Algorithms for the Approximate Common Divisor Problem

Steven D. Galbraith, Shishay W. Gebregiyorgis and Sean Murphy University of Auckland and Royal Holloway

Thanks

- Referees and Program Committee
- Nadia Heninger
- Tancrède Lepoint

Outline

- Approximate common divisor problem (ACD).
- Simultaneous Diophantine approximation.
- Orthogonal lattice method.
- Multivariate polynomial approach.
- Main conclusion: multivariate polynomial approach is not better than the other lattice methods for practical cryptanalysis.
- Sample-amplification and pre-processing approaches.
- Open problems.

Approximate Common Divisor problem (ACD)

- Introduced by Howgrave-Graham.
- Given $x_{i}=p q_{i}+r_{i}$ with $\left|r_{i}\right| \ll p$ for $1 \leq i \leq t$ to compute p.
- This is a well-defined problem if one is given enough samples.

Homomorphic Encryption

- Van Dijk, Gentry, Halevi and Vaikuntanathan proposed a homomorphic encryption scheme based on ACD.
- Ciphertexts are $c=p q+2 r+m$ where $m \in\{0,1\}$ is message and $|r| \ll p$.
- To decrypt: reduce modulo p and then modulo 2 .
- Homomorphic for addition:

$$
c_{1}+c_{2}=p\left(q_{1}+q_{2}\right)+2\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right)
$$

decrypts to $m_{1}+m_{2}(\bmod 2)$.

- Homomorphic for multiplication:
$c_{1} c_{2}=p\left(p q_{1} q_{2}+2 q_{1} r_{2}+2 q_{2} r_{1}\right)+2\left(2 r_{1} r_{2}+r_{1} m_{2}+r_{2} m_{1}\right)+\left(m_{1} m_{2}\right)$ which decrypts to $m_{1} m_{2}(\bmod 2)$ as long as $2 r_{1} r_{2} \ll p$.

Further variants

- J.-S. Coron, A. Mandal, D. Naccache, M. Tibouchi. Fully homomorphic encryption over the integers with shorter public keys. CRYPTO 2011.
- J.-S. Coron, D. Naccache, M. Tibouchi. Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. EUROCRYPT 2012.
- J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, A. Yun. Batch Fully Homomorphic Encryption over the Integers. EUROCRYPT 2013.
- T. Lepoint, Design and Implementation of Lattice-Based Cryptography, PhD thesis 2014.
- J. H. Cheon, D. Stehlé. Fully Homomorphic Encryption over the Integers Revisited. EUROCRYPT 2015.

Cheon and Stehlé variant

- New harder variant of the problem: If LWE hard then ACD hard.
- More efficient homomorphic encryption using "scale invariant" concept.

Formal ACD problem

- Fix $\gamma, \eta, \rho \in \mathbb{N}$ with $\gamma>\eta>\rho$.
- p is an η-bit odd integer.
- Define

$$
\mathcal{D}_{\gamma, \rho}(p)=\left\{p q+r \mid q \leftarrow \mathbb{Z} \cap\left[0,2^{\gamma} / p\right), r \leftarrow \mathbb{Z} \cap\left(-2^{\rho}, 2^{\rho}\right)\right\} .
$$

- Approximate common divisor problem (ACD): Given polynomially many samples x_{i} from $\mathcal{D}_{\gamma, \rho}(p)$, to compute p.
- Partial approximate common divisor problem (PACD): Given polynomially many samples x_{i} from $\mathcal{D}_{\gamma, \rho}(p)$ and also a sample $x_{0}=p q_{0}$ for uniformly chosen $q_{0} \in \mathbb{Z} \cap\left[0,2^{\gamma} / p\right)$, to compute p.
- There are also "decisional" versions.

Parameters

- Let λ be a security parameter.
- Take $\rho=\lambda$ due to attacks on the term r in $p q+r$. See Chen-Nguyen, Coron-Naccache-Tibouchi, Lee-Seo.
- Van Dijk et al set $\gamma / \eta^{2}=\omega(\log (\lambda))$ to thwart lattice attacks on the approximate common divisor problem.
- Suggested parameters $(\rho, \eta, \gamma)=\left(\lambda, \lambda^{2}, \lambda^{5}\right)$
- One example $(\rho, \eta, \gamma)=(71,2698,19350000)$. Yes, each ACD sample $x_{i}=p q_{i}+r_{i}$ is 19 million bits (about 2.4 megabytes).

Variants

- CRT-ACD problem
- Cheon et al set $\pi=p_{1} \cdots p_{\ell}$ and $x_{0}=\pi q_{0}$.
- A ciphertext is $c=\pi q+r \equiv 2 r_{r}+m_{i}\left(\bmod p_{i}\right)$ for all i.
- Problem is to compute p_{1}, \ldots, p_{ℓ}.
- It is an open problem to give an algorithm to solve the CRT-ACD problem that exploits the CRT structure.
- Cheon-Stehlé approximate common divisor problem
- Parameters

$$
(\rho, \eta, \gamma)=\left(\lambda, \lambda+d \log (\lambda), \Omega\left(d^{2} \lambda \log (\lambda)\right)\right)
$$

where d is the homomorphic circuit depth.

- Note that ρ is no longer extremely small compared with η.

Simultaneous Diophantine approximation approach (SDA)

- Due to Howgrave-Graham.
- Does not benefit from having an exact sample $x_{0}=p q_{0}$, so suppose $x_{0}=p q_{0}+r_{0}$.
- If $x_{i}=p q_{i}+r_{i}$ for $1 \leq i \leq t$, where r_{i} is small, then

$$
\frac{x_{i}}{x_{0}} \approx \frac{q_{i}}{q_{0}}
$$

for $1 \leq i \leq t$.

- In other words, the fractions q_{i} / q_{0} are an instance of simultaneous Diophantine approximation to x_{i} / x_{0}.

Simultaneous Diophantine approximation approach (SDA)
Define lattice L of rank $t+1$ with (row) basis

$$
\mathbf{B}=\left(\begin{array}{ccccc}
2^{\rho+1} & x_{1} & x_{2} & \cdots & x_{t} \\
& -x_{0} & & & \\
& & -x_{0} & & \\
& & & \ddots & \\
& & & & -x_{0}
\end{array}\right) .
$$

Note $\operatorname{det}(L)=2^{\rho+1} x_{0}^{t}$.
Note that L contains the vector

$$
\begin{aligned}
\mathbf{v} & =\left(q_{0}, q_{1}, \cdots, q_{t}\right) \mathbf{B} \\
& =\left(2^{\rho+1} q_{0}, q_{0} x_{1}-q_{1} x_{0}, \cdots, q_{0} x_{t}-q_{t} x_{0}\right) \\
& =\left(q_{0} 2^{\rho+1}, q_{0} r_{1}-q_{1} r_{0}, \cdots, q_{0} r_{t}-q_{t} r_{0}\right)
\end{aligned}
$$

SDA algorithm

- If

$$
\|\mathbf{v}\| \approx \sqrt{t+1} 2^{\gamma-\eta+\rho+1}<\sqrt{\frac{t+1}{2 \pi e}} \operatorname{det}(L)^{1 /(t+1)}
$$

then we expect target vector \mathbf{v} to be the shortest non-zero vector in the lattice.

- The attack is to run a lattice basis reduction algorithm to get a candidate \mathbf{w} for the shortest non-zero vector.
- One then divides the first entry of \mathbf{w} by $2^{\rho+1}$ to get a candidate value for q_{0} and then computes $r_{0}=x_{0}\left(\bmod q_{0}\right)$ and $p=\left(x_{0}-r_{0}\right) / q_{0}$.
- One can then "test" this value for p by checking if $x_{i}(\bmod p)$ are small for all $1 \leq i \leq t$.

Remarks

- Attack only requires a single short vector, not a large number of short vectors.
- Analysis of the attack is heuristic.
- To use LLL, need target v to be shorter by an exponential factor than the second successive minimum. So need

$$
2^{t / 2}\|\mathbf{v}\| \leq \sqrt{n} \operatorname{det}(L)^{1 /(t+1)}
$$

- Necessary condition for algorithm to succeed is

$$
t+1>\frac{\gamma-\rho}{\eta-\rho}
$$

- Consistent with work of Cheon-Stehlé.
- See paper for more details and discussion.

CRT case

- Have $x_{i}=p_{j} q_{i, j}+r_{i, j}$ for $1 \leq j \leq \ell$ where each $r_{i, j}$ is small.
- It follows that the lattice contains the vectors

$$
\left(q_{0, j} 2^{\rho+1}, q_{0, j} r_{1, j}-q_{1, j} r_{0, j}, \cdots, q_{0, j} r_{t, j}-q_{t, j} r_{0, j}\right)
$$

for all $1 \leq j \leq \ell$ and these all have similar length.

- The j-th vector allows to compute p_{j}.
- But any short linear combination of several of these vectors is also a short vector in the lattice, but not good for breaking the system.

Orthogonal Lattice Approach (OL)

- Nguyen and Stern promoted the orthogonal lattice for cryptanalysis.
- Appendix B. 1 of van Dijk et al gives a method based on vectors orthogonal to $\left(x_{1}, \ldots, x_{t}\right)$.
Their idea is that the lattice of integer vectors orthogonal to $\left(x_{1}, \ldots, x_{t}\right)$ contains the sublattice of integer vectors orthogonal to both $\left(q_{1}, \ldots, q_{t}\right)$ and $\left(r_{1}, \ldots, r_{t}\right)$.
- They also have a method based on vectors orthogonal to $\left(1,-r_{1} / R, \ldots,-r_{t} / R\right)$, where $R=2^{\rho}$.
- Ding and Tao have given a method based on vectors orthogonal to (q_{1}, \ldots, q_{t}).
- Cheon and Stehlé considered the second method of DGHV.
- Our analysis and experiments suggest all these methods are essentially equivalent in both theory and practice.

Orthogonal Lattice Approach (OL)

- Need to have $t-1$ linearly independent vectors in the lattice L that satisfy a certain bound.
- Our approach is a bit simpler than previous works.
- We show that a necessary condition on the dimension is $t \geq(\gamma-\rho) /(\eta-\rho)$.
Same as the SDA condition.
- In practice the OL method slightly faster than SDA as numbers smaller.

Multivariate polynomial approach (MP)

- Howgrave-Graham was the first reduce the approximate common divisor problem to the problem of finding small roots of multivariate polynomial equations.
- The idea was further extended in Appendix B. 2 of van Dijk et al.
- A detailed analysis was given by Cohn and Heninger in ANTS 2012.
- A variant for the case when the "errors" are not all the same size was given by Takayasu and Kunihiro.
- Cohn and Heninger show that this approach has advantages over the others if the number of ACD samples is very small (the original context studied by Howgrave-Graham).
- Our heuristic analysis and experimental results suggest that the multivariate approach has no advantage over the SDA or OL methods for practical cryptanalysis.

Multivariate polynomial approach (MP)

- Notation from Cohn and Heninger:
- Assume we have $N=p q_{0}$.
- Let $a_{i}=p q_{i}+r_{i}$ for $1 \leq i \leq m$ be ACD samples, where $\left|r_{i}\right| \leq R$ for some given bound R.
- Construct a polynomial $Q\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ in m variables such that $Q\left(r_{1}, \cdots, r_{m}\right) \equiv 0 \bmod p^{k}$ for some k.
- Such polynomials are integer linear combinations of

$$
\left(X_{1}-a_{1}\right)^{i_{1}} \cdots\left(X_{m}-a_{m}\right)^{i_{m}} N^{\ell}
$$

where ℓ is chosen such that $i_{1}+\cdots+i_{m}+\ell \geq k$.

- An additional generality is to choose a degree bound $t \geq k$ and impose the condition $i_{1}+\cdots+i_{m} \leq t$.
- The value t will be optimised later.
- There is no benefit to taking $k>t$.

Multivariate polynomial approach (MP)

- The lattice L has dimension $d=\binom{t+m}{m}$ and determinant

$$
\operatorname{det}(L)=R^{\binom{t+m}{m} \frac{m t}{m+1}} N\left(\begin{array}{c}
\binom{k+m}{m} \frac{k}{m+1}
\end{array} 2^{\frac{d m t}{m+1}+\binom{k+m}{m} \frac{\gamma k}{m+1}}\right.
$$

where we use the natural choice $R=2^{\rho}$.

- Let \mathbf{v} be a vector in L.
- One can interpret $\mathbf{v}=\left(v_{i_{1}, \cdots, i_{m}} R^{i_{1}+\cdots+i_{m}}\right)$ as the coefficient vector of a polynomial

$$
Q\left(X_{1}, \ldots, X_{m}\right)=\sum_{i_{1}, \cdots, \cdots, i_{m}} v_{i_{1}, \cdots, i_{m}} X_{1}^{i_{1}} \cdots X_{m}^{i_{m}} .
$$

Multivariate polynomial approach (MP)

- So a short vector in L gives a polynomial Q.
- If $\left|Q\left(r_{1}, \cdots, r_{m}\right)\right|<p^{k}$ then we have $Q\left(r_{1}, \cdots, r_{m}\right)=0$ over the integers.
We have

$$
\begin{aligned}
\left|Q\left(r_{1}, \cdots, r_{m}\right)\right| & \leq \sum_{i_{1}, \cdots, i_{m}}\left|v_{i_{1} \cdots i_{m}}\right|\left|r_{1}\right|^{i_{1}} \cdots\left|r_{m}\right|^{i_{m}} \\
& \leq \sum_{i_{1}, \ldots, i_{m}}\left|v_{i_{1} \cdots i_{m}}\right| R^{i_{1}} \cdots R^{i_{m}} \\
& =\|\mathbf{v}\|_{1} .
\end{aligned}
$$

- Hence, if $\|\mathbf{v}\|_{1}<p^{k}$ then we have an integer polynomial with the desired root.

Multivariate polynomial approach (MP)

- We call a vector $\mathbf{v} \in L$ such that $\|\mathbf{v}\|_{1}<p^{k}$ a target vector.
- We need (t least m algebraically independent target vectors.
- Elimination leads to $\left(r_{1}, \ldots, r_{m}\right)$.
- One then computes $p=\operatorname{gcd}\left(N, a_{1}-r_{1}\right)$.
- We call this process the MP algorithm.
- The case $(t, k)=(1,1)$ gives the OL method, as noted by van Dijk et al.
Cohn-Heninger call $(t, k)=(1,1)$ "unoptimised".
- Does taking $t>1$ gives rise to a better attack?
- When the number of ACD samples is large the best choice for MP algorithm is $(t, k)=(1,1)$.

Multivariate polynomial approach (MP)

- Necessary condition for success using LLL is

$$
d \log _{2}(d)+d^{2} \log _{2}(1.02)+d \rho \frac{m t}{m+1}+\gamma\binom{k+m}{m} \frac{k}{m+1}<k \eta d .
$$

- This is equation (5.2) in our paper.
- Cohn-Heninger fix m, set $\beta=\eta / \gamma \ll 1$, and impose $t \approx \beta^{-1 / m} k$, which means that $t \gg k$.
- The lattice dimension in their method is $\binom{t+m}{m}=O\left(t^{m}\right)=O\left(\beta^{-1} k^{m}\right)>\gamma / \eta$.
This is the same dimension bound as previous methods (at least, when ρ is small).

Multivariate polynomial approach (MP)

- For large $m, \frac{m t}{m+1} \approx t$. To satisfy (5.2) need

$$
t \rho<k \eta .
$$

- Equation (5.2) implies, when m is large,

$$
d \rho t+\gamma\binom{k+m}{m} \frac{k}{m+1}<k \eta d .
$$

- Dividing by k and re-arranging gives

$$
d>\frac{\gamma}{\eta-\frac{t}{k} \rho}\binom{k+m}{m} \frac{1}{m+1} .
$$

Since $\frac{t}{k} \geq 1$ and $\binom{k+m}{m} \frac{1}{m+1} \geq 1$ we see that this is never better than the lattice dimension bound $d>\frac{\gamma}{\eta-\rho}$.

Executive summary

- There is no theoretical reason why, when number of samples m is large, the MP method should be better than the SDA or OL methods for any of the variants of the ACD problem.
- A special case $(t, k)=(1,1)$ of the MP method gives the OL method. This was noted by van Dijk et al, and Cohn-Heninger call $(t, k)=(1,1)$ "unoptimised".
- Our practical experiments confirm this, and indeed show the MP algorithm with $(t, k) \neq(1,1)$ is very slow due to solving systems of polynomial equations.
- When m is very small then one can handle larger errors using the multivariate polynomial approach than SDA or OL (see ANTS 2012).

Pre-processing of the ACD samples

- Most important factor in the difficulty of the ACD problem is the ratio γ / η.
- If can lower γ without changing the size of the errors then have an easier instance.
- Hence, we consider a pre-processing step where a large number of initial samples $x_{i}=p q_{i}+r_{i}$ are used to form new samples $x_{j}^{\prime}=p q_{j}^{\prime}+r_{j}^{\prime}$ with q_{j}^{\prime} significantly smaller than q_{i}.
- Take differences $x_{k}-x_{i}$ for $x_{k}>x_{i}$ and $x_{k} \approx x_{i}$.
- Note that if $x_{k} \approx x_{i}$ then $q_{k} \approx q_{i}$ but r_{k} and r_{i} are not necessarily related at all.
- Hence $x_{k}-x_{i}=p\left(q_{k}-q_{i}\right)+\left(r_{k}-r_{i}\right)$ is an ACD sample for the same p, with smaller value for q and a similar sized error r.

Pre-processing of the ACD samples

- We also propose a sample amplification idea to convert a small list of samples into a large list, so that the method can be iterated.
- This approach looks stupid: Why not just build a lattice from all the samples.
- But the number of samples may be astronomically large.

Blum-Kalai-Wasserman (BKW) algorithm

- Our work is inspired by the BKW algorithm for learning parity with noise (LPN).
- In that case we have samples (\mathbf{a}, b) where $\mathbf{a} \in \mathbb{Z}_{2}^{n}$ is a vector of length n and $b=\mathbf{a} \cdot \mathbf{s}+e$, where $\mathbf{s} \in \mathbb{Z}_{2}^{n}$ is a secret and e is a noise term which is usually zero.
- To obtain samples such that $\mathbf{a}=(1,0,0, \ldots, 0)$, or similar, iterate by adding samples $\left(\mathbf{a}_{k}, b_{k}\right)+\left(\mathbf{a}_{i}, b_{i}\right)$ where some coordinates of \mathbf{a}_{k} and \mathbf{a}_{i} agree.
- The result is an algorithm with subexponential complexity $2^{n / \log (n)}$, compared with the naive algorithm (guessing all $\mathbf{s} \in \mathbb{Z}_{2}^{n}$) which has complexity 2^{n}.
- In our context we do not have ($q_{i}, p q_{i}+r_{i}$) but only $x_{i}=p q_{i}+r_{i}$, however we can use the high-order bits of x_{i} as a proxy for the high order bits of q_{i} and hence perform a similar algorithm.

Preserving the sample size

- Fix a small bound $B=2^{b}$ (e.g., $B=16$) and select B samples x_{1}, \ldots, x_{B} such that the leading coefficients in base B are all distinct.
- For each of the remaining $\tau-B$ samples, generate a new sample by subtracting the one with the same leading coefficient.
- The result is $\tau-B$ samples each of size $\gamma-b=\gamma-\log _{2}(B)$ bits.
- Easy to see this is stupid.

Aggressive shortening

- Sort the samples $x_{1} \leq x_{2} \leq \cdots \leq x_{\tau}$ and, for some small threshold $T=2^{\gamma-\mu}$, generate new samples by subtracting $x_{i+1}-x_{i}$ when this difference is less than T.
- The new samples are of size at most $\gamma-\mu$ bits, but there are far fewer of them.
- The statistical distribution of such "spacings" was considered by Pyke.
It is shown that generic spacings have Exponential distributions.
- Eventually one has too few samples.

Sample amplification

- Generate new samples of about the same bitlength by taking sums/differences of the initial list of samples.
- Let $\mathcal{L}=\left\{x_{1}, \ldots, x_{\tau}\right\}$ be a list of ACD samples, with $x_{k}=p q_{k}+r_{k}$ having mean and variance given by $\mu=\mathbf{E}\left(x_{k}\right)=p \mathbf{E}\left(q_{k}\right)=2^{\gamma-1}$ and variance given by

$$
\begin{aligned}
\operatorname{Var}\left(x_{k}\right) & =p^{2} \operatorname{Var}\left(q_{k}\right)+\operatorname{Var}\left(r_{k}\right)=\frac{1}{3} 2^{2(\gamma-1)}+\frac{1}{12} 2^{2 \rho} \\
& =\frac{1}{3} 2^{2(\gamma-1)}\left(1+2^{-2(\gamma-\rho)}\right) .
\end{aligned}
$$

- Generate m random sums

$$
S_{k}=\sum_{i=1}^{\ell} x_{k_{i}} \quad[k=1, \ldots, m]
$$

which have mean and variance given by

$$
\mathbf{E}\left(S_{k}\right)=12^{\gamma-1} \text { and } \operatorname{Var}\left(S_{k}\right)=\frac{1}{3} / 2^{2(\gamma-1)}\left(1+2^{-2(\gamma-\rho)}\right) .
$$

Aggressive shortening

- Start with a list $\mathcal{L}=\left\{x_{1}, \ldots, x_{T}\right\}$ of ACD samples of mean value $2^{\gamma-1}$ and standard deviation $\sigma_{0} \approx 3^{-\frac{1}{2}} 2^{(\gamma-1)}$.
- Amplify this to a list of m samples S_{k}.
- Sort the S_{k} to get the spacings $S_{k+1}-S_{k}$.
- Store the $\tau=m / 2$ "middle" spacings as input to the next iteration of the algorithm.
- After an appropriate number of iterations run the orthogonal lattice attack.
- Conclusion: It still doesn't work, the number of iterations required is just too large.

Contributions

- We obtained a refined lower bound $(\gamma-\rho) /(\eta-\rho)$ on the dimension of lattices in the SDA and OL algorithms.
- We showed that all orthogonal lattice methods for ACD are basically the same.
- We showed the multivariate polynomial method is not better than other methods for cryptanalysis of homomorphic encryption schemes based on ACD.
- We explored an analogue of the BKW algorithm for ACD and showed that it doesn't work.

Open problems

- Find improved algorithms for the CRT-ACD problem.
- Find improved algorithms for partial ACD (i.e., when one is given an exact multiple $p q_{0}$ of p).

Thank you for your attention

