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Abstract. We describe an algorithm for computing, for all primes p ≤ X,

the mod-p reduction of the trace of Frobenius at p of a fixed hypergeometric
motive in time quasilinear in X. This combines the Beukers–Cohen–Mellit

trace formula with average polynomial time techniques of Harvey et al.

1. Introduction

In the past, computation of arithmetic L-functions has largely been limited to
familiar classes of low-dimensional geometric objects, such as hyperelliptic curves or
K3 surfaces [CHK19]. Recently, it has emerged that families of motives whose asso-
ciated (Picard-Fuchs) differential equation is a hypergeometric equation also have
L-functions which can be computed at large scale. Such motives provide accessible
examples of arithmetic L-functions with diverse configurations of Hodge numbers,
some of which arise in heretofore unanticipated applications. For example, certain
hypergeometric motives appear among families of Calabi–Yau threefolds, where
they give rise to arithmetic manifestations of mirror symmetry (as in [DKS+18]).

Using finite hypergeometric sums in the manner of Greene [Gre87], Katz [Kat90],
and especially McCarthy [McC13], an explicit formula for the L-function of a hy-
pergeometric motive was given by Beukers–Cohen–Mellit [BCM15]. It was then
modified by Cohen and Rodriguez Villegas, using the Gross-Koblitz formula [GK79]
to replace classical Gauss sums with the Morita p-adic gamma function. That work
is unpublished, but is documented in the manuscript [Wat15]; the resulting for-
mula appears in [Coh15, §8] and [FKS16, §7.1]; it is implemented in GP/PARI
[PAR19], Magma [BCP97], and SageMath [Sag20]; and it is being used to tabu-
late hypergeometric L-functions in the L-Functions and Modular Forms Database
[LMF20]. (For an alternate approach using the p-adic Frobenius structure on a
hypergeometric equation, see [Ked19].)

The purpose of this paper is to describe a preliminary adaptation of average
polynomial time techniques for computation of L-functions to the setting of hyper-
geometric motives. Such techniques, based on accumulating remainder trees, were
introduced by Costa–Gerbicz–Harvey [CGH14] for the problem of finding Wilson
primes; adapted to computing L-functions by Harvey [Har14, Har15]; and further
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elaborated (and made practical in particular cases) by Harvey–Sutherland [HS14,
HS16] and Harvey–Massierer–Sutherland [HMS16].

To simplify matters, we consider here only a limited form of the problem: given a
hypergeometric motive over Q and a bound X, for each prime p ≤ X, we compute
the reduction modulo p of the trace of Frobenius at p in time quasilinear in X.
This eliminates some technical issues that would arise when computing the mod-pe

reduction for e > 1, such as the computation of Teichmüller lifts and evaluation
of the Morita p-adic gamma function in average polynomial time. Modulo p, the
trace formula at p for a parameter value t is a polynomial in t of degree O(p)
whose coefficients are essentially ratios of Pochhammer symbols. Computing the
Pochhammer symbols themselves in average polynomial time is a straightforward
adaptation of the corresponding computation for factorials done in [CGH14]; this
approach can then be modified to include the polynomial evaluation.

At the end of the paper, we discuss the prospects of lifting our present restric-
tions of working modulo p (rather than a higher power) and of computing only
the trace of the p-power Frobenius (rather than a higher power). Eliminating both
restrictions would yield an average polynomial time algorithm for computing arbi-
trary hypergeometric L-series. However, the restricted computation described here
is already of significant value for hypergeometric motives of weight 1, for which the
trace of the p-power Frobenius is determined uniquely by its reduction modulo p
(except when p is very small). Since the formula for the trace of the q-power Frobe-
nius involves a summation over q− 1 terms, our method reduces the complexity of
computing the first X terms of the L-series from X2 to X3/2 (see Theorem 2.29).

We end this introduction by asking (as in [Ked19]) whether a similar trace for-
mula exists for theA-hypergeometric systems of Gelfand–Kapranov–Zelevinsky [GKZ08].
Such a formula might unlock even more classes of previously inaccessible L-functions.

2. Background

2.1. The p-adic Γ function. For a detailed development of the following material,
we recommend [Rob00, § 7.1] and [RV07, § 6.2].

Definition 2.1. The (Morita) p-adic gamma function is the unique continuous
function Γp : Zp → Z×p which satisfies

(2.2) Γp(n+ 1) = (−1)n+1
n∏
i=1

(i,p)=1

i = (−1)n+1 Γ(n+ 1)

pbn/pcΓ(bn/pc+ 1)

for all n ∈ Z≥0. For p ≥ 3, it is Lipschitz continuous with C = 1, i.e.,

(2.3) |Γp(x)− Γp(y)|p ≤ |x− y|p.
There is also a functional equation analogous to the one for the complex Γ function:

(2.4) Γp(x+ 1) = ω(x)Γp(x), ω(x) :=

{
−x if x ∈ Z×p
−1 if x ∈ pZp.

Remark 2.5. It was originally observed by Dwork (writing pseudonymously in [Boy80],
as corroborated in [KT99]; see [RV07, §6.2] for the formulation given here) that Γp
admits an easily computable Mahler expansion on any mod-p residue disc:

(2.6) Γp(−a+ px) =
∑
k≥0

pkca+kp(x)k,
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where (x)k := x(x + 1) · · · (x + k − 1) is the usual Pochhammer symbol, and cn is
defined by the recursion

(2.7) ncn = cn−1 + cn−p, c0 = 1, cn = 0 for n < 0.

Thus, one may compute Γp(x) modulo pf using O(pf) ring operations.

2.2. Hypergeometric motives and their L-functions. While the following dis-
cussion is needed to put our work in context, the reader is encouraged to skip ahead
to (2.22), as the essential content of the paper is the computation of that formula.

Definition 2.8. A hypergeometric datum is a pair of disjoint tuples α = (α1, . . . , αr)
and β = (β1, . . . , βr) valued in Q∩ [0, 1) which are Galois-stable (or balanced): any
two reduced fractions with the same denominator occur with the same multiplicity.

Remark 2.9. There are several equivalent ways to specify a hypergeometric datum.
One is to specify two tuples A and B for which the identity

r∏
j=1

x− e2πiαj

x− e2πiβj
=

∏
a∈A Φa(x)∏
b∈B Φb(x)

holds in C(x), where Φn(x) denotes the n-th cyclotomic polynomial.

Definition 2.10. The zigzag function Zα,β : [0, 1] → Z associated to a hypergeo-
metric datum (α, β) is defined by

Zα,β(x) := #{j : αj ≤ x} −#{j : βj ≤ x}.

Notation 2.11. We denote by Mα,β the putative (see Remark 2.17) hypergeo-
metric family over P1 associated to the hypergeometric datum (α, β). Its expected
properties are as follows.

• It is a pure motive of degree r with base field Q(t) and coefficient field Q.
• Its Hodge realization is the one constructed by Fedorov in [Fed18]. This

means that as per [Fed18, Theorem 2], its minimal motivic weight is

w = max{Zα,β(x) : x ∈ [0, 1]} −min{Zα,β(x) : x ∈ [0, 1]} − 1

= max{Zα,β(x) : x ∈ α} −min{Zα,β(x) : x ∈ β} − 1
(2.12)

and a similar recipe (see [CG11, Conjecture 1.4] or [Fed18, Theorem 1])
computes the Hodge numbers. Note that rw is even [Wat15, 1.2].
• Its `-adic étale realization is Katz’s perverse sheaf [Kat90, Chapter 8].
• For z ∈ Q \ {0, 1,∞}, let Mα,β

z denote the specialization of Mα,β at t = z.
Then the primes of bad reduction for Mα,β

z are those primes p at which z
and z − 1 are not both p-adic units (called tame primes) and those primes
p at which the αi and βi are not all integral (called wild primes). By the
compatibility with Katz, the L-function associated to Mα,β

z is given by the
Beukers–Cohen–Mellit trace formula [BCM15].

Remark 2.13. In order to avoid some case subdivisions in what follows, we assume
hereafter that 0 /∈ α. This is relatively harmless because of the isomorphism

(2.14) Mα,β
z
∼= Mβ,α

1/z .

Example 2.15. As per [Ono98], M (1/2,1/2),(0,0) is the motive H1(E,Q), where

(2.16) E : y2 = −x(x− 1)(x− t).
For other (putative) examples, see [BK12] and [Nas17].
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Remark 2.17. We use the qualifier “putative” in Notation 2.11 for two reasons. One
is to avoid any precision about motives; while [BCM15] describes a specific variety
whose `-adic cohomology includes Katz’s perverse sheaf, lifting this containment to
the motivic level would require a deeper dive into motivic categories (including a
choice of which such category to consider).

The other, more serious issue is that there is no existing reference that provides
this missing precision on hypergeometric motives. The reader seeking to remedy
this should start with [And04] for a user’s guide to motives.

2.2.1. Trace formulas. We are particularly interested in computing

(2.18) det(1− T Frob |Mα,β
z ),

where Frob is the Frobenius automorphism at a prime p of good reduction for
Mα,β
z . (For concreteness, we may replace Mα,β

z with an étale realization.) We
ignore primes of bad reduction both because they are small enough to be handled
individually and because a somewhat different recipe is required (see [Wat15, § 11]
for a partial description, noting that our z is Watkins’s 1/t).

Definition 2.19. Let {x} := x−bxc be the fractional part of x. For q = pf , define

(2.20) Γ∗q(x) :=

f−1∏
v=0

Γp({pvx}),

and then define a p-adic analogue of the Pochhammer symbol by setting

(2.21) (x)∗m :=
Γ∗q

(
x+ m

1−q

)
Γ∗q(x)

.

Let Teich(z) be the Teichmüller representative in Zp of the residue class of z (the
unique (p− 1)-st root of 1 congruent to z modulo p). As in [Wat15, § 2], write
(2.22)

Hq

(
α
β

∣∣∣z) :=
1

1− q

q−2∑
m=0

(−p)ηm(α)−ηm(β)qD+ξm(β)

 r∏
j=1

(αj)
∗
m

(βj)∗m

Teich(z)m,

using the notations

ηm(x1, . . . , xr) :=

r∑
j=1

f−1∑
v=0

{
pv
(
xj + m

1−q

)}
− {pvxj} ,(2.23)

ξm(β) := #{j : βj = 0} −#
{
j : βj + m

1−q = 0
}
,(2.24)

D :=
w + 1−#{j : βj = 0}

2
.(2.25)

By adapting [BCM15, Theorem 1.3] using the Gross–Koblitz formula as in [Wat15,
§ 2] (and twisting by qD to minimize the weight), we deduce the following.

Theorem 2.26. We have Hpf

(
α
β

∣∣∣z) = Tr(Frobf |Mα,β
z ) ∈ Z.

From [Wat15, § 11], we also have a precise formula for the functional equation
associated to det(1− T Frob |Mα,β

z ).
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Theorem 2.27. We have

(2.28) det(1− q−wT−1 Frob |Mα,β
z ) = ±q−rw/2T−r det(1− T Frob |Mα,β

z )

where ± denotes +1 if w is even, and otherwise is given by
(

∆
p

)
, ∆ = z(z − 1)

∏
a∈A Disc(Φa(x)) for r ≡ 0 (mod 2)

−
(

∆
p

)
, ∆ = (1− z)

∏
b∈B Disc(Φb(x)) for r ≡ 1 (mod 2).

Here A,B,Φa,Φb are as in Remark 2.9 and
(

∆
p

)
is the Kronecker symbol.

Using these two results, we can recover det(1 − T Frob |Mα,β
z ) from the values

Hpf

(
α
β

∣∣∣z) for f = 1, . . . , b r2c.

2.2.2. Complexity considerations. Computing Hpf

(
α
β

∣∣∣z) via (2.22) requires O(fpf )

arithmetic operations,1 due to the number of terms in the sum and product [Wat15,
§2.1.4]. As these operations are in Zp, we must also pay attention to p-adic working

precision; since Hpf

(
α
β

∣∣∣z) is the sum of r algebraic integers of complex norm pwf/2,

it is uniquely determined by its reduction modulo pe for e > 1
2wf + logp(2r).

For the use case of computing L-series, a different analysis applies.

Theorem 2.29. Fix a hypergeometric datum (α, β). Given Hp

(
α
β

∣∣∣z) for all primes

p ≤ X, one can compute the first X coefficients of the Dirichlet L-series associated
to Mα,β

z in at most O(X3/2) arithmetic operations.

Proof. The first X coefficients of the Dirichlet series are determined by the coeffi-

cients indexed by prime powers up to X, and hence by the values Hq

(
α
β

∣∣∣z) for all

prime powers q ≤ X. The number of such q which are not prime is O(X1/2/ logX);
for q = pf , evaluating (2.22) takes O(fpf ) = O(X logX) arithmetic operations. �

3. Accumulating remainder trees

The use of a remainder tree to expedite modular reduction has its origins in
the fast Fourier transform (FFT). An early description was given by Borodin–
Moenck [BM74]; for a modern treatment with more historical references, see [Ber08].

Accumulating remainder trees were introduced in [CGH14] in order to compute
(p− 1)! (mod p2) for many primes p. We use the variant described in [HS14, §4].

Definition 3.1. Suppose P is a sequence p1, . . . , pb−1 of pairwise coprime integers
with pi ≤ X, and A0, . . . , Ab−2 is a sequence of 2× 2 integer matrices. We may use
an accumulating remainder tree to compute

(3.2) Cn := A0 · · ·An−1 mod pn

for 1 ≤ n < b as follows. For notational convenience we assume b = 2`, set Ab−1 = 0
and p0 = 1. Then as in [HS14, § 4], write

(3.3)

mi,j := pj2`−ipj2`−i+1 · · · p(j+1)2`−i−1,

Ai,j := Aj2`−iAj2`−i+1 · · ·A(j+1)2`−i−1,

Ci,j := Ai,0 · · ·Ai,j−1 mod mi,j .

1The factor of f comes from computing Γp. We do not incur a factor of f from computing Γ∗
q

because the latter is invariant under x 7→ {px}, so we only need O(q/f) evaluations of Γ∗
q .
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This leads us to Algorithm 1.

Algorithm 1: Accumulating Remainder Tree

1 def RemTree({Ai}, {pi}):
Input : A0, . . . , Ab−1, p0, . . . , pb−1 as in Definition 3.1
Output: {Ci}

2 for j := 0 to b− 1 do
3 m`,j := pj and A`,j := Aj

4 for i := `− 1 to 0 do
5 for j := 0 to 2i − 1 do
6 mi,j := mi+1,2jmi+1,2j+1 and Ai,j := Ai+1,2jAi+1,2j+1

7 C0,0 := id

8 for i := 1 to ` do
9 for j := 0 to 2i − 1 do

10 if j even then
11 Ci,j := Ci−1,bj/2c mod mi,j

12 else
13 Ci,j := Ci−1,bj/2cAi,j−1 mod mi,j

14 return {C`,j}j=1,...,b−1

Theorem 3.4 ([HS14, Thm. 4.1]). Let B be an upper bound on the bit size of∏b−1
j=0 pj and H an upper bound on the bit size of any pi or Ai. The running time

of Algorithm 1 is

O((B + bH) log(B + bH) log(b))

(using [Hv19] for the runtime of integer multiplication) and its space complexity is

O((B + bH) log(b)).

3.1. Accumulating remainder tree with spacing. In most applications (in-
cluding this one), there is not a one-to-one correspondence between the moduli pi
and the multiplicands Ai. Rather, we will be given:

• a list of matrices A0, . . . , Ab−1,
• a list of primes p1, . . . , pc, and
• a list of distinct cut points b1, . . . , bc

with the aim of computing Cn := A0 · · ·Abn−1 mod pn for 1 ≤ n < c. This reduces
to Algorithm 1 by suitably grouping terms; see Algorithm 2. (One may also handle
repeated cut points, as long as the cut points up to X occur at most O(X) times.)

Remark 3.5. In practice, we will split our products to work around discontinuities of
(2.22)) (see Section 5.2). One gains some savings (particularly in space complexity)
by splitting a bit further, replacing remainder trees with remainder forests [HS14,
Theorem 4.2]; we omit the details here.
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Algorithm 2: Accumulating Remainder Tree with Spacing

1 def RemTreeWithSpacing({Ai}, {pi}, {bi}):
Input : A0, . . . , Ab−1, p1, . . . , pc, b1, . . . , bc as in Section 3.1
Output: C1, . . . Cc−1

2 ` := dlog2(b)e
3 for j := b to 2` − 1 do
4 Aj := 0

5 for j := 0 to 2` − 1 do
6 p′j := 1

7 for i := 1 to c do
8 p′bi := pi

9 C ′i := RemTree({Ai}, {p′i})
10 return {C ′bi}i=0,...,c−1

4. Nuts and bolts

We record two technical lemmas used in the description of our algorithm. For
the rest of the paper, we make the simplifying assumption q = p in Theorem 2.26.

Lemma 4.1. Set Ib := [0, 1]∩ 1
bZ. Suppose γ ∈ Ib and p is a prime not dividing b.

Let m = bγ(p− 1)c. Then there exist δ ∈ Ib and ε ∈ {1, 2} so that

m+ ε ≡ δ (mod p).

Moreover, δ and ε only depend on b, γ, and p (mod b).

Proof. Write γ = a
b and define an integer r ∈ {0, . . . , b− 1} by the condition that

a(p− 1) = mb+ r.

We then set {
ε := 1, δ := b−a−r

b if a+ r < b

ε := 2, δ := 2b−a−r
b otherwise.

Note that b(δ − ε) = −(a + r) = mb − ap so m + ε ≡ δ (mod p). The fact that
δ ∈ Ib follows from the bounds 0 ≤ a, r ≤ b. �

Lemma 4.2. Suppose 0 ≤ m < p − 1 and either ηm(α) − ηm(β) 6= ηm+1(α) −
ηm+1(β) or ξm(β) 6= ξm+1(β). Then bγ(p− 1)c ∈ {m,m+ 1} for some γ ∈ α ∪ β.

Proof. Since q = p, we have

(4.3) ηm(α)− ηm(β) =

r∑
j=1

({
αj − m

p−1

}
− {αj}

)
−

r∑
j=1

({
βj − m

p−1

}
− {βj}

)
.

For x, y ∈ [0, 1) we have

(4.4) {x− y} =

{
x− y (x ≥ y)

x− y + 1 (x < y).

Consequently, the only way for ηm(α) − ηm(β) to change values when m goes to
m+ 1 is for there to exist γ ∈ α ∪ β such that

γ − m
p−1 ≥ 0, γ − m+1

p−1 < 0.
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This occurs precisely when m = bγ(p−1)c. Meanwhile, by (2.24), ξm(β) = ξm+1(β)
unless βj = m

p−1 or βj = m+1
p−1 = 0 for some j. �

5. Computing trace functions of hypergeometric motives

Throughout this section, fix α, β and z. We now describe how to compute the

trace Hp

(
α
β

∣∣∣z) modulo p in average polynomial time using equation (2.22), which

we duplicate here modulo p for ease of reference:

(5.1) Hp

(
α
β

∣∣∣z) ≡ p−2∑
m=0

(−p)ηm(α)−ηm(β)pD+ξm(β)

 r∏
j=1

(αj)
∗
m

(βj)∗m

 zm (mod p).

5.1. Overview of the algorithm. In order to apply Algorithm 2, we would like

to identify 2×2 integer matrices B(m), such that we may extract Hp

(
α
β

∣∣∣z) (mod p)

from B(0)B(1) · · ·B(p− 2). In practice, we will consider shorter subproducts and
choose B(m) based on the residue of p modulo a fixed integer (independent of m
and p); we will then apply Algorithm 2 once for each subproduct and residue class.

As a first approximation, let us instead model the sum
∑p−2
m=0 Pm where

(5.2) Pm := zm
r∏
j=1

(αj)
∗
m

(βj)∗m
∈ Z×p .

If we can find f(m), g(m) ∈ Z[m] so that

(5.3) Pm+1 ≡
f(m)

g(m)
Pm (mod p),

we can then set

(5.4) B(m) :=

(
g(m) 0
g(m) f(m)

)
= g(m)

(
1 0
1 f(m)/g(m)

)
and B̃ = B(0) . . . B(p− 2) (mod p), so that

B̃ ≡ g(0) · · · g(p− 2)

(
1 0∑p−2

m=0 Pm Pp−1

)
(mod p)

and so
∑p−2
m=0 Pm ≡ B̃21/B̃11 (mod p). That is, B̃11 tracks a common denominator,

B̃22 tracks the product Pm, and B̃12 computes the sum of the Pm.
There are two problems with the approach described above. First, to correctly

simulate (5.1) we must sum not Pm but

(5.5) P ′m := (−p)ηm(α)−ηm(β)pD+ξm(β)Pm,

which we cannot directly handle by modifying B(m)21 because the extra factor
depends on both p and m. Second, while we can find polynomials f and g satisfy-
ing (5.3) for most values of m using (2.21) and the functional equation (2.4), there
will be a few values of m where f(m) or g(m) is a multiple of p. We cannot filter
these values out during the remainder tree because p is not fixed.

The solution to both of these issues is to break up the range [0, p − 2] into
intervals on which equation (5.3) holds and the values ηm(α) − ηm(β) and ξm(β)
are constant. The breaks between these intervals occur when m = bγ(p−1)c, where
γ ∈ α ∪ β. We thus use a separate accumulating remainder tree for each interval,
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yielding for each p a fixed number of subproducts with isolated missing terms in
between; we then compute separately for each p to bridge the gaps.

A third issue is that while we can vary the endpoint in an accumulating remainder
tree as a function of p (as described in Section 3), it is more difficult to change the
start point. Our solution is to use Lemma 4.1 to find a rational number δ so that
adding δ to each αj and βj has the effect of shifting the start point to 0.

5.2. Construction of the matrix product. We now construct the matrix prod-
uct described above. We begin with the division of the interval [0, p − 1] and the
division of primes into residue classes. We assume that q = p is good and not 2.

Definition 5.6. Given a hypergeometric motive Mα,β
z , let 0 = γ0 < · · · < γs = 1

be the distinct elements in α ∪ β ∪ {0, 1}. Let b be the least common denominator
of α ∪ β and fix c ∈ (Z/bZ)×. Let p be a prime congruent to c modulo b and not
dividing the denominator of z. Write mi for bγi(p− 1)c.

We next exhibit polynomials that we use to compute Pochhammer symbols and
their partial sums on the interval (γi, γi+1).

Definition 5.7. Fix an interval (γi, γi+1), choose δi and εi associated to γi as in
Lemma 4.1, and let

(5.8) ι(x, y) :=

{
1 x ≤ y
0 x > y.

Define polynomials fi,c(k), gi,c(k) ∈ Z[k] as follows: set

(5.9)

Fi,c(k) := z

r∏
j=1

(αj + δi + ι(αj , γi) + k − εi)

Gi,c(k) :=

r∏
j=1

(βj + δi + ι(βj , γi) + k − εi),

let di,c be the least common multiple of the denominators of Fi,c and Gi,c, and set
fi,c(k) := di,cFi,c(k) and gi,c(k) := di,cGi,c(k).

Lemma 5.10. Define Pm as in (5.2), and suppose mi < m < mi+1. Then

Pm+1 ≡
fi,c(k)

gi,c(k)
Pm (mod p),

where 1 ≤ k < mi+1 −mi and m = mi + k.

Proof. We first focus on a single Pochhammer symbol (αj)
∗
m. First note that for

mi < m ≤ mi+1, by (4.4) we have

(5.11)
{
αj + m

1−p

}
= αj + m

1−p +

{
0 m ≤ bαj(p− 1)c
1 m > bαj(p− 1)c

= αj + m
1−p + ι(αj , γi).

Combining (5.11) with Lefschetz continuity (2.3) and the functional equation for
Γp (2.4) and Lemma 4.1, for mi < m < mi+1 we obtain
(5.12)

Γp

({
αj + m+1

1−p

})
≡ Γp (αj +m+ 1 + ι(αj , γi))

= −(αj +m+ ι(αj , γi))Γp(αj +m+ ι(αj , γi))

≡ −(αj + δi + ι(αj , γi) + k − εi)Γp
({
αj + m

1−p

})
(mod p).
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Taking the product over all the Pochhammer symbols, the minus sign cancels out,
and we obtain the equation (5.9), as desired. �

We next account for the power of p in the product, and assemble a matrix product
that computes the sum between two breaks.

Definition 5.13. Let ξ(β) = #{j : βj = 0} and

(5.14) σi :=


1 Zα,β(γi) + ξ(β) +D = 0 and Zα,β(γi) ≡ 0 (mod 2)

−1 Zα,β(γi) + ξ(β) +D = 0 and Zα,β(γi) ≡ 1 (mod 2)

0 otherwise.

By Lemma 4.2, σi gives the value of (−p)ηm(α)−ηm(β)pξm(β)+D mod p for all m with
mi < m < mi+1. Now set

(5.15) Ai,c(k) :=

(
gi,c(k) 0
σigi,c(k) fi,c(k)

)
.

Since Ai,c(k) depends only on c and not p, we can use an accumulating remainder
tree for each c to compute

(5.16) Si(p) := Ai,c(1)Ai,c(2) · · ·Ai,c(mi+1 −mi − 1) (mod p).

Lemma 5.17. For P ′m as defined in (5.5),

(5.18) Si(p)
−1
11 Si(p) ≡

(
1 0∑mi+1−1

m=mi+1 P
′
m/Pmi+1 Pmi+1/Pmi+1

)
(mod p).

Proof. By Lemma 5.10, for k = 1, . . . ,mi+1 −mi − 1,

(Ai,c(1) · · ·Ai,c(k))22

(Ai,c(1) · · ·Ai,c(k))11
≡ Pmi+k+1

Pmi+1
(mod p)

and hence

(Ai,c(1) · · ·Ai,c(k))21

(Ai,c(1) · · ·Ai,c(k))11
≡ σi

k∑
l=1

Pmi+l

Pmi+1
(mod p).

Taking k = mi+1 −mi − 1, then applying Lemma 4.2 to replace σi with P ′m/Pm,
yields the desired result. �

It remains to deal with the breaks. Since the number of breaks is independent of
p, we have the luxury of computing matrices Ti(p) separately for each p that move
the Pochhammer symbols and partial sums past the break γi.

Definition 5.19. With ω defined as in (2.4), let

hi(γ, p) :=


ω(γ +mi + 1) if γ(p− 1) < mi

ω(γ +mi) if γ(p− 1) ≥ mi + 1

ω(γ +mi + 1)ω(γ +mi) otherwise

(5.20)

τi(p) :=


0 γi = 0

1 Zα,β(γi−1) + ξmi(β) +D = 0 and Zα,β(γi−1) ≡ 0 (mod 2)

−1 Zα,β(γi−1) + ξmi
(β) +D = 0 and Zα,β(γi−1) ≡ 1 (mod 2)

0 otherwise

(5.21)
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Figure 5.27. Zα,β(x) for α = ( 1
4 ,

1
2 ,

1
2 ,

3
4 ), β = ( 1

3 ,
1
3 ,

2
3 ,

2
3 )

and then set

Ti(p) :=

(
1 0

τi(p) z
∏r
j=1

hi(αj ,p)
hi(βj ,p)

)
(5.22)

S(p) :=
s−1∏
i=0

Ti(p)Si(p).(5.23)

Lemma 5.24. For suitable choices of scalars, we have

i−1∏
j=0

Tj(p)Sj(p) ≡ (scalar)

(
1 0∑mi−1

m=0 P ′m Pmi

)
(mod p)i−1∏

j=0

Tj(p)Sj(p)

Ti(p) ≡ (scalar)

(
1 0∑mi

m=0 P
′
m Pmi+1

)
(mod p).

Proof. This follows by induction on i using Lemma 5.17. �

Summing up, we obtain the following.

Proposition 5.25. For p ≡ c (mod b) not dividing the denominator of z,

Hp

(
α
β

∣∣∣z) ≡ S(p)21/S(p)11 (mod p).

Proof. This follows from (5.1) and the case i = s of Lemma 5.24. �

5.3. Algorithm and runtime. We summarize with Algorithm 3.

Theorem 5.26. Algorithm 3 is correct and runs in time

O(rbX log(X)3)

where b is the least common denominator of α ∪ β.

Proof. Correctness is immediate from Proposition 5.25. The runtime is dominated
by the calls to Algorithm 2; these calls takes place inside a loop over consecutive
elements of α ∪ β ∪ {0, 1} and a second loop over residue classes modulo a divisor
of b. These two loops together have length O(rb); combining with the runtime
estimate from Theorem 3.4 yields the desired result. �

5.4. Implementation notes. We have implemented Algorithm 3 in SageMath,
using a variant of Algorithm 2 implemented in C by Drew Sutherland (see Re-
mark 3.5). This vastly outperforms SageMath and Magma while giving matching
answers; see Table 5.27 for sample timings.
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Algorithm 3: Trace mod p

1 def Traces(α, β, z,X):

Input : α, β ∈
(
Q ∩ [0, 1)

)r
, z ∈ Q and a bound X

Output: Hp

(
α
β

∣∣∣z) (mod p) for all good p ≤ X
2 if 0 ∈ α then
3 α, β, z := β, α, 1/z

4 gamma := Sorted( Set( α ∪ β ∪ {0, 1}))
5 for good primes p ≤ X do
6 result[p] := IdentityMatrix(2)

7 for start, end consecutive elements of gamma do
8 b := Denominator(start)

9 for c ∈ (Z/bZ)× do
10 δ, ε := RationalShift(start, c) // Using Lemma 4.1

11 mats := Matrices(z, start, δ, ε) // As in (5.15)

12 cut := (p 7→ bend · (p− 1)c − bstart · (p− 1)c)
13 primes := { good primes p ≡ c (mod b), p ≤ X}
14 {Ci} := RemTreeWithSpacing(mats, primes, cut)

15 for i := 0, . . . ,#primes− 1 do
16 p := primes[i]

17 result[p] := result[p] · FixBreak(z, start, p) // As in (5.22)

18 result[p] := result[p] · Ci

19 for good primes p ≤ X do
20 result[p] := result[p]21/result[p]11 (mod p)

21 return result

X Alg. 3 Sage Magma X Alg. 3 Sage Magma X Alg. 3
210 0.07s 0.39s 0.11s 214 0.12s 26.0s 18.24s 218 1.81s

211 0.05s 0.68s 0.35s 215 0.18s 92.27s 68.35s 219 4.59s

212 0.06s 2.12s 1.29s 216 0.34s 343s 280s 220 10.71s

213 0.08s 7.39s 4.83s 217 0.80s 1328s 1190s 221 24.53s
Table 5.27. Comparison of Algorithm 3 against SageMath and
Magma for α = ( 1

4 ,
1
2 ,

1
2 ,

3
4 ), β = ( 1

3 ,
1
3 ,

2
3 ,

2
3 ) and z = 1/5. Note the

observable difference between linear and quadratic complexity.

5.5. An example. Let α = ( 1
4 ,

1
2 ,

1
2 ,

3
4 ), β = ( 1

3 ,
1
3 ,

2
3 ,

2
3 ) and z = 1

5 . We plot the

zigzag function in Figure 5.27. Using equation (2.12), we see that Mα,β has weight 1

and the intervals contributing to the computation of Hp

(
α
β

∣∣∣z) are (γ2, γ3) = ( 1
3 ,

1
2 )

and (γ4, γ5) = ( 2
3 ,

3
4 ). For the remainder of the example we will focus on the

congruence class p ≡ 7 (mod 12). Applying Lemma 4.1 to γ2 = 1
3 (resp. γ4 = 2

3 ),
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we obtain δ2 = 2
3 and ε2 = 1 (resp. δ4 = 1

3 and ε4 = 1). By (5.9) and (5.14),

f2,7(k) = 5184k4 + 8640k3 + 4428k2 + 852k + 55,

g2,7(k) = 25920k4 + 69120k3 + 63360k2 + 23040k + 2880,

f4,7(k) = 5184k4 + 12096k3 + 9612k2 + 2820k + 175,

g4,7(k) = 25920k4 + 86400k3 + 106560k2 + 57600k + 11520,

and σ2 = σ4 = −1. Taking p = 67, we obtain (m2,m3) = (22, 33) and (m4,m5) =
(44, 49). Using an accumulating remainder tree (or simple multiplication), we get

S2(67) =

(
65 0
34 5

)
, S4(67) =

(
54 0
25 41

)
.

However, we can’t ignore the other intervals: they may not contribute to the sum,
but they do track the Pochhammer symbols. Similar computations show

S0(67) =

(
38 0
0 62

)
, S1(67) =

(
50 0
0 47

)
, S3(67) =

(
1 0
0 16

)
, S5(67) =

(
1 0
0 38

)
,

It remains to handle the break points. Using Definition 5.19 we get

T0(67) =

(
1 0
0 6

)
, T1(67) =

(
1 0
0 31

)
, T2(67) =

(
1 0
−1 12

)
,

T3(67) =

(
1 0
−1 40

)
, T4(67) =

(
1 0
−1 40

)
, T5(67) =

(
1 0
−1 31

)
.

Putting them all together, we get

S(67) = T0(67)S0(67) · · ·T5(67)S5(67) =

(
21 0
33 21

)
yielding H67

(
α
β

∣∣∣ 1
5

)
≡ 33

21 ≡ 59 (mod 67).

6. Future goals and challenges

We would like to be able to compute Hpf

(
α
β

∣∣∣z) (mod pe) in average polynomial

time for general e and f , but we currently only implement this for e = f = 1. We
highlight the key points at which new ideas would be needed to achieve this goal.

6.1. The case e > 1. Allowing e > 1 creates two related issues where our com-
putation exploits extra structure of the trace formula mod p: the replacement of
Teich(z) with z, and the use of the functional equation in (5.12) to compare two
values of Γp at arguments that differ by 1

1−p .

Such issues can typically be resolved using the “generic prime” technique of [Har15,
§4.4]: make the average polynomial time computation carrying suitable nilpotent
variables, then make a separate specialization for each p.

6.2. The case f > 1. Allowing f > 1 creates more serious issues because of
the change in the definition of Γ∗q(x), which interferes with our division of the
summation into a fixed number of ranges. To see this in more detail, fix v ∈
{0, . . . , f − 1}. For each γ ∈ α∪ β, a break occurs when the value of {pv(γ− m

q−1 )}
changes when m goes to m+ 1; there are pv such breaks.

It is unclear whether one can rearrange the formula (2.22) to remedy this issue.
It may help to implement the method of Frobenius structures suggested in [Ked19],
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which scales linearly in p rather than q. We may then argue as in Theorem 2.29 to
compute the first X coefficients of an L-series in average polynomial time.
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