic curve with
endomorphism ring isomorphic to OK generates the Hilbert class field of K. In the
genus 2 case, the field of Siegel modular functions of level 1 is generated by the
absolute Igusa invariants [11]. Similarly, when evaluated at CM points, their values
give invariants of hyperelliptic curves whose Jacobian has CM, and the class field
equations, known as class polynomials, are recovered by computing these invari-
ants for all curves with CM by the field [22, 8]. In genus 3, every simple principally
polarized abelian variety (p.p.a.v.) over C of dimension 3 is isomorphic to the Ja-
cobian of a complete smooth projective curve. Since two different sets of invariants
for both genus 3 hyperelliptic curves and plane quartics are known in the literature,
it is more difficult to tackle the problem of computing class polynomials for genus
3.

In [27, Lemma 4.5], Weng shows that a simple principally polarized abelian
threefold with CM by a sextic CM field containing Q(i) is a hyperelliptic Jacobian.
In the same paper, Weng gives an algorithm to compute hyperelliptic curves whose
Jacobian has CM by a sextic field containing Q(i). In later work, Balakrishnan,
Ionica, Lauter, and Vincent [1] give an algorithm which removes this restriction on
the CM field, by performing a heuristic check. This heuristic relies on Mumford’s
Vanishing Criterion [16, 18], which states that a genus 3 curve is hyperelliptic if and
only if one of the 36 even theta constants is 0. Given a period matrix with CM by a
sextic CM field, the algorithm in [1] first computes the theta constants with enough
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precision to see if there is one which approximates zero, and then computes the
Rosenhain invariants. These invariants generate a certain subfield of the ray class
field of modulus 2 over the reflex field Kr of K and by approximating them with
high precision, we can recognize them as algebraic numbers. This method has its
limitations, since as soon the degree of the class field over which the Rosenhains are
defined is large (≥ 500), the complexity of the algebraic dependance computation
becomes a bottleneck. From a concrete point of view, only examples of CM fields
with class number 1 were considered in [1].

In this paper, we extend the work in [1, 2] by considering the action of the
Galois group Gal(CMm(Kr)/Kr), with CMm(Kr) a subfield of the ray class field
of a given modulus m on a hyperelliptic CM point.

Once we identify a hyperelliptic curveX by verifying computationally and heuris-
tically the Vanishing Criterion condition, we compute the Galois conjugates of its
invariants via Shimura’s reciprocity law. With these in hand, we compute the
Shioda and Rosenhain class polynomials given by:

HR
Kr,i(t) =

∏
σ

(t− λσi ) and HS
Kr,j(t) =

∏
σ

(t− Shiσj ),(1.1)

where λi (1 ≤ i ≤ 5) and Shij (1 ≤ j ≤ 9) denote the Rosenhain and Shioda
invariants (introduced in Section 2) and σ ∈ Gal(CMm(Kr)/Kr), with m = (2) for
the product in HR

Kr,i and m = (1) for the product in HS
Kr,j .

Aiming to implement our results in SageMath [25] and compute examples for the
class polynomials of the Rosenhain and Shioda invariants, we also propose some
methods to construct the reflex field associated to a given CM type, the typenorm,
as well as the image of the typenorm as a subgroup in the Shimura class group.
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an early version of this manuscript and to the ANTS conference reviewers for their
numerous comments. The authors acknowledge financial support from the FACE
foundation.

2. Background

This section briefly recalls the necessary background and notation on complex
abelian varieties, theta functions and the Vanishing Criterion which fully char-
acterizes hyperelliptic principally polarized abelian varieties. We also define the
invariants of hyperelliptic curves that we will be computing in the next sections.

2.1. Principally polarized abelian varieties over C and period matrices.
Let A = Cg/Λ, with Λ a full lattice in Cg and E a Riemann form for (Cg,Λ).
A principally polarized abelian variety defined over C is isomorphic to a complex
torus admitting a Riemann form ( [17, Ch. 1]). Therefore, we will write (A,E) to
denote a p.p.a.v. over C. We consider a symplectic basis for the lattice Λ, by which
we mean the action of E on Λ with respect to this basis is given by the matrix

Jg =

(
0 Ig
−Ig 0

)
,(2.1)

where Ig is the g × g identity matrix.
Let Ω = [Ω1 | Ω2] be the g × 2g matrix whose columns are the elements of this

symplectic basis. By taking Z = Ω1Ω−1
2 we obtain a g× g matrix Z called a period
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matrix, i.e. an element of the Siegel upper half-space

Hg = {Z ∈Mg(C) : ZT = Z, Im(Z) > 0}.
We note that the lattice Λ can be written as ZZg + Zg.

There is an action on Hg by the symplectic group

Sp2g(Z) = {M ∈ GL2g(Z) : MTJgM = Jg},

where Jg is as in Equation (2.1), given by

(2.2) M =

(
a b
c d

)
: Z 7−→M.Z = (aZ + b)(cZ + d)−1,

where on the right hand side multiplication is the usual matrix multiplication.
The association of Z to (Cg/(ZZg+Zg), E) gives a bijection between Sp2g(Z)\Hg

and the moduli space of p.p.a.v. of dimension g over C. In the remainder of this
paper, we will denote this moduli space by Ag.

2.2. Theta functions. For ω =

(
ω1

ω2

)
∈ R2g and Z ∈ Hg, we define the following

important theta series:

(2.3) ϑ(ω,Z) =
∑
n∈Zg

exp(πi(ω1 + n)tZ(ω1 + n) + 2πi(ω1 + n)tω2)).

Given a period matrix Z ∈ Hg, we obtain a set of coordinates on the torus

A = Cg/(Zg + ZZg) in the following way: a vector
(
ω1

ω2

)
∈ R2g corresponds to

the point ω2 +Zω1 ∈ Cg/(ZZg +Zg). Under this identification, points of the form
ξ = Zξ1 + ξ2 for ξ1, ξ2 ∈ (1/2)Zg yield 2-torsion points on A. This motivates the
following definition:

(2.4) ϑ[ξ](Z) = exp(πiξt1Zξ1 + 2πiξt1ξ2)ϑ(ξ, Z),

with ξ =

(
ξ1
ξ2

)
∈ (1/2)Z2g. In this context, ξ is called a theta characteristic, and the

value ϑ[ξ](Z) is called a theta constant. We call ξ a even (odd) theta characteristic
if e∗(ξ) = 1 (e∗(ξ) = −1 respectively), where e∗(ξ) = exp(4πiξT1 ξ2). If ξ is an
even (odd) theta characteristic we call ϑ[ξ](Z) an even theta constant (odd theta
constant respectively).

It can be easily shown that all odd theta constants are 0. We note that in
the case where g = 3 there are exactly 36 even classes of theta characteristics in
(1/2)Z6/Z6. We recall there is an action of the symplectic group Sp2g(Z) on theta
characteristics ξ ∈ (1/2)Z2g defined by:

(2.5) M.ξ = M∗ξ +
1

2
δ0,

with M =

(
a b
d d

)
∈ Sp2g(Z), M∗ = (M−1)t, and δ0 =

(
(ctd)0

(atb)0

)
a column vector

where (ctd)0 and (atb)0 are the diagonal vectors of ctd and atb, respectively. In
this context, given a period matrix Z ∈ Hg, we briefly recall the transformation
formula on the theta constants [3, Formula 8.6.1]:

(2.6) ϑ[M.ξ](M.Z) = ζ(M) exp(k(M, ξ))
√

det(cZ + d) ϑ[ξ](Z),

where
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(1) ζ(M) is an eighth root of unity depending on M , having the same sign
ambiguity as

√
det(cZ + d).

(2) k(M, ξ) = −πi
(
ξt1b

tdξ1 + ξt2a
tcξ2 − 2ξt1b

tcξ2 − 2 (dξ1 − cξ2)
t (
atb
)

0

)
.

For more details on ζ(M), we refer the reader to [3, Exercice 8.11(9)].

2.3. The Rosenhain invariants. LetMg be the moduli space of smooth projec-
tive curves of genus g. By a theorem of Torelli [15, Thm. 12.1], there is an injective
map Mg ↪→ Ag. Inside Mg we further restrict our attention to the subspace of
hyperelliptic curvesMhyp

g . We will be interested in the effective reconstruction of
a moduli point inMhyp

g from a point in Ag, whenever this point is in the image of
Mhyp

g ↪→ Ag.
Let X be a hyperelliptic curve of genus g over C defined by an equation of the

form y2 = f(x), where f is a polynomial with distinct roots, and deg(f) = 2g + 2
and let λi, 1 ≤ i ≤ 2g + 2, be the complex roots of f . We identify these roots with
the branch points for the covering map π : X −→ P1(C), that we will denote by
P1, . . . , P2g+1, P∞. This motivates the following definition.

Definition 2.1. By a marked hyperelliptic curve X of genus g we understand a
certain ordering of the branch points of the map π.

We will denote by Mhyp
g [2] the moduli space of marked hyperelliptic curves. Let

us introduce more terminology. We note that the action on Hg by the symplectic
group of level 2

Γ2g(2) = {M ∈ Sp2g(Z) : M ≡ I2g (mod 2)},
fixes 2-torsion points on the p.p.a.v. This leads to the following definition.

Definition 2.2. We define by Ag[2] = Γ2g(2)\Hg the moduli space of principally
polarized abelian varieties of dimension g over C with a level 2-structure.

We will identify the Jacobian of a marked hyperelliptic curve to a point in Ag[2]
via the analytic construction. Let H1(X,Z) be the homology group of X and let
H0(ωX) be the group of 1-holomorphic forms on X. As explained in the liter-
ature, we view H1(X,Z) as a lattice in H0(ωX)∗, the dual of H0(ωX) (see for
example [3, Section 11.1]). As a consequence, we obtain the g-dimensional com-
plex torus J(X) = H0(ωX)∗/H1(X,Z). The marking on the curve fixes a sym-
plectic basis λ1, . . . λ2g for H1(X,Z). We further choose ω1, . . . , ωg a basis for
H0(ωX). With the notation in Section 2.1, the corresponding g × 2g matrix is
Ω =

(∫
λj
ωi

)
1≤i≤g,1≤j≤2g

and Z = Ω1Ω−2
2 .

Let Pic0(X) = Div0(X)/Princ(X) be the group of degree zero divisors on X mod-
ulo principal divisors. The Abel-Jacobi map yields a canonical isomorphism [3,
Theorem 11.1.3]:

(2.7) AJ : Pic0(X) −→ J(X).

Given a marked hyperelliptic curve X, we obtain a fixed set of 2-torsion points on
J(X). We take P∞ as a base point and identify X with its image via the embedding
X ↪→ Pic0(X). Then the branch points Pi, i = 1, . . . , 2g + 2, correspond to points
of the form ei = [(Pi) − (P∞)] on Pic0(X). These give rise to an indexed set of
characteristics η = (ηi)1≤i≤2g+2 in (1/2)Z2g such that

AJ(ei) = (ηi)1Z + (ηi)2.(2.8)
This leads to the following definition.
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Definition 2.3. Let V = (1/2)Z2g/Z2g the vector space over F2. By an azygetic
system we understand an ordered set η = {η1, . . . , η2g+2} of 2g + 2 vectors in
(1/2)Z2g such that the images η̄i ∈ V , i ∈ {1, . . . 2g + 2} are such that:

(2.9) V = span(η̄i),

2g+1∑
i=1

η̄i = 0, η̄2g+2 = 0, and η̄ti η̄j ≡ 1 (mod 2),

for i, j different from 2g + 2 and i 6= j.

Two azygetic sets η′ and η′′ are said to be in the same equivalence class if
they are equal as elements in (1/2)Z2g/Z2g. Following Poor [18], the ordered set
{η1, . . . , η2g+2} obtained in Equation (2.8) is an azygetic system and we call it an
azygetic system associated to the period matrix Z.

If the marking of the curve is changed, then we act on the homology basis
λ1, . . . , λ2g by a matrix M ∈ Sp2g(Z) and the new period matrix obtained using
the construction above is Z ′ = M.Z. The azygetic system associated to Z ′ is
η′ = {M∗η1, . . . ,M

∗η2g+2}. Since the map Sp2g(Z)→ Sp2g(F2) ∼= Sp2g(Z)/Γ(2) is
surjective, the action of Sp2g(F2) on equivalence classes of azygetic systems derived
in this way is transitive [18, Lemma 1.4.13].

Let us introduce some further notations. Let T = {1, . . . , 2g + 1,∞}. For a
given azygetic system, Poor defines the set Uη to be the set of indexes i ∈ T
such that ηi is even. For any S1, S2 ⊂ T we denote the symmetric difference
S1 ◦ S2 = (S1 ∪ S2)\(S1 ∩ S2). For an azygetic system η and S ⊂ T , we define
ηS =

∑
s∈S ηs. The following theorem, which we refer to as the Vanishing Criterion,

gives a characterization of hyperelliptic period matrices in terms of their associated
azygetic system and theta constants. For simplicity, we recall this theorem for
genus 3 as stated in [1, Proposition 5] and refer the reader to [17, Chapter] and [18,
Theorem 2.6.1] for the general result in genus g > 1.

Theorem 2.4 (The Vanishing Criterion). Let Z ∈ H3. The following two state-
ments are equivalent:

(1) Z is the period matrix of a symplectically reducible1 abelian variety and
there is exactly one even characteristic δ such that ϑ[δ](Z) = 0 and an
azygetic system η such that δ = ηUη .

(2) There is a marked hyperelliptic curve of genus 3 whose Jacobian has period
matrix Z and η is the azygetic system associated to the marked curve.

In other words, Theorem 2.4 shows that given a hyperelliptic period matrix
Z ∈ H3, choosing one of its associated azygetic systems η fixes a labeling on the
branch points, yielding a marked hyperelliptic curve. Let λ1, . . . , λ7, λ∞ the roots
of f over C and assume λ∞ = ∞. We recover a point in Mhyp

g [2] using Takase’s
formulae [24, 1], which we recall in the following theorem.

Theorem 2.5 (Theorem 3[1]). Let Z ∈ Γ(2)\H3 a period matrix and η be the
azygetic system such that the Vanishing Criterion is satisfied. Then with notation
as above, for any disjoint decomposition T − {∞} = V tW t {k, l,m} with #V =

1Poor defines symplectically irreducible on page 831 of [18]. His condition is equivalent to
requiring that the abelian variety is not isomorphic as a polarized abelian variety to a product of
lower-dimensional polarized abelian varieties. In this work, our period matrices are constructed to
be simple, i.e., not isogenous to a product of lower-dimensional polarized abelian varieties. Since
isomorphism is stronger than isogeny, all of the period matrices we construct are symplectically
irreducible, and we may apply the theorem.
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#W = 2, we have:

λm − λl
λm − λk

= exp(4πi(ηk + ηl)1(ηm)2)

(
ϑ[ηU◦(V∪{m,l})] · ϑ[ηU◦(W∪{m,l})]

ϑ[ηU◦(V∪{k,m})] · ϑ[ηU◦(W∪{k,m})]
(Z)

)2

.

(2.10)

Note that in [1] the sign before the quotient of theta constants in Equation (2.10)
is incorrect. We give here the correct formula, as stated in several sources [14, 2].

Finally, note that by considering an affine map of C such that f(λ6) = 0, f(λ7) =
1, we may assume without restricting the generality that X is given by

X : y2 = x(x− 1)

5∏
i=1

(x− λi).(2.11)

In this case, we say that X is in normalized Rosenhain form. The moduli space
Mhyp

3 [2] writes as

Mhyp
3 [2] ∼= {λ = (λ1, . . . , λ5), λi ∈ C− {0, 1}, λi 6= λj}.

The coefficients λi ∈ C − {0, 1}, are called the Rosenhain invariants of the curve
and will be the focus of our work.

2.4. Shioda invariants. Shioda [20] gave a set of generators for the algebra of in-
variants of binary octavics over the complex numbers, which are now called Shioda
invariants. Following Shioda’s notation (see [20, page 1025]), these are 9 weighted
projective invariants (J2, J3, J4, J5, J6, J7, J8, J9, J10), where Ji has degree i. The
invariants J2, . . . , J7 are algebraically independent, while J8, J9, J10 depend alge-
braically on them. Note that over the complex numbers Shioda invariants com-
pletely determine points inMhyp

3 .
Using Igusa’s map between the graded ring of Siegel modular forms of degree 3, and
the graded ring of invariants of binary octavics, Lorenzo García [9] proposes a set
of invariants which can be written as quotients of modular forms. These invariants
involve large powers of the modular form χ28 in the denominators and we do not
use them for experiments since they would need too much precision to compute.

Starting from the projective invariants Ji, we consider the following absolute2
Shioda invariants :

Shi =

(
J7

2

∆
,
J4

2J
2
3

∆
,
J5

2J4

∆
,
J5J9

∆
,
J4

2J6

∆
,
J2

7

∆
,
J3

2J8

∆
,
J5

2J
2
9

∆2
,
J2

2J10

∆

)
,(2.12)

with ∆ the discriminant of the binary octavic, which is an invariant of degree 14.
They are optimal for computations in the sense that they involve invariants of small
weight and the values of their denominators for a given curve are products of powers
of the primes of bad reduction of the curve (see [12]). Note that a subset of this set
was already used by Weng [27] for computing models of hyperelliptic curves with
CM by a field which contains i.

Proposition 2.1. The invariants in Equation (2.12) are modular, i.e. they can be
written as quotients of Siegel modular forms of level 1.

Idea of the proof. In [26], Tsuyumine proposed a set of invariants for the algebra
of binary octavics and also computed them in terms of modular forms (see for
instance [9, Theorem 3.4]). Using relations between Tsuyumine’s invariants and the
Shioda projective invariants (given in [9, Theorem 4.1]), we were able to write each

2An absolute invariant is a ratio of homogeneous invariants of the same degree.
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invariant in Equation (2.12) as a quotient of modular forms. The full computation
is given in the arxiv version of this paper [7].

3. Computing abelian varieties with CM

In this section, we review results from the theory of complex multiplication,
with the goal of describing our implementation of algorithms for computing several
notions, such as the reflex field and the typenorm. Finally, we state effective versions
of Shimura’s second theorem of complex multiplication and Shimura’s reciprocity
theorem, which will be extensively used in Section 4.

3.1. Reflex field computation. Let K/Q be a CM field and let L be the Galois
closure ofK with Galois group Gal(L/Q). A CM type ofK is a set Φ = {φ1, . . . , φg}
of g embeddings K ↪→ C such that no two embeddings appearing in Φ are complex
conjugates. We say that Φ is induced from a CM subfield K ′ of K if the set
{φ|K′ |φ ∈ Φ} is a CM type of K ′. A CM type of K is called primitive if it is not
induced by a proper CM subfield K ′ ⊂ K. In this paper, we fix the tuple (K,Φ)
and call it a CM-pair. Since L is a CM field ([21, Cor. 1.5]), Φ extends to a CM
type ΦL of L, namely by

(3.1) ΦL = {φ : L→ C|φ|K ∈ Φ}.

We fix once and for all an embedding ιK : K → L and an embedding π : L → C.
With these in hand, we identify elements in ΦL with elements of the automorphism
group Gal(L/Q) by associating to every φ ∈ Φ an element σ ∈ Gal(L/Q) such that
the following diagram commutes:

(3.2)
L L

K C

σ

πι K

φ

Note that this identification is certainly dependent on the embeddings ιK and π.
Let Φ−1

L = {π ◦σ−1 ∈ Hom(L,C)| φ = π ◦σ for φ ∈ ΦL}. One can easily check that
Φ−1
L is a CM type on L if and only if ΦL is a CM type on L. We denote by Hr the

subgroup of Gal(L/Q) of the form

(3.3) Hr = {σ ∈ Gal(L/Q)| Φ−1
L σ = Φ−1

L } = {σ ∈ Gal(L/Q)| σΦL = ΦL}.

Definition 3.1. The subfield of L fixed by the the group Hr in Equation (3.3) is
called the reflex field of (K,Φ). We denote it by Kr.

Note that, from a computational point of view, choosing Kr as the field fixed by
Hr also means fixing the embedding ιKr : Kr → L. As shown for instance in [21,
Prop. 1.18], Kr is also a CM field and the associated CM type to Kr is given by
the following construction:

(3.4) Φr = Φ−1
L |Kr = {φ|Kr | φ ∈ Φ−1

L }.

We call the tuple (Kr,Φr) the reflex CM-pair of (K,Φ). We implemented a proce-
dure for computing the CM pair (Kr,Φr) based on Definition 3.1 (see Algorithm 1,
in Appendix 6). Our approach is similar to the implementation of the reflex field
in the code of [23].
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3.2. The reflex typenorm. Let (K,Φ) be a primitive CM-pair with Galois closure
L of K and reflex CM-pair (Kr,Φr). The reflex typenorm is the map

NΦr : Kr → K ⊂ L, x 7→
∏
φ∈Φr

φ(x).(3.5)

Lemma 3.1. [19, Ch. 2, Prop. 29] The reflex typenorm in Equation (3.5) induces
a map between ideals and

NΦr : I(Kr)→ I(K), a 7→
∏
φ∈Φr

φ(a)

which extends to a homomorphism between class groups NΦr : Cl(Kr)→ Cl(K).

When computing the typenorm of an ideal a, the product
∏
φ∈Φr φ(a) gives a

priori an ideal in L. To identify the ideal in K lying below this ideal, we first
compute the factorization of this ideal and rely on an algorithm in [5, Algorithm
2.5.3] to get the prime ideal lying below each of the ideals appearing in this factor-
ization. Algorithm 2 in Appendix 6 describes briefly the computation of the reflex
typenorm.

3.3. Class field theory. For a number field K and a finite modulus m (i.e. a
product of prime ideals in K), let Im(K) be the group of all fractional OK ideals
coprime to m, and consider the subgroup:

Pm(K) = {a ∈ Im(K) : a = αOF , α ≡ 1 (mod ∗m)} .
where the congruence α ≡ 1 (mod ∗m) means that for all primes p appearing in
the factorisation of m we have νp(α− 1) ≥ νp(m). The ray class group of K for the
modulus m is defined as the quotient group Clm(K) = Im(K)/Pm(K).

For a modulus m in K there is up to isomorphism a unique abelian extension of
K, denoted by Hm, whose ramified primes divide m. The kernel of the Artin Map

Φm : Im(K)→ Gal(Hm/K)

is equal to Pm(K). The field Hm is called the ray class field of K of modulus m
(see for instance [6, Theorem 8.6]).

Let (K,Φ) be a primitive CM-pair with reflex pair (Kr,Φr). Let m ∈ Z such
thatmZ = m∩Z and denote by Im(Kr) the group of fractional ideals inKr coprime
to m. Following Shimura [19, Ch. 16], we consider

Hm(Kr) =

{
a ∈ Im(Kr) :

∃α ∈ K∗ with NΦr (a) = αOK ,
NKr/Q(a) = αα, α ≡ 1 (mod ∗m)

}
.(3.6)

Note that Pm(Kr) ⊂ Hm(Kr). Then, after [6, Theorem 8.6], there is a unique
Abelian extension of Kr, denoted by CMm(Kr), such that

Gal(CMm(Kr)/Kr) ∼= Im(Kr)/Hm(Kr).(3.7)

3.4. CM abelian varieties. Let A an abelian variety of dimension g defined over
a field k. We say that A has complex multiplication (CM) by a number field K if
there exists an embedding ι : K −→ End(A) ⊗ Q. If OK is the maximal order of
K, then we say that A has CM by OK if ι−1(End(A)) = OK .

Let DK/Q be the different ofK, and let a be a fractional ideal ofK. Suppose that
the ideal (DK/Qaa)−1 is principal and generated by ξ ∈ K× such that Im(φ(ξ)) > 0
for all φ ∈ Φ. Then by tensoring the map

(Φ(a),Φ(a))→ Q, (Φ(x),Φ(x)) 7→ TrK/Q(ξxy)
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with R we obtain a Riemann form EΦ,ξ : Cg×Cg → R. Hence for any triple (Φ, a, ξ)
as above, the pair (Cg/Φ(a), EΦ,ξ) is a p.p.a.v. of dimension g with CM by OK and
of type Φ. Conversely, every p.p.a.v. of dimension g with CM by OK is isomorphic
to a complex torus for some triple (Φ, a, ξ) as above. Note that to go from the
triple (Φ, a, ξ) to a period matrix as described in Section 2.1, it suffices to write
a basis for the ideal a that is symplectic with respect to the Riemann form EΦ,ξ.
This basis gives the matrix Ω, and then the period matrix is simply Z = Ω1Ω−2

2 .
Let (A,E) be a p.p.a.v. with CM by OK , G the automorphism group of A and

let k0 be its field of moduli. To state Shimura’s second Main Theorem of CM,
we consider the normalized Kummer variety [19, Theorem 3, Section 4.4]. This is
given by a tuple (W,h), whereW is the quotient of A by G, which is defined over k0

and h : A→ V is the corresponding surjective map. Moreover, let A[m] denote the
m-torsion points of A, i.e. A[m] = {x ∈ A|ι(α)x = 0,∀α ∈ m}. A point t ∈ A[m] is
called proper if for all a ∈ OK , we have that ι(a)t = 0 if and only if a ∈ f.

Theorem 3.2. [19, Main Theorem 2] Let (A,E) be a principally polarized abelian
variety with CM by OK and CM type Φ and let be (W,h) its normalized Kummer
variety. Let m be an ideal of OK and t be a proper m-torsion point. Let k0 be the
field of moduli of A, Kr the reflex field of K and k∗0 = k0K

r. Then k∗0(h(t)) is the
class field of Kr corresponding to the ideal group Hm(Kr) defined in Equation (3.6).

4. Computing class polynomials

We turn our attention now to the computation of invariants of a hyperelliptic
curve of genus 3 with CM by OK , and more precisely to obtaining their minimal
polynomials over the reflex field. As explained in the introduction, we start by
showing that given a hyperelliptic CM point with CM by OK , all CM points ob-
tained via the action in Equation (4.1) are hyperelliptic. This will allow to compute
the Galois conjugates of the Shioda and Rosenhain invariants, without any prior
knowledge of the class fields these generate.

Given a primitive CM-pair (K,Φ), we denote by Princ(K,Φ,m) the set of simple
p.p.a.v. with CM by OK on which we fix a proper m-torsion point. We denote by
A(Φ, a, ξ, t) the abelian variety given by the triple (Φ, a, ξ) and the proper m-torsion
point t. When m = (1), we simply denote it by A(Φ, a, ξ) and we take Princ(K,Φ)
to be the set of all such abelian varieties. In our computations of Galois conjugates,
we will extensively use the following action of the class group Im(Kr)/Hm(Kr) on
Princ(K,Φ,m) given by Shimura [19, Section 16.3].

Definition 4.1. Let A = A(Φ, a, ξ, t) ∈ Princ(K,Φ,m). Then for any [c] ∈
Im(Kr)/Hm(Kr) the action of [c] on A denoted by Ac and is given by the abelian
variety

A(NΦr (c)
−1a, NKr/Q(c)ξ, t (mod (NΦr (c)

−1a)).

We will denote by Ac the p.p.a.v. obtained in this way.

Note that the action in Definition 4.1 yields in fact an isogeny between principally
polarized abelian varieties Ic : A→ Ac. Since the ideal c is coprime to m, we have
that ker Ic ∩A[m] = ∅. In particular, when m = (m) and we fix a level m structure
on A, this isogeny fixes the level m structure on Ac.

Notation 4.2. In the remainder of this paper, we will to restrict to m = (m),
where m = 1 or m = 2. For a given c ∈ Im(Kr)/Hm(Kr), we will denote by
σc ∈ Gal(CMm(Kr)/Kr) the image of c via the isomorphism in Equation (3.7).
Let A = A(Φ, a, ξ, t) be a p.p.a.v. in Princ(K,Φ,m). Let B = (B1|B2) be a (3× 6)
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complex-valued matrix containing a symplectic basis for Φ(a) with respect to EΦ,ξ,
then let Z = B1B

−1
2 ∈ H3 be the corresponding period matrix. The action of c

on A yields a new p.p.a.v. A(Φ, NΦr (c)
−1a, NKr/Q(c)ξ, t (mod (NΦr (c)

−1a))). In
a similar manner, let C = (C1|C2) be the matrix containing a symplectic basis
for Φ(NΦr (c)

−1a) with respect to EΦ,NKr/Q(c)ξ and let Z ′ = C1C
−1
2 ∈ H3. We

express C in terms of B by taking a matrix M , such that C = BMT . The matrix
M is in GSp2g(Q) and is m-integral and invertible (mod m) with inverse U ∈
GSp2g(Z/mZ).

This notation will be used all throughout this section. The following result gives
an explicit version of Shimura’s reciprocity law.

Theorem 4.3 ([23, Thm. 2.4]). Let c ∈ Im(Kr)/Hm(Kr), Z,Z ′ ∈ H3 and the
matrix M as in Notation 4.2. For every Siegel modular function f of level m we
have:
(4.1) f(Z)σc = fU (Z ′),

where we denote by fU (Z ′) = f(Ũ .Z ′), for any Ũ ∈ Sp2g(Z) a lift of U .

We use Shimura’s reciprocity law to compute the Galois conjugates of the Shioda
invariants of a hyperelliptic curve whose period matrix is obtained via the complex
multiplication construction.

Proposition 4.1. Let A ∈ Princ(K,Φ) and Z ∈ H3 a period matrix for it. Let
[c] ∈ Cl(Kr) corresponding to σc ∈ Gal(CM1(Kr)/Kr) and Z ′ obtained as in
Notation 4.2. Then Ac is isomorphic to a hyperelliptic Jacobian if and only if A
is. Moreover, we have the following relation:

S(Z)σc
i = S(Z ′)i,(4.2)

where Si denotes the modular function giving the i-th Shioda absolute invariant, for
all i = 1, . . . , 9.

Proof. Suppose that A ∼= Jac(X). Since Jac(X)σc ∼= Jac(Xσc), it follows that Ac is
isomorphic to the Jacobian of the hyperelliptic curve Xσc . To prove Equation (4.2),
we apply Theorem 4.3 on the Siegel modular functions Si. �

We now restrict to the case of the modulus m = (2). The following result allows us
to compute the Galois conjugates of the Rosenhain invariants.

Theorem 4.4. Let A ∈ Princ(K,Φ) which is isomorphic to the Jacobian of a
marked genus 3 hyperelliptic curve and Z ∈ Γ6(2)\H3 a period matrix for it. Let
[c] ∈ Cl(Kr) corresponding to σc ∈ Gal(CM1(Kr)/Kr) and Z ′ obtained as in
Notation 4.2. We consider η the azygetic system associated to Z and let (λl)1≤l≤5

be the Rosenhain invariants in Equation (2.11). Then for any lift Ũ =

(
Ã B̃

C̃ D̃

)
∈

Sp6(Z) of the matrix U with δ0 =

(
(C̃T D̃)0

(ÃT B̃)0

)
, we have that

(4.3) λσc

l = exp(4πi(ηl + η7)1(η6)2) · ζ4(Ũ , η) · λ′l,
where

ζ4(Ũ , η) = exp

(
2

(
k
(
Ũ , ŨT

(
ηU◦(V∪{6,l}) −

1

2
δ0
))

+ k
(
Ũ , ŨT

(
ηU◦(W∪{6,l}) −

1

2
δ0
))

− k
(
Ũ , ŨT

(
ηU◦(V∪{6,7}) −

1

2
δ0
))
− k
(
Ũ , ŨT

(
ηU◦(W∪{6,7}) −

1

2
δ0
))))

,
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and

λ′l =

(
ϑ[Ũ t

(
ηU◦(V∪{6,l}) − 1

2δ0
)
] · ϑ[Ũ t

(
ηU◦(W∪{6,l}) − 1

2δ0
)
]

ϑ[Ũ t
(
ηU◦(V∪{6,7}) − 1

2δ0
)
] · ϑ[Ũ t

(
ηU◦(W∪{6,7}) − 1

2δ0
)
]

)2

(Z ′).

Proof. Using Theorem 2.5 when λ6 = 0 and λ7 = 1, the coefficients λl with l =
1, . . . 5 can be computed as

λl = exp(4πi(ηl + η7)1(η6)2)

(
ϑ[U ◦ (V ∪ {6, l})] · ϑ[U ◦ (W ∪ {6, l})]
ϑ[U ◦ (V ∪ {6, 7})] · ϑ[U ◦ (W ∪ {6, 7})]

)2

(Z).

For the sake of simplicity let

c1 = ηU◦(V∪{6,l}), c2 = ηU◦(W∪{6,l}), c3 = ηU◦(V∪{6,7}) and c4 = ηU◦(W∪{6,7}).

By using Shimura’s reciprocity law [23, Theorem 2.4], we have that

λσc

l =

(
exp(4πi(ηl + η7)1(η6)2)

(
ϑ[c1] · ϑ[c2]

ϑ[c3] · ϑ[c4]

)2

(Z)

)σ
c

= exp(4πi(ηl + η7)1(η6)2)

((
ϑ[c1] · ϑ[c2]

ϑ[c3] · ϑ[c4]

)2
)U

(Z ′) .

(4.4)

We denote by c′i = ŨT
(
ci − 1

2δ0
)
. By applying the theta transformation formula,

we get that

ϑ [ci]
U

(Z ′) = ϑ
[
Ũ .c′i

] (
Ũ .Z ′

)
= ζ

(
Ũ
)

exp
(
k(Ũ , c′i)

)√
det(C̃Z ′ + D̃) ϑ [c′i] (Z ′) .

Hence Equation (4.4) becomes

λσc

l = exp(4πi(ηl + η7)1(η6)2) exp
(

2(k(Ũ , c′1) + k(Ũ , c′2)− k(Ũ , c′3)− k(Ũ , c′4))
)
·

·
(
ϑ[c′1] · ϑ[c′2]

ϑ[c′3] · ϑ[c′4]

)2

(Z ′)

where one can easily see that ζ4(Ũ , η) = exp(2(k(Ũ , c′1) + k(Ũ , c′2) − k(Ũ , c′3) −
k(Ũ , c′4)))2 is a fourth root of unity. �

We will now give a geometric interpretation to our results. Recall that the Rosen-
hain coefficients are invariants for the spaceMhyp

3 [2]. The Galois conjugates of the
Rosenhain invariants are in fact the Rosenhain invariants of another point in this
moduli space and the following result gives a method to compute the corresponding
Z ′ ∈ Γ6(2)\H3 and the associated azygetic system.

Corollary 4.1. Let A(Φ, a, ξ) is isomorphic to the Jacobian of a marked hyperel-
liptic curve X and let Z ∈ Γ(2)\H3 be the corresponding period matrix for A and
η be an azygetic system associated to Z. Given [c] ∈ I2(Kr)/H2(Kr), there exist
Z ′ and M as in Notation 4.2 such that η′ = ŨT η is an azygetic system associated
to the period matrix Z ′. In particular, the Rosenhain invariants (λ′i)i=1,...,5 for
the marked hyperelliptic curve corresponding to Z ′ are such that λ′i = λσc

i , for all
i = 1, . . . , 5.

Proof. We first note that we can choose C and the period matrix Z ′ in Notation 4.2
such that Ũ ∈ Γ6(2). Indeed, if this is not the case, we define C ′ = BMT ŨT =

BM ′T with M ′ = ŨM ∈ GSp6(Q). Then C ′ is still a symplectic basis with respect
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to
(
Φ(NΦr (c)

−1a), EΦ,NKr/Q(c)ξ

)
. By reducing (mod 2), we get M ′ = ŨM =

UM = I6 withM ∈ Sp6(Z/2Z) the reduction ofM (mod 2). Then U ′ = (M ′)−1 =
I6 in Sp6(Z/2Z). Therefore, by letting C = C ′ and Z ′ the period matrix obtained
from this new symplectic basis, we ensure that Ũ ∈ Γ6(2).

Recall that the action described in Definition (4.1) yields an isogeny between A
and Ac which is given by:

Ic : C3/Φ(a) −→ C3/Φ(NΦr (c)
−1a)), x 7→ x.

For simplicity, we will work Ic as an isogeny between the non-normalized tori, i.e.
Ic : C3/B1Z3 + B2Z3 → C3/C1Z3 + C2Z3. We consider the image of the fixed
points B1(ηi)1 +B2(ηi)2 (mod (B1Z3 +B2Z3)) via Ic. We compute η′i such that

B1(ηi)1 +B2(ηi)2 = C1(η′i)1 + C2(η′i)2 (mod (C1Z3 + C2Z3)).(4.5)

By writing M =

(
a b
c d

)
and using that C = BMT , the 2-torsion point in Equa-

tion 4.5 writes as

(B1a
t +B2b

t)(η′i)1 + (B1c
t +B2d

t)(η′i)2 = B1(at(η′i)1 + ct(η′i)2) +B2(bt(η′i)1 + dt(η′i)2).

Hence ηi = MT η′i. Then it is easy to check that η′i = ŨT ηi is in fact an azygetic
system associated to Z ′. The first three facts in Definition (2.9) are trivial to check,
the fourth equality follows by applying [15, Prop. 13.2(b)] for the isogeny Ic, which
has degree prime to 2.

To show that η′ is associated to Z ′, we will use the Vanishing Criterion. We
choose an even theta characteristic u ∈ (1/2)Z6 such that ϑ[u](Z) 6= 0 and ϑ[u](Z ′) 6=
0 and apply once more Shimura’s reciprocity law [23] on the quotients of the type(
ϑ[v](Z)
ϑ[u](Z)

)2

, with v even. We deduce that the unique even theta constant vanishing
Z ′ is ϑ[ηUη′ ] (since ηUη′ = ηUη ).

Finally, by applying Theorem 4.4 we get that

λσc
i = exp(4πi(ηl + η7)1(η6)2)

(
ϑ[c1] · ϑ[c2]

ϑ[c3] · ϑ[c4]

)2

(M ′.Z) ,(4.6)

for i = 1, . . . , 5. Hence the right-hand side expressions in Equation (4.6) are the
Rosenhain invariants λ′i of a marked genus 3 hyperelliptic curve.

�

Computing the Shioda and Rosenhain class polynomials. From a compu-
tational point view, if we simply aim at computing the Galois conjugates of the
Rosenhain invariants and deriving class field equations, one can choose between
the approach in Theorem 4.4 or the one in Corollary 4.1. Using the formula in
Theorem 4.4, one can pick any period matrix for (Ac, Ec), whereas if we use the
Corollary 4.1, we need to carefully construct the period matrix Z ′ first.

Algorithm 3 in Appendix 6 gives all the steps of our computation of a list of
approximations for the Galois conjugates of the Rosenhain invariants, that we use
to get the polynomialsHR

Kr,i in Equation (1.1). The algorithm for computingHS
Kr,j

is similar and relies on the computation of the modular functions Si in Theorem 4.2.
Note that in applications, for i, j ≥ 2, it is easier to use the Hecke representation
as introduced by Gaudry et al [10]:

ĤR
Kr,i(t) =

∑
σ

λσl
∏
σ′ 6=σ

(t− λσ
′

1 ), ĤS
Kr,j(t) =

∑
σ

Shiσj
∏
σ′ 6=σ

(t− Shiσ
′

1 ),
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where σ, σ′ ∈ Gal(CMm(Kr)/Kr) with m = 2 for the product in HR
Kr,i and m = 1

for the product and sum in HS
Kr,j . Note that because complex conjugation is an

element in Gal(CMm(Kr)/Kr), the coefficients of these polynomials are defined
over Kr

0 , instead of Kr.

5. Benchmarks and results

We implemented the algorithms described here using SageMath [25] and Magma
[4] by building on an existing implementation [2]. The computation of primitive
CM types for genus 3 in [2] is dependent on the group structure of Gal(L/Q). Our
CM type computation is independent of this group isomorphism, and works for all
genera. In this general setting, we also implemented the construction of the reflex
field of K and the reflex CM type using Algorithm 1. Since SageMath [25] does
not implement ray class groups, we used an interface to Magma [4] to compute the
group Clm(Kr) and enumerate elements in NΦr (Im(Kr)/Hm(Kr)).

5.1. Practical experiments. For space reasons, we reproduce here partially an
example and give the full computation in [7]. Let K be the CM field defined by
the polynomial x6 + 43x4 + 451x2 + 729. Since the field contains i, all p.p.a.v. with
CM by K are hyperelliptic. For one of its primitive CM types, we computed the
reflex as the field of equation x6 + 1012x4 + 262048x2 + 3968064. The subgroup
NΦr (Im(Kr)/Hm(Kr)), for m = (1), (2), has three elements, which means that each
point will have two Galois conjugates and that the polynomials HR

Kr,i have degree
3.

For most computations on the Rosenhains 500 bits of precision were enough,
whereas for the Shiodas we used 5000 bits of precision. Indeed, the modular forms
appearing in the expressions of the Shiodas have much larger weight, which results
into much more precision needed when computing with the Shiodas. To compute
the Shiodas, we first computed the Rosenhain coefficients and got an approxima-
tion of the equation of the curve, and afterwards computed the Shiodas from this
equation. All computations were performed on a single core of a Intel Core i7-4790
CPU 3.60GHz and took approximatively 5 minutes at 500 bits of precision and less
than 2 hours for 5000 bits. Most time is spent on the theta constants computa-
tion, which is performed using the naive implementation in [2]. To compute the
coefficients of the class polynomials HR

Kr,i and H
S
Kr,i as algebraic integers, we use

the algebraic dependence testing algorithm [5], implemented in PARI/GP by the
function algdep. This algorithm gives us a conjectured minimal polynomial for
each coefficient of the class polynomials.

Tables 1 and 2 give the minimal polynomials for the coefficients of Rosenhain
and Shioda class polynomials, respectively. Table 2 the Shioda class polynomials
for the first Shioda invariant, and the full example is given in [7].

Table 1. Coefficients of Rosenhain class polynomials for the field
of equation x6 + 1012x4 + 262048x2 + 3968064.

pol. t3 t2 t 1

HKr,1 x− 1 x3 + 9x2 − 48x− 421 x3 − 96x2 + 2737x− 22357 x3 + 43x2 + 355x+ 121

ĤKr,2 - 9x3 − 238x2 + 1361x− 2195 9x3 − 812x2 − 45328x− 487744 9x3 − 7549x2 + 448286x− 5820221

ĤKr,3 - x3 − 9x2 − 48x− 25 x3 − 156x2 + 3532x− 6424 x3 − 63x2 − 3641x− 11825

ĤKr,4 - 9x3 − 238x2 + 1361x− 2195 9x3 − 812x2 − 45328x− 487744 9x3 − 7549x2 + 448286x− 5820221

ĤKr,5 - x− 6 x3 + 36x2 − 768x− 26944 x3 − 192x2 + 10948x− 178856
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Table 2. Coefficients of Shioda class polynomials for the field of
equation x6 + 1012x4 + 262048x2 + 3968064.

coeff. minimal pol.
t3 x− 1

t2

609125894427130745695834466763740170563639135833980928x3

+767725829025607378425247292652111581405730035262610432x2

+300061222092067234082658423678294482282672624903293536x
+37243744151263324949875407438939777569860345513286901

t

63402882286988579232480270348050635745503565534880222391610376192x3

−13725192373693066840488231757093791171761630118575681645149421568x2

+786342921318635510916127890581383360136229955111267984417588224x
−13516646075537145153192703242525175243162619024655881644192369

1

178186461969600322341142200214605756480742490360904642532008424549206957490176x3

+2500238465575574956316922540016128195983221550816430781122824734688503922688x2

+7942841558044400713140974757114936533108129843365204389947225517213646848x
+6573048087002947388939081561118123324940201519692560411907632812406461

As expected, the polynomials for the Shiodas have larger coefficients, which is
due again to the shape of the modular forms in their expression.

In order to heuristically check the correctness of these computations, we use a
well known approach in the literature which consists in choosing a prime number
p such that the abelian varieties with CM by OK have good reduction, compute
the roots of our polynomials (mod p) and check that the Jacobian of the curves
obtained in this way have the right number of points (see for instance [1] for details).
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6. Appendix A

Algorithm 1 Computing the reflex CM -pair

INPUT: The CM-pair (K,Φ) and the embeddings ιK : K → L, π : L→ C.
OUTPUT: The reflex CM-pair (Kr,Φr), and the embedding ιKr : Kr → L.
1: Compute the inverse CM type Φ−1

L

2: Compute Hr < Gal(L/Q) as in Equation (3.3) and define Kr := LH
r

.
3: Set the CM type Φr s.t. ΦrL = Φ−1

L .
4: Compute embedding ι : Kr → L as in Diagram (3.2).
5: return the reflex CM-pair (Kr,Φr) and the embedding ιKr .
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Algorithm 2 Computing the reflex typenorm

INPUT: (Kr,Φr) a primitive CM-pair, the embedding ιKr : Kr ↪→ L and a
fractional ideal a in Kr.

OUTPUT: The image b = NΦr (a) of the reflex typenorm of a.
1: Let a′ = ι(a)OL be the lift of a to L via ιKr .
2: Define B = NΦrL

(a′).
3: Define a dictionary D whose keys are of the form p, with p a prime ideal in
OK , and whose values are lists of couples (P, g) with P above p and g ∈ Z. Set
D = {}.

4: Compute the prime ideal decomposition B =
∏
P

Pe and create a set M =

{(P, e)}.
5: for (P, e) ∈M do
6: Compute with [5, Algorithm 2.5.3] the prime ideal p in OK lying below P.
7: Compute the ramification index f of p in OL and g = e/f .
8: Add (P, g) to the list for the key p in the dictionary D.
9: end for

10: The image of the reflex typenorm of a is given by b = NΦr (a) =
∏

(p:(P,g))∈D

pg.

11: return b.

Algorithm 3 Computing the Galois action using Shimura’s reciprocity law

INPUT: A CM pair (K,Φ), where K is a sextic CM field and Φ is a CM type,
and precision prec.

OUTPUT: The Rosenhain class polynomials, if a hyperelliptic curve with CM by
(K,Φ) exists.

1: Let Ri, 1 ≤ l ≤ 5 be an empty list.
2: Compute the Galois closure L of K/Q.
3: Call Algorithm 1 to get the reflex CM -pair (Kr,Φr) and the fixed embedding
ιKr : Kr → L.

4: Determine the ray class group Clm(Kr) for the modulus m = (2).
5: Compute the image of Clm(Kr) under the reflex typenorm, and store elements

of NΦr (Im(Kr)/Hm(Kr)) in a list H(Kr,Φr).
6: Choose a p.p.a.v. A of dimension g with CM by OK given by the triple (Φ, a, ξ)

and construct period matrix Z with [1, Algorithm 2].
7: if exactly one of the theta constants ϑ[c](Z), with c even, is zero then
8: Compute the Rosenhain invariants λi with precision prec using Takase’s for-

mula (2.5)
9: for all c ∈ H(Kr,Φr) do

10: Compute p.p.a.v. Ac(Φ, a, ξ) and the corresponding Z ′.
11: Compute λσl using the formula in Theorem 4.4 and add it to the list Rl.
12: end for
13: end if
14: return Rl, 1 ≤ l ≤ 5.
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