Recognising tensor-induced matrix groups

C.R. Leedham-Green E.A. O’Brien

Abstract

We present an algorithm to decide whether or not a matrix group defined
over a finite field is tensor-induced.

1991 Mathematics Subject Classification (Amer. Math. Soc.): 20C20, 20C40.

1 Introduction

We present an algorithm to decide whether or not a matrix group defined over a finite
field is tensor-induced.

More precisely, let G be a subgroup of GL(d, F'), where F' = GF(q) and ¢ = p°
for some prime p, and let V be the natural FG-module. We assume that d has a
proper factorisation as u” and seek to answer the following question: does GG preserve
a decomposition of V' as

U000, @---@U,

where each U; has dimension v > 1 and r > 1, and the set of U; is permuted by G?

Assume such a decomposition exists, and that v is a vector in V that can be
expressed as u; ® us ® --- ® u, where u; € U; for 1 < ¢ < r; if ¢ € G, then vg
can be expressed as v; ® v2 ® - - - ® v, where, for some permutation o, of {1,...,r}
independent of v, the map u; — v;,, is a projective linear map of U; onto Uj,,. The
map g — o4 is then a homomorphism of G' into the symmetric group S,, and so
GZ|Z < PGL(u,q) S, where Z is the group of scalar matrices of GL(d, q).

If the map g — o, has an intransitive image, then V' is tensor decomposable;
hence, we may assume that the image of this homomorphism is transitive. We also
assume that G acts irreducibly on V. For a general treatment of tensor-induced
groups, see Kovéacs (1990).

The algorithm presented here relies heavily on the theoretical frame-work and
algorithm developed in Leedham-Green & O’Brien (1997a, 1997b) for finding a tensor
decomposition of a finite-dimensional module over a finite field, or proving that no
non-trivial tensor decomposition of this module exists. We first recall the concept of
equivalence of tensor products.

Definition 1.1 A u-tensor decomposition of V' is a linear isomorphism from U @ W
onto V', where U and W are fixed vector spaces, with U of dimension u. If o and B are

u-tensor decompositions of V', they are equivalent if there are linear automorphisms
¢ and ¥ of U and W respectively such that o = (¢ ® ¥).

Leedham-Green & O’Brien (1997a) showed that there is a one-to-one correspon-
dence between the set of G-invariant projective geometries on V' and the set of equiv-
alence classes of tensor decompositions of V' as G-module. In particular, a tensor de-
composition of V as U ® W, where U has dimension u, corresponds to a u-projective
geometry on V', whose flats are defined to be the subspaces of V' corresponding to
spaces of the form U ® X for X a subspace of W. Thus a flat in this projective
geometry has dimension, as F-space, a multiple of u, and if the decomposition is a
tensor product of GG-spaces, then the set of flats is invariant under the action of G.
We also presented an algorithm which, given a subspace F of V', determines whether
or not F is a flat in a G-invariant u-projective geometry on V', and in the affirmative
case, returns the corresponding tensor decomposition of V. We then exploited this
geometrical approach and some other ideas to provide a practical algorithm to decide
tensor decomposability.

In Section 2, we investigate the kernel of the action of a tensor-induced group on
the set of tensor factors.

The first step of our tensor-induced algorithm attempts to rule out the possibility
that G preserves a tensor-induced decomposition of V' by considering the restrictions
imposed by the projective orders of elements of GG; that is, the orders of their images
in PGL(d, ¢). This test is discussed in Section 3.

Random elements of a group are a central component of our algorithm. In Section
4, we discuss a variation of the product replacement algorithm of Celler et al. (1995)
to obtain random elements of a group GG. Further we present an algorithm to obtain
random elements of the normal closure in G of a subset of elements.

If a tensor-induced decomposition exists, then, as we observed above, we assume
that G acts transitively on the set of r tensor factors. Hence there exists a homomor-
phism from G onto a transitive subgroup of S,. By considering first smaller values
of r (and so larger values of u) we reduce to the case where G acts primitively on
the set of factors. In summary, we consider homomorphisms from G onto a primi-
tive subgroup of S, and construct such mappings, or prove that none exists. The
construction of such homomorphisms is discussed in Section 5, where we present a
low-index subgroup algorithm for black-box groups having an order oracle.

For each subgroup of G having index r, we now decide whether or not it preserves
a tensor decomposition of V as UQW , where U has dimension © and W has dimension
u"'; if so, we decide whether or not W can be decomposed into r — 1 tensor factors
of dimension u in such a way that the resulting set of r u-dimensional tensor factors
is permuted by G. This is described in Section 6.

The algorithm is described in Section 7. Finally, we report on the performance
of an implementation of the algorithm in MAGMA (Bosma, Cannon and Playoust,
1997).

One motivation for this work lies in its application to the on-going matrix group
“recognition” project. Aschbacher (1984) classified the subgroups of GL(d,q) into
nine categories. Tensor-induced groups constitute one category. A potentially useful
first step in studying a matrix group is to determine at least one of its categories
in this classification. Much of the recent work on this topic was stimulated by the
algorithm of Neumann & Praeger (1992) to recognise the special linear group in its
natural representation over finite fields.

It may be worth considering the qualitative differences that arise between proving
that a matrix group is tensor-induced as opposed to induced (or equivalently im-
primitive). An algorithm to decide membership in the latter Aschbacher category is
presented in Holt, Leedham-Green, O’Brien & Rees (1996).

One difference is that the degree of the base representation for tensor-induced
groups is at most log, d, whereas for induced groups it is at most d/2. Further, it is
impossible, as we shall see in Lemma 2.3, for a group to act faithfully modulo scalars
on the set of tensor factors, whereas a group can act faithfully modulo scalars on
the set of blocks. On the other hand, we have no easy means of deciding whether
or not the putative tensor decomposition exists on the strength of a given non-scalar
element of the group that would have to preserve all of the tensor factors, whereas in
the induced case it is easy to complete the calculation given a non-scalar element that
would have to preserve all the blocks. This reflects the fact in the induced case one
can construct the set of blocks explicitly, whereas in the tensor-induced case what is
being permuted is a set of projective geometries, and a projective geometry in this
context is a set of subspaces of V' that is in general too large to enumerate.

2 The kernel of the action

In Section 6.2, we shall assume that the following hypothesis is satisfied.

Hypothesis 2.1 Let G be an irreducible tensor-induced subgroup of GL(V'), preserv-
ing the tensor decomposition V = Q1U; and permuting the set of tensor factors U;
primitively. If G is the subgroup of G that fixes each element of a subset S of
{1,...,r} in the induced permutation representation of G, then Gg acts irreducibly
i its induced action on Q;csU;.

We now show why it is reasonable to assume this hypothesis. We start with the
case when S'is a singleton.

Lemma 2.2 Let G be an irreducible tensor-induced subgroup of GL(V'), preserving

the tensor decomposition V = Q[U; and permuting the U; transitively. Let Gy be the
subgroup of G that fizes the tensor factor U;. Then G4 acts irreducibly on Uy.

Proof. Let W; be a G;-invariant subspace of U;. For 1 <1 < r, let g; be an element
of G that takes U; to U;. Let W; < U; be the image of W; under g;,. Clearly W;
depends only on ¢, and @]W; is a G-invariant subspace of V. It follows that W; =0
or W1 = U; as required. [

We now move towards the case of general S.

Lemma 2.3 Let G be an absolutely irreducible tensor-induced subgroup of GL(V'),
acting primitively on the set of tensor factors. Let K be the kernel of the action on
the set of tensor factors. Then K contains a non-scalar matriz.

Proof. Assume that K only contains scalar matrices, and hence is the group of
scalars in G. Let the tensor decomposition in question be V' = ®]U;. Then G/K is a
primitive subgroup of S,, and hence is either A, or S, or has order less than 4" (Babai
(1981); Cameron (1981); Praeger & Saxl (1980)). Now V has dimension d = u" for
some u > 1. But G acts absolutely irreducibly on V', and hence spans the whole of
My(q), which has dimension d?; so G has order at least 4”. Hence G/K is either A,
or S;.

It now follows that the inverse image in G of the stabiliser of a point in the action
of G on the set of tensor factors is a covering group of A, ; or of S,_1. If r > 9,
these groups do not have faithful representations of degree less than r — 2 (Kleidman
& Liebeck (1980, p. 186, Prop. 5.3.7)), so V must have dimension at least (r — 2)",
which again violates the condition that the order of G cannot be less than the square
of the dimension of V.

This same condition shows that, for a counter-example, we need to have 2(r!) >
227 which is equivalent to having r > 8, and this assumes that U; has dimension 2.
But neither Ag nor Sg has a faithful linear or projective representation of degree less
than 4, and since 2(r!) < 4?" for r = 8 the lemma is proved. OJ

Now K as above is a normal subgroup of (G, containing a non-scalar matrix. It
follows from Clifford’s theorem (Huppert, 1967, p. 565) that if K acts reducibly
on V, then G is either reducible, or imprimitive, or tensor indecomposable, or acts
semilinearly with respect to the action of an extension field of GF(g). It is not unrea-
sonable to exclude these possibilities, since they would give rise to more elementary
descriptions of G. But if K acts irreducibly on V, then a fortiori Gg acts irreducibly
on Q;esU;.

3 An element order test

As a first step, we compute the projective orders of some random elements of G <
GL(d, ¢). This may rule out the possibility that G is tensor-induced, or produce some

4

constructive information.

Assume that d = u", and that we are examining the possibility that G is tensor-
induced from a subgroup of index r.

If ¢ € G has projective order n, then GL(u,q) ? S, contains an element h of
projective order n. Further, the image of h in S, has order k£ for some k that both
divides n and is the order of an element of S,, and n/k must be the least common
multiple of the projective orders of r elements of GL(u, g). If no such k£ can be found,
then G is not tensor-induced from a subgroup of index r. If no £ can be found for
which n/k satisfies the stronger property of being the projective order of an element
of GL(u, ¢q), then some power of g would have to act as a scalar on one tensor factor
and as a non-scalar on another tensor factor. Such an element is called a projectivity
(Leedham-Green & O’Brien, 1997a). The characteristic polynomial of a projectivity
that acts as a scalar on a tensor factor of dimension u is a u-th power. Hence we
obtain a powerful negative test.

Given generators for a subgroup K of GL(d, ¢) that preserves a tensor decomposi-
tion of the natural module, and a projectivity in K, it is easy to find the corresponding
tensor decomposition if K acts irreducibly on the tensor factor on which it does not
act as scalars. However, at this stage in the computation we do not have a candidate
for K and hence cannot employ this observation.

Leedham-Green & O’Brien (1997b) present an algorithm to decide whether or not
PGL(u, ¢) has an element of a given order.

4 Random elements

Given a generating set X for a group G, we wish to construct random elements of G
which are close to the uniform distribution and nearly independent. Similarly if Y is
a subset of G, we wish to construct random elements of N = (Y)¢.

4.1 Random elements of a group

Babai (1991) proposed a general theoretical solution to the problem of constructing
random elements of a group GG. Let n be an upper bound for the order of G. His
algorithm constructs a sequence of O(logn) elements in O(log® n) multiplications. By
taking random subproducts of this sequence, nearly uniformly distributed random
elements can now be obtained in O(logn) multiplications for each element.

We use a variation of the product replacement algorithm presented in Celler et
al. (1995) to generate random elements of G. This variation was developed in part
to address the poor performance of the product replacement algorithm for a certain
family of examples. For a discussion of these cases and a report on other aspects of
the algorithm, see Pak (2000); for a comparison of the performance of this variation
with the original, see Baddeley et al. (2000).

5

The algorithm is designed for the case where G is described by a generating set
X, and we have no convenient canonical form for the elements of G.

The algorithm is the following. We initialise an array S of length M of elements
of G, where M > |X|+ 1. Initially S contains the elements of X and is padded out
with copies of the identity element 15. An additional element of G is stored in a
variable T', the accumulator; initially T' is set to 1.

The basic operation of the algorithm picks i # j in the range [1,..., M]; it now
carries out step A and then step B, or, with equal probability step B and then step
A, where these steps are defined as follows.

(A) Replace S[i] by S[i]S[5]*".
(B) Replace T by T'S[i]*.

The two choices of exponent are random and independent. There are other obvious
minor variations; for example, multiplying at random on the right or left.

The algorithm as defined is symmetrical: the probability of moving from one given
state to a second in a single step is equal to the probability of moving from the second
to the first in a single step.

We now use classical Markov process theory to prove that 7' converges exponen-
tially fast to the uniform distribution on G. That is to say, if p;(g) is the prob-
ability that T" = ¢ for some g € G after t iterations of the basic operation, then
Ipe(9) — 1/|G|| < e for some a > 0.

A Markov process is homogeneous if the probability of moving from one state to
another in one step is time independent. We now restrict our attention to homoge-
neous Markov processes having finitely many states. Such a process is irreducible if
the probability of moving from any one state to any other state in ¢ steps is positive
for some t. It is aperiodic if given two states, when the process has arrived at the first
state, the set of values of ¢ for which there is a positive probability that it will arrive
at the second state after ¢ further steps has greatest common divisor 1. It is doubly
stochastic if it satisfies the following condition. If p(7,j) is the probability that the
homogeneous process will move in one step from state i to state j, then Y. p(4, j) = 1,
where the summation is over all states . By the very nature of a Markov process,
> i p(i,7) = 1, where again the summation is over all states.

The Perron-Frobenius theorem (see, for example, Grimmett & Stirzaker (1982,
p. 134)), applies to Markov processes having finitely many states: If a Markov pro-
cess is homogeneous, irreducible, aperiodic and doubly stochastic, then it converges
exponentially fast to the uniform distribution.

A state for our Markov process is a value of the array S and the variable T" that
can be reached simultaneously from the original configuration. Clearly a necessary
condition that the values taken by (S,7T) constitute a state of the process is that the

values of S generate G. It is an intriguing open question, under what circumstances
this condition is also sufficient (see Pak (2000)).

The fact that our process is homogeneous and irreducible is now clear. It is doubly
stochastic since it is symmetric. To prove that it is aperiodic, we argue as follows.
It is sufficient to prove that it is possible to get from some state to another by two
different paths of lengths differing by 1. To do this, it suffices to find two states such
that we can move from the first to the second by two paths, one of length 1 and one
of length 2. We may assume that the first state is S = [g1,92,...,9m] and T = h
where g; = 1¢ for some j, and the second state has S unaltered, but T' = hg; for
some 7 # j. The process can move from the first of these states to the second in two
ways as follows. The first path has length one:

o S[i]:= S[i|S[j] = g;; T :=TS[i| = hg;
The second has length 2:

o S[j] = S[jISl] = g;; T :=TS[j] = hg:.
Sljl = S[HISE " = 1g; T :=TS[j] = hg:.

It follows, from the Perron-Frobenius theorem, that the process converges exponen-
tially fast to the uniform distribution.
To use this result, we need to know something about the set of states.

Lemma 4.1 If a state is represented by a given set of values for S and T, then there
1s another state tn which S is unchanged, but T is replaced by an arbitrary element

of G.

Proof. It is clearly sufficient to consider the case in which some S[i] is 1. But then
T can be multiplied by S[j] for any j # ¢ without altering S. [J

Theorem 4.2 The value of T converges exponentially fast to the uniform distribution
on G.

Proof. The probability that after time ¢ the process has arrived at the state S[i| = g;
for all 72, and T" = h, converges exponentially to the uniform distribution. But we
have just seen that the set of possible values for [g1, 9o, ..., gn] is independent of A.
O

In practice, we carry out a preprocessing step by executing the basic operation
a number of times. Whenever a random element of GG is required we now execute
the basic operation again and return the resulting value of 7" as the random element
of G. Hence, we assume much more than is proved. One obvious disadvantage of
the technique is that the elements returned are not independent of each other. In
particular, ensuring that the algorithm is symmetric assists the analysis, but may
impact negatively on performance, especially independence.

7

4.2 Random elements of a normal subgroup

Let Y be a subset of G = (X)) and assume we wish to construct random elements of
(Y.

Our algorithm is the following. We initialise array S and accumulator 7" as in
Section 4.1, where S is now required to have length M, where M > |X|+ 2. We also
have a second array U of length O, where O > |Y| + 2, and another accumulator V;
initially U contains the elements of ¥ padded out with copies of 15 and V is set to
lg.

The basic operation is to pick ¢ # j in the range [1,..., M] and k # £ in the range
[1,...,0], and to perform each of the steps (A), (B), (C), (D) in some order, where
(A) and (B) are defined in Section 4.1, and (C) and (D) are as follows.

(C) Ulk] = U[kJ(UL")*
(D) V := VU[K]*.

In each case the exponent £1 is chosen independently at random.

The order in which these steps are taken is chosen with equal probability from 8
possibilities: first A and B in either order, and then C and D in either order; or C
and D in either order, and then A and B in either order.

Defining the states of the process to be the values that S,7,U,V can reach si-
multaneously from the initial configuration, one proves, as in Section 4.1, that this
process is homogeneous, irreducible, aperiodic and doubly stochastic.

We need an analogue of Lemma 4.1.

Lemma 4.3 If a state is represented by a given set of values for S,T,U,V, then
there is another state in which S and U are unchanged, but T and V are replaced by
arbitrary elements of G and (Y)¢, respectively.

Proof. It is sufficient to prove this when both S and U have two values set equal to
1g, and in this case the result is clear. [

It follows as before that the value of V' converges exponentially fast to the uniform
distribution on (Y')¢. In practice, after performing the basic operation a number of

times as a preprocessing step, we take successive values of V' as random elements of
(Y)e.

5 Subgroups of low index in black-box groups

The concept of a black-box group was introduced in Babai & Szemerédi (1984). In
this model, group elements are represented by bit-strings of uniform length; the only
group operations permissible are multiplication, inversion, and checking for equality
with the identity element.

We assume that an order oracle is available — namely, we can determine efficiently
the order of an element. Matrix groups defined over finite fields are covered by this
model; in this case, the order of an element can be computed using the algorithm of
Celler & Leedham-Green (1997).

If G is tensor-induced, then there exists a homomorphism from G onto a transitive
subgroup of S,, and so G has a subgroup of index r. We want to construct all such
homomorphisms or equivalently construct representatives of all conjugacy classes of
subgroups of index r.

For our application, r is a small integer; a realistic upper bound for r is 5 for
u > 3, and 8 for u = 2.

5.1 The general strategy

We assume that we are given a black-box group G = (X), a small positive integer r,
and an order oracle for elements of G. The aim is to provide a set of subsets of GG
in one-to-one correspondence with the set of conjugacy classes of subgroups of G of
index 7, each subset generating a group in the corresponding class.

The standard low-index subgroup algorithm described in Sims (1994) achieves
this aim when G is given as a finitely-presented group. For each conjugacy class
representative H having index r in G, it returns a homomorphism of G into S,
which is defined in terms of the image of each element of X in S,, and H is the
inverse image in G of a point stabiliser.

If the low-index subgroup algorithm is used with a set of relations for G that is
not defining, then the output will contain generating sets for representatives of all
conjugacy classes of subgroups of G' of index r, possibly including repetitions, and
subgroups of larger index.

An important observation is that the relations used in the low-index subgroup
algorithm to obtain subgroups of index at most r do not need to be satisfied by G,
but rather by G/K where K is a normal subgroup contained in the intersection of
the kernels of all homomorphisms of GG into S,.

Since the relations we construct are not in general defining, we may obtain both
some subgroups of larger index and some repetitions.

We now discuss the individual components of this strategy in more detail and in
Section 5.4 summarise the resulting algorithm.

5.2 Laws in S,

How do we construct a normal subgroup of G' contained in the intersection of the
kernels of all homomorphisms of G into 5,7 In practice, we construct a generating
set for a subgroup K of K., the verbal subgroup of G corresponding to the variety
generated by S,, by evaluating instances of some known laws of the variety.

Cossey, Macdonald & Street (1970) present bases for the defining laws for the
varieties generated by S, S5 and Ag. Laws (not defining) for Sg may be deduced
from those for Ag. For r > 7, we take two laws: namely z¢, where e is the exponent
of S, and

[z, (21%)™, .-, (21") "]
where aq,...,a;y1 are the multiplicatively maximal orders of elements of 5.

The laws for S, are short and hence evaluating instances of these is efficient. Those
for S5 and Ag consist of eleven short laws, and a “u-law” introduced in Kovacs &
Newman (1966). This last law is too long to be of computational value, and appears
to be needed solely to exclude certain infinite simple groups. We observe that law
(10) in the basis for S5 given by Cossey et al. (1970) is inaccurate; for example, it
fails for x = (1,5,4,3) and y = (1, 3,4)(2, 5).

5.3 Estimating element orders in a quotient group

Let G be a black-box group having an order oracle, and let NV be a normal subgroup
of G. We now discuss how to estimate the order of an element of G/N.

Our algorithm returns a multiplicative upper bound to the order of an element of
G/N. Let g be an element of G and let m be its order in G. We wish to estimate the
order of the image of g in G/N. The algorithm iterates the following operation for
some preassigned number of times.

e o := random element of N;

o m := ged(m, [gal);

It then returns m as the estimate of the order of the image of g in G/N.

Clearly, m is a multiple of the order of ¢ modulo N. If ¢ is an element of N then
m should eventually become 1, if only by waiting until @ becomes g—!. On the other
hand, if G is the quaternion group of order 8, and N is the centre of G, and a € G\ N
then a has order 2 modulo N, but the algorithm will return 4.

To overcome the latter problem, we refine as follows. If the algorithm returns
m > 1, then for every prime p dividing m, apply the algorithm to ¢™/?. If the
algorithm returns 1 or any number prime to p as the order of the image of ¢g™/?, then
the order of the image of g divides m/p; now repeat this refinement with m replaced
by m/p.

Babai & Shalev (2000, §4.4) prove that this algorithm, with high probability,
returns the order of ¢ modulo N as 1 if ¢ € N, a simple normal subgroup of G.
Hence it can be used to decide membership of a simple normal subgroup. Their result
immediately implies the correctness of the order returned by the refined algorithm
when N is a simple normal subgroup of G.

Refinements introduced by Celler & Leedham-Green (1997) can also be exploited
here.

10

5.4 The low-index subgroup algorithm

Given G = (X)) and an integer 7 > 1, we construct a set S of subsets of G such that
every subgroup of GG of index r is conjugate to the subgroup of G generated by an
element of S. Some subsets in S may generate subgroups of G of index larger than 7,
and some pairs of subsets may generate conjugate subgroups. The algorithm is the
following.

1. Construct a set Y of elements of the verbal subgroup of G' corresponding to the
variety generated by S,.. This we do by evaluating instances of known laws for
the variety in random elements of G.

2. For each w in a random subset 7" of G, find a multiplicative upper bound m,,
to the order of w modulo K, where K = (V). We use the algorithm of Section
4.2 to obtain random elements of K, and the order algorithm of Section 5.3.

3. Hence we obtain a presentation of a group @) with generating set X, the image
of X in @, and relators {w™ : w € T}, where every w € T is expressed as a
word in X. Now Q is a preimage of G/K. Apply the low index algorithm to
obtain homomorphisms from @ to S,, defined by the images of X in S,. Lift
those having primitive images to maps from X to S, thus obtaining putative
homomorphisms from G to S,.

4. We now decide the validity of these putative homomorphisms. For each map
from X to S, constructed as above, we first compute a subset R of G whose
normal closure in G generates the kernel of the corresponding homomorphism
if this exists. We then estimate the orders of various “short” random words
in X in G/(R)“. If the order of the image of the random element does not
divide the estimated order of the element in G/{R), then we do not have a
homomorphism.

5. For each putative homomorphism which passes this test, we now obtain a gen-
erating set for the inverse image in G of the stabiliser of a point.

Hence we construct a set S of subsets of G' such that every subgroup of G of index
r is conjugate to the subgroup of G' generated by an element of S.

In practice, we introduce one important refinement to the algorithm presented
here: we apply the low-index subgroup algorithm to) with a bound to the number
of subgroups we are prepared to construct. If the number of subgroups constructed
exceeds this bound, we abort the computation, determine additional relations and
reapply the low-index subgroup algorithm. We hope to impose sufficient relations to
ensure that the number of subgroups constructed is less than this bound. If adding
further relations for a specified number of iterations does not reduce the number of
subgroups, then we terminate.

11

6 Constructing the decomposition

6.1 The first step

We discuss how to decide whether or not G preserves a tensor decomposition of V'
with factors of dimensions v and u" !, for some r > 1.

Given H < GL(V), our algorithm for determining whether or not H preserves a
tensor decomposition of V' as the tensor product of two spaces only requires in the
first instance a supply of random elements of H. If the algorithm succeeds, it proves
that no such tensor decomposition of V' exists; or we construct a change-of-basis
matrix £ € GL(V') and constructively demonstrate that it corresponds to a suitable
tensor factorisation of V' by demonstrating that conjugating each element of the given
generating set of H by x reduces the element to a Kronecker product of the required
shape.

If H is defined as the normal closure of a given subset of G < GL(V), we can-
not directly apply this last constructive step; instead, we apply this step to some
preassigned number of random elements of the normal closure of H; if they have the
required shape, we proceed on the assumption that H does preserve the corresponding
tensor decomposition; if this assumption is false, it will become clear later.

Step (2) of the algorithm outlined in Section 5.4 constructs a normal generating
set Y for a subgroup K of the verbal subgroup of G' defined by certain laws of 5.
We try to determine whether or not K = (V)¢ preserves a tensor decomposition
of V with factors of dimensions v and v"~!'. If K does not preserve such a tensor
decomposition, then G is not tensor-induced and the algorithm terminates.

If K preserves such a tensor decomposition, it remains to decide whether or not
G is tensor-induced from a subgroup of index r.

In trying to determine whether or not K preserves a suitable tensor decomposition
of V, we apply only the three “fast” tests of the tensor product algorithm (Leedham-
Green & O’Brien, 1997b): element order, characteristic polynomial structure, and
existence of projectivities. Since K may be small, we do not attempt to construct
local subgroups of K. We hope to eliminate elementary cases readily: G is not tensor-
induced, or G is tensor-induced, and it is easy to find an element of K that acts as
a scalar on precisely one of the tensor factors. Since we apply only “fast” tests, we
may be unable to decide whether or not K preserves a suitable tensor decomposition
of V.

If we have not reached a definite conclusion, we apply the remaining steps of low-
index subgroup algorithm of Section 5.4 to construct subgroups of G' having index at
least 7.

Now, for each putative homomorphism, we obtain a generating set for the inverse
image of the stabiliser of a point and supply this generating set to the tensor product
algorithm. If none preserves a suitable tensor product of V, then G is not tensor-

12

induced and the algorithm terminates. Otherwise, we obtain a tensor decomposition
of V as U ® W where U has dimension u and W has dimension u"~*.

6.2 Completing the decomposition

Suppose now that we have a tensor decomposition of V as U ® W, where U has
dimension u and W has dimension u"~! for some r > 1. We need to determine
whether or not W can be decomposed into r — 1 tensor factors of dimension u in such
a way that the resulting set of r u-dimensional tensor factors of V' is permuted by G.
The tensor decomposition of V' is defined by a point P of the form () ® W in the
corresponding u-projective geometry.

Let G be the subgroup of G that preserves the decomposition U ® W; this
decomposition is preserved by H < G where H has index at least r in GG. Of course,
H may be a proper subgroup of G;. It is easy to decide whether or not g € G is also
an element of G1: we check whether or not the matrix of g written with respect to a
basis that exhibits the tensor decomposition is a suitable Kronecker product.

The membership test for G; provides the basis for an obvious algorithm to obtain
representatives of distinct cosets of G; in G. We look for r such coset representatives,
1=g¢1,99,...,9-. If we cannot find r representatives, then G; has index less than r
in G (and so H is indeed a proper subgroup of G1). This seems unlikely to occur in
practice.

We may now assume that G; has index at least r in G. Hence we can compute
the permutation action of an element g of G on these cosets. To find the image of the
coset G1g;, find, by trial and error, a value of 7 for which giggj*1 preserves the original
tensor decomposition of V as U ® W. Then g sends G1g; to G1g;. If, for some g, no
such j exists, then (G; has index larger than r in G. Conversely, if every element g of
the given generating set of G gives rise in this way to a permutation o, of {1,...,7},
then (G; has index r in G as required.

At this point, we know that G permutes a set of r distinct tensor decompositions
of V. We need to determine whether or not there is a tensor decomposition of V' as
®1U; giving rise to this situation.

If the tensor decomposition we have found at this stage is V = U; ® Wy, we wish
to find recursively tensor decompositions of V as Ui @ Uy ®@ - - - @ U; ® W; where U; has
dimension u for 1 < j < r. Assume that we have a point P, of dimension u"~* in a
projective geometry defining the tensor decomposition V = (U; @Us ® - - - Q U;) @ W,
where P, = P. Now define P, := P; N P9+,

For 1 < j <, let H; be the subgroup of G' that maps to the subgroup of S, that
fixes each element of {1,...,j}. We can readily find a generating set for H;. We use
Hypothesis 2.1 to deduce that H; acts irreducibly on U; @ Uy ® - - - @ U;.

Hence, we have a proper subspace P;;; of V', and a generating set for H; acting
irreducibly on V. We now use the algorithm of Leedham-Green & O’Brien (1997a, §3)

13

to decide whether or not V has a u*T!-projective geometry that is preserved by H; and
which has P, as a point. If so, we have now constructed the tensor decomposition
V=UQUs® - QUi1) @ Wii1.

If we obtain a decomposition of V' = ®]U;, we must now prove that G permutes the
set of tensor factors. For each g € X, we compute as described above the permutation
action of g on the cosets of Gy, thus obtaining the image o, of g in S,. We now write g
with respect to a basis for V' that exhibits V' as ®]U;, and multiply the matrix for g by
a matrix which permutes the U; as o, L. if the resulting matrix is a Kronecker product
of the appropriate form, it visibly preserves the tensor factorisation V = ®1U;.

7 The tensor-induction algorithm

The input to the algorithm is a set of matrices which generates an irreducible subgroup
G of GL(d, q) and an integer r > 1, where d has a factorisation as u". A top-level
outline of the algorithm is the following.

1. Apply the order test of Section 3 to a small number of random elements of G.
This may rule out the possibility that G is tensor-induced.

2. If not, construct a set Y of elements of the verbal subgroup of G defined by
certain laws of S,.

3. Attempt to decide if K = (Y)¢ preserves a tensor decomposition of V as UQW,
where U has dimension u. There are three possible outcomes.

(a) “No”: G is not tensor-induced from a subgroup of index r. Return false.

(b) “Yes”: Attempt to deduce that G is tensor-induced from a subgroup of
index r using the algorithm outlined in Section 6. If this construction
succeeds, return the resulting decomposition of V' as ®;U;. Alternatively,
K may preserve some other tensor decomposition of V. Go to Step 4.

(¢) “Unknown”: Go to Step 4.

4. Use the low-index subgroup algorithm of Section 5.4 to construct representatives
Ky, ..., K, for each conjugacy class of maximal subgroups of index r in G.

5. For each K, decide if it preserves a tensor decomposition of V' as U @ W where
U has dimension u. If so, decide if this gives rise to a decomposition of V' as
®:U;, demonstrating that G is tensor-induced from a subgroup of index r; if it
does, return the decomposition of V' as ®;U;.

If no K; preserves such a tensor decomposition of V', or the algorithm of Section
6.2 fails for each K; which does preserve such a decomposition, then G is not
tensor-induced. Return false.

14

7.1 Limitations of the algorithm

The tensor-induced algorithm relies heavily on our algorithm to determine whether
or not a subgroup K of GL(d,q) generated by a given set of matrices preserves a
tensor decomposition of the natural module V.

If K does not preserve a tensor decomposition of V', we expect in many cases to
prove this in approximately O(d?loggq) field operations. If there is a tensor decom-
position in which some non-scalar element of K acts as a scalar on one of the tensor
factors, we also expect to find the tensor decomposition in O(d? log q) field operations.
There are two cases which may pose difficulties.

1. Every element of K preserves some tensor decomposition of V' as U @ W where
U has dimension u, but K preserves no such decomposition.

2. K preserves a tensor decomposition of V as U @ W with U of dimension u, but
no non-scalar element of K acts as a scalar on U or on W.

In these cases, the tensor product algorithm constructs a p-local subgroup H of K,
for various primes p, and looks for a flat among the H-invariant subspaces of V. If n
is the least index of a p-local subgroup H of K, finding a p-local subgroup requires at
least O(d®y/n) field operations. The most expensive part of the algorithm is usually
computing the lattice of H-submodules of V.

For example, Sz(8) has an absolutely irreducible representation in dimension 4
over GF(8). Tensor induction gives an absolutely irreducible representation of Sz(8) :
3 acting on a space V of dimension 64 over GF(8). The four maximal subgroups of
Sz(8) have orders 14, 20, 52 and 2°-7. All act on V with composition length 64. The
algorithm constructs the 2-local subgroup H of Sz(8) of order 2° - 7, and finds a flat
among the H-invariant subspaces of V. This is a particularly hard example, since H
is small, and so there are many H-invariant subspaces of V.

8 Implementation and performance

An implementation of our algorithm is publicly available in MAGMA. The computa-
tions reported in Table 1 were carried out using MAGMA V2.7 on a Sun UltraSPARC
Enterprise 4000 server, and all CPU times are given in seconds, averaged over three
consecutive executions. Twenty random elements of each group were selected for the
order test. For each group, we list its ATLAS name (Conway et al., 1985), report its
dimension d, and cardinality ¢ of the finite field it is defined over. If the group is
tensor-induced, we list the dimensions of the factors; if no decomposition exists, we
indicate this by “~”. In the final column, we identify the test which either produced
the decomposition for this group or proved that it is not tensor-induced.

15

Group d q Factor Time Notes
Ag 16 2 - 0.2 Order test §3
As x As 25 7 - 1.5 No subgroup of index 2 §5.4
3-J3-2 36 | 212 - 1.5 | Characteristic polynomial structure §6.1
GL(2,5)1 S 64 2 | 26 188.1 Low-index §5.4
GL(2,28) 1 PGL(2,5) 64 28 26 1490.4 Low-index §5.4
S2(8):3 64 | 23 | 43 13148.1 Low-index §5.4

Table 1: Performance of implementation for a sample of groups

ACKNOWLEDGEMENTS

We are indebted to L.G. Kovacs, who has given expert and detailed answers to many
technical questions, and significantly influenced the direction of this paper. We are
also grateful to Laszlé Babai, Peter J. Cameron, Peter M. Neumann, and Cheryl E.
Praeger for helpful discussions. We thank the School of Mathematical Sciences of the
Australian National University and the Department of Mathematics of the University
of Western Australia for their hospitality while part of this work was carried out.
This work was supported in part by the Marsden Fund of New Zealand via grant
#9144/3368248.

References

M. Aschbacher (1984), “On the maximal subgroups of the finite classical groups”,
Invent. Math., 76, 469-514.

Lasz16 Babai (1981), “On the order of uniprimitive permutation groups”, Ann. Math.,
II. Ser. 113, 553-568.

Lész16 Babai (1991), “Local expansion of vertex-transitive graphs and random gener-
ation in finite groups”, Theory of Computing, (Los Angeles, 1991), pp. 164-174.
Association for Computing Machinery, New York.

Lész16 Babai and Endre Szemerédi (1984), “On the complexity of matrix group prob-
lems, I”, Proc. 25th IEEE Sympos. Foundations Comp. Sci., pp. 229-240.

L&sz16 Babai and Aner Shalev (2000), “Recognizing simplicity of black-box groups and
the frequency of p-singular elements in affine groups”, Groups and Computation
III, Ohio State Univ. Math. Res. Inst. Publ., (Ohio, 1999). de Gruyter, Berlin.

16

Adrian Baddeley, C.R. Leedham-Green, Alice C. Niemeyer and Martin Firth (2000),
“Measuring the Performance of Random Element Generators in Large Algebraic
Structures”, in preparation.

Wieb Bosma and John Cannon and Catherine Playoust (1997), “The MAGMA Algebra
System I: The User Language”, J. Symbolic Comput., 24, 235-265.

Peter J. Cameron (1981), “Finite permutation groups and finite simple groups”, Bull.
London Math. Soc. 13, 1-22.

Frank Celler and C.R. Leedham-Green (1997), “Calculating the order of an invertible
matrix”, Groups and Computation II, Amer. Math. Soc. DIMACS Series, 28,
(DIMACS, 1995), pp. 55-60.

Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer and
E.A. O’Brien (1995), “Generating random elements of a finite group”, Comm.
Algebra, 23, 4931-4948.

J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson (1985), Atlas
of finite groups. Clarendon Press, Oxford.

John Cossey, Sheila Oates Macdonald and Anne Penfold Street (1970), “On the laws
of certain finite groups”, J. Austral. Math. Soc. X1, 441-4809.

Geoffrey Grimmett and David Stirzaker (1982), Probability and Random Processes.
Oxford University Press, London.

Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien and Sarah Rees (1996), “Testing
Matrix Groups for Primitivity”, J. Algebra, 184, 795-817.

B. Huppert (1967), Endliche Gruppen I, Grundlehren Math. Wiss., 134. Springer-
Verlag, Berlin, Heidelberg, New York.

Peter Kleidman and Martin Liebeck (1990), The Subgroup Structure of the Finite
Classical Groups, London Math. Soc. Lecture Note Ser., 129. Cambridge Uni-
versity Press, Cambridge.

L.G. Kovécs (1990), “On tensor induction of group representations”, J. Austral. Math.
Soc. Ser. A, 49, 486-501.

L.G. Kovécs and M.F. Newman (1966), “On critical groups”, J. Austral. Math. Soc,
6, 237-250.

C.R. Leedham-Green and E.A. O’Brien (1997a), “Tensor Products are Projective
Geometries”, J. Algebra, 189, 514-528.

17

C.R. Leedham-Green and E.A. O’Brien (1997b), “Recognising tensor products of
matrix groups”, Internat. J. Algebra Comput., 7, 541-559.

Peter M. Neumann and Cheryl E. Praeger (1992), “A recognition algorithm for special
linear groups”, Proc. London Math. Soc. (3), 65, 555-603.

Igor Pak (2000), “What do we know about the product replacement algorithm?”,
Groups and Computation 111, Ohio State Univ. Math. Res. Inst. Publ., (Ohio,
1999). de Gruyter, Berlin.

Cheryl E. Praeger and Jan Saxl (1980), “On the orders of primitive permutation
groups”, Bull. London Math. Soc. 12, 303-307.

Charles C. Sims (1994), Computation with finitely presented groups. Cambridge Uni-
versity Press.

School of Mathematical Sciences Department of Mathematics
Queen Mary and Westfield College University of Auckland
University of London Private Bag 92019

London E1 4NS Auckland

United Kingdom New Zealand
C.R.Leedham-Green@Qqmw.ac.uk obrien@math.auckland.ac.nz

Last revised September 2000

18

