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Thanks

I Thanks to Joseph K. Liu and Hui Cui (Program Chairs)
for inviting me to give the Jennifer Seberry Invited
Lecture.

I Thanks to everyone else involved with running ACISP this
year.

I Thanks Ben Smith and Samuel Dobson, for a research
collaboration that started me thinking about this problem.

I Thanks to Alfred Menezes, Mihir Bellare, Kenny Paterson
and Martin Albrecht for comments and suggestions and
references.
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Plan

I Discuss literature on the meaning of “security level” and
give a definition.

I Discuss Pollard rho and the security level of the elliptic
curve discrete logarithm problem.

I Tightness (if time).

I Multi-user security (no time).

I Groups of unknown order (if time).
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Security definitions in theoretical cryptography

I The established definition of concrete single-key security
(with security parameter λ) is: Every adversary A that
runs in time t = poly(λ), succeeds with negligible
probability ε(λ).

I The concrete security concept goes back to work of
Bellare and Rogaway and their co-authors in the mid-90s.

I One of the main topics of this talk is: What values for t
and ε are of interest?
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Brute-force attack on symmetric encryption

I Let Enc and Dec be a symmetric cipher with λ-bit keys.

I Let k ∈ {0, 1}λ be sampled uniformly at random.

I Consider an adversary that is given one or more pairs
(mi ,Enck(mi)) and wishes to determine the key k .

I The adversary can do the brute-force attack of trying
keys and encrypting m1 (or decrypting c1).
(Additional messages might be needed if more than one
key encrypts m1 to c1.)

I The worst case running time of the attack is 2λ

executions of the encryption/decryption function. The
average case running time is 2λ−1 executions.

I The attack requires low storage and can be parallelised.
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Security of symmetric encryption

I If there is no known attack on a symmetric cipher with
λ-bit keys that is better that brute-force, then we say the
cipher has λ bits of security.

I For example, the wikipedia page for “Security Level” says
“In cryptography, security level is a measure of the
strength that a cryptographic primitive - such as a cipher
or hash function - achieves. Security level is usually
expressed in bits, where n-bit security means that the
attacker would have to perform 2n operations to break it”.
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How much computation can we do?

I Twitter tells me that the total bitcoin mining rigs today
computes around 266.7 hashes per second.

I This is approximately 291.6 hashes per year. Or 2100

hashes in 338 years (ignoring Moore’s law).

I These rigs are customised to compute hashes quickly, and
are not suited to other cryptanalysis operations.

I Hence, computations of more than 2100 operations seem
very remote at present.

I Current systems (e.g., AES) are expected to have at least
128 bits of security.
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Success probabilities

I In algorithmic number theory one considers (randomised)
algorithms for computational problems that succeed with
probability close to 1.

I In a computational number theory software package, an
algorithm that succeeds with probability 1/210 is useless –
the customer will give up and use a different package.

I In contrast, in crypto, an attacker that breaks the scheme
with probability 1/210 is a killer attack and the system is
dead.

Steven Galbraith Security levels in cryptography



Security of symmetric encryption

I Let us consider again a symmetric cipher with λ-bit keys.

I One can guess k bits of the secret key and try all the 2λ−k

keys with that pattern. The resulting attack requires
computing at worst t = 2λ−k encryptions and succeeds
with probability ε = 1/2k .

I Note that t/ε = 2λ.

I Alternatively, t = ε2λ.
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Running time of brute force search over key size 2λ

This is the graph of t = ε2λ.
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Formal definition of success probability

I When defining security of a system there is a key/instance
generation algorithm Gen that outputs instances x .

I The attacker is a randomised algorithm A.

I The success probability of the attacker for given security
level λ is the probability that A(x) returns a correct
solution to the instance, where the probability is over
x → Gen(1λ) and over the random choices made by A.
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Definition of security level

I Definition: Let X be a computational problem, with
instances x produced by an algorithm Gen(1λ). Then X
has λ-bit security level if, for every adversary A, if A(x)
runs in time t and succeeds with probability ε we have
t/ε ≥ 2λ.

I I consider this definition as folklore.

I Lenstra and Verheul (Selecting cryptographic key sizes, 2001)
use the phrase “incomplete attacks” to mean attacks with
success probability less than one.

I The model in their paper is to define security as
equivalent to breaking a symmetric cipher, so the relation
t/ε ≥ 2λ is implicit in their paper.
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Definition of security level

This definition appears in several papers, including:

I Mihir Bellare and Thomas Ristenpart, Simulation without
the Artificial Abort: Simplified Proof and Improved
Concrete Security for Waters’ IBE Scheme, 2009.
The ratio t/ε is called the “work factor” in Section 4.

I Daniele Micciancio and Michael Walter, On the Bit
Security of Cryptographic Primitives, 2019.
They use this definition for search problems, and also
discuss security levels for decision problems.

I Mihir Bellare and Wei Dai, The Multi-Base Discrete
Logarithm Problem: Concrete Security Improvements for
Schnorr Identification, 2020.
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Cost metrics

I One should take storage costs and memory access into
account when analysing algorithms.

I In 2004, Wiener (“The full cost of cryptanalytic attacks”)
addressed this.

I Similarly, Bernstein and Lange discusses the “AT metric”
(meaning the product of the area of a chip and the
running time) in their 2013 paper “Non-uniform cracks in
the concrete”.

I Also in almost all cryptanalysis settings one can make use
of parallelism, so it should be understood that the cost
estimate is for the total computation.
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Types of attack with success < 1

There are two ways that an algorithm could succeed with
probability < 1:
I It might only work for some subset of “easy instances” or

“weak keys”.
I The Fermat compositeness/primality test fails on Carmichael

numbers, but does correctly determine that a large class of
composite integers are not primes.

I The LLL algorithm correctly computes the shortest vector in a
lattice in certain cases (e.g., when the shortest vector is much
shorter than the second successive minimum).

I The algorithm may make unlucky choices.
I The Miller-Rabin primality test (choosing a fixed number of

random bases) may incorrectly declares some composite
numbers to be prime.
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Amplifying success

I For many (but not all!) problems, an algorithm that
succeeds with probability ε < 1 can be transformed into
an algorithm that succeeds with probability close to 1.

I This can happen because it is a randomised algorithm and
executions are independent experiments.

I The “guess k bits” algorithm for key search in a symmetric
cipher can be repeated with a different guess.

I Repeating the Miller-Rabin primality/compositeness testing
algorithm with an independent set of random bases increases
the probability the result is correct.

I Another class of algorithms can increase their success
using random self-reductions.
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Random self-reductions

I A random self-reduction takes an instance X of a
computational problem and outputs an instance X ′ that is
independent of X , such that a solution to the instance X ′

can be transformed into a solution to the instance X .

I For example, suppose P ,Q is an instance of the elliptic
curve discrete logarithm problem, so that Q = [a]P for
some secret integer a.

I Let r be the order of P (assumed to be prime).

I Choose uniformly 1 ≤ u < r and 0 ≤ v < r and set
P ′ = [u]P and Q ′ = Q + [v ]P .

I Note that P ′ also has order r and that P ′ and Q ′ are
uniformly distributed in the (sub)group and independent
of (P ,Q).

I If Q = [a′]P then a = a′u − v (mod r).
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Amplifying success

I Suppose that algorithm A succeeds with probability ε and
that executions of A are independent.

I Then the probability A does not succeed after k trials is
(1− ε)k .

I Approximating 1− ε ≈ e−ε we have (1− ε)k ≈ e−kε.

I Taking k = 1/ε means A fails with probability
≈ e−1 ≈ 0.36 and so succeeds with probability
≈ 0.63 > 0.5.

I Hence, for problems that have random self-reductions,
there can’t be a noticeable proportion of weak instances
without weakening the general case.

Steven Galbraith Security levels in cryptography



The converse of amplifying success

I Random self-reductions can transform an algorithm that
succeeds with probability ε into an algorithm that
succeeds with probability close to 1.

I The converse of this argument doesn’t
automatically hold!

I The existence of an algorithm that solves a problem in
time t with probability 1 does not imply the existence of
an algorithm that succeeds with probability ε and solves
the problem in time tε.

I Studying algorithms with success probability ≈ 1 does not
shed light on algorithms with success probability � 1.
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Small success probabilities

I The literature mainly focusses on the case ε = 1 and does
not consider attacks with success probability ε < 1.

I For example, the Handbook of Applied Cryptography by
Menezes, Van Oorschot and Vanstone, only considers
success probability 1. They define a notion called the
“work factor”:

1.69 Definition: The work factor Wd is the minimum amount of

work (measured in appropriate units such as elementary operations

or clock cycles) required to compute the private key d given the

public key e, or, in the case of symmetric-key schemes, to determine

the secret key k.

I In other words, security levels seem to be usually
calculated based on the case of success probability 1.
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Why 128-bits? (My personal opinion)

Using 128-bit keys is a conservative choice to protect against
attackers who succeed with small probability ε and run in time
t = ε2128.

We are not actually worried about attackers that
perform 2128 operations.
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Section 3.1 of Katz and Lindell

One might want to use a scheme with the guarantee that no adversary

running for at most 200 years using the fastest available supercomputer

can succeed in breaking the scheme with probability better than 10−30.

It is instructive to get a feel for values t and ε that are typical of modern

cryptographic schemes.

Example 3.1 Modern private-key encryption schemes are generally

assumed to give almost optimal security in the following sense: when the

key has length λ, an adversary running in time t (measured in, say,

computer cycles) can succeed in breaking the scheme with probability at

most t/2λ.

A prudent choice of parameters would be t = 280 and ε = 2−48 (implying

that the key must be at least 128 bits long).
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Bellare and Dai, INDOCRYPT 2020

I Bellare and Dai (The Multi-Base Discrete Logarithm Problem:

Tight Reductions and Non-Rewinding Proofs for Schnorr

Identification and Signatures) also discusses these issues.

I Their paper contains, in various places, the pairs
(t, ε) = (290, 2−32), (280, 2−48), (264, 2−64).

I They never worry about the case (t, ε) = (2128, 1).

I They talk of the “full curve of advantage as a function of
runtime”.

I For 256-bit security they consider (t, ε) = (2100, 2−156).
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Small success probabilities

I The main theme of this talk is that to evaluate concrete
security of some computational problem X needs a careful
analysis of algorithms with success probability < 1.

I I argue it is never interesting to consider ε = 1.

I Revised Definition of Security Level: Let X be a
computational problem, with instances x produced by an
algorithm Gen(1λ).
Let ε0 be some fixed upper bound on success probabilities
of interest (possibly a function of λ).
Then X has λ-bit security level if, for every adversary A,
if A(x) runs in time t and succeeds with probability ε < ε0
we have t/ε ≥ 2λ.

I For key search the revised definition is equivalent to the
earlier one.
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Small success probabilities
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Elliptic curve discrete logarithm problem (ECDLP)

I Let E be an elliptic curve over a finite field Fq.

I Let P ∈ E (Fq) be a point of prime order r .

I The ECDLP is: Given Q ∈ 〈P〉 ⊆ E (Fq) to compute
a ∈ Zr such that Q = [a]P .
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Pollard rho

I The baby-step-giant-step algorithm requires large storage,
is hard to parallelise or distribute, and costs more than
square-root in realistic cost models.

I The rho and kangaroo algorithms require less storage and
can be distributed.

I They are based on pseudorandom walks, and compute
group elements Ri = [ui ]P + [vi ]Q.

I A collision Ri = Rj means [ui ]P + [vi ]Q = [uj ]P + [vj ]Q
and so

Q = [(ui − uj)(vj − vi)
−1 (mod r)]P .
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Pollard rho success probability

I The success probability of rho is analysed based on the
birthday paradox.

I We need the probability of a collision when sampling t
elements uniformly at random with replacement from a
set of size r .

I The probability the elements are all distinct (and hence,
no collision) is

1(1− 1
r
)(1− 2

r
) · · · (1− t−1

r
) ≈ exp(−t2/2r).

I Hence the probability of success for Pollard rho after
sampling t group elements is approximately
1− exp(−t2/2r), which is low when t �

√
r .
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Pollard rho success probability

I Precisely, when t �
√
r the probability to solve the DLP

using Pollard rho satisfies ε < t/
√
r .

I Alternatively t/ε >
√
r .

I So Pollard rho, like baby-step-giant-step, does not satisfy
the linear relationship t/ε = 2λ of brute-force key search.

I This phenomenon was already noted by Lenstra and
Verheul.
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Pollard rho success probability
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Pollard rho success probability

I We now determine the group order such that the success
probability of Pollard rho running in time t = 280 is
approx ε = 2−48.

I Solve ε = 1− exp(−θ2/2), which for ε = 2−48 gives
θ = 8.4 · 10−8.

I Then t = θ
√
r so r = (280/θ)2 ≈ 2206.

I Hence a 206-bit group order suffices if the attacker is
using Pollard rho and can not do more than 280 group
operations.
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Controversial opinion

We are overly conservative in our group sizes for 128-bit
security, and 206-bits is enough for 128-bit secure ECC.
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Equivalent to AES

I It has become common in public key crypto to talk about
security levels “equivalent” to AES with some given key
size.

I For example, the NIST post-quantum crypto requires
submitters to give parameters for various levels.

I NIST level one: Any attack that breaks the relevant
security definition must require computational resources
comparable to or greater than those required for key
search on a block cipher with a 128-bit key (e.g. AES128).

I But this comparison is undefined, as symmetric crypto has
a linear (t, ε) curve while public key assumptions like
ECDLP, lattices, isogenies, etc do not.
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Remainder of talk

One can study many problems through this lens:

I Tightness.

I Multi-user security (various versions).

I Post-quantum assumptions.

I Groups of unknown order.

But I am short on time!
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Tightness

I Recall that a security reduction from a cryptosystem to a
computational problem shows that if an attacker A breaks
the cryptosystem (in some model) when running in time t
and with success probability ε, then there is an algorithm
A′ to solve the computational problem that runs in time t ′

and has success probability ε′.

I Here t’ and ε′ are functions of t, ε and the security
parameter λ.

I A reduction is called tight if t ′ ≈ t and ε′ ≈ ε.

I So a tight reduction satisfies t ′/ε′ ≈ t/ε.

Steven Galbraith Security levels in cryptography



Tightness

I A reduction is loose if t ′/ε′ � t/ε, which can happen if t ′

is much bigger than t (the algorithm A′ is very slow) or if
ε′ is much smaller than ε (the algorithm A′ succeeds with
much lower probability).

I Loose reductions are not helpful to set practical security
levels: if one wants t/ε > 2λ then one has t ′/ε′ much
larger and so, in principle, needs to choose parameters so
that the computational problem has security level t ′/ε′.
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Tightness

I This issue is discussed by Koblitz and Menezes in the first
of their “another look” papers.

I Section 5.5 discusses security proofs for discrete-log-based
signatures using the Pointcheval-Stern Forking Lemma.

I Consider a forger that runs in time t, makes at most qH
queries to the random oracle, and succeeds with
probability ε.

I Using the generalised forking lemma of Bellare and Neven
one gets t ′ ≈ 2t and

ε′ ≈ ε2/qH .
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Tightness

I What is interesting, from our point of view, is that
Koblitz and Menezes immediately move to the situation of
success probability 1.

I They write “we have to run the forger program k times in
order to find (with high probability) the discrete
logarithm”.

I They conclude that 80-bit security requires a 354-bit
order, rather than 160 bits.

I (Admittedly, Koblitz and Menezes focus on an attacker
that has success probability ε ≈ 1 and are mostly
concerned with the qH factor, which they take to be the
most extreme value qH = t.)
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Tightness

I What happens if we do not amplify to success probability
1?

I Following Katz and Lindell we might take t = 280,
ε = 2−48 and qH = 240.

I Then ε′ ≈ ε2/qH = 2−136 which is smaller than 1/2λ.

I Such a small probability may seem irrelevant, since one
can guess a λ-but key with probability 1/2λ.

I But for number-theoretic systems, attacks with such a low
probability may not be absurd.

I One can compute the minimum group size r such that
Pollard rho runs in time t = 280 and succeeds with
probability 2−136:
To have 1− exp(−t2/2r) = 2−136 can take r ≈ 2296.

I So 296-bit ECC may be tight for digital signatures.

Steven Galbraith Security levels in cryptography



Tightness

I Maybe 2−136 is far too small to be worth considering.

I Suppose we repeat the attack k times to get an algorithm
with success probability 1− (1− ε′)k ≈ kε′.

I Taking k = 2136 to get success probability 1 is the
situation considered by Koblitz and Menezes,

I Aiming for kε′ = 2−48 one would take k = 288, giving an
algorithm in time t = 2168.

I What group size is required for Pollard rho to run in time
t = 2168 and succeed with probability 2−48?

I Answer: r ≈ t2/ε = 2384, which is not much bigger than
the 354 bits for only 80-bit security calculated by Koblitz
and Menezes.
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Bellare and Dai, INDOCRYPT 2020

I Bellare and Dai (”The Multi-Base Discrete Logarithm
Problem: Tight Reductions and Non-Rewinding Proofs for
Schnorr Identification and Signatures”) have given similar
analysis about group sizes for tight reductions.

I They also give a new way to prove security of Schnorr
signatures, based on a new (interactive) computational
assumption.
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Multi-user security

I Consider a cryptosystem with n users.

I We might be interested in the cost to attack one random
user out of the n.

I Or might want to break the system for all n users.

I Ideally a system would be such that there is no faster way
to solve all n instances.

I This is measured in the scaling factor of Auerbach,
Giacon and Kiltz (Everybodys a Target: Scalability in Public-Key

Encryption).
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Using a FIXED Group

I In practice we use fixed groups, such as Curve25519.

I Bernstein and Lange’s paper “Non-uniform cracks in the
concrete” presents precomputation approaches, expressed
as an exponentially large hint.

I They argue that in the AT metric there is no speedup of
such methods.

I There is related/following work by several authors,
including Lee, Cheon and Hong; Corrigan-Gibbs and
Kogan.

I All these works require a precomputation that exceeds
2128 operations. Hence I argue the results are irrelevant in
practice.
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Groups of unknown order

I An active area of research is groups with unknown
order: no entity in the system knows the order of the
group.

I These have been used for accumulators since Benaloh-de
Mare (1993) and delay functions/time lock puzzles since
Rivest-Shamir-Wagner (1996).

I For accumulators a computational problem of interest is
the low order assumption.

I In the low-order assumption an attacker is given a
description of a group G , and is required to produce an
element g ∈ G of order d , where 1 < d < 2λ.

I This assumption makes no sense for a fixed group:
attacker with a hard-wired group element g exists and is
efficient.
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Sutherland’s algorithm

I Suppose one has an abelian group G of order bounded by
some integer N , and wants to compute the order.

I One could sample a random element g and use Pollard rho
to compute the order of g in O(

√
N) group operations.

I Sutherland’s idea is to first raise g to a large smooth
power E , in the hope that the order of g ′ = gE is
bounded by M � N .

I If so, one can compute the order of g ′ in O(
√
M) group

operations, and then work back to the order of g .

I Fix some u > 2. Suppose that the order of G can be
written as n1n2 where n1 is N1/u-smooth (meaning all
prime powers dividing n1 are smaller than N1/u), and
n2 ≤ N2/u.

I Then Sutherland shows that one can compute the order of
G in time Õ(N1/u) group operations.
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Sutherland’s algorithm

I Sutherland’s algorithm is not effective if the smooth part
of the order of G is not large enough, which means the
remaining computation using Pollard rho is too slow.

I One can estimate the probability that a random integer in
[1,N] can be written as n1n2 where n1 is N1/u-smooth
and n2 ≤ N2/u.

I For example, taking u = 6 gives probability 0.00109.

I If the orders of groups G produced by a random group
generator behave like random integers in [1,N], then
Sutherland’s algorithm can be effective at counting points
for some such groups.

I For example, there is an algorithm that runs in time N1/6

group operations and succeeds with probability
ε = 0.00109.
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Smoothness probabilities

Asymptotic probability a random integer n in [1,N] can be
written as n1n2 where n1 is N1/u-smooth and n2 ≤ N2/u.

u prob u prob u prob

2.1 0.9488 5.0 0.4473 12.0 4.255e-12
2.9 0.5038 6.0 1.092e-03 16.0 6.534e-19
3.0 0.4473 10.0 5.382e-09 20.0 2.416e-26
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Class groups as unknown order groups

I It has been suggested that approx 2000-bit negative
fundamental discriminant (which means an approximately
1000-bit group order) should provide 128-bit security.

I Sutherland’s algorithm with u = 6 would require
(21000)1/6 > 2166 operations and so would not be a
concern.

I But taking u = 12 gives an algorithm performing
(proportional to) 284 operations and succeeding with
probability ε = 4.255 · 10−12 ≈ 2−38.

I Taking t = 284 and ε = 2−38 we have security level
t/ε = 2122.

I But is this the right calculation?
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Using fixed groups of unknown order

I Applications such as accumulators require a fixed group
that is shared by many users.

I One cannot meaningfully formulate the point-counting
problem or the low order assumption for a fixed group.

I So our previous discussion of security levels does not
apply in this setting.
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Using fixed groups of unknown order

I Recall the low-order assumption: an attacker is given a
description of a group G , and is required to produce an
element g ∈ G of order d , where 1 < d < 2λ.

I There is no random self-reduction, so there is no way to
amplify the success as we did for ECDLP or other
problems.

I Instead, we have a class of “weak instances”: outputs of
the group generating algorithm whose group order makes
them susceptible to Sutherland’s algorithm.

I There is no way to efficiently identify a weak instance.

I If the instance is not from a weak class, then there is no
particular speedup to the known algorithms (i.e., no
analogue of algorithms of the form “guess some bits and
compute the rest”).
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Using fixed groups of unknown order

I For applications such as accumulators that use a fixed
group of unknown order, a new definition of security level
is needed (work in progress with Dobson and Smith).

I The probability that the fixed group is vulnerable to
Sutherland’s algorithm needs to be very small.

I Going back to Katz and Lindell, we might want the
probability the group is weak to be ε = 2−48.

I Such issues do not arise if a fresh group is generated for
each execution of the protocol (as is done in the Chia
blockchain, for example).
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Controversial opinion

When using a fixed group of unknown order, we should take
the group order to be at least 1000 bits to minimise the risk
that Sutherland’s algorithm is the best attack.

This may require a redesign of schemes currently using class
groups (but not Chia).
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Controversial opinion

It’s better to use divisor class groups of genus 3 curves than
ideal class groups of quadratic fields (see Dobson, Galbraith
and Smith eprint 2020/196).
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Suggested parameters for fixed groups of unknown order

I Cautious: 1900 bits
With probability 1− 2−55 there is no algorithm to
compute the order with running time less than 2128.

I Paranoid: 3320 bits
With probability 1− 2−128 there is no algorithm to
compute the order with running time less than 2128.
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Conclusion

I I have presented a (folklore) definition of “security level”.

I I argue that one could consider smaller key sizes for
elliptic curve crypto.

I I claim the notion “equivalent to AES” is not well-defined
for many number-theoretic problems.

I It seems that non-tight security proofs may not require as
big an increase in group sizes as previously thought.

I I argue that traditional notions of security level are not
suitable for groups of unknown order.
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Controversial opinion

Algorithmic number theorists should pay more attention to
algorithms with small success probability, especially in lattice
and isogeny crypto.
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Thank You
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