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Abstract

The interval discrete logarithm problem is defined as follows: Given some g, h in a
group G, and some N ∈ N such that gz = h for some z where 0 ≤ z < N , find z.
At the moment, kangaroo methods are the best low memory algorithm to solve the
interval discrete logarithm problem. The fastest non parallelised kangaroo methods
to solve this problem are the three kangaroo method, and the four kangaroo method.
These respectively have expected average running times of

(
1.818 + o(1)

)√
N , and(

1.714 + o(1)
)√
N group operations.

It is currently an open question as to whether it is possible to improve kangaroo methods
by using more than four kangaroos. Before this dissertation, the fastest kangaroo
method that used more than four kangaroos required at least 2

√
N group operations

to solve the interval discrete logarithm problem. In this thesis, I improve the running
time of methods that use more than four kangaroos significantly, and almost beat the
fastest kangaroo algorithm, by presenting a seven kangaroo method with an expected
average running time of

(
1.7195 + o(1)

)√
N ± O(1) group operations. The question,

’Are five kangaroos worse than three?’ is also answered in this thesis, as I propose a
five kangaroo algorithm that requires on average

(
1.737 + o(1)

)√
N group operations

to solve the interval discrete logarithm problem.
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Chapter 1

Introduction

1.1 Introduction

The interval discrete logarithm problem (IDLP) is defined in the following manner:
Given a group G, some g, h ∈ G, and some N ∈ N such that gz = h for some 0 ≤ z < N ,
find z. In practice, N will normally be much smaller than

∣∣G∣∣, and g will be a generator
of G. The probability that z takes any integer value between 0 and N − 1 is deemed
to be uniform.
To our current knowledge, the IDLP is hard over some groups. Examples of such
groups include Elliptic curves of large prime order, and Z∗p, where p is a large prime.
Hence, cryptosystems such as the Boneh-Goh-Nissim homomorphic encryption scheme
[1] derive their security from the hardness of the IDLP. The IDLP also arises in a wide
range of other contexts. Examples include, counting points on elliptic curves [4], small
subgroup and side channel attacks [5,6], and the discrete logarithm problem with c-bit
exponents [4]. The IDLP is therefore regarded as a very important problem in contem-
porary cryptography.
Kangaroo methods are the best generic low storage algorithm to solve the IDLP. In
this thesis, I examine serial kangaroo algorithms, although all serial kangaroo methods
can be parallelised in a standard way, giving a speed up in running time in the process.
Currently, the fastest kangaroo algorithm is the 4 kangaroo method of Galbraith, Pol-
lard and Ruprai [3]. On an interval of size N , this algorithm has an estimated average
running time of (1.714 + o(1))

√
N group operations and requires O(log(N)) memory.

It should be noted that over some specific groups, there are better algorithms to solve

5



6 CHAPTER 1. INTRODUCTION

the IDLP. For example, over groups where inversion is fast, such as elliptic curves,
an algorithm proposed by Galbraith and Ruprai in [2] has an expected average case
running time of (1.36 + o(1))

√
N group operations, while requiring a constant amount

of memory. This method is much slower than the four kangaroo method over groups
where inversion is slow however. Baby-step giant-step algorithms, which were first pro-
posed by Shanks in [10], are also faster than kangaroo methods. The fastest Baby-step
Giant-step algorithm was illustrated by Pollard in [8], and requires on average 4/3

√
N

group operations to solve the IDLP. However, these algorithms are unusable over large
intervals, since they have O(

√
N) memory requirements. If one is solving the IDLP in

an arbitrary group, on an interval of size N , one would typically use baby-step giant-
step algorithms if N < 230, and would use the four kangaroo method if N > 230.
The first kangaroo method was proposed by Pollard in 1978 in [9]. This had an esti-
mated average running time of 3.3

√
N group operations [11]. The next improvement

came from van Oorshot and Wiener in [12,13], with the introduction of an algorithm
with an estimated average running time of

(
2 + o(1)

)√
N group operations. This was

the fastest kangaroo method for over 15 years, until Galbraith, Pollard and Ruprai
published their three and four kangaroo methods in [3]. These respectively require on
average

(
1.818 + o(1)

)√
N , and

(
1.714 + o(1)

)√
N group operations to solve the IDLP.

The fastest kangaroo method that uses more than four kangaroos is a five kangaroo
method, proposed in [3]. This requires at least 2

√
N group operations to solve the

IDLP.
It is currently believed, but not proven, that the four kangaroo method is the optimal
kangaroo method. This is a major gap in our knowledge of kangaroo methods, and so
the main question that this dissertation attempts to answer is the following.

• Question 1: Can we improve kangaroo methods by using more than four kan-
garoos?

This dissertation also attempts to answer the following lesser, but also interesting prob-
lem.

• Question 2: Are five kangaroos worse than three?

In this report, I attempt to answer these questions, by investigating five kangaroo
methods in detail. I then state how a five kangaroo method can be adapted to give a
seven kangaroo method, giving an improvement in running time in the process.



Chapter 2

Current State of Knowledge of
Kangaroo Methods

In this section I will give a brief overview of how kangaroo methods work, and of our
current state of knowledge of kangaroo algorithms.

2.1 General intuition behind kangaroo methods

The key idea behind all kangaroo methods known today, is that if we can express any
x ∈ G in two of the forms out of gph,gq or grh−1, where p, q, r ∈ N, then one can find z,
and hence solve the IDLP. In all known kangaroo methods, we have a herd of kangaroos
who randomly ’hop’ around various elements of G. Eventually, 2 different kangaroos
can be expected to land on the same group element. If we define the kangaroo’s walks
such that all elements of a kangaroo’s walk are in one of the forms out of gph,gq or
grh−1, then when 2 kangaroos land on the same group element, the IDLP may be able
to be solved.

7



8 CHAPTER 2. KANGAROO METHODS

2.2 van Oorshot and Weiner Method

The van Oorshot and Weiner method of [12,13] was the fastest kangaroo method for
over 15 years. In this method, there is one ’tame’ kangaroo (labelled T ), and one ’wild’
kangaroo (labelled W ). Letting ti and wi respectively denote the group elements T
and W are at after i ’jumps’ of their walk, T and W ’s walks are defined recursively in
the following manner.

• How T ’s walk is defined

– T starts his walk at t0 = g
N
2 . 1

– ti+1 = tig
n, for some n ∈ N.

• How W ’s walk is defined

– W starts his walk at w0 = h.
– wi+1 = wig

m, for some m ∈ N.

One should note also that the algorithm is arranged so that T and W jump alter-
nately. Clearly, all elements of T ’s walk are expressed in the form gq, while all elements
of W ’s walk are expressed in the form gph, where p, q ∈ N. Hence when T and W both
visit the same group element, we will have wi = tj , for some i, j ∈ N, from which we
can obtain an equation of the form gq = gph, for some p, q ∈ N, which implies z = q−p.
Now if we structure the algorithm so that the amount each kangaroo jumps by at each
step is dependent only on its current group element, then from the point where both
kangaroos have visited a common group element onwards, both kangaroos walks will
follow the same path. As a consequence of this, we can detect when T and W have
visited the same group element, while only storing a small number of the elements of
each kangaroo’s walk. All kangaroo methods employ this same idea, and this is why
kangaroo methods only require O(log(N)) memory.
To arrange the algorithm so that the amount each kangaroo jumps by at each step
is dependent only on its current group element, we create a hash function H, which
randomly assigns a ’step size’ to each element of G. When a kangaroo lands on some
x ∈ G, the amount it jumps forward by at that step is H(x) (so its current group
element is multiplied by the precomputed value of gH(x)). To use this property so
that the algorithm requires only O(log(N)) memory, we create a set of ’distinguished

1Note that the method assumes N is even, so N/2 ∈ N
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points’, D, where D ⊂ G. D is defined such that ∀x ∈ G, the probability that x ∈ D
is c log(N)/

√
N , for some c > 0. If a kangaroo lands on some x ∈ D, we first check

to see if the other kangaroo has landed on x also. If it has, we can solve the IDLP.
If the other kangaroo hasn’t landed on x, then if T is the kangaroo that landed on
x, we store x, the q such that x = gq, and a flag indicating that T landed on x. On
the other hand, if W landed on x, we store x, the p such that gph = x, and a flag
indicating that W landed on x. Hence we can only detect a collision after the kanga-
roos have visited the same distinguished point. At this stage, the IDLP can be solved.
A diagram of the process the algorithm undertakes in solving the IDLP is shown below.

To analyse the running time of the van Oorshot and Wiener method, we break the
algorithm into the three disjoint stages shown in Stage 1, Stage 2, and Stage 3 below.
In this analysis (and for the remainder of this thesis), I will use the following definitions.

Step. A period where each kangaroo makes exactly one jump.

Position (of a kangaroo). A kangaroo is at position p if and only if it’s current group
element is gp. For instance, T starts his walk at position N/2.

Distance (between kangaroos). The difference between two kangaroos positions.

We analyse the running time of the algorithm (and of all kangaroo methods) by
considering the expected average number of group operations it requires to solve the
IDLP. The reason for analysing the running time using this metric is explained in
section 2.3.

• Stage 1. The period between when the kangaroos start their walks, and when
the back kangaroo B catches up to the front kangaroo F ’s starting position. Now
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since the probability that z takes any integer value
[
0, N

)
is uniform, the average

distance between B and F before they start their walks is N/4. Therefore, the
expected number of steps required in stage 1 is N/4m, where m is the average
step size of the kangaroos walks

• Stage 2. This is the period between when stage 1 finishes, and B lands on a
group element that has been visited by F . John Pollard showed experimentally
in [8] that the number of steps required in this stage is m. One can see this
intuitively in the following way. Once B has caught up to F ’s starting position,
he will be jumping over a region in which F has visited on average 1/m group
elements. Hence the probability that F lands on a element of F ’s path at each
step in Stage 2 is 1/m. Therefore, we can expect B’s walk to join with F ’s after
m steps.

• Stage 3. This is the period between when stage 2 finishes, and B lands on
a distinguished point. Since the probability that any x ∈ G is distinguished is
c log(N)/

√
N , for some c > 0, we can expectB to make 1

c log(N)/
√

N
=
√
N/c log(N)

steps in this stage.

Hence we can expect the algorithm to require N/4m+m+
√
N/c log(N) steps to solve

the IDLP. Now since each of the two kangaroos make one jump at each step, and in
each jump a kangaroo makes we multiply two already known group elements together,
each step requires two group operations. Hence the algorithm requires 2

(
N/4m +

m +
√
N/c log(N)

)
group operations to solve the IDLP. The optimal choice of m in

this expression is m =
√
N/2, which gives an expected average running time of

(
2 +

1/c log(N)
)√
N =

(
2 + o(1)

)√
N group operations.

Note that this analysis (and the analysis of the three and four kangaroo methods)
ignores the number of group operations required to initialise the algorithm (in the
initialisation phase we find the starting positions of the kangaroos, assign a step size to
each x ∈ G, and precompute the group elements gH(x) for each x ∈ G). In section 3.3,
I show however that the number of group operations required in this stage is constant.

2.3 How we analyse the running time of Kangaroo Meth-
ods

I can now explain why we analyse running time of kangaroo methods in terms of the
expected average number of group operations they require to solve the IDLP.
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Why only consider group operations? Generally speaking, in kangaroo methods,
the computational operations that need to be carried out are group operations (e.g.
multiplying a kangaroo’s current group element to move it around the group), hashing
(e.g. computing the step size assigned to a group element), and memory access com-
parisons (e.g. when a kangaroo lands on a distinguished point, checking to see if that
distinguished point has already been visited by another kangaroo). The groups which
one is required to solve the IDLP over are normally elliptic curve groups of large prime
order, or Z∗p, for a large prime p [11]. Group operations over such groups require far
more computational operations than hashing, or memory access comparisons do. Hence
when analysing the running time, we get an accurate approximation to the number of
computational operations required by only counting the number of group operations.
Counting the number of hashing operations, and memory access comparisons increases
the difficulty of analysing the running time substantially, so it is desirable to only count
group operations.
Why consider the expected average number of group operations? In the van
Oorshot and Weiner method (and in all other kangaroo methods), the hash function
which assigns a step size to each element of G is chosen randomly. Now for fixed z and
varied hash functions, there are many possibilities for how the walks of the kangaroos
will pan out. Hence in practise, the number of group operations until the IDLP is solved
can take many possible values for each z. Hence we consider the expected running time
for each z, as being the average running time across all possible walks the kangaroos
can make for each z.
Now z can take any integer value between 0 and N − 1 with equal probability. Hence
we refer to the expected average running time, as being the average of the expected
running times across all z ∈ N in the interval

[
0, N).

2.4 Three Kangaroo Method

The next major breakthrough in kangaroo methods came from Galbraith, Pollard and
Ruprai in [3] with the introduction of their three kangaroo method. The algorithm
assumes that g has odd order, and that 10|N . The method uses three different types
of kangaroos, labelled W1,W2 and T . All of the elements of W1,W2 and T ’s walks are
respectively expressed in the forms gph, grh−1, and gq, where p, q, r ∈ N. If any pair
of kangaroos collides, then we can express some x ∈ G in 2 of the forms out of gph,gq

and grh−1. If we have x = gph = gq, then z = p− q, while if we have x = gq = grh−1,
then z = r − q. On the other hand, if we have x = gph = gqh−1, then since g has odd
order, we can solve z = 2−1(q − p) mod (

∣∣g∣∣). Hence a collision between any pair of
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kangaroos can solve the IDLP.
To enable us to express the elements of the kangaroos walks in these ways, as in the
van Oorshot and Wiener method, we create a hash function H which assigns a step
size to each element of G. Defining W1,i,W2,i and Ti to respectively denote the group
element W1, W2 and T are at after i jumps in their walk, we then define the walks of
the kangaroos in the following way.

• How W1’s walk is defined

– W1 starts at the group element W1,0 = g−N/2h

– To move W1 to the next step, W1,i+1 = W1,ig
H(W1,i+1)

• How W2’s walk is defined

– We start W2 at the group element W2,0 = gN/2h−1

– To move W2 to the next step, W2,i+1 = W2,ig
H(W2,i)

• How T ’s walk is defined

– We start T at T0 = g3N/10.

– To move T to the next step, Ti+1 = Tig
H(T1)

As in the van Oorshot and Wiener method, the algorithm is arranged so that the
kangaroos jump alternately. One can see that W1,W2, and T start their walks respec-
tively at the positions z −N/2,N/2− z, and 3N/10. Hence if we let dT,W1 ,dT,W2 , and
dW1,W2 be the functions for the initial distances between T and W1, T and W2, and
W1 and W2 over all 0 ≤ z < N , then dT,W1(z) =

∣∣(z −N/2)− (3N/10)
∣∣ =

∣∣z − 4N/5
∣∣,

dT,W2(z) =
∣∣N/5 − z∣∣, and dW1,W2(z) =

∣∣2z − N ∣∣. We also define dC to be the func-
tion which denotes the initial distance between the closest pair of kangaroos over all
0 ≤ z < N . Hence dC(z) = min

{
dT,W1(z), dT,W2(z), dW1,W2(z)

}
. The starting positions

of the kangaroos in this method are chosen so that the average distance between the
closest pair of kangaroos (the average of dC(z) for 0 ≤ z < N) is minimised. A diagram
of the distance between all pairs of kangaroos, and of dC is shown below.
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The following table shows the the formula for dC , what C (the closest pair of kan-
garoos) is, what B (the back kangaroo in C) is, and what F (the front kangaroo in C)
is, across all 0 ≤ z < N .

dC(z) C B F
0 ≤ z ≤ N/5 dT,W2(z) = N/5− z T and W2 T W2
N/5 ≤ z ≤ 2N/5 dT,W2(z) = z −N/5 T and W2 W2 T

2N/5 ≤ z ≤ N/2 dW1,W2 = N − 2z W1 and W2 W1 W2
N/2 ≤ z ≤ 3N/5 dW1,W2 = 2z −N W1 and W2 W2 W1
3N/5 ≤ z ≤ 4N/5 dT,W1(z) = 4N/5− z T and W1 W1 T

4N/5 ≤ z ≤ N/2 dT,W1(z) = z − 4N/5 T and W1 T W1

The expected number of steps until the IDLP is solved from a collision between the
closest pair can be analysed in the same way as the running time was analysed in the
van Oorshot and Weiner method.

• Stage 1. The period between when the kangaroos start their walks, and when
B catches up with F ’s starting position. The average of dC can easily be seen to
be N/10. Hence if we let m be the average step size used, the expected number
of steps for B to catch up to F ’s starting position is N/10m.

• Stage 2. The period between when stage 1 finishes, and when B lands on an
elements of F ’s walk. The same analysis as was applied in the van Oorshot and
Weiner method shows that the expected number of steps required in this stage is
m.
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• Stage 3. The period between when B lands on an element of F ’s path, and B
lands on a distinguished point. In the three kangaroo method, the probability
of a group element being distinguished is the same as it is in the van Oorshot
and Wiener method, so the expected number of steps required in this stage is√
N/c log(N).

If we make the pessimistic assumption that the IDLP will always be solved from a
collision between the closest pair of kangaroos, we can expect the algorithm to require
N/10m+m+

√
N/c log(N) steps to solve the IDLP. This expression is minimised when

m is taken to be
√
N/10. In this case, the algorithm requires

(
2
√

1/10 + o(1))
)√
N

steps to solve the IDLP. Since there are three kangaroos jumping at each step, the
expected number of group operations until the IDLP is solved is

(
1.897 + o(1)

)√
N

group operations.
When Galbraith, Pollard and Ruprai considered the expected number of group oper-
ations until the IDLP was solved from a collision between any pair of kangaroos (so
not just from a collision between the closest pair), they found through a complex anal-
ysis, that the three kangaroo method has an expected average case running time of(
1.818 + o(1)

)√
N group operations. This is a huge improvement on the running time

of the van Oorshot and Weiner method.

2.5 Four Kangaroo Method

The Four kangaroo method is a very simple, but clever extension of the 3 kangaroo
method. As in the three kangaroo method, we start three kangaroos, T1, W1 andW2 at
the positions 3N/10, z−N/2, and N/2−z respectively. Here however, we add in one extra
tame kangaroo (T2), who starts his walk at 3N/10 + 1. One can see that the starting
positions of W1 and W2 have the same parity, while exactly one of T1 and T2’s starting
positions will have the same parity as W1 and W2’s starting positions. Therefore, if the
step sizes are defined to be even, then in any walk, both of the wild, and one of the
tame kangaroos will be able to collide, while one of the tame kangaroos will be unable
to collide with any other kangaroo. Therefore, the three kangaroos that can collide are
effectively simulating the three kangaroo method, except over an interval of half the
size. Hence, from the analysis of the three kangaroo method, the three kangaroos that
can collide in this method require (1.818 + o(1))

√
N/2 group operations to solve the

IDLP. However, since there is one ’useless’ kangaroo that requires just as many group
operations as the three other useful kangaroos, the expected number of group operations
required to solve the IDLP by the four kangaroo method is (3 + 1)/3(1.818+o(1))

√
N/2 =
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(1.714 + o(1))
√
N group operations.

2.6 Can we do better by using more kangaroos?

I now return to the main question this dissertation seeks to address. The answer to this
question is not clear through intuition, since there are arguments both for and against
using more kangaroos.
On the one hand, if one uses more kangaroos, we both increase the number of pairs
of kangaroos that can collide, and we can make the kangaroos closer together. There-
fore, by using more kangaroos, the number of steps until the first collision occurs will
decrease. However, by increasing the number of kangaroos, there will more kangaroos
jumping at each step, so the number of group operations required at each step increases.
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Chapter 3

Five Kangaroo Methods

This section will attempt to answer the two main questions of this dissertation (see
Question 1 and Question 2 in the introduction), by investigating kangaroo methods
which use five kangaroos.

In this section, I will answer Question 2, and partially answer Question 1, by pre-
senting a five kangaroo algorithm which requires on average

(
1.737 + o(1)

)√
N ±O(1)

group operations to solve the IDLP. To find a five kangaroo algorithm with this running
time, I answered the following questions, in the order stated below.

• How should the walks of the kangaroos be defined in a 5 kangaroo algorithm?

• How many kangaroos of each type should be used?

• Where abouts should the kangaroos start their walks?

• What average step size should be used?

3.1 How the Walks of the Kangaroos are Defined

I will first investigate 5 kangaroo methods where a kangaroo’s walk can be defined in
one of the same three ways as they were in the three and four kangaroo methods. This

17



18 CHAPTER 3. FIVE KANGAROO METHODS

means, that a kangaroo can either be of type Wild1,Wild2, or Tame, where the types
of kangaroos are defined in the following way.

• Wild1 Kangaroo - A kangaroo for which we express all elements of its walk in
the form gph, where p ∈ N.

• Wild2 Kangaroo - A kangaroo for which we express all elements of its walk in
the form grh−1, where r ∈ N.

• Tame Kangaroo - A kangaroo for which we express all elements of its walk in
the form gq, where q ∈ N.

As in the three and four kangaroo methods, there will be a hash function H which
assigns a step size to each x ∈ G. To walk the kangaroos around the group, if x is
a kangaroos current group element, the group element it will jump to next will be
xgH(x). As in all previous kangaroo methods, the algorithm will be arranged so that
the kangaroos each take one jump during each step of the algorithm.

3.2 How many kangaroos of each type should be used?

If we let NW 1, NW 2 and NT respectively denote the number of wild1, wild2, and
tame kangaroos used in any 5 kangaroo method. Then NW 1 + NW 2 + NT = 5. The
following theorem will prove to be very useful in working out how many kangaroos of
each type should be used, given this constraint.

Theorem 3.2. Let A be any 5 kangaroo algorithm, where the kangaroos can be of type
Tame, Wild1, or Wild2. Then the expected number of group operations until the clos-
est ’useful’ pair of kangaroos in A collides is no less than 10

√
N

2NW 1NW 2+4NT (NW 1+NW 2)
(A pair is called useful if the IDLP can be solved when the pair collides).

My proof of this requires Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.3, Lemma 3.2.4,
and Lemma 3.2.5. Before stating and proving these lemmas, I will make the following
two important remarks.

• Remark 1. I showed in my description of the three kangaroo method how a
collision between kangaroos of different types could solve the IDLP. On the other
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hand, we can gain no information about z from a collision between kangaroos of
the same type. Hence a pair of kangaroos is ’useful’ if and only if it features two
kangaroos of different types.

• Remark 2. In this section, for any choice of starting positions, I will let d (where
d is a function of z) be the function that denotes the initial distance between the
closest useful pair of kangaroos across all 0 ≤ z < N . d is analogous to the
function dC in the three kangaroo method, where for any z with 0 ≤ z < N ,
d(z) will be defined to be the smallest distance between pairs of kangaroos of
different types, at that particular z. Note that d(z) is completely determined by
the starting positions of the kangaroos.

Lemma 3.2.1. For any choice of starting positions in a 5 kangaroo algorithm, the
minimal expected number of group operations until the closest useful pair collides is
10
√
Ave(d(z)), where Ave(d(z)) is the average starting distance between the closest

useful pair of kangaroos over all instances of the IDLP (i.e. over all z ∈ N where
z ∈

[
0, N

)
=
[
0, N − 1

]
).

Proof of Lemma 3.2.1. Let A be a 5 kangaroo algorithm that starts all kangaroos at
some specified choice of starting positions, and let m be the average step size used in
A. Also let d(z) be defined as in remark 2. For each z with 0 ≤ z < N , using an
argument very similar to that provided in section 2.2, the expected number of steps
until the closest useful pair collides for this specific z is d(z)/m+m. Since 5 kangaroos
jump at each step, the expected number of group operations until the closest useful
pair collides for this z is 5(d(z)/m + m). Therefore, the expected average number of
group operations until the closest useful pair collides across all instances of the IDLP
(i.e. across all z ∈ N with 0 ≤ z < N) is

1
N

N−1∑
z=0

5
(
d(z)
m

+m

)

≈ 1
N

∫ N−1

0
5
(
d(z)
m

+m

)
dz

= 5
( 1

N

∫N−1
0 d(z)dz
m

+m

)

≈ 5


1
N

N−1∑
z=0

d(z)

m
+m

 = 5
(
Ave(d(z))

m
+m

)
.
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Now simple differentiation shows that the m that minimises this is m =
√
Ave(d(z)).

Substituting in m =
√
Ave(d(z)) gives the required result.

Lemma 3.2.2. For each z, d(z) is either of the form |C1±z| or |C2±2z|, where C1 and
C2 are constants independent of z. Furthermore, letting pg1 and pg2 respectively denote
the number of pairs with initial distance function of the form |C ± z|, and |C ± 2z|,
pg1 = NT (NW 1 +NW 2), and pg2 = NW 1NW 2.

Proof of Lemma 3.2.2. Since a pair of kangaroos is useful if and only if it features
two kangaroos of different types, a pair is useful if and only if it is a tame/wild1, a
tame/wild2, or a wild1/wild2 pair (here a type1/type2 pair means a pair of kan-
garoos featuring one kangaroo of type1, and another kangaroo of type2). Since
all wild1,wild2 and tame kangaroos start their walks respectively at group ele-
ments of the form gph,grh−1 and gq, for some p, q, r ∈ N, the starting positions of
all Wild1,Wild2 and Tame kangaroos will be of the forms p + z, r − z, and q re-
spectively. Hence the initial distance functions between tame/wild1, tame/wild2,
and wild1/wild2 pairs are respectively |p+ z − q|, |r − z + q|, and |p+ z − (r − z)|.
Therefore, the distance function between all tame/wild1 and tame/wild2 pairs can
be expressed in the form |C1 ± z|, where C1 is independent of z. The number of such
pairs is NTNW 1 +NTNW 2. On the other hand, the initial distance function between a
wild1/wild2 pair can be expressed in the form |C2±2z|, where C2 is also independent
of z. The number of such pairs is NW 1NW 2.

From the graph of dC in section 2.4, we can see that the function for the distance
between the closest pair of kangaroos in the three kangaroo method is a sequence of
triangles. The same is generally true in five kangaroo methods. In lemma 3.2.3, I will
show that the area under the function d is minimised in five kangaroo methods when
d is a sequence of triangles.

Lemma 3.2.3. Suppose d1,1, d1,2, d1,3, ..., dp1 and d2,1, d2,2, ..., d2,p2 are functions of z,
defined on the interval [0, N), where for all i and j, d1,i(z) = |Ci ± z|, and d2,j(z) =
|C2 ± 2z|, where Ci and Cj are constants. Let d(z) be defined such that ∀ 0 ≤ z < N ,
d(z) = min {d1,1(z), d1,2(z), ..., d1,p1(z), d2,1(z), ..., d2,p2(z)}. Then assuming that we
have full control over the constants Ci and Cj, in every case where d is not a sequence
of triangles, the area under d can be decreased by making d into a sequence of triangles.
This can be done by changing some of the constants Ci and Cj.

Proof. By d being a sequence of triangles, I mean that if we shade in the region beneath
d, then the shaded figure is a sequence of triangles (see figure 3.2(a)). Now d is a
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sequence of triangles if and only if S1,S2 and S3 hold, where S1 is the statement
’d(0) = 0, or d(0) > 0 and d′(0) < 0’, S2 is the statement ’d(N−1) = 0, or d(N−1) > 0
and d′(N−1) > 0’, and S3 is the statement ’for every z where the gradient of d changes,
the sign of the gradient of d changes’. This is equivalent to the statement, ’for every z
where the function which is smallest changes (from say da1,b1 to da2,b2), the gradients
of both da1,b1 and da2,b2 have opposite sign at z’.
Hence if d is not a sequence of triangles, d must not satisfy at least one of the properties
out of S1 (see figure 3.2(b)),S2 (see figure 3.2(c)), or S3 (see figures 3.2 (d) and (e)).
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First consider the case where S1 doesn’t hold. Then d(0) > 0, and d′(0) > 0. Let
dC0 be the function which is smallest out out of all
{d1,1(z), d1,2(z), ..., d1,p1(z), d2,1(z), ..., d2,p2(z)} at z = 0. Hence dC0 = |C + gz|, where
C > 0, and g is 1 or 2, and d(z) = dC(z) for all z between 0 and p, for some p < N .
If we change dC0 so that dC0 = |gz|, and define all other functions apart from dC0 in
the same way, then the area under d decreases by Cp over the region [0, p] (see figure
3.2(f)), while the area under d over [p,N) will be no larger than it was before dC0(z)
was redefined to be |gz|. Hence the area under d decreases by at least Cp over [0, N).
Therefore, in every case where S1 doesn’t hold, we can decrease the area under d by
redefining d so that S1 holds (Prop1).

Similarly, in the case where S2 doesn’t hold, d(N − 1) = C > 0 and d′(N − 1) < 0.
If dCN is the function such that dCN (N − 1) = d(N − 1), then dCN (z) = |C − gz|,
where C > g(N − 1) (since dCN (N − 1) > 0). Hence if we redefine dCN such that
dCN (z) = |g(N − 1)− gz|, if p is defined such that dCN (z) = d(z) ∀ p ≤ z < N (before
dCN (z) was defined to be |g(N − 1)− gz|), then the area under d decreases by at least
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(N−1−p)(C−gN) (see figure 3.2(g)). Therefore, in every case where S2 doesn’t hold,
we can decrease the area under d by redefining d so that S2 holds (Prop2).

Now consider the case where S3 doesn’t hold. Then there exists an x with 0 ≤ x < N ,
and functions da1,b1 and da2,b2 such that the function which is smallest (so the function
which d equals) changes from da1,b1 to da2,b2 at x, and d′a1,b1

(x) and d′a2,b2
(x) have the

same sign.
In the case where d′a1,b1

(x) < 0 and d′a2,b2
(x) < 0, (see figure 3.2(h)) d′a2,b2

(x) < d′a1,b1
(x)

(since da2,b2(z) > da1,b1(z) for z < x with z ≈ x, and da2,b2(z) < da1,b1(z) for z > x
with z ≈ x. Hence da2,b2(x)′ = −2 and da1,b1(x)′ = −1. Therefore da2,b2(z) = |C2−2z|,
and da1,b1(z) = |C1 − z| for some C1, C2 > 0. Now I will let [s, f ] be the region
such that for all z where s ≤ z ≤ f , d(z) = da1,b1(z) or d(z) = da2,b2(z), and h be
such that h = da1,b1(x) = da2,b2(x). Now if we fix da1,b1 (and all other functions in
{d1,1(z), d1,2(z), ..., d1,p1(z), d2,1(z), ..., d2,p2(z)}), and allow da2,b2 to vary (by varying
the constant C2), then assuming da1,b1 and da2,b2 intersect somewhere on the region
[s, f ] when both d′a1,b1

< 0 and d′a2,b2
< 0, then the area under d over the region [s, f ]

is determined purely by the height of this intersection point (Mathematically, it can be
easily shown that if we define H to be the height of the intersection point of da1,b1 and
da2,b2 when da1,b1 and da2,b2 are decreasing, and A1s,f to be the area under da1,b1 over
[s, f ], then the area under d over [s, f ] is A1s,f − 2H2/9). Now suppose we redefine
da2,b2 so that da2,b2(z) = |C2− (x− s)− 2z| (as in figure 3.2(h)). Then da1,b1 and da2,b2

intersect with negative gradient when z = s, and the height of this intersection point
is h + (x − s). The following basic lemmas will be very useful for the remainder this
proof.

Lemma 3.2.3.1. If s > 0, d′(z) > 0 for z < s, with z ≈ s.

Proof. At any z, d′(z) is either −2,−1, 1 or 2. If d′(z) < 0 for z < s with z ≈ s, then
since da1,b1(z) = d(z) for z > s with z ≈ s, da1,b1 would still be the smallest function



24 CHAPTER 3. FIVE KANGAROO METHODS

for z < s, with z ≈ s. But this is a contradiction to [s, f ] being the region which either
da1,b1 or da1,b1 are the smallest functions over.

Lemma 3.2.3.2. In the case where the intersection point of da1,b1 and da2,b2 when
d′a1,b1

, d′a2,b2
< 0 is when z = s, d satisfies S3 over [s, f ].

Proof. After da2,b2 is redefined, da1,b1 and da2,b2 are clearly still the smallest functions
over [s, f ]. Hence we only need to consider the intersection points of da1,b1 and da2,b2

to prove the lemma. By the nature of the functions da1,b1 and da2,b2 , da1,b1 and da2,b2

can have at most one intersection point when both d′a1,b1
and d′a2,b2

have the same sign.
Now da1,b1 and da2,b2 intersect when both have negative gradient when z = s. Hence
the only z where d’s gradient changes, but the sign of d’s gradient remains the same
over [s, f ], is when z = s. But Lemma 3.2.3.1 implies that the gradient of d changes
from a positive to a negative value when z = s. Hence S3 is satisfied over [s, f ].

As a result, we can conclude x > s, since otherwise S3 would hold over [s, f ] when
da2,b2(z) was |C2 − 2z|. Hence the height of the intersection point of da1,b1 and da2,b2

when both d′a1,b1
, d′a2,b2

< 0 is increased when da2,b2 is redefined, so the area under d
over [s, f ] is decreased by redefining da2,b2 in such a way that d satisfies S3 over [s, f ].
Since the value of d(z) doesn’t increase when da2,b2 is redefined for 0 ≤ z < s and
f < z < N , the area under d over all other regions apart from [s, f ] does not increase
when da2,b2 is redefined. Hence the area under d over [0, N) is decreased by redefining
d so that S3 is satisfied over [s, f ].
A very similar argument can show that in the case where there exists a z such that the
function which is smallest changes from dA1,B1 to dA2,B2 at z, and d′A1,B1

, d′A2,B2
> 0,

then we can redefine dA2,B2 so that the area under d over [0, N) is decreased and S3
is satisfied over [S, F ] (where S and F are defined such that d equals either dA1,B1 or
dA2,B2 for all z with S ≤ z ≤ F ).
Therefore, in every case where there exists z such that the gradient of d changes but
keeps the same sign at z, we can decrease the area under d over [0, N) by redefining one
of the functions in {d1,1(z), d1,2(z), ..., d1,p1(z), d2,1(z), ..., d2,p2(z)}, so that d satisfies S3
over each of the intervals [s, f ] and [S, F ]. Hence, in such a case we can decrease the
area under d while making d satisfy S3 over [0, N) (Prop3).
By combining Prop1,Prop2, and Prop3, we can conclude that in every case where d
is not a sequence of triangles (so at least one of S1,S2 or S3 doesn’t hold for d), we can
decrease the area under d by redefining d so that d is a sequence of triangles (so S1,S2
and S3 all hold for d on [0, N)).
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Figure 3.1: Diagram of the kind of situation being considered in lemma 3.2.4

In any five kangaroo method, we are given a set of functions of the same form as
those in lemma 3.2.3. To minimise the expected number of group operations until the
closest useful pair collides, we need to minimise the area under d, by choosing the Ci

and Cjs appropriately in functions of the form of lemma 3.2.3. Hence we may assume
that when the area under d is as small as possible, d will be a sequence of triangles.
Therefore, since this theorem is stating a lower bound on the expected number of
group operations until the closest useful pair collides, for the purposes of the proof of
this theorem, d can be assumed to be a sequence of triangles.
The following lemma will be useful in finding how small the area under d can be, given
that d can be assumed to be a sequence of triangles.

Lemma 3.2.4. Fix n,N ∈ N, and let the gradients G1,G2,...,Gn ∈ R \ {0} be fixed.
Let R1,R2,...,Rn be such that Ri ≥ 0, ∑n

i=1Ri = N , and such that the sum of areas
of triangles of base Ri and gradient Gi is minimised. Then all triangles have the same
height.

Proof of Lemma 3.2.4. I will label the triangles such that the ith triangle (Ti) is the
triangle which has i − 1 triangles to the left of it. Gi can be considered to be the
gradient of the slope of Ti, and Ri can be considered to be the size of the region which
Ti occupies. Also let AT be the sum of area under these triangles. A diagram of the
situation is shown in Figure 3.1.

Then we have
n∑

i=1
Ri = N
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and
AT =

n∑
i=1

|Gi|.R2
i

2

In the arrangement where the heights of all the triangles are the same, for each 1 ≤ i <
j < n, Ri/Rj = |Gj |/|Gi|. Suppose we change the ratio of Ri to Rj , so that the new
Ri is Ri + ε, and Rj becomes Rj − ε (note that ε can be greater than or less than 0).
Then the area of Ti becomes (Gi(Ri + ε)2)/2 = (Gi(R2

i + 2Riε+ ε2))/2 while the area
of Tj becomes Gj(R2

j − 2Rjε+ ε2)/2. AT therefore changes by

|Gi|(Ri + ε)2

2 + |Gj |(Rj − ε)2

2 − |Gi|R2
i

2 −
|Gj |R2

j

2

= |Gi|R2
i

2 +
|Gj |R2

j

2 + |Gi|Riε− |Gj |Rjε−
|Gi|R2

i

2 −
|Gj |R2

j

2 + ε2

2 + ε2

2
= |Gi|Riε− |Gj |Rjε+ ε2 = ε2 > 0

Therefore, adjusting the ratio of the size of any two regions away from that which
ensures the height of the triangles is the same, always strictly increases the sum of the
area of the triangles. It follows that when the heights of all the triangles are equal, the
sum of the area beneath these triangles is minimised.

Lemma 3.2.5. In the case where d is a sequence of triangles, each useful pair is either
never the closest useful pair, or it is the closest useful pair over a single region.

Proof. By a useful pair (P ) being the closest useful pair only over a single region, I
mean that there is a single interval [s, f ], with 0 ≤ s < f < N , such that P is the
closest useful pair for all z where s ≤ z ≤ f . This is in contrast to there being intervals
[s1, f1], and [s2, f2], where 0 ≤ s1 < f1 < N , and f1 < s2 < f2 < N , such that P is the
closest useful pair for all z with s1 ≤ z ≤ f1, and s2 ≤ z ≤ f2, but P is not the closest
useful pair for all z where f1 < z < s2.
The result of this lemma follows easily from the fact that if d is a sequence of triangles,
then for every z where the closest useful pair changes (say from P1 to P2), the gradients
of the initial distance functions between P1, and P2 have opposite sign.

Proof of Theorem 3.2. The lemmas can now be used to prove the theorem. Firstly,
label all useful pairs in any way from 1 to n, where n is the number of useful pairs of
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kangaroos in A. Now since d can be assumed to be a a sequence of triangles, lemma
3.2.5 implies that a useful pair is either never the closest useful pair, or there exists a
single region for which a useful pair is closest over. For each i, in the case where pair
i is the closest useful pair over some region, let Ri denote the single region which pair
i is the closest useful pair over, and Ris denote the size of Ri. In the case where pair
i is never the closest useful pair, define Ris to be 0. Then ∑n

i=1Ris = N . Letting di

denote the distance function between pair i for each i, by Lemma 3.2.2, di(z) is of the
form |C±giz|, where gi is 1 or 2, and C ∈ R. It is clear from the diagram in section 2.4
that such functions feature at most two triangles, both of which have slopes of gradient
with an absolute value of gi. Hence di must feature at most two such triangles over
Ri. Now for every i, pair i is the closest useful pair over Ri, so d(z) = di(z) ∀z ∈ Ri.
Therefore, d features at most two triangles over Ri, both of which have slopes that
have a gradient with an absolute value of gi. Therefore, if we let Tg1 and Tg2 denote
the number of triangles in d where the absolute values of their gradients are 1 and
2 respectively, Tg1 ≤ 2pg1 = 2NT (NW 1 + NW 2) and Tg2 ≤ 2pg2 = 2NW 1NW 2. Now
by Lemma 3.2.4, for the area under d to be minimised, all triangles must have the
same height. This implies that all triangles with the same gradient in d must cover
a region of the same size. Defining RT1 and RT2 to denote the size of the regions
covered by each triangle of gradients 1 and 2 respectively, Lemma 3.2.4 also implies
that RT1 = 2RT2 . Then since all triangles cover the domain of d, N = Tg1RT1 +Tg2RT2

≤ 2NT (NW 1 + NW 2)RT1 + 2NW 1NW 2RT2 = 4NT (NW 1 + NW 2)RT2 + 2NW 1NW 2RT2 .
Hence RT2 ≥ N/(4NT (NW 1 +NW 2)+2NW 1NW 2). Now since all triangles in d have the
same height, the average of d over all z with 0 ≤ z < N is half the height of all triangles.
Therefore, since the height of a triangle of gradient 2 is 2RT2 , RT2 gives the average of
d, which is the average distance between the closest useful pair. Then by Lemma 3.2.1,
the expected number of group operations until the closest useful pair collides in the case
where the area under d is minimised (and hence the average distance between the closest
useful pair is minimised) is 10

√
RT2 ≥ 10

√
N/(4NT (NW 1 +NW 2) + 2NW 1NW 2).

By plugging in various values of NT , NW 1 and NW 2 into this formula under the
constraint that NT + NW 1 + NW 2 = 5, we can gather a lower bound on the expected
number of group operations until the closest useful pair collides, when different numbers
of each type of walk are used. The following table shows the methods which achieved
the three best lower bounds. In the table, a tuple of the form (x, y, z) denotes an
algorithm that uses x tame kangaroos, y wild1 kangaroos, and z wild2 kangaroos.
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10
√

N
(4NT (NW 1+NW 2)+2NW 1NW 2) Number of walks of each type used

1.8898
√
N (2, 1, 2), (2, 2, 1)

1.9611
√
N (3, 1, 1)

2.0412
√
N (1, 2, 2), (2, 0, 3), (2, 3, 0),

(3, 0, 2), (3, 2, 0)

From this, it can be seen that a (2, 2, 1) 5 kangaroo method has the minimal lower
bound on the expected number of group operations until the closest useful pair collides,
of 1.8898

√
N group operations. A (2, 1, 2) method doesn’t need to be considered as a

separate case, since this is clearly equivalent to a (2, 2, 1) method. If one starts two
wild1 kangaroos at h and g0.7124Nh, a wild2 kangaroo at g1.3562Nh−1, and two tame
kangaroos at g0.9274N and g0.785N , the lower bound (2, 2, 1) method of 1.8898

√
N group

operations is realised. The table shows that in any other 5 kangaroo method, the closest
useful pair can’t collide in less than 1.9611

√
N group operations on average.

Since the closest useful pair of kangaroos is by far the most significant in determining
the running time of any kangaroo algorithm (for instance, in the 3 kangaroo method
the expected number of group operations until the closest useful pair collides could be
as low as 1.8972

√
N group operations, while the expected number of group operations

until any pair collides can only be as low as 1.818
√
N group operations), a method

that uses 2 tame, 2 wild1, and 1 wild2 kangaroos is most likely to be the optimal 5
kangaroo method, out of all methods that only use tame,wild1, and wild2 kangaroos.

3.3 Where the Kangaroos should start their walks, and
what average step size should be used?

Given that, in any 5 kangaroo method that uses only tame, wild1, and wild2 kan-
garoos one should use 2 wild1, 1 wild2, and 2 tame kangaroos, the next question to
consider is where abouts the kangaroos should start their walks. In the analysis that
answers this question, the question of what average step size to use will be answered
also. I will now state some definitions and remarks that will be used throughout the
remainder of this thesis.

• Remark 1: Firstly, I will redefine the IDLP to be to find z, given h = gzN ,
when we’re given g and h, and that 0 ≤ z < 1.
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• Remark 2: At this stage, I will place one constraint on the starting positions
of all kangaroos. This being, that all Wild1,Wild2, and Tame kangaroos will
respectively start their walks at positions of the form aN + zN , bN − zN , and
cN , for universal constants a,b, and c, that are independent of the interval size
N . This is the only constraint I will place on the starting positions at this stage.

• Remark 3: I will let Di,z denote the initial distance between the ith closest
useful pair of kangaroos for some specified z. It follows from Remark 2 that
Di,z = di,zN , for some di,z independent of N .

• Remark 4: The average step size m will be defined to be cm

√
N , for some cm

independent of N .

• Remark 5: Si,z will be defined such that Si,z denotes the expected number
of steps the back kangaroo requires to catch up to the front kangaroo’s starting
position in the ith closest useful pair, for some specified z. It is clear that Si,z =
dDi,z

m e. Since Di,z = di,zN , and m = cm

√
N for some di,z, and cm which are

independent of N , we can say Si,z = dsi,z

√
Ne for some si,z independent of N .

For the typical interval sizes over which one uses kangaroo methods to solve the
IDLP (N > 230), this can be considered to be si,z

√
N .

• Remark 6: Ci,z and ci,z will be defined such that Ci,z = ∑i
j=1 Si,z, and

ci,z

√
N = Ci,z. One can see from the definition of Si,z that ci,z is independent of

the interval size N .

I will answer the question that titles this section by first presenting a formula that
can compute the running time of any (2,2,1) 5-kangaroo algorithm (see section 3.3.1),
and then by showing how this formula can be used to find the best starting positions
and average step size to use (see section 3.3.2).
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3.3.1 Formula for computing the running time of a (2,2,1)-5 kangaroo
algorithm

Theorem 3.3.1. In any 5 kangaroo method which uses 2 tame, 1 wild2, and 2
wild1 kangaroos, the expected number of group operations required to solve the IDLP
is approximately
5
((∫ 1

0 czdz
)

+ o(1)
)√

N +O(log(N)), where

cz =
8∑

i=1

(
e

(−isi,z+ci,z)
cm (cm

i
+ si,z)− e

−isi+1,z+ci,z
cm (cm

i
+ si+1,z)

)
.

Proof. Any 5 kangaroo method can be broken into the following 4 disjoint stages;

• Stage 1- The stage where the algorithm is initialised. This involves comput-
ing the starting positions of the kangaroos, assigning a step size to each group
element, and computing and storing the group elements which kangaroos are
multiplied by at each step (so computing gH(x) for each x in G).

• Stage 2- The period between when the kangaroos start their walks, and the first
collision between a useful pair occurs.

• Stage 3- The period between when the first collision occurs, and when both
kangaroos have visited the same distinguished point.

• Stage 4- The stage where z is computed, using the information gained from a
useful collision.

3.3.1.1 Number of group operations required in Stage 1

To find the starting positions of the kangaroos, we require one inversion (to find the
starting position of the kangaroo of type wild2), 3 multiplications (in finding the
starting positions of all wild kangaroos), and 5 exponentiations (one to find the start-
ing position of each kangaroo). All of these operations are O(log(N)) in any group.
As explained in [8], the step sizes can be assigned in O(log(N)) time also using a hash
function. To pre-compute the group elements which kangaroos can be multiplied by at
each step, we need to compute gs, for each step size s that can be assigned to a group
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element (this is the number of values which the function H can take). The number
of step sizes used in kangaroo methods is generally between 20 and 100. This was
suggested by Pollard in [8]. Applying less than a constant number (100) of exponen-
tiation operations requires a constant number of group operations (so independent of
the interval size).
Summing together the number of group operations required by each part of Stage 1,
we see that the number of group operations required in Stage 1 is O(log(N)).

3.3.1.2 Number of group operations required in Stage 2

To analyse the number of group operations required in stage 2, I will define Z(z) to
be a random variable on N such that Pr

(
Z(z) = k

)
denotes the probability that for

some specified z, the first collision occurs after k steps. From this, one can see that
E
(
Z(z)

)
= ∑∞

k=0 kPr
(
Z(z) = k

)
, gives the expected number of steps until the first

collision occurs, at our specified z.

Important Remark

To compute E(Z(z)), I will compute the expected number of steps until the first useful
collision occurs in the case where in every useful pair of kangaroos, the back kangaroo
takes the expected number of steps to catch up to the front kangaroos starting position,
and make the assumption that this is proportional to the expected number of steps until
the first useful collision occurs across all possible random walks. This assumption was
used implicitly in computing the running time of the three kangaroo method in [3],
and is a necessary assumption to make, since calculating the expected number of steps
until the first useful collision occurs across all possible walks is extremely difficult.
The following lemma will be useful in computing E(Z(z)).

Lemma 3.3.1. In the case where in every useful pair of kangaroos, the back kangaroo
takes the expected number of steps to catch up to the starting position of the front

kangaroo, for every k, Pr(Z(z) = k) =
i∑

j=1

(i
j

) 1
mj e

−ik−i+Ci,z+j

m where i is the number of

pairs of kangaroos for which the back kangaroo has caught up to the front after k steps.

Proof. Let k ∈ N, and i be such that Si(z) ≤ k < Si+1(z). In the case where in every
pair of kangaroos, the back kangaroo takes the expected number of steps to catch up
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to the starting position of the front kangaroo, when Si(z) ≤ k < Si+1(z), there will be
exactly i pairs where the back kangaroo will be walking over a region that has been
traversed by the front kangaroo (these will be the i closest useful pairs). Therefore,
exactly i pairs can collide after k steps, for all Si(z) ≤ k < Si+1(z). In order for the first
collision to occur after exactly k steps, we require that the i pairs that can collide avoid
each other for the first k − 1 steps, and then on the kth step, j pairs collide for some j
between 1 and i. I will define Ek,j to be the event that there are no collisions in the first
k − 1 steps, and then on the kth step, exactly j pairs collide. Since Ek,j and Ek,l are

disjoint events for j 6= l, we can conclude that Pr
(
Z(z) = k

)
=

i∑
j=1

P (Ek,j) (1). Now

Pr(Ek,j) can be computed as follows; In any instance where Ek,j occurs, we can define
setsX and Y such thatX is the set of all x where the xth closest useful pair of kangaroos
doesn’t collide in the first k−1) steps, but does collide on the kth step, and Y is the set
of all y where the yth closest useful pair doesn’t collide in the first k steps. Now in Stage
2 of the van Oorshot and Weiner method, I explained how at any step, the probability
that a pair collides once the back kangaroo has caught up to the path of the front is
1/m. Hence for any x ∈ X, the probability that the back kangaroo in the xth closest
useful pair avoids the path of the front kangaroo for the first k − 1 steps, but lands on
an element in the front kangaroos walk on the kth step is 1

m(1− 1
m)k−Sx,z ≈ 1

me
−k+Sx,z

m ,
while for any y ∈ Y , the probability that the yth closest useful pair doesn’t collide
in the first k steps is (1 − 1

m)k+1−Sy,z ≈ e
−k−1+Sy,z

m . Now before any collisions have
taken place, the walks of any 2 pairs of kangaroos are independent of each other.
Therefore, the probability that the pairs in X all first collide on the kth step, while
all the pairs in Y don’t collide in the first k steps is ∏x∈X

1
me

−k+Sx,z
m

∏
y∈Y e

−k−1+Sy,z
m

= 1
mj e

−jk+
∑

x∈X
Sx,z

m e
−(i−j)k−(i−j)+

∑
y∈Y

Sy,z

m = 1
mj e

−ik−i+j+Ci,z
m . Now since there are

(i
j

)
ways for j out of the i possible pairs to collide on the kth step, we obtain the formula
P (Ek,j) =

(i
j

) 1
mj e

−ik−i+j+Ci,z
m . When substituting this result back into (1), we obtain

the required result of Pr(Z(z) = k) = ∑i
j=1

(i
j

) 1
mj e

−ik−i+j+Ci,z
m

I will now define pz to be the function such that pz(k) = kPr(Z(z) = k), for all
k ∈ N . Hence E(Z(z)) = ∑∞

k=0 pz(k). Now in a 5 kangaroo method that uses 2 Tame,
2 Wild1, and 1 Wild2 walks, there there are 8 pairs that can collide to yield a useful
collision (4 Tame/Wild1 pairs, 2 Tame/Wild2 pairs, and 2 Wild1/Wild2 pairs).
Hence for any k, the number of pairs where the back kangaroo has caught up to the
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front kangaroos starting position can be anywhere between 0 and 8. Therefore,

pz(k) =



0 1 ≤ k < S1,z

k
me

−k+C1,z
m S1,z ≤ k < S2,z

k( 1
me

−2k−1+C2,z
m + 1

m2 e
−2k+C2,z

m ) S2,z ≤ k < S3,z
3∑

j=1
k
(3

j

) 1
mj e

−3k−3+j+C3,z
m S3,z ≤ k < S4,z

4∑
j=1

k
(4

j

) 1
mj e

−4k−4+j+C4,z
m S4,z ≤ k < S5,z

5∑
j=1

k
(5

j

) 1
mj e

−5k−5+j+C5,z
m S5,z ≤ k < S6,z

6∑
j=1

k
(6

j

) 1
mj e

−6k−6+j+C6,z
m S6,z ≤ k < S7,z

7∑
j=1

k
(7

j

) 1
mj e

−7k−7+j+C7,z
m S7,z ≤ k < S8,z

8∑
j=1

k
(8

j

) 1
mj e

−8k−8+j+C8,z
m S8,z ≤ k <∞

For the rest of this thesis, I will consider pz as a continuous function. The following
result will be useful in computing E(Z(z)).

Theorem 3.3.1.1.
∫∞

1 pz(k)dk −O(1) ≤ E(Z(z)) ≤
∫∞

1 pz(k)dk +O(1).

Proof. The proof of this will use the following lemma.

Lemma 3.3.2. pz(k) is O(1) ∀k

Proof. Let 0 ≤ z < 1. Then ∀ k < S1,z, pz(k) = 0, while ∀ k ≥ S1,z, pz(k) =
k
∑i

j=1
(i

j

) 1
mj e

−ik−i+j+Ci,z
m , for some 1 ≤ i ≤ 8. Hence for the purposes of the proof

of this lemma, we can assume k ≥ S1,z. I will state some facts that will make the
argument of this proof flow more smoothly.

Fact 1: For k such that Si,z ≤ k < Si+1,z, e
−ik−i+j+Ci,z

m ≤ 1.
This holds because since k ≥ Si,z, ik ≥ iSi,z ≥

∑i
j=1 Sj,z = Ci,z. Also, i ≥ j. Hence

−ik − i+ j + Ci,z ≤ 0, and e
−ik−i+j+Ci,z

m ≤ 1.

Fact 2: No useful pair of kangaroos can start their walks further than a distance
of 6N apart on an interval of size N . Also, the average step size is at least 0.06697

√
N .

Both of these facts will be explained in ’Remark regarding Lemma 3.3.2’ on Page 44.
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Fact 3: The interval size can be assumed to be greater than 230. This was
explained in the introduction, and can be assumed because one would typically use
baby-step giant-step algorithms to solve the IDLP on intervals of size smaller than 230.

I will show that pz(k) is O(1) for two separate cases.

Case 1: The case where S8,z ≤ m/8.
First, consider the situation in this case where S1,z ≤ k ≤ m/8. Let i be such that Si,z ≤
k < Si+1,z. Then by Fact 1, Fact 2, Fact 3, and the condition that k ≤ m/8, pz(k) =∑i

j=1
(i

j

)
k

mj e
−ik−i+j+Ci,z

m ≤
∑i

j=1
(i

j

)
k

mj ≤
∑i

j=1
(i

j

) m
8

mj ≤
∑i

j=1
(i

j

) 1
8(0.06697

√
230)j−1 , which

is clearly O(1).
Now consider the case where k > m/8. Then since S8,z < m/8, k > S8,z. Hence
pz(k) = ∑8

j=1 k
(8

j

) 1
mj e

−8k−8+j+C8,z
m .

Hence dpz(k)
dk =

(∑8
j=1

(8
j

) 1
mj e

−8k−8+j+C8,z
m

)(
1− 8k

m

)
. This is less than 0 for k > m/8.

Hence ∀ k > m/8, pz(k) < pz(m/8). Since pz(m/8) is O(1), pz(k) is O(1) for k > m/8.

Case 2: The case where S8,z > m/8. First, consider the situation where
S1,z ≤ k ≤ S8,z. Let i be such that Si,z ≤ k < Si+1,z Now Fact 3 and Remark 5 (see
Page 29) imply that S8,z ≤ 6N

0.06697
√

N
< 90

√
N . Hence k < 90

√
N . Therefore, pz(k) =∑i

j=1
(i

j

)
k

mj e
−ik−i+j+Ci,z

m ≤
∑i

j=1
(i

j

)
k

mj ≤
∑i

j=1
(i

j

)90
√

N
mj ≤

∑i
j=1

(i
j

) 90
0.06697j(0.06697

√
230)j−1

≤
(8

1
) 90

0.06697 +∑8
j=2 o(1), which is O(1).

Now when k > S8,z, dpz(k)
dk =

(∑8
j=1

(8
j

) 1
mj e

−8k−8+j+C8,z
m

)
(1 − 8k

m ). Since k > S8,z >

m/8, dpz(k)
dk < 0 ∀ k > S8,z. Therefore, pz(k) < pz(S8,z) ∀k > S8,z. Since pz(S8,z) is

O(1), pz(k) is O(1) ∀ k > S8,z.

I will now prove the theorem by approximating the sum of pz(k) over all k ∈ N to the
integral of pz(k), over each interval

[
Si,z, Si+1,z

)
. On the interval [1, S1,z), pz(k) = 0,

so ∑Si,z−1
k=1 pz(k) =

∫ S1,z

1 pz(k)dk (2). Hence for the rest of the proof I will consider
pz(k) on intervals [Si,z, Si+1,z), where i ≥ 1. Now let pi,z be the function such that
pi,z(k) = k

∑i
j=1

(i
j

) 1
mj e

−ik−i+j+Ci,z
m (so pi,z(k) = pz(k) ⇐⇒ k ∈ [Si,z, Si+1,z)). Now by

differentiating pi,z, we obtain dpi,z

dk =
(∑i

j=1
(i

j

) 1
mj e

−ik−i+j+Ci,z
m

)(
1− ki

m

)
. Hence pi,z
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has a single turning point (at k = m
i ). Since pz(k) = pi,z(k) for some i for every i ≥ 1,

on each interval [Si,z, Si+1,z), pz is either only decreasing, only increasing, or ∃ a t such
that ∀ k < t, pz is increasing, and ∀ k > t, pz is decreasing.
In the case where pz is only decreasing on an interval [Si,z, Si+1,z), by applying the
integral test for convergence, we can conclude that

∫ Si+1,z

Si,z
pz(r)dr <∑Si+1,z−1

k=Si,z
pz(k) <∫ Si+1,z

Si,z
pz(r)dr + pz(Si,z) (3), while if pz is only increasing on [Si,z, Si+1,z),

∫ Si+1,z

Si,z
pz(r)dr−

pz(Si,z) <∑Si+1,z−1
k=Si,z

pz(k) <
∫ Si+1,z

k=Si,z
pz(r)dr (4).

Now consider pz on intervals of the form [Si,z, Si+1,z), where there exists a turning
point t such that ∀ k < t, pz is increasing, while ∀ k > t, pz is decreasing (see figure
3.3(a)). Let j be defined such that j = max{m ∈ N|n ≤ t− 1}. Then by applying the
integral for convergence test to the intervals [Si,z, j+ 1], and [j+ 2, Si+1,z], one can see
that ∑j+1

k=Si,z
pz(k) >

∫ j+1
k=Si,z

pz(r)dr and ∑Si+1,z−1
k=j+2 pz(k) >

∫ Si+1,z

j+2 pz(r)dr. Therefore,∑Si+1,z−1
Si,z

pz(k)+
∫ j+2

j+1 pz(r)dr >
∫ Si+1,z

Si,z
pz(r)dr. Now

∫ j+2
j+1 pz(r)dr = Ave{pz(r)|j+1 ≤

r ≤ j + 2}, which is O(1) since all pz(k) are O(1). Hence
∫ Si+1,z

Si,z
pz(r)dr − O(1) <∑Si+1,z−1

Si,z
pz(k) (5).

Now the integral for convergence test, applied again to the intervals [Si,z, j + 1],
and [j + 2, Si+1,z] implies that ∑j

k=Si,z
pz(k) <

∫ j+1
Si,z

pz(r)dr, and ∑Si+1,z−1
k=j+3 pz(k) <∫ Si+1,z

j+2 pz(r)dr. Also, it is clear that pz(j + 1) + pz(j + 2) < pz(j + 1) + pz(j +
2) +

∫ j+2
j+1 pz(r)dr. Hence, ∑j

k=Si,z
pz(k) + pz(j + 1) + pz(j + 2) + ∑Si+1,z−1

k=j+3 pz(k) <∫ j+1
Si,z

pz(r)dr +
∫ j+2

j+1 pz(r)dr +
∫ Si+1,z

j+2 pz(r)dr. Therefore, since pz(j + 1) and pz(j + 2)
are O(1), ∑Si+1,z−1

k=Si,z
p(k) <

∫ Si+1,z

Si,z
pz(r)dr +O(1) (6).
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From (2),(3),(4), (5), and (6), we can see that for all intervals [Si,z, Si+1,z),

∫ Si+1,z

Si,z

pz(r)dr −O(1) <
Si+1,z−1∑

Si,z

pz(k) <
∫ Si+1,z

Si,z

pz(r)dr +O(1)

. Therefore, we obtain the required result of∫ ∞
1

pz(k)dk −O(1) <
∞∑

k=1
pz(k) = E(Z(z)) <

∫ ∞
1

pz(k)dk +O(1)

Hence for large interval sizes N ,
∫∞

1 pz(k)dk approximates the expected number of
steps until the first collision very well. The following lemma will make the computing
of
∫∞

1 pz(k)dk far more achievable.

Lemma 3.3.3. ∀i, j where 1 ≤ i ≤ 8, and j ≥ 2,
∫ Si+1,z

Si,z
k
(i

j

) 1
mj e

−ik+Ci,z−i+j

m is O(1).

Proof. The integral of k
(i

j

) 1
mj e

−ik+Ci,z−i+j

m with respect to k is

(i
j

)
(ik +m)e

−ik+Ci,z−i+j

m

i2mj−1

so
∫ Si+1,z

Si,z
k
(i

j

) 1
mj e

−ik+Ci,z−i+j

m dk is

(
i

j

)(e−iSi,z+Ci,z−i+j

m (iSi,z +m)− e
−iSi+1,z+Ci,z−i+j

m (iSi+1,z +m)
)

mj−1i2
(7)

Now in the proof of Lemma 3.3.2, I showed that e
−iSi,z+Ci,z−i+j

m ≤ 1. Hence (7) is less
than (i

j)(Si,z+m)
i2mj−1 . In the proof of the same lemma , I also showed that Si,z < 90

√
N ,

and cm ≤ 0.06697
√
N . Hence (i

j)(Si,z+m)
i2mj−1 < (90+0.06697)

√
N

(0.06697
√

N)j−1 , which is O(1) for j ≥ 2.

Therefore, from the formulas at the top of page 33, we see that∫ ∞
1

pz(k)dk =
8∑

i=1

∫ Si+1,z

Si,z

ik

m
e
−ik+Ci,z−i+1

m +O(1) (8).



3.3. DESIGNING A (2, 2, 1) KANGAROO ALGORITHM 37

Now each
∫ Si+1,z

Si,z

ik
me

−ik+Ci,z−i+1
m is

e
−iSi,z+Ci,z−i+1

m (m
i

+ Si,z)− e
−iSi+1,z+Ci,z−i+1

m (m
i

+ Si+1,z)

Substituting this into (8), we obtain
∫ ∞

1
pz(k)dk =

8∑
i=1

(
e
−iSi,z+Ci,z−i+1

m (m
i

+ Si,z)− e
−iSi+1,z+Ci,z−i+1

m (m
i

+ Si+1,z)
)

+O(1)

Now since Ci,z = ∑i
j=1 Sj,z, Ci,z can be expressed as ci,z

√
N , for some ci,z independent

of N . Hence
8∑

i=1

(
e
−iSi,z+Ci,z−i+1

m (m
i

+ Si,z)− e
−iSi+1,z+Ci,z−i+1

m (m
i

+ Si+1,z)
)

=
8∑

i=1

(
e

(−isi,z+ci,z)
√

N−i+1
cm
√

N (cm

i
+ si,z)

√
N − e

(−isi+1,z+ci,z)
√

N−i+1
cm
√

N (cm

i
+ Si+1,z)

)
√
N

=
8∑

i=1
e
−i+1

m

(
e

(−isi,z+ci,z)
cm (cm

i
+ si,z)− e

−isi+1,z+ci,z
cm (cm

i
+ si+1,z)

)√
N (9)

Now for the typical interval sizes over which one uses kangaroo methods to solve the
IDLP (N > 230), e i+1

m is extremely close to 1. Hence we can safely ignore the e−i+1
m term

in (9). I will state how large the approximation error due to ignoring this e−i+1
m term

is when I present my final kangaroo algorithm in section 3.4. Therefore, if we define cz

to be∑8
i=1

(
e

(−isi,z+ci,z)
cm ( cm

i + si,z)− e
−isi+1,z+ci,z

cm ( cm
i + si+1,z)

)
, we have

∫∞
1 pz(k)dk−

O(1) = cz

√
N . Using the result from Theorem 3.3.1.1, we can conclude that

E(Z(z)) = cz

√
N ±O(1) (10)

Hence the expected number of steps until the first collision over all instances of the
IDLP (i.e. over all z with 0 ≤ z < N) is

E(Z) = c
√
N ±O(1) (11)

where c = Ave{cz|0 ≤ z < 1} =
∫ 1

0 czdz. Now since at each step, each of the 5 kangaroos
make one jump, the expected number of group operations until the first collision occurs
across all z is

5
(∫ 1

0
czdz

)
±O(1) (12)
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3.3.1.3 Number of group operations required in Stage 3

From the analysis provided in [3], if one sets the probability that a group element is
distinguished to be c log(N)

√
N, for some constant c > 0, the expected number of

group operations required in stage 3 is
√
N/c log(N) = o(1)

√
N .

3.3.1.4 Number of Group operations required in Stage 4

The kangaroos used in a 2 tame, 2 wild1, and 1 wild2 kangaroo method are of the
same type as those used in the three kangaroo method. I explained how one may find
z from a collision between any of these types of kangaroos when I described the three
kangaroo method. In any case, at most 3 addition or subtraction operations modulo
|g|, while in the case where a Wild1 and a Wild2 kangaroo collides, we are required
to find 2−1 (mod |g|). Hence the number of group operations required in this stage is
O(1).

Now by summing the number of group operations required in stages 1,2,3 and 4,
we obtain the required result that the expected number of group operations required
to solve the IDLP by any 2 tame, 2 wild1, and 1 wild2 kangaroo method, is approx-
imately 5

((∫ 1
0 czdz

)
+ o(1)

)√
N +O(log(N)).

3.3.2 Finding a good assignment of starting positions, and average
step size

In this subsection, I will use the formula presented in Theorem 3.3.1 to find the best
choice of starting positions and average step size that I could possibly find.
The process I will use to do this will be to first state how the formula of Theorem 3.3.1
can be used compute the running time of an algorithm with particular starting positions
and average step size (see Algorithm 1), and then to iterate through various possible
starting positions and average step sizes, to find which one minimises the running time.
For this purpose, I will define a,b,c,t1, and t2 to be universal constants independent of
the interval size N , such that on an interval of size N , the 2 Wild1 kangaroos start
their walks at the positions aN + zN and cN + zN , the Wild2 kangaroo starts his
walk at bN − zN , and the 2 Tame kangaroos start their walks at t1 and t2.

One can see from the formula of Theorem 3.3.1, that finding the running time of
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any 5 kangaroo method requires finding
∫ 1

0 czdz. Now calculating cz at any z requires
finding si,z ∀ i with 1 ≤ i ≤ 8. The most rigorous approach to finding the average
of cz would be to find a formula for each si,z across all z, and to plug this into the
formula for cz, and then integrate this across all z. Finding a direct formula for each
si,z that holds for all possible choices for the starting positions and the average step size
proved to be too difficult. I therefore proposed the following simulation based approach
for computing

∫ 1
0 czdz. This is how the computeaveragecz function of Algorithm 1

computes
∫ 1

0 czdz.
At a particular z, si,z can be computed by finding the starting positions of all kangaroos
on an interval of size N = 1 (this means computing aN+zN = a+z, b−z, c+z, t1 and
t2), and then finding the distances between all useful pairs when the kangaroos start
at these positions. By then ranking these distances in the manner done in line 5 of
Algorithm 1, one can find Di,z for each i between 1 and 8, for an interval of size N = 1.
One can then find si,z using Di,z/m = di,zN/cm

√
N = si,z

√
N = si,z. Following this,

we can compute all ci,z, using ci,z = ∑i
j=1 sj,z. Hence we have all the information we

need to compute cz. By finding the average of cz for a large number of evenly spaced
z in [0, 1) (so for instance, computing cz for all z in {z|z = 10−pk, k ∈ N, 0 ≤ z < 1},
with p ≥ 3), we can approximate

∫ 1
0 czdz. The pseudocode for the matlab® function

to compute cz is shown in Algorithm 1.

Algorithm 1 Function for finding the average of cz

1: function computeaveragecz(a,b,c,t1,t2,cm,p)
2: z ←− 0
3: sumofcz ←− 0
4: while z < 1 do
5: distancesarray ← sort({

|(a+ z)− t1| , |(b− z)− t1| , |(c+ z)− t1| , |(a+ z)− t2|
|(b− z)− t2| , |(c+ z)− t2| , |(a+ z)− (b− z)| , |(c+ z)− (b− z)|

}
)

6: for i← 1 to 8 do
7: si,z ← distancesarray[i]/cm

8: ci,z ←
∑i

j=1 sj,z

9: cz ←
∑8

i=1

(
e

(−isi,z+ci,z)
cm ( cm

i + si,z)− e
−isi+1,z+ci,z

cm ( cm
i + si+1,z)

)
10: sumofcz ← sumofcz + cz

11: z ← z + 10−p

12: return sumofcz/(10p)

Therefore, if we let Opt denote the output of this function on some specified combi-
nation of starting positions and average step size (i.e. values of a,b,c,t1,t2 and cm), then
from (11), the expected number of steps until the first collision occurs for this combi-
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nation is Opt

√
N ± O(1) (13). Also, from the formula of theorem 3.3.1, the expected

number of group operations required to solve the IDLP for our specified combination
of starting positions and average step size is approximately (5Opt + o(1))

√
N ± O(1)

(14). I will state how large the error of this approximation is when I present my five
kangaroo algorithm in section 3.4.

Therefore, if we let aopt,bopt,copt,t1opt ,t2opt , and cmopt respectively denote the best
values for a,b,c,t1,t2 and cm, then aopt,bopt,copt,t1opt ,t2opt , and cmopt are the values of
a,b,c,t1,t2 and cm for which the output of the computeaveragecz function is smallest.

This fact gives rise the to the following algorithm for finding good values for
a,b,c,t1,t2, and cm. The pseudocode for this algorithm is shown in Algorithm 2. The
idea of the algorithm was to start with a range of values for which the optimal val-
ues of a,b,c,t1,t2, and cm lay in. These ranges would be encapsulated in the variables
amin,amax,bmin,bmax,cmin,cmax,t1min ,t1max ,t2min ,t2max ,cmmin and cmmax , so we would
have amin ≤ aopt ≤ amax, bmin ≤ bopt ≤ bmax, cmin ≤ copt ≤ cmax, t1min ≤ t1opt ≤ t1max ,
t2min ≤ t2opt ≤ t2max . I was unable to prove a range of values for which aopt,bopt,copt,
t1opt ,t2opt , and cmopt were guaranteed to lie in, but in (A),(B),(C),(D) and (E)
(which can be found below), I state and justify some ranges for which aopt,bopt,copt,
t1opt ,t2opt , and cmopt are likely to lie in. Using the scanregion function, I would
then find good values for b,c,t1,t2 and cm (by (A), a can be fixed at 0) by computing
averagecz for evenly spaced (separated by the amount defined by the variable ’gap’ in
Algorithm 2) values of b,c,t1,t2, and cm, between the ranges defined by the variables
bmin,bmax,cmin,cmax,t1min ,t1max ,t2min ,t2max ,cmmin and cmmax (see lines 3-10). The vari-
ables Bestb,Bestc, Bestt1, Bestt2, and Bestcm would represent the values of b,c,t1,t2
and cm for which averagecz was smallest, across all combinations for which averagecz

was computed for (this is carried out in lines 9-18).
We could then find better values for b,c,t1,t2 and cm than Bestb, Bestc, Bestt1, Bestt2,
and Bestcm, by running the scanregion function on values of b,c,t1,t2 and cm in a
smaller region centred around Bestb, Bestc, Bestt1, Bestt2, and Bestcm (see lines 25-28),
that are separated by a smaller gap (see line 29). By repeating this process multiple
times (see lines 24-31), we could keep finding better and better values for b,c,t1,t2 and
cm. Eventually however, the interval for which the scanregion function was called on
would shrink to be zero in size. At this point, the the improvements in the best values
for b,c,t1,t2 and cm between iterations would become negligible. Line 24 determines
when this occurs.
The algorithm then computes Averagecz to a higher degree of accuracy for the optimal
values of b,c,t1,t2 and cm (see line 32). It does this by setting the variable p in the
Computeaveragecz function to be 6 (p was set to 3 the main loop (see line 10), due
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to reasons relating to the practicality of the running time of Algorithm 2).

Estimates of initial bounds for the optimal values of a,b,c,t1,t2 and cm

(A). aopt = 0

(B). −1
2 = bmin ≤ bopt ≤ bmax = 5

2

(C). 0 = cmin ≤ copt ≤ cmax = 3, and c ≥ a

(D). −2 = t1min = t2min ≤ t1opt ≤ t2opt ≤ t1max = t2max = 9
2

(E). 0.06697 ≤ cmopt ≤ 0.5330

Justification of (A). Suppose we start our kangaroos walks at N(d + z),N(b + d −
z),N(c + d + z),N(t1 + d), and N(t2 + d), where d ∈ R. Then for all z, one can see
that the starting distances between all pairs of kangaroos is the same in this case as
when the kangaroos start their walks at N(0 + z),N(b− z),N(c+ z),t1N and t2N (that
is, if we subtract dN from all kangaroos starting positions). Hence if we use the same
average step size in both cases, the running time in both algorithms will be the same.
Hence for any algorithm where a > 0, there exists an algorithm where a = 0 which has
the same running time. Hence we only need to check the case where a = 0, so we can
claim that aopt = 0

Justification of (B). The bound presented here is very loose. If b−a > 2.5, or b < a−0.5
then ∀ z, on an interval of size N , the initial distance between the kangaroos that start
their walks at a+ z and b− z is at least N/2 (when z = 0, |(a+ z)− (−0.5− z)| = 0.5,
and when z = 1, |(a + z) − (2.5 − z)| = 0.5). Now in the three kangaroo method, on
an interval of size N , the furthest the initial distance between the closest useful pair
of kangaroos could be across all z was N/5 (this occurred when z was 0, 2N/5, 3N/5
and N). Now in a good five kangaroo method, since there are more kangaroos (than in
a three kangaroo method), we can expect to the furthest initial distance between the
closest useful pair of kangaroos across all z to be smaller than N/5. Hence if a pair of
kangaroos in a five kangaroo method always starts their walks at least distance N/2
apart, such a pair is highly unlikely to ever collide before the closest useful pair collides,
at any z, and will therefore be extremely unlikely to ever be the pair which collides
first. In a good 5 kangaroo algorithm, it would be natural to suppose that every useful
pair of kangaroos can be the pair whose collision leads to the solving of the IDLP (i.e.
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Algorithm 2
1: function scanregion(bmin,bmax,cmin,cmax,t1min ,t1max ,t2min ,t2max ,cmmin ,cmmax ,gap)
2: minaveragecz ←∞
3: bvalues = {bmin + k × gap|k ∈ N, bmin ≤ bmin + k × gap ≤ bmax}
4: cvalues = {cmin + k × gap|k ∈ N, cmin ≤ cmin + k × gap ≤ cmax}
5: t1values

= {t1min + k × gap|k ∈ N, t1min ≤ t1min + k × gap ≤ t1max}
6: t2values

= {t2min + k × gap|k ∈ N, t2min ≤ t2min + k × gap ≤ t2max}
7: cmvalues

= {cmmin + k × gap|k ∈ N, cmmin ≤ cmmin + k × gap ≤ cmmax}
8: Combinations = bvalues × cvalues × t1values

× t2values
× cmvalues

9: for each {b, c, t1, t2, cm} ∈ Combinations do
10: averagecz = computeaveragecz(0,b,c,t1,t2,cm,3)
11: if averagecz < minaveragecz then
12: minaveragecz ← averagecz

13: Bestb← b
14: Bestc← c
15: Bestt1 ← t1
16: Bestt2 ← t2
17: Bestcm ← cm

18: return minaveragecz,Bestb,Bestc,Bestt1,Bestt2,Bestcm

19:
20: bmin ← −1/2,bmax ← 5/2,cmin ← 0,cmax ← 3,t1min ← t2min ← −2,t1max ←

t2max ← 9/2,cmmin ← 0.06697,cmmax ← 0.5330
21: gap = 2× 10−2

22: PreviousBestAveragecz ←∞
23:

[
CurrentBestAveragecz,Bestb,Bestc,Bestt1,Bestt2,Bestcm

]
← scanre-

gion(bmin,bmax,cmin,cmax,t1min ,t1max ,t2min ,t2max ,cmmin ,cmmax ,gap)
24: while PreviousBestAveragecz - CurrentBestAveragecz ≤ 10−4 do
25: bmin ← Bestb - gap, bmax ← Bestb + gap, cmin ← Bestc - gap,
26: cmax ← Bestc + gap, t1min ← Bestt1 - gap,
27: t1max ← Bestt1 + gap,t2min ← Bestt2 - gap,t2max ← Bestt2 + gap,
28: cmmin ← Bestcm - gap, cmmax ← Bestcm + gap
29: gap ← gap/10
30: PreviousBestAveragecz ← CurrentBestAveragecz

31:
[
CurrentBestAveragecz,Bestb,Bestc,Bestt1,Bestt2,Bestcm

]
←−

scanregion(bmin,bmax,cmin,cmax,t1min ,t1max ,t2min ,t2max ,cmmin ,cmmax ,gap)
32: AccurateAveragecz = computeaveragecz(0,Bestb,Bestc,Bestt1,Bestt2,Bestcm,6)
33: return AccurateAveragecz,Bestb,Bestc,Bestt1,Bestt2,Bestcm
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can collide first), at some z. Hence it is not desirable for there to be a useful pair which
always starts its walk at least distance of 0.5N apart on an interval of size N .

Justification of (C). Firstly let W1,1 denote the kangaroo that starts its walk at N(a+
z), and W1,2 denote the kangaroo that starts at N(c + z). Since these kangaroos are
of the same types (they’re both Wild1 kangaroos), if we fix c,t1,t2 and cm, then an
algorithm where W1, 1 starts at a + z and W1,2 starts at c + z, has the same running
time as an algorithm where W1,1 starts at c + z and W1,2 starts at a + z, since the 2
Wild1 walks that start at the same positions in both cases. Hence copt ≥ aopt = 0.
Now copt ≤ 3, since if c > 3, then on an interval of size N , the distance between the
kangaroos that start their walks at N(c+ z) and N(b− z) can never be less than N/2.
I gave evidence that this was not desirable in my justification of (B). Hence we may
suppose that 0 ≤ copt ≤ 3.

Justification of (D). Firstly, we only need to check values where t2opt ≥ t1opt , because
one can show in a similar way to the one shown in proving copt ≥ aopt, that for every case
where t2 < t1, there exists an algorithm with the same running time where t1 < t2.
Now −2 ≤ t1, t2 ≤ 9/2, since if t1 and t2 are outside this range, then the starting
distance between any wild kangaroo and any of the tame kangaroos on an interval of
size N is at least N/2.

Justification of (E). I stated in Section 3.2 that by starting the kangaroos walks at h,
g0.7124Nh, g1.3562Nh−1,g0.9274N and g0.785N , the lower bound for the expected number
of group operations until the closest useful pair collides (ECP ) of 1.8898

√
N group

operations could be realised. Using Lemma 3.2.1 in the proof of Theorem 3.2, the
average distance between the closest useful pair across all z when ECP = 1.8898

√
N

group operations is 0.0357N . In the proof of the same lemma, I also showed that
ECP = 5(Ave(d(z))/m + m), where Ave(d(z)) denotes the average distance between
the closest useful pair of kangaroos over all z. Hence Ave(d(z)) ≥ 0.0357N in any 5
kangaroo algorithm. Therefore, ECP ≥ 5(0.0357N/cm

√
N + cm

√
N). One could suppose

that there must be some bound B, such that if the expected number of group operations
for the closest useful pair to collide in some algorithm is larger than B, then this
algorithm could have no chance of being the optimal 5 kangaroo algorithm. A very loose
bound on B is 3

√
N . For ECP ≤ 3

√
N , we require 5(0.0357N/cm

√
N+cm

√
N) ≤ 3

√
N .
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For this to occur, cm must range between 0.06697, and 0.5330. Hence we can suppose
0.06697 ≤ cmopt ≤ 0.5330.

Remark regarding Lemma 3.3.2

Lemma 3.3.2 required an upper bound on how far apart a useful pair of kangaroos
can be when they start their walks. When t2 is 4.5, b = −0.5, and zN = N − 1, the
initial distance between the Wild2 kangaroo that starts its walk at (b− z)N , and the
Tame kangaroo that starts his walk at t2N , is 6N − 1 < 6N . In any method where
the variables a, b, c, t1 and t2 are within the bounds presented in (A),(B),(C) and (D),
no useful pair of kangaroos can start their walks further apart than this.
The same lemma also required a lower bound on the average step size used. (E) shows
that one lower bound is 0.06697

√
N .

Results

When I ran Algorithm 2 in matlab®, the values for a,b,c,t1,t2 and cm which were
returned had a = 0, b = 1.3578, c = 0.7158, t1 = 0.7930, t2 = 0.9220, and cm = 0.3118.
Algorithm 2 computed averagecz to be 0.3474 in this case.
Using the result of (14) (see the top of page 40), we see that in an algorithm where
a,b,c,t1,t2 and cm are defined to be these values requires on average

(
5 × 0.3474 +

o(1)
)√
N ±O(1) =

(
1.737 + o(1)

)√
N ±O(1) group operations to solve the IDLP.

Formula (13) also implies that the expected number of steps until the first collision
will be 0.3474

√
N ±O(1) steps (15).

3.4 Five Kangaroo Method

I now present my five kangaroo algorithm.
If we are solving the IDLP on an interval of size N over a group G, and we start the
walks of five kangaroos at the group elements h, g1.3578Nh−1, g0.7158Nh, g0.922N , and
g0.793N , and use an average step size of 0.3118

√
N , and let the kangaroos walk around

the group G in the manner defined in section 3.1, then we can expect to solve the IDLP
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in on average
(
1.737 + o(1)

)√
N ±O(1) group operations.

Note that 1.3578N ,0.7158N ,0.922N , and 0.793N might not be integers, so in practice,
the kangaroos would start their walks at h, gbh−1, gch, gt1 , and gt2 , where b,c,t1, and
t2 are respectively the closest integers to 1.3578N ,0.7158N ,0.922N , and 0.793N .
There are two main factors which have not been accounted for in this calculation of the
running time. The first is eluded to in the remark, stated just before Lemma 3.3.1. This
being, that I calculate the expected running time in the instance where for every z, the
back kangaroo takes the expected number of steps to catch up to the starting position
of the front kangaroo in every useful pair of kangaroos, and make the assumption that
this is proportional to the average expected running time across all possible walks that
the kangaroos can make. I was unable to find a bound for how much the approximation
error would be increased by because of this assumption. However, in [3], Galbraith,
Pollard and Ruprai make the same assumption in computing the running time of the
three and four kangaroo methods. They were also unable to find a bound for much
the approximation error would be increased by because of this assumption. However,
when Galbraith, Pollard and Ruprai gathered experimental results to test how well
their heuristic estimates worked in practice, they found that their experimental results
matched their estimated results well [3]. Hence I can assume the magnitude of the
approximation error is not affected too badly as a result of this assumption.
The other factor that wasn’t accounted for in my calculation of the running time, was
how I ignore the e−i+1

m term in (9) (see page 37). Since m = 0.3118
√
N in my 5

kangaroo algorithm, and in practice, one would typically use kangaroo methods on
intervals of size at least 230, the multiplicative factor of the approximation error due
to this is has a lower bound of e−i+1

m ≥ e
−7

0.3118
√

N ≥ e
7

0.3118
√

230 ≥ 1− (7× 10−4), and an
upper bound of 1.
This five kangaroo algorithm is therefore a huge improvement on the previously optimal
five kangaroo method of Galbraith, Pollard, and Ruprai, which required at least 2

√
N

group operations to solve the IDLP on average. This algorithm also beats the running
time of the three kangaroo method, so it therefore answers one of the main questions
of this dissertation. This being, ’Are five kangaroos worse than three?’.
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Chapter 4

Seven Kangaroo Method

Using the same idea that was applied by Galbraith, Pollard and Ruprai in [3] in extend-
ing the three kangaroo method to the four kangaroo method, the five kangaroo method
can be extended to give a seven kangaroo method, with slightly improved running time.
If we are solving the IDLP on an interval of size N , let A,B, and C respectively be
the closest even integers to 0,1.3578N , and 0.7158N , and let T1 and T2 be the closest
integers to 0.422N , and 0.793N . Suppose we start the walks of 7 kangaroos at the
group elements h, gBh−1, gCh, gT1 , gT1+1, gT2 , and gT2+1. Then we are effectively
starting two Wild1 kangaroos at positions z, and C + z, one Wild2 kangaroo at the
position B − z, and four Tame kangaroos at the positions T1, T1 + 1, T2 and T2 + 1.
Now z, B − z and C + z are either all odd, or all even. Hence all Wild1 and Wild2
kangaroos start their walks an even distance apart. Also, exactly one of T1 and T1 + 1,
and exactly one of T2 and T2 + 1 are of the same parity as z, B − z and C + z. I will
let T1useful

and T2useful
denote the Tame kangaroos whose starting positions are of the

same parity as the starting positions of the Wild1 and Wild2 kangaroos, and T1useless

and T2useless
denote the two other tame kangaroos.

Now suppose we make all step sizes even. Then T1useless
and T2useless

will be unable to
collide with any other kangaroo, excluding themselves. However, T1useful

,T2useful
, and

all Wild1 and Wild2 kangaroos are able to collide, and are all starting their walks at
at almost the exact same positions as the five kangaroos do in the five kangaroo method
of section 3.4. Hence, assuming the algorithm is arranged so that all kangaroos jump
one after the other in some specified order, then these 5 kangaroos (T1useful

,T2useful
, the

Wild2 kangaroo, and the two Wild1 kangaroos) are effectively performing the five
kangaroo method of section 3.4, except over an interval of size N/2, since the fact that
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all step sizes are even means that only every second group element is being considered
in this method. Hence from the statement of (15) (see the results section on page 44),
the expected number of steps until the first collision occurs is

(
0.3474

√
N/2 ± O(1)

)
= 0.2456

√
N ± O(1) steps. However, since there are now 7 kangaroos jumping at

each step, the expected number of group operations until the first collision occurs is
7×0.2456

√
N±O(1) = 1.7195

√
N±O(1) group operations. By defining the probability

that a point is distinguished in the same way as it was in the five kangaroo method,
we can conclude that the seven kangaroo method presented here requires on average
an estimated

(
1.7195 + o(1)

)√
N ±O(1) group operations to solve the IDLP.

As I have already stated, currently the fastest kangaroo method is the four kangaroo
method. This has an estimated average running time of (1.714 + o(1))

√
N group op-

erations. Therefore, the seven kangaroo method presented here is very close to being
the optimal kangaroo method.



Chapter 5

Conclusion

The main results of this thesis were the following.

• Result 1: The presentation of a five kangaroo algorithm which requires on av-
erage

(
1.737 + o(1)

)√
N ±O(1) group operations to solve the IDLP.

• Result 2: The presentation of a seven kangaroo method that requires on average(
1.7195 + o(1)

)√
N ±O(1) group operations to solve the IDLP.

For clarity, I will restate the main questions that this thesis attempted to answer
here also.

• Question 1: Can we improve kangaroo methods by using larger numbers of
kangaroos?

• Question 2: Are 5 kangaroos worse than three?

Before this dissertation, the four kangaroo method of Galbraith, Pollard, and Ruprai
[3] was by the far the best kangaroo algorithm. This algorithm has an estimated av-
erage running time of

(
1.714 + o(1)

)√
N group operations. It was unknown whether

we could beat the running time of the four kangaroo method by using more than four
kangaroos. The fastest algorithm that used more than four kangaroos was far slower
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than the four kangaroo method, requiring on average at least 2
√
N group operations

to solve the IDLP.
The five and seven kangaroo algorithms presented in this report are a significant im-
provement in kangaroo methods that use more than four kangaroos. Even though the
running time of the methods presented in this thesis did not beat the running time of
the four kangaroo method, they came very close to doing so. Therefore, even though
the main question of this dissertation (Question 1) still remains unanswered, we can
now have more confidence that kangaroo methods can be improved by using more than
four kangaroos.
Question 2 was also answered in this thesis, since the estimated average running time
of the five kangaroo method presented in section 3.4 (

(
1.737 + o(1)

)√
N ±O(1) group

operations) beat the estimated average running time of the three kangaroo method of
[3] (

(
1.818 + o(1)

)√
N group operations).
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