
LIFTING LOW-GONAL CURVES FOR USE IN TUITMAN’S

ALGORITHM

WOUTER CASTRYCK AND FLORIS VERMEULEN

Abstract. Consider a smooth projective curve C over a finite field Fq , equipped with

a simply branched morphism C → P1 of degree d ≤ 5. Assume that charFq > 2, resp.
charFq > 3, if d ≤ 4, resp. d = 5. In this paper we describe how to efficiently compute a

lift of C to characteristic zero, such that it can be fed as input to Tuitman’s algorithm
for computing the Hasse–Weil zeta function of C/Fq .

1. Introduction

About 20 years ago, Kedlaya published an influential paper [20], showing how one can
employ Monsky–Washnitzer cohomology to efficiently compute Hasse–Weil zeta functions
of hyperelliptic curves over finite fields having small odd characteristic. Its many follow-up
works include several generalizations to geometrically larger classes of curves, first to su-
perelliptic curves [16], then to Cab curves [12] and then further to non-degenerate curves [6].
A more significant step was taken in 2016, when Tuitman [26, 27] published a Kedlaya-style
algorithm that potentially covers arbitrary curves, and at the same time beats the meth-
ods from [6, 12] in terms of efficiency. Unfortunately, the user of Tuitman’s algorithm is
expected to provide a lift of the input curve to characteristic zero that meets the technical
requirements from [27, Ass. 1]. Beyond non-degenerate curves, this is a non-trivial task. As
a result, the exact range of applicability of Tuitman’s method remains unclear.

Contribution. A partial approach to lifting curves having gonality at most four was
sketched in [7], with concrete details being limited to curves of genus five. In the current
paper we present a different method, which is faster, works for curves of gonality at most
five, and is much easier to implement. Concretely, we assume that we are given an abso-
lutely irreducible curve over a finite field Fq of characteristic p > 2, defined by a polynomial
of the form

(1) fd(x)yd + fd−1(x)yd−1 + . . .+ f0(x) ∈ Fq[x, y]

for some d ≤ 5. Moreover, the morphism ϕ from its non-singular projective model C to the
projective line, induced by (x, y) 7→ x, is assumed to be simply branched of degree d; in
other words, all fibers of ϕ should consist of either d − 1 or d geometric points. Finally, if
d = 5 then it is assumed that p > 3. Then our method efficiently produces a lift satisfying
the main requirement from [27, Ass. 1], which therefore can be fed as input to Tuitman’s
algorithm, modulo Heuristic H discussed below.

In terms of moduli, the space of genus g curves admitting a simply branched morphism
to P1 of a given degree d ≤ 5 has dimension min{2g + 5, 3g − 3} by a result of Segre [25].
For g = 6 and g ≥ 8 this exceeds the dimension of the locus of non-degenerate curves by
four, see [9]. In particular, our lifting procedure applies to all sufficiently general curves of
genus g ≤ 8.
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Remark 1.1. Expecting our curve to be given in the form (1) is essentially equivalent to
assuming knowledge of an Fq-rational degree d ≤ 5 morphism C → P1 (that is simply
branched). This contrasts with [7], but for most practical applications this seems not much
of a restriction. In general, if such a morphism to P1 exists but is not known, then one can
try to resort to methods due to Schicho–Schreyer–Weimann [22] or Derickx [13, §2.3] for
finding one.

Lifting strategy. Write q = pn and fix a degree n number field K in which p is inert.
Let OK denote its ring of integers and identify Fq with OK/(p). To lift the curve C means
to produce a non-singular projective curve C/K whose reduction mod p is isomorphic to
C/Fq; necessarily, the genus of C should be equal to that of C. Our actual goal is to lift
the morphism ϕ, which means that we want to equip C with a morphism ϕ : C → P1

reducing to ϕ : C → P1 mod p (up to isomorphism). Our approach to solving this problem
is based on the parametrization of low rank rings by Delone and Faddeev [15, Prop. 4.2],
and Bhargava [2, 3], in combination with algorithms due to Hess for computing reduced
bases [19]. In doing so, we will find concrete, typically non-planar equations for C over
Fq that have “free coefficients”, which can be lifted to OK naively,1 in order to obtain a
non-singular projective curve C/K along with a morphism ϕ : C → P1 of the said kind. We
refer to Section 2 for a more elaborate discussion.

Remark 1.2. Typically, the affine plane curve defined by (1) will not be liftable directly.
Indeed, it may have many singularities, which disappear when lifting the coefficients of (1)
naively to OK , causing an increase of the genus.

Remark 1.3. In Kedlaya’s original algorithm, corresponding to the case d = 2, an implicit
first step is to rewrite (1) into Weierstrass form. Indeed, Weierstrass models have “free
coefficients” that can be lifted naively to OK to obtain a hyperelliptic curve over K having
the same genus. From now on we assume d ≥ 3.

Through elimination of variables (i.e., projection) we then obtain a planar model of the
form fd(x)yd + fd−1(x)yd−1 + . . .+ f0(x) = 0, for polynomials fi ∈ OK [x] which, in general,
do not reduce to f i mod p; here, the lifted morphism ϕ again corresponds to (x, y) 7→ x.
The change of variables y ← y/fd(x) yields a monic defining equation

(2) Q(x, y) = yd + fd−1(x)yd−1 + . . .+ f0(x)fd(x)d−1,

having the right shape to serve as input for Tuitman’s algorithm. All subsequent arithmetic
in Tuitman’s algorithm is done in the p-adic completion Zq of OK (or rather its fraction
field Qq), up to some finite p-adic precision. But for the lifting step it suffices to work over
OK ; this has some implementation-technical advantages [7, Rmk. 2].

On Tuitman’s assumption. Let us discuss the specific requirements from [27, Ass. 1] in
more detail. A first assumption concerns the squarefree part r(x) of the discriminant of (2),
when viewed as a polynomial in y over OK [x]:

(a) the discriminant of r(x) is a unit in Zq.

Next, consider the ring R = Zq[x, 1/r, y]/(Q) and write Qq(x, y) for the field of fractions of
R ⊗ Qq and Fq(x, y) for the field of fractions of R ⊗ Fq. A second assumption is that we
know explicit matrices

W0 ∈ GLd(Zq[x, 1/r]) and W∞ ∈ GLd(Zq[x±1, 1/r])

1Lifting a ∈ Fq \ {0} naively to OK means: producing whatever element a ∈ OK such that a mod p = a.
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such that, if we write bj,0 =
∑d−1

i=0 (W0)i+1,j+1y
i and bj,∞ =

∑d−1
i=0 (W∞)i+1,j+1y

i, then:

(b) {b0,0, . . . , bd−1,0} is an integral basis for Qq(x, y) over Qq[x] and its reduction mod
p is an integral basis for Fq(x, y) over Fq[x],

(c) {b0,∞, . . . , bd−1,∞} is an integral basis for Qq(x, y) over Qq[x−1] and its reduction
mod p is an integral basis for Fq(x, y) over Fq[x−1].

Finally, writing

R0 = Zq[x]b0,0 + . . .+ Zq[x]bd−1,0 and R∞ = Zq[x−1]b0,∞ + . . .+ Zq[x−1]bd−1,∞,

it is assumed that

(d) the discriminants of the finite Zq-algebras (R0/(r))red and (R∞/(1/x))red are units.

Here the subscript ‘red’ means that we consider the reduced ring obtained by quotienting
out the nilradical.2

The geometric meaning of assumptions (a) and (d) is discussed in [27, Prop. 2.3]; see
also [26, Rmk. 2.3]. They express that all branch points of ϕ : C → P1, as well as all points
lying over these branch points, should be distinct mod p. Luckily, in our context, these
properties are automatic. Indeed, since p > 2 and ϕ : C → P1 is simply branched, there is
no wild ramification, hence the ramification divisor of ϕ reduces mod p to that of ϕ. Thus,
again because ϕ is simply branched, we see that the ramification points of ϕ must reduce
to 2g + 2d− 2 distinct points that take distinct images under ϕ, as wanted; here g denotes
the genus of C. We also see that ϕ is simply branched as well.

Assumptions (b) and (c), on the other hand, ask for an explicit description of our lift
ϕ : C → P1 in terms of two affine patches ϕ−1(P1 \ {∞}) and ϕ−1(P1 \ {0}), glued together
using W = W−10 W∞, that is compatible with reduction mod p. In practice, the matrices W0

and W∞ can be found by feeding the function field extension K(x) ⊆ K(C) defined by (2)
to the Magma [4] intrinsic for computing integral bases, which invokes an algorithm due to
Hess [19]. This is the approach taken in Tuitman’s own pcc p and pcc q implementations.3

However, there is a non-zero probability that these bases fail to meet assumptions (b-c),
in which case Tuitman’s code outputs “bad model for curve”. This probability tends to
become negligible very rapidly as q grows, see the tables in [7]. Moreover, in the event of a
failure, our naive lifting method leaves freedom for several retries if wanted. We therefore
content ourselves with relying on Heuristic H:

Definition 1.4 (informal). The output (2) satisfies Heuristic H if the associated inte-
gral bases of K(C) over K[x] and K[x−1], computed using Magma, meet the requirements
from [27, Ass. 1].

If d = 3 then this heuristic can be ignored: as explained in Remark 3.4, suitable integral
bases can simply be extracted as by-products of our lifting procedure. It is quite likely that
a similar remark applies to d = 4 and d = 5, but extracting integral bases seems much more
technical in these cases.

Combined runtime. The running time of our lifting procedure is strongly dominated by
that of Tuitman’s algorithm, as should be clear from the discussions in Sections 3, 4 and 5
below. We will therefore omit a detailed analysis, although it is crucial to note that lifting
does not inflate the input size too badly. Concretely, if we let δ = max0≤i≤d deg f i, then

• the reader can check that all fi’s are of degree O(g), which in turn is O(δ) thanks
to Baker’s bound [1, Thm. 2.4],

2This takes into account the erratum pointed out in https://jtuitman.github.io/erratum.pdf.
3https://github.com/jtuitman/pcc, see mat W0() and mat Winf() in coho p.m and coho q.m.

https://jtuitman.github.io/erratum.pdf
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• when lifting coefficients from Fq to OK naively, we can always choose them to be of
bit size O(n log q), and as a result the same asymptotic estimate applies to the size
of the coefficients of the fi’s,

• the reader can check that analogous bounds apply to the integral bases produced by
our lifting method (if d = 3) or by the Magma intrinsic (if d = 4, 5, see [27, p. 313]);
more concretely they satisfy [27, Ass. 2].

From [27, Thm. 4.10] it follows that Õ(pδ4n3) bit operations suffice for computing the Hasse–
Weil zeta function of C/Fq, where we recall our dependence on Heuristic H if d = 4, 5.

Practical performance. This paper comes with an implementation of our lifting proce-
dure in Magma. The code can be found at https://homes.esat.kuleuven.be/~wcastryc/,
where we also included a file examples.pdf reporting on how it performs in combination
with Tuitman’s implementation for computing Hasse–Weil zeta functions. As discussed
there, this gives satisfactory results for d = 3 and d = 4, leading to a substantial enlarge-
ment of the class of curves admitting fast computation of their zeta function (over finite
fields with small odd characteristic). However, in degree d = 5 the combined code is much
slower. This is almost entirely due to the seemingly harmless “elimination of variables”
step, which is needed to put the lifted curve C/K in the form (2) and which produces large
hidden constants in the above O(g) and O(n log q) estimates. Nevertheless, here too, it is
practically feasible to compute zeta functions in a non-trivial range.

Tracks for future work. Besides mitigating the effect of variable elimination and getting
rid of Heuristic H, a challenging goal is to dispose of the condition on p and of the condition
that ϕ is simply branched. This seems to require changes to Tuitman’s algorithm that are
similar to how Denef and Vercauteren managed to make Kedlaya’s algorithm work in even
characteristic [11]. Also, as explained in Section 2, our naive lifting strategy using “free
coefficients” is closely related to Schreyer’s proof [23, Cor. 6.8] of the unirationality of Hg,d,
the Hurwitz space of simply branched degree d ≤ 5 covers of P1 by curves of genus g. Such
unirationality results are known to be false for d ≥ 7, where there is no hope for our strategy
to work. This leaves d = 6 as an intriguing open case, on which several partial (positive)
results have been proved by Geiss [18], see [24, Fig. 1] for an overview. It seems worth
investigating how Geiss’ results combine with our approach.

Acknowledgements. We thank Jan Tuitman and Yongqiang Zhao for several inspiring
conversations. This work is supported by CyberSecurity Research Flanders with reference
VR20192203 and by KU Leuven with references C14/17/083 and C14/18/067.

2. Preliminaries

Reduced bases and Maroni invariants. Let k denote any field, which in the next
sections will be specialized to k = Fq and/or k = K. Consider a non-singular projective
curve curve C/k of genus g, along with a k-rational morphism ϕ : C → P1 of degree d.
Consider the inclusion of function fields k(x) ⊆ k(C) corresponding to ϕ. Let k[C]0, resp.
k[C]∞, denote the integral closure of k[x], resp. k[1/x], inside k(C). The following theorem
is due to Hess [19].

Theorem 2.1. There exist unique negative integers r1 ≥ r2 ≥ . . . ≥ rd−1 for which there
is a basis 1, α1, . . . , αd−1 of k[C]0 over k[x] such that 1, xr1α1, . . . , x

rd−1αd−1 is a basis of
k[C]∞ over k[1/x].

https://homes.esat.kuleuven.be/~wcastryc/
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It is standard to call ei = −ri − 2 the Maroni invariants of C with respect to ϕ (e.g.,
if ϕ is a degree 2 cover, then the only Maroni invariant is g − 1). A corresponding basis
1, α1, . . . , αd−1 is called a reduced basis. The integers ri and an accompanying reduced basis
1, α1, . . . , αd−1 can be computed efficiently. For example, if k is a finite field or a number
field, then the Magma command ShortBasis() takes care of this.

Remark 2.2. In more geometric language, the integers ri can be characterized by the sheaf
decomposition ϕ∗OC

∼= OP1 ⊕ OP1(r1) ⊕ OP1(r2) ⊕ . . . ⊕ OP1(rd−1) which, according to a
theorem due to Grothendieck, is indeed unique. As a consequence to the Riemann–Roch
theorem, the Maroni invariants satisfy the following basic properties: (i) −1 ≤ e1 ≤ e2 ≤
. . . ≤ ed−1, (ii) e1 + e2 + . . .+ ed−1 = g − d+ 1, and (iii) ed−1 ≤ (2g − 2)/d.

Models with “free coefficients”. As mentioned in the introduction, every cover ϕ : C →
P1 of degree 3 ≤ d ≤ 5 admits a non-singular projective model with “free coefficients” that
can be lifted naively from Fq to OK . This follows from Schreyer’s proof [23, Cor. 6.8] of
the unirationality of Hg,d for d ≤ 5. The natural ambient space for our model is a rational
normal scroll, which can be obtained by gluing together

(P1 \ {∞})× Pd−2 and (P1 \ {0})× Pd−2

in a non-standard way; the gluing depends on the Maroni invariants e1, . . . , ed−1 of C with
respect to ϕ. We refer to [23] for more details on this construction, as well as on the claims
below. For the sake of conciseness we only describe what the model looks like on the left
copy A1 × Pd−2, which we equip with coordinates x, Y1, . . . , Yd−1.

First assume that d = 3. Then C admits a defining equation of the form

(3)
∑

l1+l2=3

fl1,l2(x)Y l1
1 Y l2

2 = 0

with deg fl1,l2 ≤ l1e1+l2e2+4−g, such that ϕ corresponds to projection on the x-coordinate.
Conversely, every irreducible such polynomial defines a curve having genus at most g; this
can also be seen using Baker’s bound [1, Thm. 2.4], because the dehomogenization with
respect to Y2 is supported on the polygon from Figure 2.1. If equality holds then the

(0, 0) (2e2 − e1 + 2, 0)

(2e1 − e2 + 2, 3)(0, 3)

Figure 2.1. Polygon describing covers of degree 3.

polynomial defines a non-singular projective curve (on the entire rational normal scroll) and
projection on the x-coordinate yields a degree 3 morphism to P1 whose associated Maroni
invariants are e1, e2.

Next, assume that d = 4. Then C arises as the intersection of two surfaces defined by

(4)
∑

l1+l2+l3=2

fi,l1,l2,l3(x)Y l1
1 Y l2

2 Y l3
3 = 0

for i = 1, 2, where deg fi,l1,l2,l3 ≤ l1e1 + l2e2 + l3e3 − bi for unique integers −1 ≤ b1 ≤ b2
with b1 + b2 = g − 5, called the Schreyer invariants of C with respect to ϕ. Conversely,
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(0, 0, 2)

(0, 0, 0)

(0, 2, 0) (2e2 − bi, 2, 0)

(2e3 − bi, 0, 0)

(2e1 − bi, 0, 2)

Figure 2.2. Polytope describing covers of degree 4.

every irreducible such intersection defines a curve of genus at most g; this too can be
seen using (a three-dimensional version of) Baker’s bound [21, Thm. 1], by noting that the
dehomogenizations with respect to Y3 are supported on the polytopes from Figure 2.2. If
equality holds then it concerns a non-singular projective curve, and projection on the x-
coordinate defines a degree 4 morphism to P1 with associated Maroni invariants e1, e2, e3
and Schreyer invariants b1, b2.

Finally, assume d = 5, which comes with five Schreyer invariants b1 ≤ . . . ≤ b5 summing
up to 2g − 12. In this case C can be viewed as the intersection of five hypersurfaces, which
are all obtained from a single 5×5 skew-symmetric matrix M over k[x][Y1, Y2, Y3, Y4] whose
(i, j)-th entry is of the form

(5) M1,i,j(x)Y1 +M2,i,j(x)Y2 +M3,i,j(x)Y3 +M4,i,j(x)Y4

with Mr,i,j(x) ∈ k[x] of degree at most er +bi +bj +6−g. More precisely, our hypersurfaces
are cut out by the five 4×4 sub-Pfaffians4 of M . Conversely, whenever the 4×4 sub-Pfaffians
of such a matrix define an irreducible curve, it has genus at most g. If equality holds then it
concerns a non-singular projective curve, and projection on the x-coordinate defines a degree
5 morphism to P1 with Maroni invariants e1, e2, e3, e4 and Schreyer invariants b1, b2, b3, b4, b5.

Lifting strategy revisited. In the next sections we show how parametrization results by
Delone–Faddeev [15, Prop. 2.4] and Bhargava [2, 3] on ring parametrizations can be used
to efficiently produce such a “free coefficient” model for our input curve C/Fq. Then, by
the above discussion, and using that the genus cannot increase under reduction mod p, any
naive coefficient-wise lift of this model to OK will define a non-singular projective curve
C/K along with a morphism ϕ : C → P1 lifting C and ϕ.

3. Lifting curves in degree d = 3

For R a PID, we recall that a ring of rank d over R is a commutative R-algebra which
is free of rank d as a module over R. Every ring S of rank d over R admits an R-basis
of the form 1, α1, ..., αd−1. This can be seen by applying the structure theorem for finitely
generated free modules over PIDs to the submodule R · 1 of S.

Parametrizing cubic rings. Let R be a PID. Cubic rings over R admit a parametrization
using binary cubic forms over R, considered modulo a natural action by GL2(R): for an
element

A =

(
a b
c d

)
∈ GL2(R),

4The square roots of the determinants of the five 4× 4 skew-symmetric submatrices.
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and f = f3Y
3
1 + f2Y

2
1 Y2 + f1Y1Y

2
2 + f0Y

3
2 a cubic form over R, we let

A ∗ f(Y1, Y2) =
1

detA
f(aY1 + cY2, bY1 + dY2).

Theorem 3.1 (Delone–Faddeev). There is a canonical bijection between the set of cubic
R-rings up to isomorphism and binary cubic forms over R, modulo the action of GL2(R).

Proof sketch. See e.g. [15, Prop. 4.2] and the remarks following its proof. For use below
we briefly describe how this bijection is constructed. Let S be a cubic R-ring with basis
1, α1, α2. By adding elements of 1 · R to α1 and α2 we can assume that α1α2 is in R. We
call such bases normal. Now write out the multiplication table of S

(6)


α1α2 = −g0,
α2
1 = −g1 + f2α1 − f3α2,

α2
2 = −g2 + f0α1 − f1α2.

By associativity of S we have α2
1 · α2 = α1 · (α1α2) and α1 · α2

2 = (α1α2) · α2. This gives

(7)


g0 = f0f3,

g1 = f1f3,

g2 = f0f2,

so the gi are determined by the fi. One then associates to S the cubic form f = f3Y
3
1 +

f2Y
2
1 Y2 + f1Y1Y

2
2 + f0Y

3
2 . Conversely, given such a form f , associate to this the cubic

ring, formally equipped with basis 1, α1, α2 and multiplication defined by (6) and (7). The
GL2(R)-action on cubic forms corresponds precisely to changing one normal basis to another
on the level of cubic rings. �

Remark 3.2. A cubic form f = f3Y
3
1 + f2Y

2
1 Y2 + f1Y1Y

2
2 + f0Y

3
2 is irreducible if and only

if its associated cubic R-ring is a domain. In this case, we may describe it as the subring of

(8) Frac

(
R[y]

(f3y3 + f2y2 + f1y + f0)

)
generated by 1, α1 = f3y, α2 = −f0y−1 = f3y

2 + f2y + f1. This point of view is especially
nice when R = k[x] for some field k. Indeed, then f(y, 1) = 0 defines a curve in A2 over k
and the cubic ring associated to f has as its field of fractions the function field of this curve.

Lifting degree 3 covers. Consider the function field

Fq(C) = Frac

(
Fq[x, y]

(f3y
3 + f2y

2 + f1y + f0)

)
defined by our input polynomial, and consider the integral closure Fq[C]0 of Fq[x] inside

it; this is a cubic Fq[x]-ring. Let e1, e2 be the Maroni invariants of C with respect to ϕ
and let 1, α1, α2 be a corresponding reduced basis. After adding to α1 and α2 elements of
Fq[x] we may assume that this basis is normal. In more detail, if α1α2 = aα1 + bα2 + c,
for a, b, c ∈ Fq[x], then we replace α1 by α1 − b and α2 by α2 − a. This operation will not
change the fact that the basis is reduced. Applying the Delone–Faddeev correspondence to
this basis produces a new cubic form

(9) f(Y1, Y2) = f3Y
3
1 + f2Y

2
1 Y2 + f1Y1Y

2
2 + f0Y

3
2

whose coefficients we, abusingly, again denote by f i.
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Lemma 3.3. Let f be obtained from the Delone–Faddeev correspondence as above. Then
this is a model for C of the form (3).

Proof. Note that the curve f(y, 1) = 0 is indeed birationally equivalent with C, in view of
Remark 3.2. Denote by e1, e2 the Maroni invariants of C. Since 1, α1, α2 is a reduced basis,
the elements 1, x−e1−2α1, x

−e2−2α2 form a basis for Fq[C]∞, the integral closure of Fq[x−1]

inside Fq(C). Writing out the multiplication for this ring gives
x−e1−e2−4α1α2 = −x−e1−e2−4f0f3,
x−2e1−4α2

1 = −x−2e1−4f1f3 + x−e1−2f2x
−e1−2α1 − x−2e1+e2−2f3x

−e2−2α2,

x−2e2−4α2
2 = −x−2e2−4f0f2 + x−2e2+e1−2f0x

−e1−2α1 − x−e2−2f1x−e2−2α2.

Since the coefficients of this table must be elements of Fq[x−1] we see that deg f i ≤ (i −
1)e1+(2−i)e2+2 for i = 1, 2, hence f(y, 1) is supported on the polygon from Figure 2.1. �

Thus we can proceed as follows. We compute a reduced basis for the function field Fq(C)

over Fq[x] and apply the Delone–Faddeev correspondence to it to obtain a model f = 0 of
the form (3). As discussed in Section 2, any naive coefficient-wise lift of the polynomial
f(y, 1) to a polynomial f = f3y

3 +f2y
2 +f1y+f0 ∈ OK [x] defines a good lift. After making

the polynomial f monic as in (2), it can be fed to Tuitman’s algorithm to compute the zeta
function of C over Fq.

Remark 3.4. Our discussion also shows that 1, f3y, f0y
−1 = f3y

2 + f2y + f1 is an integral
basis of K(C) over K[x] that reduces to an integral basis of Fq[C] over Fq[x]. Using the
variable change x = x−1 and y = y/xe2−e1 we find the patch

f recipr.3 (x)y3 + f recipr.2 (x)y2 + f recipr.1 (x)y + f recipr.0 (x)

above infinity, which admits a similar integral basis. Here f recipr.i denotes the degree (i −
1)e1 + (2 − i)e2 + 2 reciprocal of fi. We can supply these bases as additional input to
Tuitman’s algorithm, thereby by-passing Heuristic H.

Remark 3.5. The mere observation that the Delone–Faddeev correspondence produces a
model in a rational normal scroll (more precisely, a Hirzebruch surface) was known to some
specialists. For example, this can be read between the lines of Zhao’s Ph.D. thesis [29].

4. Lifting curves in degree d = 4

Parametrizing quartic rings. The parametrization of quartic R-rings S is due to Bhar-
gava [2]. This time, the objects involved are pairs of ternary quadratic forms, up to an
action of GL3(R)×GL2(R). For an element

(A,B) ∈ GL3(R)×GL2(R),

and a pair of ternary quadratic forms (Q1, Q2) over R represented as 3 × 3 matrices, the
action is defined by

(A,B) ∗ (Q1, Q2) = B ·
(
AQ1A

T

AQ2A
T

)
.

Concretely, the quadratic forms associated with a quartic ring are obtained by specifying a
cubic resolvent :

Theorem 4.1 (Bhargava). There is a canonical bijection between pairs (S, S′) where S is
a quartic ring over R and S′ is a cubic resolvent for S, considered up to isomorphism, and
pairs of ternary quadratic forms over R, up to the action of GL3(R)×GL2(R).
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We will not explicitly rely on this theorem, but we will recycle the central map (10)
discussed below. Let us zoom in on our main case of interest, namely where S is a domain,
say with field of fractions F . We assume moreover that F is a separable S4-extension of
K = FracR, i.e., its Galois closure E/K has as Galois group the full symmetric group
S4. Then a cubic resolvent for S is a certain full-rank subring S′ ⊆ ED4 =: F res, where
D4 = 〈(12), (1324)〉, see [2, Def. 8] for a precise definition. In general, such a cubic resolvent
ring need not be uniquely determined, but for maximal rings it is [2, Cor. 5]. Note that if
F = K[y]/(f) with

f = (y − r1)(y − r2)(y − r3)(y − r4) = y4 + ay3 + by2 + cy + d

then F res = K[y]/(res f) with

res f = (y − r1r2 − r3r4)(y − r1r3 − r2r4)(y − r1r4 − r2r3)

= y3 − by2 + (ac− 4d)y − (a2d+ c2 − 4bd).

This polynomial is famously known as Lagrange’s cubic resolvent. The most important
feature of the Bhargava correspondence is the natural quadratic map

(10) φ̃ : F → F res : α 7→ α(1)α(2) + α(3)α(4),

where the α(i) denote the conjugates of α inside E (numbered compatibly with the roots
ri). This map turns out to descend to a quadratic map of R-modules

φ :
S

R
→ S′

R
.

Upon taking bases for S/R and S′/R we obtain our two ternary quadratic forms over R.
Changing bases of these modules then corresponds to an element of GL3(R)×GL2(R).

Lifting degree 4 covers. We can assume that f4 = 1, i.e., our input polynomial (1) is
monic. Let Fq(C) denote the function field it defines, which is a separable S4-extension of
Fq(x) because ϕ is simply branched [14, Lem. 6.10]. Similarly consider the cubic resolvent

(11) y3 − f2y2 + (f1f3 − 4f0)y − (f0f
2

3 + f
2

1 − 4f0f2)

defining Fq(C
res

) := Fq(C)res. We let Fq[C]0 and Fq[C
res

]0 be the respective integral closures

of Fq[x] inside these fields; it can be argued that Fq[C
res

]0 is the unique cubic resolvent ring

for Fq[C]0 (but we will not need this). Let e1, e2, e3 be the Maroni invariants of C with
respect to ϕ, and let b1, b2 be its Schreyer invariants.

Take reduced Fq[x]-bases 1, α1, α2, α3 ∈ Fq[C]0 and 1, β1, β2 ∈ Fq[C
res

]0. With respect to

these bases, the map φ above gives us two ternary quadratic forms Q1, Q2 ∈ Fq[x][Y1, Y2, Y3].
To properly bound the degrees of their coefficients, we have to understand how the Maroni
invariants of the resolvent curve C

res
relate to data associated with C. Surprisingly, up to

a small shift, these turn out to be the Schreyer invariants of C with respect to ϕ:

Theorem 4.2. Let k be a field of characteristic 6= 2 and consider a smooth projective
curve over k equipped with a simply branched degree 4 morphism to P1, say with Schreyer
invariants b1, b2. Then the Maroni invariants of its cubic resolvent are b1 + 2, b2 + 2.

Proof. This result is due to Casnati [5, Def. 6.4], although he formulated it in terms of Recil-
las’ trigonal construction, which is the geometric counterpart of Lagrange’s cubic resolvent,
as pointed out in [17, §8.6]. �

Lemma 4.3. The quadratic forms Q1, Q2 are a model of C of the form (4).
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Proof. Note that the polynomials indeed cut out a curve that is birationally equivalent with
C, in view of [3, §2].5 Since 1, α1, α2, α3 and 1, β1, β2 are reduced bases, by Theorem 4.2 we
have that

1, x−e1−2α1, x
−e2−2α2, x

−e3−2α3 and

1, x−b1−4β1, x
−b2−4β2

are bases of Fq[C]∞, resp. Fq[C
res

]∞, the integral closures of Fq[x−1] in Fq(C), resp. Fq(C
res

).
Now the quadratic map

φ̃ : Fq(C)→ Fq(C
res

)

from above also descends to a quadratic map of Fq[x−1]-modules

φ′ :
Fq[C]∞
Fq[x−1]

→ Fq[C
res

]∞
Fq[x−1]

.

With respect to the above bases, φ′ is defined by two quadratic forms over Fq[x−1], which

are necessarily obtained from Q1 and Q2 by applying the corresponding (diagonal) change
of basis matrices. In other words, φ′ is represented by the quadratic forms

xb1+4Q1(x−e1−2Y1, x
−e2−2Y2, x

−e3−2Y3),

xb2+4Q2(x−e1−2Y1, x
−e2−2Y2, x

−e3−2Y3).

But these have coefficients in Fq[x−1]. Hence the degree of the YiYj-coefficient in Q1 can be

at most ei + ej − b1, and similarly for Q2. In other words, the dehomogenized polynomials

Q1(y1, y2, 1) and Q2(y1, y2, 1) are supported on the polytopes from Figure 2.2. �

To compute these liftable quadrics Q1, Q2 in practice we will not directly compute the

resolvent map φ with respect to reduced bases for Fq(C) and Fq(C
res

). Instead, we compute

the map φ with respect to certain naive bases for Fq(C) and Fq(C
res

) and then apply

change of basis to a reduced basis. In more detail, denoting by f
′
i the coefficients of the

cubic resolvent polynomial of f as in (11), we consider the bases

1,−f0y−1, y, y2 for Fq(C) and(12)

1, y,−f ′0y−1 for Fq(C
res

).

Computing the representation of the resolvent map φ with respect to these bases can be
done symbolically by means of Vieta’s formulas, yielding the quadrics

(13) Q
′
1 =

f0 0 f1

2

0 1 −f3

2
f1

2
−f3

2 f2

 , Q
′
2 =

 0 −1
2

f3

2−1
2 0 0
f3

2 0 1

 .

Now let 1, α1, α2, α3 and 1, β1, β2 be reduced bases for Fq[C]0, resp. Fq[C
res

]0, as above. To
compute the cubic resolvent map with respect to these bases, we simply apply the change of
basis action from the naive bases in (12) to these reduced bases. We note that this involves
elements of GL3(Fq(x))×GL2(Fq(x)) rather than GL3(Fq[x])×GL2(Fq[x]). The resulting

quadrics Q1, Q2 will be our liftable model. Thus, as explained in Section 2, we can take any
Q1, Q2 ∈ OK [x][y1, y2] lifting the Qi(y1, y2, 1)’s in a support-preserving way. In order to

5Alternatively, the reader can check that resy2 (Q
′
1(y1, y2, 1), Q

′
2(y1, y2, 1)) = y41+f3y

3
1+f2y

2
1+f1y1+f0,

where Q
′
1 and Q

′
2 are the quadratic forms from below.
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find a plane model, we can compute the resultant resy2(Q1, Q2), which is indeed of degree
4 in y = y1. After making this model monic, it can be fed to Tuitman’s algorithm.

5. Lifting curves in degree d = 5

Parametrizing quintic rings. The parametrization of quintic R-rings S is also due to
Bhargava [3]. We assume that charR 6= 2, 3. The objects involved in the parametrization
are now quadruples of 5× 5 skew-symmetric matrices over R. There is a natural action of
GL5(R)×GL4(R) on such objects, given by

(A,B) ∗M = B ·


AM1A

T

AM2A
T

AM3A
T

AM4A
T

 ,

with M = (M1,M2,M3,M4) a quadruple of 5 × 5 skew-symmetric matrices and (A,B) ∈
GL5(R) × GL4(R). Here too, the parametrization requires us to specify a sextic resolvent
ring:

Theorem 5.1 (Bhargava). There is a canonical bijection between pairs (S, S′) where S is a
quintic ring and S′ is a sextic resolvent for S, considered up to isomorphism, and quadruples
of 5× 5 skew-symmetric matrices over R, up to the action of GL5(R)×GL4(R).

As before, we will not rely on this correspondence, but we will need the fundamental
resolvent map (14) below. Let us again focus on the setting where S is a domain with field
of fractions F , and let K = FracR. We assume that F is a separable S5-extension of K,
i.e., its Galois closure E/K has as Galois group the whole of S5. Consider the order 20
subgroup H = H(1) = AGL1(F5) = 〈(12345), (1243)〉 ⊆ S5. Then a sextic resolvent for S is
a certain full-rank subring S′ ⊆ EH =: F res; for a precise definition we refer to [3, Def. 5].
In general, such a sextic resolvent ring is not unique, but for maximal quintic rings it is [3,
Cor. 19]. If F = K[y]/(f) with

f = (y − r1)(y − r2)(y − r3)(y − r4)(y − r5) = y5 + ay4 + by3 + cy2 + dy + e,

then F res = K[y]/(res f) with res f = (y−ρ1)(y−ρ2)(y−ρ3)(y−ρ4)(y−ρ5)(y−ρ6), where

ρ1 = (r1r2 + r2r3 + r3r4 + r4r5 + r5r1 − r1r3 − r3r5 − r5r2 − r2r4 − r4r1)2

and {ρ1, ρ2, . . . , ρ6} is the orbit of ρ1 under the natural S5-action permuting the ri’s. Note
that ρ1 is stabilized by H(1). We choose ρ2+i to be stabilized by the conjugate subgroup

H(2+i) = (12345)−i〈(13254), (3245)〉(12345)i, for 0 ≤ i ≤ 4.

The polynomial res f is known as Cayley’s sextic resolvent ; concrete expressions for its
coefficients in terms of a, b, c, d, e can be found in [10, Proof of Prop. 13.2.5].6

For an element α ∈ F res we denote by α(i) the conjugates of α inside E, labeled so that
α(i) is fixed by H(i). Consider bases α0 = 1, α1, . . . , α4 for S/R and β0 = 1, β1, . . . , β5 for
S′/R, and define

√
discS =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

α
(1)
1 α

(2)
1 . . . α

(5)
1

...
...

. . .
...

α
(1)
4 α

(2)
4 . . . α

(5)
4

∣∣∣∣∣∣∣∣∣ .
6Or it can be found hard-coded in our accompanying Magma file precomputed 5.m.
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The central tool in Bhargava’s correspondence is the fundamental resolvent map, which is
the bilinear alternating form

(14) g : F res × F res → F : (α, β) 7→
√

discS ·

∣∣∣∣∣∣
1 1 1

α(1) + α(2) α(3) + α(6) α(4) + α(5)

β(1) + β(2) β(3) + β(6) β(4) + β(5)

∣∣∣∣∣∣ .
This turns out to descend to a well-defined map S̃′ × S̃′ → S̃, where

S̃ = Rα∗1 +Rα∗2 +Rα∗3 +Rα∗4 ⊆ F, S̃′ = Rβ∗1 +Rβ∗2 +Rβ∗3 +Rβ∗4 +Rβ∗5 ⊆ F res

are defined in terms of the dual bases α∗0, . . . , α
∗
4 and β∗0 , . . . , β

∗
5 with respect to the trace

pairing, i.e., TrF/K(αiα
∗
j ) = δij (with δij the Kronecker delta), and similarly for β∗j . Note

that the extensions F/K and F res/K are both separable and so their trace pairings are
non-degenerate. With respect to the bases {β∗i }i and {α∗i }i, the map g is represented by a

quadruple M = (M1,M2,M3,M4) of 5× 5 skew-symmetric matrices. Changing bases of S̃′

and S̃ then corresponds to an element of GL5(R)×GL4(R).

Remark 5.2. Our fundamental resolvent map differs from Bhargava’s original map by a
factor 4/3, which is not an issue in view of our restrictions on the field characteristic.

Lifting degree 5 covers. As in the d = 4 case, we assume that our input polynomial
f from (1) is monic (i.e., f5 = 1). Let Fq(C) be the corresponding function field; this is
a separable S5-extension of Fq(x) because ϕ is simply branched [14, Lem. 6.10]. We also

consider Cayley’s sextic resolvent associated with our input polynomial, defining Fq(C
res

) :=

Fq(C)res. Let Fq[C]0 and Fq[C
res

]0 be the respective integral closures of Fq[x] inside these

two function fields; it can be argued that Fq[C
res

]0 is the unique sextic resolvent ring for

Fq[C]0 (but we will not need this). Let e1, e2, e3, e4 be the Maroni invariants of C with
respect to ϕ, and let b1, b2, b3, b4, b5 be its Schreyer invariants.

Take reduced Fq[x]-bases 1, α1, . . . , α4 ∈ Fq[C]0 and 1, β1, . . . , β5 ∈ Fq[C
res

]0 and consider

the quadruple (M1,M2,M3,M4) of 5× 5 skew-symmetric matrices over Fq[x] arising along
the above construction. We represent this by the single matrix

M = M1Y1 +M2Y2 +M3Y3 +M4Y4 ∈ k[x][Y1, Y2, Y3, Y4]

whose entries are now linear and homogeneous in the Yi. To get a handle on the degrees of
their coefficients, we should again express the Maroni invariants of the resolvent curve C

res

in terms of data associated with C. As in the case of Lagrange’s cubic resolvent, this can
be done in a surprisingly explicit way:

Theorem 5.3. Let k be a field of characteristic 6= 2 and consider a smooth projective curve
over k equipped with a simply branched degree 5 morphism to P1, say with Schreyer invariants
b1, . . . , b5. Then the Maroni invariants of its sextic resolvent are g − 2− b5, . . . , g − 2− b1.

Proof. This theorem seems new and is part of a vast generalization of Theorem 4.2, which
is currently being elaborated in collaboration with Yongqiang Zhao [8]. In the meantime, a
proof of Theorem 5.3 can be found in the master thesis of the second listed author [28]. �

Lemma 5.4. Denote by Mr,i,j the (i, j)-th entry of the matrix Mr as constructed above.

Then degMr,i,j ≤ er + bi + bj + 6 − g. In particular, this defines a model for C of the
form (5).

Proof. The fact that the sub-Pfaffians of M cut out a curve birational to C follows again
from [3, §2]. As for the claim on the degrees, we apply the same proof strategy as in the
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degree 4 case. Denote by Fq[C]∞ the integral closure of Fq[x−1] in Fq(C). Let g0 be the

fundamental resolvent form attached to the basis 1, α1, . . . , α4 of Fq[C]0 over Fq[x], and let
g∞ be the fundamental resolvent form attached to the basis 1, x−e1−2α1, . . . , x

−e4−2α4 of
Fq[C]∞ over Fq[x−1]. We have that, for all u, v ∈ Fq(C

res
),

g0(u, v) =

√
discFq[C]0√
discFq[C]∞

g∞(u, v) = xg+4g∞(u, v).

Let α∗0, . . . , α
∗
4 and β∗0 , . . . , β

∗
5 be dual bases for 1, α1, . . . , α4 respectively 1, β1, . . . , β5. Then

the corresponding dual bases for the rings Fq[C]∞ and Fq[C
res

]∞ are

α∗0, x
e1+2α∗1, . . . , x

e4+2α∗4 for Fq[C]∞,

β∗0 , x
e′1+2β∗1 , . . . , x

e′5+2β∗5 for Fq[C
res

]∞,

where the e′i are the Maroni invariants of the resolvent. We now compute, for i, j > 0,

g∞(xe
′
i+2β∗i , x

ej+2β∗j ) = xe
′
i+e′j+4x−g−4g0(β∗i , β

∗
j )(15)

=

4∑
l=1

x−el−g−2+e′i+e′j (M l)ij(x
el+2α∗l ).(16)

It follows that g∞ is represented by the matrix whose entries have coefficients

x−el−g−2+e′i+e′j (M l)ij , i, j = 1, . . . , 5, l = 1, . . . , 4.

But these coefficients belong to Fq[x−1]. Hence we find that deg(M l)ij ≤ el + bi + bj + 6− g
by Theorem 5.3, as wanted. �

To compute such a liftable matrix in practice, we follow a similar approach as in the case
of degree 4 covers. Namely, we will not be computing the fundamental resolvent map with
respect to reduced bases directly, but rather compute this for certain naive bases and apply
change of basis. Concretely, consider the naive bases

1, y, y2, y3, y4 for Fq(C), and

1, y, y2, y3, y4, y5 for Fq(C
res

),

along with the slightly altered fundamental resolvent map

g′ : Fq(C
res

)×Fq(C
res

)→ Fq(C) : (α, β) 7→
√

disc f ·

∣∣∣∣∣∣
1 1 1

α(1) + α(2) α(3) + α(6) α(4) + α(5)

β(1) + β(2) β(3) + β(6) β(4) + β(5)

∣∣∣∣∣∣
where

√
disc f = det((yi)(j))0≤i≤4,1≤j≤5. We compute the M

′(r)
ij ∈ Fq[x] for which

g′(yi, yj) =

4∑
r=0

M
′(r)
ij yr,

yielding five 5 × 5 skew-symmetric matrices M
′(0)

, . . . ,M
′(4)

; here we used that M
′(r)
ij = 0

as soon as i or j is zero, allowing us to disregard these terms. We call this the naive model
of C.
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Remark 5.5. It is important to note that these expressions can be computed symbolically in
terms of the coefficients f i of f , by means of Vieta’s formulas. Therefore this computation
only has to be done once for all curves. This is in complete analogy with the degree 4 case,
see (13). However, there the naive model was very simple, whereas this time the expressions
involved are rather long. However, a computer has no trouble with these computations.

Now compute reduced bases

1, α1, . . . , α4 for Fq[C]0 and

1, β1, . . . , β5 for Fq[C
res

]0

along with their corresponding dual bases. Acting on the naive model with a change of basis
from the naive bases to the duals of these reduced bases, yields the altered resolvent map
g′ with respect to these dual reduced bases. Note that this action will be by an element
of GL5(Fq(x)) × GL4(Fq(x)) rather than GL5(Fq[x]) × GL4(Fq[x]). To obtain instead the
resolvent map g we have to multiply by√

discFq[C]0√
disc f

.

Since we already have the reduced bases at hand, this factor is easiest to compute as the
determinant of the change of basis matrix from the naive basis for Fq(C) to the reduced
basis 1, α1, . . . , α4.

At this point, we have a representation of the fundamental resolvent map g with re-
spect to the duals of the reduced bases for Fq[C]0 and Fq[C

res
]0 as a 5× 5 skew-symmetric

matrix M with entries in k[x][Y1, Y2, Y3, Y4], linear and homogeneous in the Yi. This is
the desired model, which we can lift naively to a skew-symmetric matrix having entries
in OK [x][Y1, Y2, Y3, Y4]. Computing its five 4 × 4 sub-Pfaffians, dehomogenizing, and then
eliminating variables finally returns our output (2), ready to be fed as input to Tuitman’s
algorithm.
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