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Abstract
We describe explicitly representatives of the conjugacy classes of
unipotent elements of the finite classical groups.

1 Introduction

The conjugacy classes of unipotent elements in finite and algebraic groups of
Lie type have been studied over a long period. There is a substantial litera-
ture on the topic, starting with fundamental papers such as [3, 5, 7, 8], and
culminating in the book [6], in which most questions about class representa-
tives and centralizers of unipotent elements are answered. However, perhaps
surprisingly, there is a rather natural problem that has not been completely
addressed in the literature — namely, finding explicit representatives for the
conjugacy classes of unipotent elements in finite classical groups. In this
paper we solve this problem completely.

For classical groups over algebraically closed fields, such representatives
can be found in [6, Chapters 3 and 6], but such a class can intersect a corre-
sponding finite classical group in many classes. Describing representatives
for these classes when the characteristic of the underlying field is good —
meaning that it is odd in the case of symplectic and orthogonal groups —
is fairly straightforward, one reason being that in the algebraic group the
Jordan form of an element determines its conjugacy class. However, this
is not true in bad characteristic, and considerably more work is required
for this case. We cover both good and bad characteristics; see Propositions
2.1-2.4 and Theorem 3.1, respectively.

Once we have a list of representatives, it is easy to see over which fields
they can be realised, and we give a couple of such consequences in Propo-
sition 4.1. This result is used in [1, pp. 274-5]. In Section 5 we present
tables listing all unipotent class representatives and their centralizer orders
for some classical groups in low dimensions.

Apart from their intrinsic interest, our results form part of an ongoing

research program of the authors and others to list conjugacy class represen-
tatives for finite groups of Lie type, together with algorithms to produce



generators for their centralizers and also to test arbitrary elements for con-
jugacy.
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2 Good characteristic

In this section we deal with the finite classical groups in good characteristic
— that is, special linear and unitary groups in arbitrary characteristic, and
symplectic and orthogonal groups in odd characteristic.

2.1 SL,(q)

Writing down unipotent class representatives in SL,(q) is elementary, but
we include this for completeness. For a vector space V' of dimension k over
the field F; with basis vy, ..., v, and 8 € Fy, define Jg(k) € GL(V') by

v1 — v1 + P,
Vi — U; + Vit1 (QSiSk—l),
Ve — Vk.

By a sum of such elements, for example Ji(k1)+J3(k2), we mean the natural
direct sum.

Write J, = J1(k), a unipotent Jordan block of size k. It is well-known
that the conjugacy classes of unipotent elements in GL,,(q) are in bijective
correspondence with the Jordan forms Y7 | (Jp,)" (where n = rin;).

For a positive integer ¢, write (F})" = {z' : z € F}}.

Proposition 2.1 The number of unipotent classes in SLy(q) with Jordan
form Y°1(Jn,)" (where the n; are distinct and n = Y rin;) is equal to
ged(ny, ..., ns,q — 1). Representatives of these classes are

S
Tp(n1) + Ji(n)™ 4> Ji(ng)™
i=2
where B runs over representatives of F;/(]P‘Z)t with t = ged(ny, ..., ng).
Proof. Write G = GL,(q). Let u = Zlf Ji(n;)"i. Writing u as

Zlf Ji(n;) @ I,, we see that Cg(u) contains a subgroup R := H’f GL,,(q).
By [6, Theorem 7.1], Ci(u) = UR where U is a unipotent normal subgroup.



If r=1(g1,...,9x) € R (where g; € GL,,(q)), then det(r) = [[ det(g;)™, so
{det(r) : 7 € R} = (F;)". Hence the number of SLy(g)-classes in u® is equal
to |F;/(F%)"|. Representatives of these classes are given by d(8)ud(8)™*,
where d(3) = diag(8,1,...,1) and 3 runs over representatives of F} /(F)".

|

2.2 Notation

We now establish some general notation for the unitary, symplectic and
orthogonal groups. Let V' be a vector space over a field Fgu, where u = 2
in the unitary case and u = 1 otherwise, and let (, ) be a non-degenerate
unitary, symplectic or orthogonal form on V. We may take V to have a
standard basis of the form

61,...,6k,fk,...,f1 (dimV:2k)
€lyesllydy fy. ooy f1 (dimV =2k 4+ 1),

Where (ei,ej) = (fu f]) = 0, (ei,fj) = 6ij7 (ei,d) = (fl,d) = O and (d, d) =€
(a nonzero scalar to be specified). For §,7v,0 € Fqu, we define the following
elements of GL(V'). For dimV = 2k,

Ag(Qk)Z e — e+ +ep+ Bk (lglgk),
fi=fi—fici(2Zi<k),
f1— fi,

and for dimV = 2k + 1,

Ays(k+1): e — e+ +ep+d+vfi (1 <i<k),

d— d+68f,
fi—=fi—fio1 (2<i<k),
fi— f.

Note that if 3,7,d # 0 then Ag(2k) and A, 5(2k + 1) have Jordan forms Joy,
and Jop11 respectively; and Ag(2k) has Jordan form J,f.

2.3 SU,(q)

For the unitary case we take (d,d) = 1 in the above standard basis when
the dimension is odd. Let A — A be the involutory automorphism of Fy2,
and pick 8,v € ]]:'1‘:‘12 satisfying 8+ 8 =0, vy +7 = —1. For | € {2k,2k + 1}
define A5(28)
_ 5(2k), 1 =2k
ull) = { A, (k4 1), 1= 2k+1

Observe that U(l) € SU;(q). By a sum of such elements, for example U (l;)+
U(l2), we mean the natural perpendicular sum. For a unitary group of given



dimension n, we can find, via a suitable change of basis, a unipotent element
corresponding to any perpendicular sum of such elements of total dimension
n.

Define Z = {a € F2 : aa = 1}, and for a € Z let h(a) € GUy(q) have
determinant «; for example, we could take h(a) to send e; — Aey, f1 —
A~'f1 and fix all other basis vectors, where & = A\~!. As in the case
of GL,, it is well-known that the unipotent classes of GU,(q) correspond
bijectively with the possible Jordan forms.

Proposition 2.2 The number of unipotent classes in SUy(q) with Jordan
form > 1(Jn,)" (where the n; are distinct and n = Y rin;) is equal to
ged(ng, ..., ns,q+ 1). Representatives of these classes are

Z U(ni)ri7
=1

together with conjugates of these elements by h(«), where o runs over rep-
resentatives of Z/Zt with t = ged(nq, ..., ns).

The proof is very similar to that of Proposition 2.1.

2.4 Spom(q), ¢ odd

In this section let G = Spay,(q) with ¢ odd. Adopting the notation of Section
22, for p€Fy and k> 1,1 > 0, define

Vs(2k) = Ap(2k),
W (20 +1) = Ag(4l + 2).

Observe that Vg(2k) € Spar(q) and W (2l +1) € Spai42(q). As before, given
a symplectic group in dimension 2m, we can find, via a suitable change of
basis, a unipotent element corresponding to any perpendicular sum of such
elements of total dimension 2m.

For unipotent elements of GG, all odd Jordan block sizes occur with even
multiplicity (see [6, Cor. 3.6]), so the Jordan form is

T

> (o)™ + > (Ja41)*, (1)

i=1 =1

where the k; are distinct, the [; are distinct, and 2(>_ k;ja; + > (21, + 1)b;) =
2m.

Let a be a fixed non-square in the field [F,.



Proposition 2.3 There are 2" unipotent classes in Spam(q) (q odd) having
Jordan form (1). Representatives are

r

> (Vs (2k) + Vi (2ki)™ ) + Z W(2l; +1)% (2)
i=1 i=1

where each B; € {1,a}.

Proof.  The fact that there are 2" classes having Jordan form (1) is
given by [6, Theorem 7.1].

Consider a single Jordan block u = V1 (2k) € Spai(q). Let C = CSpax(q),
the conformal symplectic group (that is, the group preserving the symplectic
form up to scalar multiples). Then Cg(u) = U x(—1), while Cc(u) = U xFy,
where U is a unipotent group. Since |C : G| = ¢ — 1 it follows that u® splits
into two G-classes, and these are represented by u and uh®)  where d(a) is
an element of C' multiplying the form by the non-square a~'. Taking d(c)
to send e; — a~le; and f; — f; for all i, we can take these representatives
to be Vi(2k) and V;(2k)H® = V,(2k). This proves the result for a single
Jordan block.

Now consider elements with Jordan form J2, in Spsk(q), of which there
are two classes (since the parameter r = 1 for this Jordan form). Let
Vs (e = %) be a 2-space over F, equipped with a non-degenerate orthogonal
form of type €, and let V5, be a symplectic 2k-space. Let e;, f; be a standard
symplectic basis for Vs, and let vq, v2 be a basis of V5 with respect to which
the orthogonal form has Gram matrix diag(1, 3) for some 8 € F;. Then the
product form on Vo, ® V5 is symplectic, and has standard basis

ei @1, €@, fi®ur, fi®pB vy (1<i<k).

The two classes in Spai(q) are those corresponding to Vi (2k) ® I(Vy) for
¢ = + and € = — (as these have centralizers with reductive parts O(V;")
and O(V;") respectively). Since the matrix of V;(2k) ® I(Vy) with respect
to the above basis is that of Vi (2k) + Vg(2k), the two classes are represented
by Vi(2k) + Vi (2k) and Vi (2k) + Va(2K).

It follows from the previous two paragraphs that elements with Jordan
form Jg, fall into two classes in Spare(q), with representatives V3(2k) +
Vi(2k)*~! for B € {1,a}. Also elements with Jordan form J3/,, are all
conjugate in Spoy241)(q) (as the parameter r = 0 for this Jordan form).
Hence every element with Jordan form (1) is conjugate in G to one of the
representatives (2). The proof is complete. n

2.5 SO:(q), q odd

In this section let G = O (¢) with ¢ odd and € = %+ (for n odd we set
O} (q) = 0, (q) = On(q)). Let € F; and take (d,d) = 23 in the standard
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basis when the dimension is odd. Adopting the notation of Section 2.2, for
k>0,1>1, define

Vﬁ(?k‘ + 1) = A,57725(2/€ + 1),
W (21) = Ao(41).

Observe that W (2l) € SO}, (q) and V5(2k + 1) € SOsk41(q), the latter
fixing an orthogonal form of discriminant 23 - (—1)*. A perpendicular sum
> Vg (2k; + 1) + > W(2l;) lies in an orthogonal group that fixes a form of
discriminant [](28; - (—1)%).

For unipotent elements of G, all even Jordan block sizes occur with even

multiplicity (see [6, Cor. 3.6]), so the Jordan form is

r

S

Z(J2]€i+1)ai + Z(ij)%ja (3)

i=1 j=1

where the k; are distinct, the [; are distinct, and ) a;(2k;+1)+4 ) b;l; = n.
Let a be a fixed non-square in the field IF,.

Proposition 2.4 Suppose q is odd.

(i) Ifn is even, the unipotent elements with Jordan form (3) fall into 27!
classes in each of O} (q) and O,,(q), with the exception that if r = 0,
there is 1 class in O} (q) and none in O, (q). Representatives are

T

> (Vi (2hi +1) + Va(2ks + 1)1 + > W(215)" (4)
i=1 o

where each 3; € {1,a}; forr > 0, half of these lie in O} (q) and half in

O,,(q). If u is such a representative, then u® splits into two SO (q)-

n
classes (with representatives u and u® for t a reflection) if and only if

e=-+ andr =0.

(i) If n is odd, there are 2% classes in SOS(q) with Jordan form (3);
representatives are as in (4) — half of these 2" representatives fix an
orthogonal form of square discriminant, and half fix a form of non-
square discriminant.

(iii) An SO¢(q)-class with representative u as in (4) splits into two §25,(q)-
classes if and only if either r =0, or r > 1 and the following hold:

(a) a; =1 for all i, and
(b) Bi = (=1)*M1+*iB mod (FZ)Q for all 1.

In case of splitting, representatives of the QU (q)-classes are u and u®,
where s € SO (q) \ 5, (q).



Proof. The numbers of classes in (i) and (ii) are given by [6, Theorem
7.1]. All elements with Jordan form J2} are conjugate in O},;(¢). And for
any a, the classes with Jordan form Jg,  ; in OZ(% +1) (q) are represented
by Vz(2k + 1) + Vi(2k + 1)*71 for 8 € {1,a}, since one of these fixes a
form of square discriminant, the other a form of non-square discriminant.
Hence every element with Jordan form (3) is conjugate in G to one of the
representatives (4). The splitting statement in the last sentence of (i) is
given by [6, Lemma 3.11]. Parts (i) and (ii) follow.

Now consider part (iii). Note that an SO (q)-class with representative
u as in (4) splits into two Qf, (¢)-classes if and only if Cgoe () (v) < Q5 ().
Suppose first that either r = 0, or » > 1 and (a) and (b) hold. Write
Vi = Vg, (2k; + 1). For distinct 7,5 the orthogonal form restricted to the
subspace V; +V; has discriminant 443;3; - (—1)%*%i which by (b) is a square;
so by [4, Prop. 2.5.13], —1 € Q(V; + Vj). Hence it follows from [6, Theorem
7.1] that Cgoe (q)(u) < €25,(g) and the class splits. Conversely, if the class
splits then [6, Prop. 7.2] implies that either r = 0, or 7 > 1 and a; = 1 for
all 7; and if (b) does not hold then there exists i such that —1 ¢ Q(V; +V;),

50 Cg0e (o) (1) £ €, (q), a contradiction. .

Remark Part (iii) is an improvement of [6, Prop. 7.2]. It implies the
following: of the classes with representative as in (4) with » > 1 and a; = 1
for all i, exactly one splits in Q,(¢) if n is odd; and if n is even, exactly two
such classes split, both of which lie in SO (q) with e = (—1)™(@=D/4,

3 Bad characteristic

In this section we deal with the symplectic and orthogonal groups in charac-
teristic 2. This requires considerably more work than the good characteristic
case.

In order to state our results, we need to define various indecomposable
unipotent elements in symplectic and orthogonal groups in characteristic
2. The following definitions appear in [6, Section 6.1] for these groups over
algebraically closed fields; we now adapt them to finite fields. Let ¢ = 2¢,
let F' =T, and let V' be a vector space of dimension 2k over F', where k
is a positive integer. Let (, ) be a non-degenerate symplectic form on V,
with a standard basis e1,...,eg, fi, ..., fi such that (e;,e;) = (fi, f;) =
0, (e, fj) = dij for all i, j. Denote by Sp(V) the symplectic group on V/
preserving this form.

For k > 2 and 8 € F', define V3(2k) to be the element of GL(V') acting



as follows:

e —~e+-tep+ fit+tPfe_rforl<i<k-—1,
ek = ex + [k,

fi = fi+ fio1 for 2 <i <k,

J1— f1.

For k = 1, define V3(2) to send e; — ey + fi1, fi — fi (this definition does
not depend on [, but we will define corresponding elements of orthogonal
groups which do). It is easily checked that Vz(2k) lies in Sp(V') and has
a single Jordan block. Moreover, if we define a quadratic form Qg on V
associated to (, ) by setting

Qpler) = B, Qa(fx) =1 and Qg(e;) = Qp(fi) =0 for i # k,

then V(2k) lies in the orthogonal group O(V') preserving this form. Choose
a fixed o € F such that the polynomial 22 +z + « is irreducible over F. Now
Qo is a quadratic form of plus type, and @, is of minus type (see Lemma
3.3). We shall write just V(2k) instead of Vy(2k). Thus

V(2k) € 05,(q), Va(2k) € O5.(q).
For k > 1 define W (k) to be the element of GL(V') acting as follows:

e, e +erforl <i<k-—1,
e — Ck,
fi=fi+tfiaat+---+ fiforl<e<k,

and let @ be the quadratic form associated to (, ) such that Q(e;) = Q(f;) =
0 for all . Note that W (1) = I3, the 2-dimensional identity. Observe that
W (k) lies in Sp(V), and also in Q7 (V), the orthogonal group of plus type
preserving Q; that it lies in Q7 (V) rather than just SO (V) follows from
the fact that it fixes a maximal totally singular subspace — see [4, p. 30,
Description 4]. When k is even, define W (k) to be the conjugate of W (k)
by the reflection in e + fi; thus W (k)" sends

e; e teqprforl <i<k—2

ek—1 —> ep—1 + [,

ex = ep + fr—1+ -+ f1,

Tk = fk
fi=fi+tfir+t--+hHfor1<i<k-1

So for k = 2]
W (2D), W(21) € Qf(q).



For k =21+1 > 3 odd and 3 € F, define Wg(2[ + 1) to be the element
of GL(V) acting as follows:

e; e +eip1+ Bffor 1 <i <l

e, e +eyrforl+1<i<k—1,

€L — €k,
fi=fitfii+-+fifor1<i<lI+1
fi=fitfiaa+ -+ fi+Bepaforl+2<i<k.

For k =1, define W3(1) = Iy, the identity element of GL2(q).

Let Q) be the quadratic form associated to (, ) such that Qj(e;) =
Qp(er+1) = Q5(fiy1) = B and Qjs(e;) = Q3(fi) = 0 for all other values of
i. Observe Wg(2l + 1) lies in Sp(V') and preserves the quadratic form va
which is of plus type if 5 = 0 and of minus type if 5 = « (see Lemma 3.3).
Writing just W (2l + 1) instead of Wy(2{ + 1), for > 0

W(2l+1) € Qf ,(q), Wal(2l+1) € Q5 (q).

As above, these lie in Q7,Q~ rather than just SOT, SO~ since they fix
maximal totally singular subspaces (over [F 2 in the latter case). Each of
W (k) and W,(k) has two Jordan blocks of size k. Note also that W (1) =
I € QF (q), while W, (1) = I € Q5 (q).

We have now defined indecomposable elements V' (2k), V,(2k), W (k),
W (k) (k even) and Wy (k) (k odd). By a sum of such elements, for example
V(2k)+W4(1), we mean the natural perpendicular sum. For a symplectic or
orthogonal group in a given dimension n, we can find, via a suitable change
of basis, a unipotent element corresponding to any perpendicular sum of
such elements of total dimension n.

We can now state the main result.

Theorem 3.1 Let ¢ = 2% and let o € Fy be such that 2 4+ + a is ir-
reducible over Fy. Let G be a symplectic group Spam(q) or an orthogonal
group O;m(q), where m > 1. Fvery unipotent element of G is G-conjugate
to exactly one element of the form

D Wmi)® + Y V(2k)" + Y Wa(m)) + Y Va(2Kk) (5)
% 7 r s

satisfying the following conditions:

(i) Yo amm;+ > bikj 4+ > my + >k, =m;
(i1) the m are odd and distinct, and the k., are distinct;

(iit) bj <2, and b; < 1 if there exist j,s such that k; = kl;



(iv) there exist no j,s such that ki —k;j =1 or ky — kj; = 1;
(v) there exist no j,r such that m; = 2k; £1 or m; = 2k} £ 1;

vi) for G = Spom(q), each m!. > 3 and each k.. > 2.
(vi) r s

In the orthogonal case, an element of the form (5) lies in OS,,(q) where
e = (—1)! and t is the total number of Wy- and V,-blocks; the element lies
in G' = inm(q) if and only if the total number of V- and V,-blocks is even;
moreover, the only G-classes which split into two G’-classes are those of the
form > W (m;)® with all m; even, and for these a second class representative
can be obtained by replacing one summand W (m;) by W(m;)'.

We prove the theorem in Section 3.2.

3.1 Preliminaries

Here we summarise the unipotent class representatives in symplectic and
orthogonal groups over algebraically closed fields of characteristic 2, and
discuss how they split in the corresponding finite groups. Let F be such a
field, and define elements V (2k) and W (k) of the groups Spay(F'), Oox(F)

as above.

Let G be Spo,(F ) or O (F). In [6, Lemma 6.2] it is shown that every
unipotent element of G is conjugate to a unique element of the form

S Wm)® + 3 V(2k), ()

where all dj < 2and ) ¢;m;+)_ d;jk; = m. List the integers k;s in increasing
order, and as in [6, Theorem 6.21] define integers s, ¢, as follows:

s = number of distinct odd m; such that m; # 2k; £1 for all j, and
also m; # 1 when G is symplectic;

t = number of values of j such that k; 11 — k; > 2;

§ = 0 if there are no V-blocks in (6), or if G is symplectic and k; = 1
for some j; and § = 1 otherwise.

Note that if there is no more than one distinct value of k; in (6), we set
t=0.

Proposition 3.2 ([6, Theorem 7.3]) Let G be Span(F) or Ogn(F). Let

o be a Frobenius morphism of G with fized point group G, = Spam(q) or
05,,(q) where e = £. Let u be a unipotent element of G of the form (6).
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(i) If Gy = Spam(q), then uC N Gy splits into 2570 G, -classes.

(i) Let Gy = OS,.(q). If u=">W(m;)% with all m; even, then u NG,
is empty for e = —, and is a single G,-class for € = + which splits into
two G -classes. Otherwise, u® N Gy splits into 25T9~1 G, -classes,

each of which is also a G! -class.

This is a slight generalisation of [6, Theorem 7.3]: part (ii) covers all
classes in O5,,(q), whereas [6, 7.3(iii)] covers only classes in Q5,,(¢). For the
proof we apply [6, 7.3(iii)], together with the observation that each G,-class
(apart from Y W (m;)% with all m; even) is also a G’ -class.

3.2 Proof of Theorem 3.1

We begin with some basic facts about indecomposable unipotent elements.

Lemma 3.3 Let k > 1 and let V(2k), Vo(2k), W (k) and W4 (k) be the in-
decomposable unipotent elements of Spar(q) and O (q) defined above, where
o € B, is such that x* + x + « is irreducible over F.

(1)

V(2k) € Oy.(a) \ Q3,(9),
Va(2k) € Oy.(a) \ Q3.(a),
W (k) € Q4,.(q), and

Wa (k) € Q5. (q) for k odd.

(it) Let G = Spar(q) or O5.(q), and let w € G be Vg(2k)(k > 2) or
Ws(k) (k > 3), where § € Fy. Write V' for the natural G-module
Var(q). If C = Cy(u), the fized point space of u, then C is totally
singular, and u acts on C+/C as V3(2k—2) or Ws(k—2), respectively.

(i1i) For k > 2, V(2k) and V,(2k) are not conjugate in Spar(q), but they
are SOq(F,)-conjugate. Also V(2) and V,(2) are conjugate in Spa(q).

(iv) For k odd and k # 1, W (k) and Wy (k) are not conjugate in Spar(q),
but they are SOqy(F,)-conjugate.

(v) Every element of Spay(q) that is Spay(IFq)-conjugate to V(2k) is Spar(q)-
conjugate to either V(2k) or Vo (2k); and every element of Spak(q)
that is Spay(F,)-conjugate to W (k) is Spak(q)-conjugate to W (k) if k
is even, and to either W (k) or Wy (k) if k is odd.

Proof. (i) If B € Fy, then Vg(2k) preserves the quadratic form Qg
defined above. Since Qg(ex) = 5, Qp(fi) = 1, the 2-space (e, fi) is of plus
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type if 5 = 0, and of minus type if 8 = «, and the remaining standard basis
vectors e;, f; (i # k) span a space of plus type. Thus V(2k) € O, (¢) and
Va(2k) € Oy (q). Being single Jordan blocks, these elements are SOoy(IFy)-
conjugate to V(2k); such elements do not lie in QQik(q), as shown in [6, p.
91].

Analogously, the quadratic form Q/ﬁ’ defined above and preserved by
Wjs(k), is of plus type if 5 = 0 and of minus type if 5 = . Hence these
elements lie in SO;Ek(q). As observed in the preamble to Theorem 3.1, they
lie in Q;Ek (q) since they fix maximal totally singular subspaces (over FF 2 in
the 27 case).

(ii) It is clear from the definition that C' = Cy(u) is totally singular.
The second assertion follows from inspection of the matrix representation of
u relative to a suitable basis of V' containing bases of C' and C*.

(iii) Suppose V(2k) and V,(2k) are conjugate for some k& > 2, say
V(2k)9 = V,(2k) with g € Spar(q) = Sp(V'). Then g sends the fixed point
space of V(2k) to that of V,(2k); hence by (ii), it induces conjugation of
V(2k — 2) to V,(2k — 2). Repeating, we see that V(4) must be conjugate
to Vo(4) in Spsa(q). Working relative to a standard basis e, ea, fo, f1, the
equation V(4)X = XV, (4) (for X € SLy(q)) implies that X sends

e1 — e1 +bes + (a+ b+ c)fo + df,
es — €9+ bfy + cfy

for some a,b,c,d € F,. But X € Spa(q) so (e1X,e2X) = 0, which implies
that b2 4+ b+ a = 0. However a was chosen so that 2 + x + « is irreducible
over Fg, so this is a contradiction. Finally, V' (2k) and V,(2k) are conjugate
in SOq(F,), by [6, Lemma 6.2].

The last sentence of (iii) is trivial, since by their definition the elements
V(2) and V,4(2) of Spa(q) are equal.

(iv) Suppose W (k) and W, (k) are conjugate in Spor(g). Arguing as in
(iii), this implies that W (3) and W, (3) are conjugate in Sps(q). Working
relative to the reordered basis ey, f3, €2, fo2, €3, f1, the equation W(3)X =
XW4(3) (for X € GLg(q)) implies that X has the following form:

1 X2 Y1 + axs Yo + T2 + axq S t
r3 T4 Y3+ a3+ oy Y4 + ax3 U v
r1 x2 Yy Y2

T3 T4 Y3 Y4

xr1 X2

xr3 X4

The equation (e1X,e2X) = 0 implies that Ozx% + om:% + z120 = 0. As

det(X) # 0, 1 and z cannot both be zero, so both are nonzero. If z = <L,
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Table 1: Conjugate unipotent elements of Spay,(q)

U v Conditions n

V(2k) + V(2k) Vo (2k) 4+ Vo (2k) k> 2 2k
V(2k+2)+V(2k) | Vo(2k+2) + Vo (2k) | k> 2 2k +1
Va(2k +2) + V(2K) | V(2k +2) + Va(2k) | k> 2 2%k + 1
Va(4)+V(2) V(4)+V(2) 3

V(2k)3 W (2k) + V(2k) 3k

V(2k)2 + V,(2k) W(Zk:) +V, (Zk:) k>2 3k

W(m) + W(m) Wo(m) + Wy (m) m > 3,m odd | 2m
W(m)+V(im+1) | Wo(m) 4+ Va(m+1) | m > 3,m odd ?(3m+1)
W(m) + Vo(m +1) Wa(m)—i-V(m—i-l) m > 3,m odd | 5(3m+ 1)
W(m)+V(im—1) | Wa(m) 4+ Va(m —1) | m > 5,m odd %(?ﬂn -1)
W(m) + Vo(m —1) | Wo(m) +V(m —1) | m>5,modd | 5(3m —1)
Wa(3) +V(2) W) +V(2) 4

then 22 + z + a®> = 0. Since z = y? for some y € Fg, this implies that
v +y+a=0, contrary to the choice of a. Finally, W (k) and Wy (k) are
conjugate in SOy (IFy), by [6, Lemma 6.2].

(v) Let G = Spar(q), G = Spax(F,). If u € G is G-conjugate to V (2k) or
W (k), then Proposition 3.2(i) shows that u“ N G splits into two G-classes.
Parts (iii) and (iv) show that these are represented by V(2k) and V,(2k),
or W (k) and W,(k), respectively. ]

Lemma 3.4 Let G = Spay(q). If u and v are unipotent elements of G as
in Table 1, then u and v are conjugate in G.

Proof.  Consider u, v as in the first row of the table. Observe that both
lie in a subgroup G = O " (q) of G. Let G4 = 02,(F,) and G = Spa,,(F,).
By Proposition 3.2(ii), u“+ N G consists of a single G -class. Since v €
uC+ N Gy, it follows that u and v are G -conjugate, hence G-conjugate, as
required.

The above argument applies (in some cases replacing G4 by G_ =
0,,,(q)) to all cases apart from those in rows 4,5,6 and 12 of the table.
Rows 4 and 12 are straightforward, since in these cases u and v lie in u“ NG,
which by Proposition 3.2(i) consists of a single G-class. Consider row 5. Here
u = V(2k)? and v = W (2k)+V (2k) both lie in G+, and v“+ NG consists of
a single G 4-class, by Proposition 3.2. The conclusion follows, since u € v&+
(see [6, Prop. 5.1]). The argument for row 6 is similar, using G_ instead of
Gy. [

13



Proof of Theorem 3.1 for symplectic groups

Let G = Spg_m(q) and let a € Fq be such that 2% 4+ = + « is irreducible
over Fy. Write G = Spo,, (Fy).

Let u be a unipotent element of G. Then w is G-conjugate to an element
of G of the form >, W(m;)% + 3, V(2k;)%, where all d; < 2 and " ¢;m; +
>.djkj = m, as in (6). Define s,t and § as in the preamble to Proposition
3.2.

By Lemma 3.3(v), u is G-conjugate to a perpendicular sum of elements
of the form W (m;), Wa(m;) (m; odd), V(2k;) or V,(2k;). This sum can be
written down in a number of different ways, given the conjugacies of Lemma
3.4. We claim that one of these ways is as in (5), satisfying conditions (i)-(vi)
of Theorem 3.1, and prove this by induction on the number of summands.
It is trivial if there is just one summand, so suppose there are at least two.

Assume first that u can be written as X + Y, where X = W(m) or
Wa(m) for some m; by Lemma 3.3(v) we may assume that m is odd in the
latter case. By induction, Y is conjugate to a sum of the form (5) satisfying
(i)-(vi) of Theorem 3.1. If X = W(m) then u = W(m) + Y also satisfies
(i)-(vi). If X = W,(m) and the sum W, (m) + Y does not satisfy (i)-(vi),
then Y must have a summand Z = W,(m), V(m £ 1) or Vo(m +1). But
then X +Y has a summand W, (m) + Z, which by Lemma 3.4 is conjugate
to a term with a summand W (m), so we may replace X by W(m) and argue
as before.

Thus we may suppose that u is a sum of terms of the form V(2k) or
Va(2k), so (using Lemma 3.4) for each k there are at most two Jordan
blocks of size 2k. If there are no terms V,(2k), then the sum satisfies (i)-
(vi), so suppose there is such a term, and consider sums for u with the
minimal possible number of V,-terms. Among such sums, choose one with
a summand X = V,,(2k) with k£ minimal (and k > 2, since there is no V,(2)
term for symplectic groups — see Lemma 3.3(iii)), and write the sum as
u =X +Y. We show that this sum satisfies (i)-(vi). If not, then Y must
have a summand Z = V,,(2k) or V(2k — 2); but then by Lemma 3.4, X + Z
is conjugate to a sum with either fewer V,-terms, or with a term V,(2k —2),
both of which are contradictions.

This proves our claim that u is conjugate to a sum of the form (5),
satisfying (i)-(vi) of Theorem 3.1. Given the G-class of u, there are 25+t+°
such sums. Hence Proposition 3.2 shows that every unipotent element of G
is conjugate to precisely one such sum. ]

Proof of Theorem 3.1 for orthogonal groups
Let H = Spom(q), and for e = & let G = 05,,(q) < H. Consider a

unipotent class in H = Spy,(Fy), corresponding to a sum ), W(m;)% +
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> V(2k;)% as in (6). If this is Y. W(m;)% with all m; even, this class
corresponds to a single class in G by Proposition 3.2(ii), so the conclusion
of Theorem 3.1 holds for this class. Otherwise, by Theorem 3.1, there are
25+t+9 corresponding classes in H, each conjugate to a sum of the form (5)
satisfying conditions (i)-(vi) of the theorem (for the symplectic case). By
Proposition 3.2(ii), this number is equal to the sum of the numbers of corre-
sponding classes in G and G_, except in the case where there is a summand
W (1) or V(2). In the latter case there may be more corresponding classes in
G4 and G_ than in H, and the extra classes are accounted for precisely by
allowing for terms W, (1) and V,(2) in decompositions (5). Finally, the as-
sertions about G’-conjugacy in Theorem 3.1 follow from Proposition 3.2(ii).

|

4 A consequence

From our lists of class representatives, we can deduce the following result,
which holds in all characteristics. This is used in [1, pp. 274-5].

Proposition 4.1 Let q be a prime power, and let Cl,(q) denote a symplec-
tic or orthogonal group Spy(q) or O%(q).

(i) If k is odd, then all classes of unipotent elements in Cl,(q*) are rep-
resented in the subgroup Cl,(q).

(ii) Any two unipotent elements in Cl,(q) that are conjugate in the alge-
braic group Cl,(F,) are conjugate in Cl,,(q?), where we take Cl,(q?) =
O (¢?) in the even-dimensional orthogonal case. In particular, if q is
odd, then all unipotent elements in Cl,(q) of a given Jordan form are
conjugate in Cl,(q?).

Proof. (i) The class representatives for Cl,(¢"*) given in Propositions
2.3, 2.4 and Theorem 3.1, and the form defining the group, have all their
nonzero coefficients in {41, £a, £2a}, where o € Fx is a non-square for ¢
odd, and z? + x + « is irreducible over F.x for ¢ even. Since k is odd, «
can be chosen to lie in ;. Hence all the classes are represented in Cl,(q).
(Note that when n is even and Cl,(¢*) = O;, (¢*), the orthogonal form over

Fx is also of minus type over Fy, so Cl,(q) = Oy, (¢) in this case.)

(i) Suppose first that ¢ is odd. Then two unipotent elements are conju-
gate in C’ln(I_Fq) if and only if they have the same Jordan form. The element
« used in Propositions 2.3 and 2.4 to define the class representatives in
Cl,(q) is a square in F2. For Sp,(q), the second paragraph of the proof of
Proposition 2.3 shows that V3 (2k) and V,,(2k) are conjugate in Sp,(¢?), and
the result follows in this case. Similar observations apply to O (q), noting

15



that for n even and € = —, the orthogonal form fixed by the group is of type
+ over Feo.

Now suppose q is even. The unipotent classes in C’ln(IF‘q) are described in
Section 3.1 (see (6)). If a € F, is used to define the class representatives in
Theorem 3.1, then 2% + z + a is reducible over F 2, and so V,(2k), Wa(k) €
05.(¢?). Tt follows that V(2k),V,(2k) are conjugate in Clog(q?), as are
W (k), Wq (k). The conclusion now follows from Theorem 3.1. ]

5 Low-dimensional cases

We illustrate our results with Tables 2—7, which list the unipotent class
representatives and centralizer orders for the 8-dimensional symplectic and
orthogonal groups over all finite fields and for the 7-dimensional orthogonal
groups over finite fields of odd order. These are refinements of [6, Tables
8.3a, 8.4a, 8.5a]. The structures of the centralizers are given by [6, Theorem
7.3].

Notation in the tables is as in previous sections. In particular, when ¢
is odd, a € F, is a fixed non-square; and when ¢ is even, a € I is a fixed
element such that 22 + = + « is irreducible in F[z].

There is some extra notation in Table 5 for G = SOg(q) with ¢ odd.
Here the discriminant of the orthogonal form fixed by G is a square in F,
if and only if € = + (see [4, Prop. 2.5.13]); we use the notation A for the
value of the discriminant modulo (]FZ)Q. Also column 3 of the table gives the
conditions for determining the sign € = + of the group SO§(¢) containing
the element w.

Tables 2 and 5 for orthogonal groups in odd characteristic have a column
indicating which unipotent classes split in the corresponding group Q7(q) or
Q%5(q); this information is given by Proposition 2.4(iii).

We have implemented procedures in MAGMA [2] which, given the di-
mension and field size, use Propositions 2.1 - 2.4 and Theorem 3.1 to list
explicitly the representatives in the relevant classical group.

Table 2: Unipotent class representatives in G = SO7(q) (¢ odd)

Rep. u |Cq(u)] class splits in Q7(q)?
Vi(1)7 |G| no
W(2) + Vi(1)? q"|Sp2(q)[|SOs(q)| | no
W(2) +V1(3) q¢°|Sp2(q)| yes
Vs(3) + V(1) + Vi(1)* (B € {1,a}) | ¢°|0F (9)] no
Va(3) +Vi(3) + Va(1) (B e {l,a}) | 2¢°(¢+1) no
Ve(5) + Vs(1) + Vi(1) (B e {1,a}) | 24" (g +1) no
Vi(7) ¢ yes
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Table 3: Unipotent class representatives in G = Spg(q) (¢ odd)

Rep. u |Ce(u)]
w(1)* |G|
W(3) +W(1) ¢*|Sp2(q)|
W(3) +Vs(2) (B € {1,a}) 2q9\5p2(Q)|
W(1)* +V5(2) (B € {1,a}) 2q"|Sps(q)]
W(1)2+Vs(2) +Vi(2) (B € {1,a}) 2q11|5P4(q)|(qi 1)
W(1)* + Vs(4) (5 € {1 a}) 2¢°(Spa(q)]
W(1) + Vo(2) + Vi(2)* (B € {1,a}) | ¢"*|Sp2(9)]|0s(q)|
W(1) + Va(4) + V4(2) (8,7 € {1, a}) | 4¢°[Sp2(q)
W(1) +Va(6) (B € {1,a}) 2¢°|Sp2(q)]
Va(2) + V1(2)3 (Be{l,a}) 7"°|05 (9)|
Va(4) +V4(2) +Vi(2) (B,y € {1,0}) | 4¢°(¢ £ 1)

(2 of each size)
Va(4) +Vi(4) (B € {1,a}) 2¢"(q£1)
Vs(6) +V4(2) (B,7 € {1,a}) 4q¢°
Vs(8) (B €{1,a}) 2q"

Table 4: Unipotent class representatives in G = Spg(q) (g even)

Rep. u |Cq(u)l

w()? |G|

W (4) q"|Sp2(q)|

W(3)+ W(1) a"°1Sp2(9)] 103 (q)]
Wa(3) + W (1) q'°|Sp2(q)] 103 (g)]
W(3) +V(2) a°|Sp2(q)|

W (2)? q"°|Spa(q)|
W(2)+W(1) + V(2) 7"*Sp2(q)|?
W(2)+V(2)? q"?|Sp2(q)|
W(2)+Vz(4) (B €{l,a}) | 2¢°Spa2(q)|
W(1)>+V(2) q"|Sps(q)|

W(1)? +W(2) q"'1Sp2()| |Spa(q)]
W(1)? +V(2)? q"|Spa(q)|

W(1)> + Vs(4) (B € {1,a}) | 2¢°|Spa(q)|
W)+ V(4)+V(2) a°|Sp2(q)|
W(1)+Va(6) (B € {1,a}) | 2¢°|Sp2(q)|
V(4)+V(2)? q'°

V(4)+ V(4) (B€{l,a}) |2¢°

Vs(6) +V(2)(Be{l,a}) |2¢°

Va(8) (B €{l,a}) 2q*

17



Table 5: Unipotent class representatives in G = SOg§(q) (g odd)
Notation: A = discriminant mod (IF‘;']‘)2; and 3, 3; € {1,a}

Rep. u |Ca(u)| condition class splits
in Q§(q)?

Va(1) + Vi(1)” IG] B=A 1o

W (4), W(4)* (¢ reflection) a°|Sp2(q)| €=+ yes

W(2)%, W(2)" +W(2) ¢°|Spa(q)| e=+ yes

W (2) + V(1) + Vi(1)? @°|Sp2(q)| |SO5(q) | B=A no

W(2) + Vs, (3) + Vs, (1) 24°|Sp2(q)| —B1f2 = A | yes, e = +
no, € = —

Vs, (3) + Vi, (1) + V(1) 2¢°(SO5(q)| —B1B2=A | no

Vo, (3) + Vi(3) + Ve (1) + Vi(1) | 2¢%(g £ 1)%, e =+ | —=f1f2 = A | no

2q8(q2 - 1)7 €= -

Vs, (5) + Vi, (1) + Vi (1)? 2¢°|S0s(q)| Bifz=A |no

Vﬁl (5) + Vﬁg (3) 2(]6 *ﬂ1ﬂ2 =A yes, € = +
no, € = —

Vi, (7) + Vs, (1) 2q* —B12 = A | yes, e = +
no, € = —

Table 6: Unipotent class representatives in G = Qg (q) (¢ even)

Rep. u |Cq(u)]
w(1)* |G|

W (4), W(4) q°|Sp2(q)|
W(2)%, W(2) + W(2)" | ¢°|Spa(q)]
W(3)+W(1) 2¢°(q — 1)
Wa(3) + Wa(1) 2¢°(q + 1)
W(2)+Ww(1)? ¢°1Sp2(q)| 199 (q)]
W(2)+V(2)? a°|Sp2(q)|
W(1)* +V(2)* 4°|Spa(q)|
W) +V(4)+V(2) |q°|SpAq)l
V(4)? q°
V(6)+V(2) 2¢*

Va (6) + Va(2) 2q¢*

Table 7: Unipotent class representatives in G = Qg (q) (¢ even)

Rep. u |Ca(u)]
W(1)* + Wa(1) |G|

Wa(3) + W(1) 2¢°(¢> — 1)
W(3) + Wa(1) 2¢%(¢* — 1)
W(2) + Wa(1) + W(1) | ¢°|Sp2(q)| 192 ()]
W(2)+Va(2) +V(2) | ¢°ISp2(q)l
W2+ VoD +V(2) | °|Spa(a)]
W) +V(4)+Va(2) | ¢’|Sp2(q)]
Va(4) +V(4) q°

Va(6) +V(2) 2¢*

V(6) + Va(2) 2¢*
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