
Computer-aided cryptography

Gilles Barthe
IMDEA Software Institute, Madrid, Spain

December 1, 2015

Introduction
Two models of cryptography:

� Computational: strong guarantees but complex proofs
� Symbolic: automated proofs but weak guarantees

Computational soundness:
� Symbolic security entails computational security
� Great success, but some limitations

Issues with cryptographic proofs
� In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a
crisis of rigor. Bellare and Rogaway, 2004-2006

� Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect). Halevi, 2005

Motivation

� Programs
Code-based approach

� Specifications
Security definition

� Verification
Security proofs

� Challenges
Randomized programs + Non-standard properties

� Appeal
Small programs + Complex and multi-faceted proofs

Our work

Goal: machine-checked proofs in computational model
� All proof steps should be justified
� Proof building may be harder; proof checking is automatic

Main directions:
� (2006-) Reduction proofs in the computational model
� (2012-) Verified implementations
� (2012-) Automated analysis and synthesis

Focus on primitives, some work on protocols and assumptions

http://www.easycrypt.info

Formal verification

Goals: improve program/system reliability using computer tools
and formalized mathematics

Some recent success stories
� Verified C compiler and verified L4 microkernel
� Kepler’s conjecture and Feit-Thomson theorem

Many methods and tools. Even for program reliability, many
dimensions of choice:

� property (safety vs. correctness)
� find bugs vs. build proof
� automation vs. precision
� etc.

Deductive verification

� program c is annotated with “sufficient” annotations,
including pre-condition Ψ and post-condition Φ

� judgment {Ψ}c{Φ} is valid iff value output by program c
satisfies Φ, provided input satisfies Ψ

� logical formula (a.k.a. proof obligation) Θ extracted from
annotated program and spec {Ψ}c{Φ}

� validity of Θ proved automatically or interactively

Example: RSA signature
� Sign(m) and Verif(m, x) are programs:

Sign(m) : Verif(m, x)
z ← md mod n w ← xe mod n
return z y ← m = w

return y

� specification:

{x = Sign(m)}Verif{y = true}

� proof obligation:

x = md mod n ⇒ m = xe mod n

� context: p and q are prime, n = pq, etc...
� discharging proof obligation uses some mathematics

(Fermat’s little theorem and Chinese remainder theorem)

Program verification for cryptography

Two main challenges:
� Programs are probabilistic
� Properties are reductions: reason about two systems

Existing techniques:
� Verification of probabilistic programs
� Relational program verification

Deductive verification of probabilistic programs

� With probability ≥ p, output of program c satisfies Ψ

� Since the 70s
� Mostly theoretical
� Lack of automation and tool support
� Foundational challenges: probabilistic independence,

expectation, concentration bounds. . .
� Practical challenges: reals, summations

Relational verification of programs

� Programs are equivalent

{m〈1〉 = m〈2〉}Sign ∼ SignCRT{z〈1〉 = z〈2〉}

� Recent: ∼10 years
� Dedicated tools, or via mapping to deductive verification
� Large examples
� Focus on deterministic programs

Key insight

Relational verification of probabilistic programs
� avoids issues with verification of probabilistic programs
� nicely builds on probabilistic couplings

Couplings: the idea
� Put two probabilistic systems in the same space.
� Coordinate samplings

Formal definition
� Let µ1 and µ2 be sub-distributions over A
� A sub-distribution µ over A× A is a coupling for (µ1, µ2) iff

π1(µ) = µ1 and π2(µ) = µ2

� Extends to interactive systems and distinct prob spaces
� Perfect simulation: existence of simulator + coupling

Lifting
Formal definition

� Let R be a binary relation on A and B, i.e. R ⊆ A× A
� Let µ1 and µ2 be sub-distributions over A
� µ1R#µ2 iff there exists a coupling µ s.t. Pry←µ[y �∈ R] = 0

Applications
� Bridging step: µ1 =# µ2, then for every event X ,

Prz←µ1 [X] = Prz←µ2 [X]

� Failure Event: If x R y iff F (x)⇒ x = y and F (x)⇔ F (y),
then for every event X ,

|Prz←µ1 [X]− Prz←µ2 [X]| ≤ max (Prz←µ1 [¬F],Prz←µ2 [¬F])

� Reduction: If x R y iff F (x)⇒ G(y), then

Prx←µ2 [G] ≤ Pry←µ1 [F]

Code-based approach to probabilistic liftings

� Programs:

C ::= skip skip
| V ← E assignment
| V $← D random sampling
| C; C sequence
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure (oracle/adv) call

� Logic: � {P} c1 ∼ c2 {Q} iff for all memories m1 and m2,
P(m1,m2) implies Q� (�c1� m1, �c2� m2)

� P and Q are relations on states (no probabilities)
=⇒ very similar to standard deductive verification

EasyCrypt

� probabilistic Relational Hoare Logic
� libraries of common proof techniques (hybrid arguments,

eager sampling, independent from adversary’s view,
forking lemma. . .)

� probabilistic Hoare Logic for bounding probabilities
� full-fledged proof assistant, and backend to SMT solvers
� module system and theory mechanism

Case studies
� encryption, signatures, hash designs, key exchange

protocols, zero knowledge protocols, garbled circuits. . .
� (computational) differential privacy
� mechanism design

What now?

Status
� Solid foundations
� Variety of emblematic examples
� Some theoretical challenges: automated complexity

analysis, precise computation of probabilities, couplings
(shift, modulo distance)

Perspectives
� Standards and deployed systems
� Implementations
� Automation

Provable security vs practical cryptography

� Proofs reason about algorithmic descriptions
� Standards constrain implementations
� Attackers target executable code and exploit side-channels

Existing solutions bring limited guarantees
� Leakage-resilient cryptography (mostly theoretical)
� Real-world cryptography (still in the comp. model)
� Constant-time implementations (pragmatic)

Approach
� Machine-checked reductionist proofs for executable code
� Separation of concerns:

1. prove algorithm in computational model
2. verify implementation in machine-level model

Outline of approach

Reductionist proof:
� FOR ALL adversary that breaks assembly code,
� IF assembly code does not leak,
� AND assembly code and C code semantically equivalent,
� THERE EXISTS an adversary that breaks the C code

Components:
� proofs in EasyCrypt,
� equivalence checking of EasyCrypt vs C,
� verified compilation using CompCert,
� leakage analysis of assembly

Security models: the case of constant-time

Language-level security
� sequence of program counters and memory accesses.

Defined from instrumented semantics.
� security definitions use leaky oracles

System-level security
� active adversary controls scheduler and (partially) cache
� security games include adversarially-controlled oracles
� prove language-level security implies system-level security

Warning
Models are constructed!

Verification of constant-time

Two possible approaches:
� Static program analysis
� Program transformation and deductive verification

Comparison:
� Analysis is fast but conservative
� Transformation is fast and precise

Implementation
� Relatively easy for analysis
� Requires existing infrastructure for transformation

Instances:
� Standalone analysis for x86
� Transformation + Smack for LLVM

Constant-time verification by product programs

Judgment:
c � c×

Example rules

x ← e � x ← e; x ′ ← e′

c1 � c×1 c2 � c×2
if b then c1 else c2 � assert b = b′; if b then c×1 else c×2

Correctness and precision
c is constant-time iff c× does not assert-fail, where c → c×

Applications: NaCl, PKCS, MEE-CBC. . .

Provably secure implementations: challenges

� Refined models of execution platforms and compilers
� Formal models of leakage

(how to model acoustic emanations?)
� Better implementation-level adversary models and

connections with real-world cryptography
� Manage complexity of proofs

Automated analysis and synthesis

Goals:
� Capture the essence of cryptographic proofs
� Minimize time and expertise for verification
� Explore design space of schemes

Approach:
� Isolate high-level proof principles
� Automate proofs
� Synthesize and analyze candidate schemes

Warning: trade-off (some) generality for automation

Automated analysis

Ingredients
� Develop automated procedures for algebraic reasoning
� Core proof system (specialized proof principles)
� Adapt symbolic methods for reasoning about

computational notions (reduction and entropy)
� Develop efficient heuristics

Synthesis
The next 700 cryptosystems
Do the cryptosystems reflect [...] the situations that are being catered
for? Or are they accidents of history and personal background that
may be obscuring fruitful developments? [...] We must systematize
their design so that a new cryptosystem is a point chosen from a
well-mapped space, rather than a laboriously devised construction.
(Adapted from Landin, 1966. The next 700 programming languages)

Synthesis has many potential applications to cryptography
� Discover new and interesting constructions
� Prove optimality results
� Optimize existing constructions
� Find countermeasures

Methodology:

Smart generation + Attack finding + Automated proofs

Applications

� Assumptions in multilinear generic group model
� Pairing-based constructions in standard model
� Padding-based encryption

Analyzed over 1,000,000 schemes
Discovered ZAEP

� Structure-preserving signatures
Optimality result to minimize search space
Analyzed 1,000s of schemes
Discovered optimal scheme w.r.t. online/offline pairings

Tweakable blockciphers (Hoang, Katz, Malozemoff)
� Analyzed 1,000s of schemes
� Discovered several schemes competitive with OCB

Summary

Foundations and tools for high-assurance crypto
� Provable security
� Practical cryptography
� Reducing the gap between the two

Automated proofs and synthesis
� “Essence” of cryptographic proofs and “global” view
� New and interesting schemes

Perspectives
� Verified standards and cryptographic systems
� Improve usability of tools
� Teaching reductionist proofs

