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Abstract. The Multivariate Ring Learning with Errors (m-RLWE) prob-

lem was introduced in 2015 by Pedrouzo-Ulloa, Troncoso-Pastoriza and Pérez-
González. Instead of working over a polynomial residue ring with one variable

as in RLWE, it works over a polynomial residue ring in several variables.

However, care must be taken when choosing the multivariate rings for use in
cryptographic applications as they can be either weak or simply equivalent

to univariate RLWE. For example, Pedrouzo-Ulloa et al. suggest using ten-

sor products of cyclotomic rings, in particular power-of-two cyclotomic rings.
They claim incorrectly that the security increases with the product of the in-

dividual degrees. In this paper, we present simple methods to solve the search

m-RLWE problem far more efficiently than was claimed in the previous litera-
ture by reducing the problem to the RLWE problem in dimension equal to the

maximal degree of its components (and not the product) and where the noise
increases with the square-root of the degree of the other components. Our

methods utilise the fact that the defining cyclotomic polynomials share alge-

braically related roots. We use these methods to successfully attack the search
variant of the m-RLWE problem for a set of parameters estimated to offer

more than 2600 bits of security, and being equivalent to solving the bounded

distance decoding problem in a highly structured lattice of dimension 16384,
in less than two weeks of computation time or just a few hours if parallelized

on 128 cores. Finally, we also show that optimizing module-LWE cryptosys-
tems by introducing an extra ring structure as is common practice to optimize
LWE, can result in a total breakdown of security.

1. Introduction

In concurrent and independent work Stehlé et al. [21] and Lyubashevsky et
al. [14] introduced ring variants of the learning with errors (LWE) problem, the
problem in the former has come to be known as the polynomial learning with
errors (PLWE) problem while the latter is known as the ring learning with errors
(RLWE) problem. The main advantage of using a ring variant over the original
problem is that the schemes are much more efficient and the size of the public
keys is significantly smaller. Later, a module variant was introduced in [4] where
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it is called the General Learning with Errors problem and captures both previous
problems as extremes of a broader class of problems.

For a ring R, free and of finite rank (as a module) over Z, and positive integers n
and q set Rq = R/qR. Samples from the module-LWE distribution are of the form
(a, b) where a ← Rnq is uniformly sampled and b = 〈a, s〉 + e mod q where e ← χ
is sampled from an error distribution and s ∈ Rnq is the secret vector. LWE is the
case when R = Z and the ring variant is when n = 1 but now the ring R can be
thought of as a polynomial residue ring. Thus in going from LWE to its ring variant
we replace the inner product of vectors by the product of polynomials (modulo
some polynomial modulus). The module-LWE problem is used in cryptographic
primitives such as the NIST submissions Saber [8] and Kyber [3].

As previously stated, module-LWE bridges the gap between LWE and RLWE,
but is still not as efficient as RLWE. It is thus tempting to replace the inner product
in module-LWE by a product of polynomials, just like RLWE, but where now the
coefficients are from a polynomial residue ring (in an independent variable) rather
than simply integers. This idea naturally leads to the multivariate ring learning with
errors (m-RLWE) problem as introduced by Pedrouzo-Ulloa, Troncoso-Pastoriza
and Pérez-González in a series of papers [17, 18, 19] between 2015 and 2017. Es-
sentially this does to module-LWE what RLWE does to LWE – by adding more
structure they are able to construct more efficient schemes with smaller key sizes.

Originally, only the simplest case of the problem in two variables was formulated.
They define this problem in [17], which they call the Bivariate RLWE (2-RLWE)
problem using the ring Rq[x, y] = Zq[x, y]/(f(x), g(y)) as follows:

Problem 1.1. Given a bivariate polynomial residue ring Rq[x, y] with f(x) =
xn1 + 1, g(y) = yn2 + 1 and an error distribution χ[x, y] on Rq[x, y] that generates
small-norm random bivariate polynomials in Rq[x, y],1 2-RLWE relies upon the
computational indistinguishability between samples (ai, bi = ai · s+ ei) and (ai, ui)
where ai, ui ← Rq[x, y] are chosen uniformly at random from the ring Rq[x, y], and
s, ei ← χ[x, y] are drawn from the error distribution.

Although not explicitly stated in [17], f and g are taken to be two-power cyclo-
tomics, i.e. n1 and n2 are powers of two.

The authors then construct a method for encrypted image processing whose
security is based on the 2-RLWE problem. The sample parameters proposed for
use are n1 = n2 = 2i, dlog2 qe = 22 + 3i for i = 7, 8, 9, 10. Using the lower bound
given in [13, Equation (5.2)] these instances are estimated to have bit security 2663,
10288, 38880 and 146675 respectively, though these parameters fall well outside the
range of parameters for which the bound was derived so these security levels are
unlikely to be accurate; however, using the LWE-estimator of Albrecht et al. [1]
gives even larger security estimates. Thus it is clear the authors believe these
parameter suggestions give a very high security level. However, in light of our
attack, which we will see works in dimension n1 = n2, the LWE-estimator gives the
estimated security levels as 32, 33, 35 and 98 bits respectively.

Further, in [18] the same authors reformulate the m-RLWE problem in terms
of the tensor product of number fields and consider the ring R now as the tensor

1Technically, there is no norm on the ring Rq [x, y] so this statement does not make mathemat-
ical sense. What is meant by χ[x, y] is to sample an element in Z[x, y] whose degree in x is n1 − 1
and whose degree in y is at most n2 − 1 and whose coefficient vector has small-norm, smallness

being a function of q, and then reducing the polynomial modulo q, f and g.
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product of the corresponding rings of integers. They proceed by generalising the
security reductions of Lyubashevsky et al. from RLWE to standard problems on
ideal lattices to the multivariate case, now reducing them to multivariate ideal
lattice problems.

Finally, in [19] the same authors build upon the m-RLWE problem, this time
again specialised to power-of-two cyclotomics, and give a number of useful multi-
dimensional signal processing operations and optimizations for use with their m-
RLWE based homomorphic encryption scheme.

For the security of their multivariate schemes, the authors claim and give a
sketch proof in [19, Proposition 1] that the 2-RLWE problem above is equivalent
to the RLWE problem in the ring Zq[z]/(h(z)) where h(z) = zn1n2 + 1, however as
will become obvious this is not true as we can solve the 2-RLWE problem far more
easily. The flaw is that while Q[z]/(h(z)) certainly contains isomorphic copies of
Q[x]/(f(x)) and Q[y]/(g(y)) it is not the smallest number field which does so. If
we assume n1 ≥ n2 then in this specific case Q[x]/(f(x)) itself has this property.
This shows that we expect to be able to solve the 2-RLWE problem by solving
max{n1, n2} dimensional problems, not dimension n1n2. This logic can be made to
work more generally with any cyclotomic fields, not just power of two cyclotomics,
as detailed in Section 3.1.

In this paper, we give a simple assessment of the security of them-RLWE problem
and present an efficient attack when the polynomial moduli are related in a certain
way. The basic idea of the attack is to apply a number of “smallness” preserving
ring homomorphisms which reduce the problem to standard RLWE problems of
much lower dimension and with a slightly larger error distribution. Solving the
search variant in each case gives us enough information to recover the secret in
the original m-RLWE problem. For example, for the 2-RLWE problem above with
n1 ≥ n2 the problem is reduced to n2 instances of the RLWE problem in dimension
n1, the same modulus q and with the noise growing only by a factor of

√
n2. This

attack shows that the stated hardness of the problem is much lower than had been
previously asserted in the literature which claimed security equivalent to RLWE in
dimension n1n2.

We remark that shortly after our results appeared in an online preprint, Cheon,
Kim and Yhee [7] used the m-RLWE problem in defining a generalisation of the
HEAAN homomorphic encryption scheme suitable for approximate matrix arith-
metic. They also point out our evaluation attack and hence use cyclotomic poly-
nomials of coprime order. Furthermore, the original authors of m-RLWE, together
with Gama and Georgieva suggested to redefine the problem to use modular func-
tions of the form xn1 + d1, y

n2 + d2, . . . instead, where the di are small integers,
in order to avoid our attack [16].

The remainder of the paper is organised as follows: in Section 2 we recall the
required background and in Section 3 we define the m-RLWE problem and show
that in many cases it is equivalent to the standard RLWE-problem. In Section 4
we present our attack on the remaining cases of m-RLWE and the results of our
implementation, and in Section 5 we remark that the standard optimization trick
of going from LWE to RLWE, when applied to module-LWE, can result in a total
breakdown of security. Finally, we conclude the paper in Section 6.
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2. Preliminaries

Let [n] denote the set {0, 1, 2, . . . , n − 1}. For a commutative ring R and an
element r ∈ R we denote by (r) the principal ideal of R generated by r; namely
(r) = {rs | s ∈ R}. For a finite set S we denote by U(S) the uniform distribution
on S.

2.1. Subgaussians. We also require the notion of a subgaussian random variable.
We follow the approach in [15, Section 2.3] and say that a random variable X over
R is subgaussian with parameter s > 0 if for all t ∈ R we have

E(e2πtX) ≤ eπs
2t2 .

We also use the same notation for the probability distribution of X. It is a simple
exercise to show that the sum of subgaussian distributions is also subgaussian:

Lemma 2.1. Let si ≥ 0 and suppose that we have independent and identically
distributed random variables Xi which are subgaussian with parameter si. Define

X to be the random variable that is the sum of the Xi and set s =
(∑

i s
2
i

)1/2
then

X is subgaussian with parameter s.

We can also apply Markov’s inequality to the subgaussian random variable X
with parameter s which shows that

Pr(|X| ≥ t) ≤ 2e−πt
2/s2 .

2.2. RLWE and its variants. Here we also introduce the distinction between
the so-called dual- and primal-RLWE problems as well as the polynomial RLWE
problem, abbreviated to PLWE. The starting point for the first two problems is a
number field K and its ring of integers OK and an integer modulus q ≥ 2. Typically
K is a cyclotomic number field but this need not be the case. Samples are of the
form (ai, bi) where bi = ais+ei and ai ∈ OK/qOK is sampled uniformly at random
and ei is sampled from an error distribution on KR := K ⊗Q R. The difference
between the two cases is that in the dual-RLWE case the secret s is sampled from
O∨K/qO∨K , with O∨K the fractional ideal dual to OK , while in the primal-RLWE
case it is sampled from OK/qOK . Finally, in the PLWE case ai, s ∈ Zq[x]/(f) for
some monic irreducible polynomial f and the error term is an element of R[x]/(f).

The actual problems come in two variants, a decision version where one has to
determine whether the second component of the samples is computed correctly or
chosen randomly as in Problem 1.1, and a search version where one is asked to find
the secret s.

It has been shown by Ducas and Durmus [9] for cyclotomic fields, and by Rosca,
Stehlé, and Wallet [20] more generally, that one can reduce dual-RLWE to primal-
RLWE with only a limited growth in the error term. Also in [20] they show that
the reduction can be extended from primal-RLWE to PLWE. Since m-RLWE is
defined to use exclusively cyclotomic rings, for simplicity, we will focus on the PLWE
problem in this paper. Our attack is, however, more general and we explain the
modifications needed to generalise this to the other more general RLWE problems
where appropriate.
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2.3. Search RLWE as a BDD problem. In this section we recall a simple and
well-known lattice attack on the search variant of the RLWE problem by considering
it as a special case of the bounded distance decoding problem (BDD). The attack
works given enough samples and is practical for low dimensional problems.

Suppose we are given ` samples {(ai, bi)}i∈[`] from the PLWE distribution and
suppose we are working in the ring R = Zq[x]/(f(x)), deg(f) = n. Then we
know that if s is the secret polynomial we have bi = sai + ei for some ei with
small coefficients. We can rewrite this as a vector-matrix equation by replacing the
elements of R by their (row) vector of coefficients (with respect to the standard
power basis in x) which we denote in bold; if Mai is the matrix of multiplication
by ai then we have bi = sMai + ei. Since s is the same for each sample we can
concatenate all of the samples into one equation:(

b1 · · · b`
)

= s
(
Ma1 · · · Ma`

)
+
(
e1 · · · e`

)
.

This is an instance of the bounded distance decoding (BDD) problem in the q-ary
lattice L spanned by the rows of (Ma1 · · · Ma`) (with entries taken as integers) and
qIn`; the target vector being v = (b1 · · · b`). Any BDD-solver, such as Kannan’s
embedding technique [12] or Babai’s nearest plane algorithm [2], can thus be used
to solve search PLWE. In general, both the ring R and its dual R∨ can be written
as an integral lattice with a suitable choice of basis and the same approach can be
taken to write the search problem as a BDD problem.

Two samples will in practice uniquely define s and the more samples one has
the better the chance of solving the problem. Since we will use the BDD-solver as
a black box in our algorithm, we simply refer to the excellent tool of Albrecht et
al. [1] which can be used to estimate the running time of these algorithms.

3. The m-RLWE Problem

In [18] the authors define the multivariate RLWE distribution, in its dual for-
mulation, in terms of a tensor product of number fields K =

⊗
i∈[m]Ki where each

Ki is a cyclotomic field; not necessarily distinct. The ring R used is now the tensor
product, R =

⊗
i∈[m]OKi

, where OKi
is the ring of integers of the number field

Ki. Further, one defines T := KR/R
∨ where R∨ is the dual fractional ideal of R

called the codifferent ideal. Finally, for an integer modulus q ≥ 2, set Rq = R/qR
and R∨q = R∨/qR∨.

Definition 3.1 (Multivariate RLWE distribution). For s ∈ R∨q and an error dis-
tribution ψ over KR, a sample from the m-RLWE distribution As,ψ over Rq × T
is generated by sampling a ← Rq uniformly at random, e ← ψ, and outputting
(a, b = (a · s)/q + e mod R∨).

One can then define the multivariate RLWE search and decision problems in the
standard way.

Definition 3.2 (Multivariate RLWE Search Problem). Let Ψ be a family of dis-
tributions over KR. Denote by m-RLWEq,Ψ the search version of the m-RLWE
problem: given access to arbitrarily many independent samples from As,ψ for some
fixed uniformly random s ∈ R∨q and ψ ∈ Ψ, find s.

Definition 3.3 (Multivariate RLWE Decision Problem). Let Γ be a distribution
over a family of error distributions, each over KR. The average-case-decision version
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of the m-RLWE problem, denoted by m-R-DLWEq,Γ, is to distinguish with non-
negligible advantage between arbitrarily many independent samples from As,ψ, for
a random choice of (s, ψ)← U(R∨q )×Γ, and the same number of uniformly random
and independent samples from Rq × T.

3.1. Decomposition of m-RLWE and the compositum field. It is well known
that the n-th cyclotomic ring (respectively field) can be split into a tensor product of
prime-power cyclotomic rings (respectively fields), these prime powers being those
appearing in the factorisation of n. In the case of rings, if we denote the j-th
cyclotomic polynomial by Φj , we have that if the prime power factorisation of n is
n = pe11 · · · pemm then,

Z[x]

(Φn(x))
∼=

Z[x]

(Φpe11 (x))
⊗ · · · ⊗ Z[x]

(Φpemm (x))
.

If ϕ is the isomorphism from the right hand side to the left, and we have an
instance of the m-RLWE problem in the right hand tensor product of rings modulo
q then lifting the coefficients to Z, applying ϕ and reducing modulo q will give
an instance of the RLWE problem since ϕ(q) = q and ϕ is a linear map when
considering the rings as Z-lattices. Furthermore, this map is “smallness” preserving
so the resulting error distribution is still a distribution of small elements, though
possibly with some degradation in precisely how small. As a result we obtain the
following observation.

Observation. The m-RLWE problem for cyclotomic fields with defining polynomials
Φni

is only distinct from the RLWE problem when the ni are not all pairwise
coprime.

Going back to the more general case of arbitrary number fields Ki the way to
view the problem is via the notion of the compositum of fields, in our case this
is the smallest number field which contains isomorphic copies of each Ki. Then
there is a natural algebra homomorphism from the tensor product of the Ki to the
compositum; in fact, there can be many such homomorphisms, if we fix one then we
can first apply any automorphisms of the Ki before applying this homomorphism
to give the others.

We can then distinguish two cases: the first case is the so called linearly disjoint
case: the map is injective (and as such automatically bijective in our case) and so
the tensor product and the compositum are isomorphic. We remark this is only
true in terms of the number fields themselves and not the corresponding rings of
integers. However, only when this map is not injective is the m-RLWE problem
distinct from the RLWE problem and this is the crux of the flaw in the reduction
from m-RLWE to RLWE given in [18]. Instead of having to solve a lattice problem
in the tensor product of fields whose dimension is the product of the degrees of
the defining polynomials one can work in the compositum field where the lattice
problem now has dimension the degree of the compositum as a number field which
can be much smaller.

For well behaved number fields, the natural linear map from the tensor product of
the Ki to the compositum is again somewhat “smallness” preserving. This means
that the corresponding RLWE problems in the compositum field may still have
small enough error polynomials to be able to mount an attack against them. We
note that the m-RLWE problem was introduced to improve the efficiency of certain
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applications of somewhat homomorphic encryption; the number fields which can be
used in these advanced cryptographic primitives are well behaved in this sense.

Since the RLWE problem is widely deemed to be a hard problem in large di-
mensions, we will only be interested in the case when the fields Ki are not linearly
disjoint. The simplest case of this for cyclotomic fields is when m = 2 and the two
fields are prime-power cyclotomic fields for the same prime. In particular we will
focus on the prime 2 as this is a very popular choice for efficiency reasons.

4. Attacks

4.1. A distinguishing attack. Our attack is inspired by the “evaluation at one”
attack and its variants on non-standard decisional PLWE problems [10, 11, 5].
These attacks work if the defining polynomial f of the ring R = Z[x]/(f(x)) has
a small root modulo q, say f(θ) ≡ 0 mod q. Then evaluation at x = θ is well
defined and guessing the value of s(θ) one can test if e(θ) = b(θ) − a(θ)s(θ) is
distributed according to the error distribution evaluated at θ. This requires e(θ) to
be distinguishable from uniform, which it is if e(θ) remains small enough, hence θ
should also be small, e.g. θ = ±1.

Note that evaluation at θ is equivalent to reduction modulo the ideal generated
by x − θ and on further reduction by q the ring is non-trivial if and only if f(θ)
and q are not coprime. To stand any chance of distinguishing though, f(θ) and q
should have a large common factor so that the quotient ring is not too small; this is
the case when f(θ) ≡ 0 mod q. More generally, for the attack to succeed we really
only need that Z[x]/(f(x), q, x− θ) = Z/(f(θ), q) is large enough to distinguish the
distribution of e(θ) from uniform.

In our setting the ring R is equal to Z[x, y]/(f(x), g(y)) so we look for an
ideal I of R such that I and (q) are not coprime. In particular, viewing R
as Z[x]/(f(x))[y]/(g(y)) we can try to find a root of g(y) modulo q in the ring
Z[x]/(f(x)). If such a root θ(x) exists, one can try to distinguish between e(x, θ(x))
of the form b(x, θ(x)) − a(x, θ(x))s(x, θ(x)), hence coming from genuine m-RLWE
samples, and e(x, θ(x)) coming from uniformly random samples.

Example 4.1. As a small example let us take f(x) = x4 +1 and g(y) = y2 +1. We
look for a solution to y2 + 1 ≡ 0 mod q in the ring Z[x]/(x4 + 1). It is easy to see
that a solution is y = x2, hence we have found a root. Thus the mapping a(x, y) 7→
a(x, x2) is a ring homomorphism from Z[x, y]/(x4 + 1, y2 + 1) to Z[x]/(x4 + 1).
The error polynomials will be sampled coefficient-wise with respect to the standard
power basis xiyj which we use throughout this paper. Thus writing e(x, y) =∑3
i=0

∑1
j=0 ei,jx

iyj we see that under this homomorphism the error polynomial

e(x, y) is mapped to

3∑
i=0

1∑
j=0

ei,jx
i+2j = (e0,0 − e2,1) + (e1,0 − e3,1)x+ (e2,0 + e0,1)x2 + (e3,0 + e1,1)x3.

We thus see that the image of the error polynomial also has small coefficients as
they are just a signed sum of two of the original coefficients. In particular, the
coefficients of the error term are distinguishable from random elements modulo q
for large enough q. This means a distinguishing attack can be successfully mounted
against the decisional m-RLWE problem in this setting.
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We can in fact go a step further in the above example as y = −x2 is another
solution to y2 +1 ≡ 0 mod q. This may not seem to add much but using this second
solution we can perform an attack on the search variant of the problem making the
attack much more powerful. More generally, having multiple roots may make a
direct attack on the search variant feasible. This will be demonstrated in practice
in the next section.

4.2. Multiple roots. Take the example of the 2-RLWE problem of Problem 1.1
with f(x) = xn1 +1 and g(y) = yn2 +1 for n1 and n2 powers of two so that without
loss of generality we can assume that n2 | n1 and let k = n1/n2. Here we have
many roots of g(y) in Z[x]/(f(x)) even before reducing modulo q. Namely we have
g(x(2i+1)k) = 0 for i ∈ [n2] and each of the roots is distinct. We can thus define the
map

Θ: Z[x, y]/(f(x), g(y))→ (Z[x]/(f(x)))
n2

a(x, y) 7→ (a(x, xk), a(x, x3k), . . . , a(x, x(2n2−1)k)).

This map is essentially the canonical embedding of Z[y]/(yn2 + 1) where instead
of mapping into Z[eπi/n2 ]n2 ⊂ Cn2 each component maps into the ring of integers
of the compositum of fields which is isomorphic to Z[x]/(xn1 + 1) in our case,
and extend this mapping homomorphically in x. Thus we see that Θ is a ring
homomorphism. We denote by Θi the i’th component of Θ which is again a ring
homomorphism.

Just like the canonical embedding, the map Θ is injective. Write a(x, y) =∑n2−1
j=0 aj(x)yj and let a be the vector of coefficients with respect to the power

basis in y: a = (a0(x), . . . , an2−1(x)). Then we have

Θ(a(x, y)) = a


1 1 · · · 1
xk x3k · · · x(2n2−1)k

x2k x6k · · · x(2n2−1)2k

...
...

. . .
...

x(n2−1)k x3(n2−1)k · · · x(2n2−1)(n2−1)k

 .

The matrix appearing above is a Vandermonde matrix and thus has determinant∏
0≤i<j<n2

(x(2j+1)k − x(2i+1)k) which is non-zero as the x(2i+1)k are distinct for

i ∈ [n2]. Hence Θ is injective and can thus be inverted. Further, for n2 > 2,
the absolute value of this determinant is a square root of the discriminant of the
number field Q(eπi/n2). It is well known, see for example [23, Proposition 2.1], that

the discriminant is nn2
2 so that the determinant is one of ±nn2/2

2 . Hence for odd q
the corresponding map Θ modulo q which we denote by Θ̄, where the bar denotes
reduction modulo q, is also invertible, here we mean the map

Θ̄: Zq[x, y]/(f(x), g(y))→ (Zq[x]/(f(x)))
n2

a(x, y) 7→ (a(x, xk), a(x, x3k), . . . , a(x, x(2n2−1)k)).

The inverse mapping from the image of Θ (or Θ̄ if it exists) is given by multiplying
by the inverse of the Vandermonde matrix on the right. Denoting the Vandermonde
matrix by T = (Ti,j)i,j∈[n2] then its inverse is given by U = (Ui,j)i,j∈[n2] where

Ui,j = 1
n2
x−2jkTj,n2−i = 1

n2
x−j(2i+1)k where the indices are taken modulo n2. To



SECURITY OF THE MULTIVARIATE RING LEARNING WITH ERRORS PROBLEM 9

see this we compute

(TU)i,j =

n2−1∑
m=0

Ti,mUm,j =

n2−1∑
m=0

xi(2m+1)k 1
n2
x−j(2m+1)k

=
1

n2

n2−1∑
m=0

x(i−j)(2m+1)k = δi,j .

We now look at how large the coefficients of the t-th component of Θ(e(x, y)),
denoted Θt(e(x, y)), are if e(x, y) is sampled from the m-RLWE error distribution.
We suppose that this error distribution has coefficients, with respect to the basis
xiyj , sampled independently from a distribution that is subgaussian with parameter
σ so writing e(x, y) =

∑n2−1
i=0

∑n1−1
j=0 ei,jx

jyi each ei,j is an independent subgaussian

random variable with parameter σ. Then applying Θt for some t ∈ [n2] gives

Θt(e(x, y)) =

n2−1∑
i=0

n1−1∑
j=0

ei,jx
j+i(2t+1)k =

n1−1∑
l=0

(
n2−1∑
i=0

(−1)qi,lei,ri,l

)
xl

where we define qi,l and ri,l as the quotient and remainder of l − i(2t + 1)k on
division by n1 (which depends on t): l − i(2t + 1)k = qi,ln1 + ri,l with ri,l ∈ [n1].
This can be seen by rewriting j as j = l − i(2t+ 1)k mod n1 for some l ∈ [n1] (for
each i separately) and noting that as j runs over [n1] so does l, after which one
swaps the order of summation.

Thus we see that the coefficients of Θt(e(x, y)) are the sum of n2 subgaussians
with parameter σ and so are themselves subgaussian with parameter

√
n2σ.

4.3. Our Attack. Here we present a simple attack on the 2-RLWE problem. It
combines both the simple lattice attack and the distinguishing attack. We stress
that the attack is much more powerful than the distinguishing attack alone as firstly
it solves a search rather than a decisional problem and secondly there is no need
for any guessing during the attack.

We start with a number of samples {(aj(x, y), bj(x, y))}j∈[`] where bj(x, y) =

aj(x, y)s(x, y)+ej(x, y). The attack starts by evaluating the map Θ̄ on each sample,
we define αi,j(x) := Θ̄i(aj(x, y)) and βi,j(x) := Θ̄i(bj(x, y)). We note that since Θ̄
is a ring homomorphism we have, on defining εi,j(x) := Θ̄i(ej(x, y)) and σi(x) :=
Θ̄i(s(x, y)), that

βi,j(x) = αi,j(x)σi(x) + εi,j(x) for i ∈ [n2], j ∈ [`].

Our first goal is to find the σi(x) and to do this we use the simple lattice attack from
Section 2.3 since for a fixed i the samples (αi,j(x), βi,j(x)) follow a RLWEq,√n2Ψ

distribution. This means we need to simply solve n2 instances of a RLWE problem
in dimension n1 with noise distribution that is

√
n2 times wider than for the m-

RLWE problem; each instance is independent so can be solved in parallel. If this
succeeds we have computed the image of s(x, y) under Θ̄ and since Θ̄ is invertible
for odd q we can compute s(x, y) and solve the 2-RLWE problem.

4.4. Implementation Results. We implemented and tested our attack in Sage-
Math [22], using the NTL library for lattice reduction. We tested our attack on
the smallest parameter set given in [17], namely for n1 = n2 = 128 and q being the
smallest prime larger than 242. The secret polynomial is sampled from the error
distribution which samples coefficients independently from a discrete Gaussian with
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σ = 8/
√

2π ≈ 3.19 (the default in SEAL [6]), larger than the stated σ = 1 in the
paper [17]. We were able to successfully recover the secret polynomial with just one
sample using BKZ reduction with block size 10 to solve the BDD problem instances.
This clearly shows that the estimated security level of over 2500 bits is a significant
overestimate. We can see from the estimates given by the LWE estimator [1] that
also the parameter set with n1 = n2 = 256 and n1 = n2 = 512 offers little to no
security (33 and 35 bits respectively) while that for n1 = n2 = 1024 offers at most
98 bits.

In Table 1 we report on a run of our attack with n1 ≥ n2 and q of the form
2p + 1 for p ∈ N. The secret polynomial s we try to find is chosen uniformly at
random from Zq[x, y]/(xn1 +1, yn2 +1) so the minimum number of 2-RLWE samples
possible to recover s is two. We give the minimum q of the stated form for which
the attack succeeded in a fixed number of consecutive instances with the stated
number of samples; here we used the embedding approach combined with BKZ
reduction to attempt to solve the BDD instances. Further, the coefficients of the
error polynomials were sampled independently using a discrete Gaussian sampler
with σ = 3.19. The results are heuristic as we only attempted to solve a limited
number of instances for each choice of n1, n2 and q. It is certainly possible to find
the secret for smaller q by increasing the block size used, and in specific instances
this may not even be necessary.

Table 1. The number of samples ` ≤ 3 and the minimal p ∈ N,
p ≈ log2(q) for which our attack succeeded in each of the stated
number of attempts for the stated block size, given n1, n2 and
q = 2p + 1, and where the secret polynomial is sampled uniformly
at random in Rq.

n1

4 8 16 32 64 128
instances 100 100 100 10 1 1
block size 30 30 30 30 10 10

` p ` p ` p ` p ` p ` p

n2

4
2 13 2 13 2 13 2 13 2 15 2 21
3 9 3 10 3 10 3 11 3 13 3 20

8
2 13 2 13 2 14 2 17 2 22
3 10 3 10 3 11 3 15 3 20

16
2 14 2 15 2 18 2 23
3 11 3 12 3 16 3 22

32
2 15 2 19 2 24
3 12 3 17 3 22

64
2 20 2 31
3 18 3 24

In Table 2 we performed the same attack but this time with the coefficients of
the secret polynomial taken from the uniform distribution on {−1, 0, 1}, hence a
successful attack is now possible with only one sample. While the case of the secret
being sampled from the error distribution, as in the proposed image processing
scheme of [19], can be viewed as having an extra sample (1, 0 = 1 · s − s) whose
error is −s, it is often the case in practical applications of somewhat homomorphic
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encryption that the secret is sampled from this narrower distribution to get the
most efficiency out of the scheme. It is therefore interesting to see how this choice
affects our attack.

Table 2. The number of samples ` ≤ 2 and the minimal p ∈ N,
p ≈ log2(q) for which our attack succeeded in the stated number
of instances and with the stated block size, given n1, n2 and q =
2p+ 1, and where the secret polynomial is sampled coefficient-wise
with each coefficient uniformly random in {−1, 0, 1}.

n1

4 8 16 32 64 128
instances 100 100 100 10 1 1
block size 30 30 30 30 10 10

` p ` p ` p ` p ` p ` p

n2

4
1 11 1 12 1 12 1 13 1 14 1 22
2 9 2 9 2 10 2 11 2 13 2 20

8
1 13 1 13 1 14 1 15 1 22
2 10 2 10 2 11 2 14 2 21

16
1 14 1 14 1 17 1 22
2 11 2 12 2 15 2 21

32
1 15 1 18 1 23
2 12 2 16 2 22

64
1 20 1 25
2 17 2 23

4.5. The case of the general m-RLWE problem. The previous subsection
showed that the 2-RLWE problem can be readily attacked with the combination
of an evaluation attack and simple lattice reduction techniques. More generally, if
the defining polynomials of the 2-RLWE problem are both pth power cyclotomic
polynomials of degree φ(pri) then our attack straightforwardly applies to this case
with the caveat that Θ̄ must be invertible modulo q which holds if q is coprime with
φ(pr2) = pr2−1(p − 1). We remark that if h = gcd(q, φ(pr2)) and φ(pr2) are small
it is possible to compute all possible preimages of Θ̄ and test each of them in turn
to determine the correct value of the secret, however this rather quickly becomes
prohibitively expensive the larger h and r2 become as there are hφ(pr2 ) possibilities
to check.

Increasing the value of m when each of the defining polynomials is a pth power
cyclotomic polynomial of degree ni = φ(pri) increases the difficulty of the problem

in so much as the error grows by a multiplicative factor of
√∏m

i=j+1 ni in a lattice

of dimension
∏j
i=1 ni for some 1 ≤ j ≤ m; here we can choose the order of the

ni which best suits the attack. We therefore see that a trade-off can be made in
choosing j: if j = 1 means the error is already too large for the lattice reduction
attack to succeed we can choose a larger j at the cost of having to perform lattice
reduction in a lattice of larger dimension. In this way, taking large m offers some
security but at a loss of efficiency if such a large m is not needed specifically for
the application in mind.
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When instantiating m-RLWE with an arbitrary tensor product of number fields
we again wish to find an analogue for the map Θ. This will consist of algebra
homomorphisms from K = ⊗i∈[m]Ki to the compositum field, which we denote by
L. These algebra homomorphisms can naturally be extended to maps from KR to
L ⊗Q R which fix q so we can evaluate them on the components of samples from
the m-RLWE distribution.

In the case that all the number fields Ki are Galois extensions then there are
exactly n :=

∏
i∈[m][Ki : Q] =

∏
i∈[m] ni such algebra homomorphisms from K to

L. Since all of the Ki are Galois, so is L; if we define N := |Aut(L)| = [L : Q] as the
number of automorphisms of L then up to automorphism in L there are k := n/N
distinct algebra homomorphisms which we denote by Θ = (Θi)i∈[k].

Again, Θ is injective so can be inverted however for the attack to work we need Θ̄
to be invertible, that is Θ to be invertible modulo q. Further, we also require Θ to
map the error distribution ψ over KR to elements of LR which have small coefficients
with respect to a known basis for L as a Q-vector space. If these conditions are
met then we can carry out the same attack of applying Θ̄ to the m-RLWE samples,
solving k instances of the reduced problem in a lattice of dimension N and applying
Θ̄−1 to recover the secret.

To summarise the requirements for the full attack we require for the number
fields Ki to be Galois, for the map Θ̄ to be invertible and for Θ to map small
elements to small elements. If either of the first two conditions are not met it may
still be possible to recover partial information about the secret using our approach.

5. The dangers of optimizing module based cryptosystems

We take the example of Kyber [3] which, when reduced to its simplest form, has
a public key which is a module-LWE sample where the secret s is a small element of
the module Rkq where R = Z[x]/(xn + 1) with n a power of two. Such a public key
is then a pair (A,b) with A a k × k matrix whose entries are chosen uniformly at
random from Rq and b ∈ Rkq with b = As+e for some small error element e ∈ Rkq .
This means a public key consists of k(k+1) elements of Rq. One might be tempted
to use a structured matrix, such as a negacyclic one, instead of a uniformly random
one; after all this is essentially how one goes from LWE to its ring based counterpart
RLWE and with our current understanding this latter optimization only incurs a
negligible deterioration in security.

Let us fix some parameters and observe what happens. The suggested “paranoid”
parameters from [3] are to take k = 4 and n = 256 and q = 6781 which gives a
(post-quantum) security level of 218 bits, the largest given by the authors. Taking
the matrix A to be negacyclic, that is a matrix of the form

a0 −ak−1 −ak−2 · · · −a1

a1 a0 −ak−1 · · · −a2

a2 a1 a0 · · · −a3

...
...

...
. . .

...
ak−1 ak−2 ak−3 · · · a0

 ,

means that only 5 elements of Rq are needed to define the public key instead of
20. Further, as shown below, the scheme can be interpreted as adding a ring
structure on top of Rq in a new variable y satisfying y4 + 1 and replacing matrix
multiplication by ring multiplication. Hence, we are in the m-RLWE setting and
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working in the tensor product of two power-of-two cyclotomic fields of degrees 256
and 4 respectively.

Formally, we can define the negacyclic module-LWE problem as follows. Let
R = Z[x]/(xn+1) with n a power of two and q ≥ 2 and k be positive integers. Let s
be an element of Rkq and χ a distribution of small elements in Rkq . A sample from the
negacyclic module-LWE distribution with secret s is of the form (A,b = As + e),
where A ∈ Rk×kq is a negacyclic matrix and e ← χ. The negacyclic module-
LWE decision problem is to decide whether a given set of samples of the form
(Ai,bi) ∈ Rk×kq × Rkq , with each Ai a negacyclic matrix are sampled from the
negacyclic module-LWE distribution or with each bi sampled uniformly at random
from Rkq instead. The negacyclic module-LWE search problem is, given samples
from the negacyclic module-LWE distribution with secret s, recover s.

Given a negacyclic matrix A ∈ Rk×kq whose first column is (a0, . . . , ak−1)T then

we can write a(y) =
∑k−1
i=0 aiy

i, the equality b = As is equivalent to b(y) =

a(y)s(y) mod yk + 1 where b(y) =
∑k−1
i=0 biy

i and s(y) =
∑k−1
i=0 siy

i with the bi and
si the coordinates of the vectors b and s respectively. We therefore see that the
negacyclic module-LWE problem is equivalent to the m-RLWE problem in the ring
Z[x, y]/(xn + 1, yk + 1).

Returning to our example of a structured Kyber variant, we can thus apply our
attack with n1 = 256 and n2 = 4 which shows that we can recover s by solving four
RLWE problems in dimension 256 from one sample where the error distribution has
variance twice that of the original error distribution. Using the LWE-estimator [1],
we find that this basic version of a structured Kyber offers at most 107 bits of
security, essentially halving the security when compared to the original version of
Kyber without any additional structure. Thus there is a large difference in terms
of security between going from LWE to RLWE and going from module-LWE to
m-RLWE if one is not careful.

We note this structured Kyber would also be weak with the “light” parameter
set where k = 2 but for the standard parameters where k = 3 the above attack
does not apply as 3 is not a power of two; that is x3 + 1 has no roots in a power-
of-two cyclotomic field. This again shows the subtlety of the problem of trying to
optimize module-LWE. Care needs to be taken in choosing which method and for
which parameters such an optimization can be applied without severely damaging
the security of the problem.

6. Conclusion

In this paper we reconsidered the m-RLWE problem and its security. We showed
that, with a combination of simple evaluation and lattice attacks, the security of
the m-RLWE problem was dramatically less than had been previously estimated
in the literature. We would therefore not recommend using 2-RLWE for values of
n1 or n2 less than those used in standard RLWE based schemes for cryptographic
purposes. More generally, we conclude that the m-RLWE problem using number
fields with a small degree compositum field is insecure. Finally, this paper should
also serve as a warning to implementers of module-LWE based cryptosystems to
not blindly apply the standard optimization trick that is used to transform LWE
into RLWE.
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[21] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key en-

cryption based on ideal lattices. In Mitsuru Matsui, editor, Advances in Cryptology – ASI-

ACRYPT 2009, pages 617–635. Springer Berlin Heidelberg, 2009.
[22] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.5.1),

2017. http://www.sagemath.org.

[23] Lawrence C. Washington. Introduction to Cyclotomic Fields. Graduate Texts in Mathematics.
Springer New York, 1997.

https://eprint.iacr.org/2019/1109
https://arxiv.org/abs/1607.05244
https://arxiv.org/abs/1607.05244
https://arxiv.org/abs/1712.00848
https://arxiv.org/abs/1712.00848
http://www.sagemath.org

	1. Introduction
	2. Preliminaries
	2.1. Subgaussians
	2.2. RLWE and its variants
	2.3. Search RLWE as a BDD problem

	3. The m-RLWE Problem
	3.1. Decomposition of m-RLWE and the compositum field

	4. Attacks
	4.1. A distinguishing attack
	4.2. Multiple roots
	4.3. Our Attack
	4.4. Implementation Results
	4.5. The case of the general m-RLWE problem

	5. The dangers of optimizing module based cryptosystems
	6. Conclusion
	Acknowledgements
	References

