LINEAR GROUPS OF SMALL DEGREE OVER FINITE FIELDS

D. L. FLANNERY AND E. A. O’BRIEN

ABSTRACT. We classify soluble irreducible linear groups of degree 2 and 3 over a finite
field up to conjugacy in the relevant general linear group. We provide electronic access
to the resulting classification.

1. INTRODUCTION

In this paper we construct parametrised lists of soluble irreducible linear groups of
degree 2 and 3 over a finite field E. That is, for n = 2,3 and chosen E of characteristic
greater than n, we provide a complete and irredundant list of soluble irreducible subgroups
of GL(n,E): any such subgroup is GL(n, E)-conjugate to one and only one group in the
list. A complementary list of the insoluble irreducible subgroups of GL(2,E) is also
determined. Each group is given explicitly by a generating set of matrices, describable
in terms of a string of integer parameters. These lists are available electronically to use
within computer algebra systems.

Although the abstract isomorphism types of subgroups of PSL(2,E) and PSL(3,E)
have been known for some time (see, for example, [8, §8.4, 8.5]), we argue that our work
is a considerable advance beyond that knowledge. Most significantly, our lists furnish
classifications by linear isomorphism in the general linear group, with groups given by
explicit generating sets of matrices. Furthermore, this is the first time such lists have
been made available in electronic form, using methods that both avoid the natural (faith-
ful) permutation representation on the underlying set of vectors and are independent of
computational machinery for soluble groups. Since field operations constitute the bulk of
the computation, lists are constructed quickly.

This paper is a companion piece to [11], wherein the first author considered irreducible
monomial linear groups of (small) prime degree and degree four over finite fields. We were
originally motivated by the problem of classifying soluble primitive permutation groups
as in [22]. Indeed, our results enable one to classify all primitive permutation groups with
abelian socle in any degree that is the square or cube of a prime (greater than 3).

The books [23, 24] by D. A. Suprunenko contain much pioneering work on classification
of soluble linear groups; for example, in [24, §21, pp. 162-168], generating sets are given for
GL(n, E)-conjugacy class representatives of the maximal soluble irreducible subgroups of
GL(n,E), n prime. Building on Suprunenko’s work (and with due credit given to Jordan),
Short in his monograph [22] lists soluble irreducible subgroups of GL(n,E) for E of prime
order p with p™ < 256. His classification of soluble irreducible subgroups of GL(2,E) is
incomplete: as first identified by Alexander Hulpke, two conjugacy classes of monomial
subgroups are missing from [22, Theorem 3.5.2].
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We draw on some of Short’s essential work, but in degree 2 we employ an approach
otherwise independent of his, which also applies to the insoluble groups. Moreover, our
approach may be applied successfully to list the soluble groups in degree 3.

Again motivated by classification of soluble primitive permutation groups, Eick &
Hofling [7] have developed an algorithm to classify conjugacy classes of soluble irreducible
subgroups of GL(n, E). Following Aschbacher’s classification [1] of the maximal subgroups
of GL(n,E), their algorithm first writes down the maximal soluble irreducible subgroups
of GL(n,E), then for each of those inductively constructs its maximal subgroups, deciding
whether two irreducible elements in the resulting list are conjugate. The algorithm was
used to classify the soluble primitive permutation groups of degree at most 3% — 1; this
has now been extended to degree 10000 by Hofling.

Comparisons between the two approaches are not very meaningful. The algorithm of
Eick & Hofling requires explicit solutions to conjugacy problems, whose inherent complex-
ity grow with the degree and size of field. Our approach assembles explicit generators and
depends primarily only on the cost of computations in the finite field.

We have created a database of parametrised presentations for the groups. The database
is designed for MAGMA [4]; however the data can be incorporated into other computer
algebra systems. The construction of the list for a specified degree and finite field is very
fast. We report on this in more detail in Section 6.

2. NOTATION AND CONVENTIONS

Throughout the paper, p is a prime and ¢ is a power of p. The algebraic closure of
GF(p) is denoted F,. Every finite field GF(q) is a subfield of F, .

We write a diagonal matrix as the ordered sequence consisting of its main diagonal
entries, starting at position (1,1). For a group of diagonal matrices M and set of primes
§, M, :=0,(M). Hence M, is the direct product [].. M;.

Let K be a field. The group of all diagonal matrices in GL(n,K) is denoted D(n,K),
and M(n,K) = D(n,K) x S, is the full monomial matrix subgroup of GL(n,K). If K
has finite order k£ then “k” replaces “K” in this notation. The projection homomorphism
M(n,K) — S, defined by ds — s, d € D(n,K), s € Sy, will be denoted 7.

A primitive linear group in this paper is always irreducible. If the field of definition of
a linear group is not clear from the context, then it will be indicated by prefixing.

Another convention relates to our use of the word list, as in the Introduction; here we
always mean a complete and irredundant classification of linear groups all of a certain
specified kind, with respect to conjugacy in the ambient general linear group.

3. PRELIMINARIES

In this section 7 is prime unless stated otherwise.

An irreducible subgroup G of GL(n,q) is completely reducible over F,, with F,-
irreducible constituents all of the same degree. If G is not absolutely irreducible then
that degree is 1, so G is abelian. As such, G is conjugate to a subgroup of a Singer cycle
(a cyclic subgroup of GL(n,q) of order ¢"™ — 1). The theory of Singer cycles in GL(n,q),
and of their GL(n,q)-normalisers, is well-understood (see, for example, [22, 2.32-2.35,
p- 15]). Let A, 4 be a list of the irreducible subgroups of a Singer cycle in GL(n,q).

For nonabelian groups, we begin by solving the listing problem in GL(n,F,). The
nonmodular (namely, of order not divisible by p) absolutely irreducible subgroups of
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GL(n,q) may then be obtained by determining groups in the list over F, that have
conjugates in GL(n,q) and rewriting those groups over GF(q).

Glasby & Howlett [14] present an algorithm which, given as input an absolutely irre-
ducible matrix representation of degree d over a field E, produces an equivalent repre-
sentation in which all matrix entries lie in the smallest possible subfield K of E. The
complexity of this algorithm is d®|E : K|. We use our implementation in MAGMA of this
algorithm to perform rewriting.

An absolutely irreducible subgroup of GL(n,q) either is conjugate to a subgroup of
M(n,F,), or is a primitive subgroup of GL(n,q). These two situations are not mutually
exclusive. Thus we construct separately a list M,, 4 of the absolutely irreducible subgroups
of M(n,q), a list PMy, of the GF(g)-primitive, F,-monomial absolutely irreducible
subgroups of GL(n, q), and a list P, 4 of the I, -primitive absolutely irreducible subgroups
of GL(n,q).

We will find M, ; from a list of the irreducible subgroups of M(n,F,). Alternatively
we could apply the “reduction mod p” theory of [11, §2] to the lists of finite irreducible
subgroups of M(2,C) and M(3,C) in Bécskai’s thesis [2]. In an attempt to keep the
account here reasonably self-contained, we elect not to do that. While the constructions
here and in [2] have overlapping features, they differ in several key respects.

The simplest sort of monomial linear group in any degree n has cyclic projection in
Sy . We use the next two results repeatedly when listing such monomial groups.

Lemma 3.1. (Cf. [2, Lemma 5.2].) Let K be an algebraically closed field and n > 1 any
integer. Suppose G is a subgroup of M(n,K) such that #G is cyclic of order n, generated
by c = (12...n). Choose g € G with mg = c, and let ¢ € K be an nth root of det(c™'g).
Then there exists w € D(n,K) such that G* = ({c¢, D(n,K) NG).

Proof. Certainly G = (g, D(n,K)NG ). The conjugation action of ¢ on a diagonal matrix

is to cycle forward its main diagonal entries, so that if (~'c¢™'g = (a1,as,...,a,) and
w = (1, ag,a203, 020304, . . . , G203 . .. Ap) -
then g% = (c as desired. O

Proposition 3.2. Assume the hypotheses of Lemma 3.1. Suppose G is finite and K has
characteristic n. Then G is D(n,K)-conjugate to the split extension (¢, D(n,K) N G).

Proof. By Lemma 3.1, G is conjugate to ({c, D(n,K) NG ), where ({ is a scalar whose
nth power is in G. Since |{| is coprime to n, so { € G. O

By the next result, elements of PM,, , for n = 2 or 3 are normalisers of Singer cycles.

Proposition 3.3. Let G be a primitive subgroup of GL(n,K) with normal subgroup N,
K any field. Then N is either irreducible or scalar. In particular, if N is finite abelian
then N is cyclic.

Proof. By Clifford’s Theorem the KN -module K™ has a single homogeneous component.
Since n is prime, if this is reducible then it is a direct sum of isomorphic 1-dimensional
submodules, and consequently NN is scalar. O

Remark. If n is any integer and G < GL(n,K) is primitive, then an abelian normal
subgroup N of G is a subgroup of the multiplicative group of a field, so that N is cyclic
if it is finite.
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The following variation on a well-known theme plays a fundamental part in our listing
of the primitive subgroups of GL(2,q) and GL(3,q).

Proposition 3.4. Let G be a subgroup of GL(n,q). Then there exists G < SL(n,TFp)
such that GJZ(G) = G/Z(G). In fact, G < SL(n,q™), where
(i) m is a divisor of n —1 if n # p and n does not divide g — 1,
(il) m=n if n #p and n divides ¢ — 1,
(iii) m=1if n=p.
Further, G has property P if and only if G has property P, where P € {irreducible,
absolutely irreducible, K-primitive}, K a subfield of F, containing GF(q).

Proof. Suppose first that n # p. Let m be the order of ¢ mod n. If n and ¢ — 1 are
coprime then n divides (¢™ —1)/(g — 1), and thus GF(¢™) contains nth roots of every
element of GF(q). If ¢ =1 mod n then n divides (¢" —1)/(¢ — 1), so GF(¢") contains
all the nth roots. Of course the nth power of GF(¢)* is GF(¢)* if n =p. Then

G={wg|g€ G, weGF(gm), w " =det(g)}
satisfies the stated conditions. O

The disjoint union A, ; U M, , U PM,, , U P, , contains all irreducible subgroups of
GL(n,q). If n < 4 then the first three components of this union consist entirely of soluble
groups. We divide P, ; into two sublists P, , and P , of soluble and insoluble groups,
respectively. The structure of soluble quasiprimitive linear groups over algebraically closed
fields has been thoroughly investigated by Suprunenko and others.

Theorem 3.5. Let G be a soluble primitive subgroup of GL(n,F,). Then

(i) Fit(GQ) is irreducible,

(ii) Fit(@)/Z(G) = Cy, x Cy,

(iii) Fit(Q)/Z(G) is self-centralising in G/Z(G),
(iv) G/Fit(QG) is isomorphic to an irreducible subgroup of Sp(2,n) = SL(2,n),
(v) A minimal normal subgroup of G/Fit(G) has order coprime to n,
(vi) p#mn.
Proof. Set Fit(G) = F and Z(G) = Z. Note that G # F', for if G were equal to F' then
G would have a noncentral abelian normal subgroup, but every abelian normal subgroup
of G is scalar.

The G-centraliser of F' is Z(F'), and, since G is nonabelian, F # Z. Thus (i) is a
consequence of Proposition 3.3. For (ii)—(iv), see [24, §19, 20] or [6, pp. 71-74]. The
representation implicit in (iv) arises from the conjugation action of G/Z on F/Z. It
is an irreducible representation because otherwise there exists a normal subgroup L of
G containing Z such that L/Z = C,, so that L is an abelian normal subgroup of G.
However Z is the maximal abelian normal subgroup of G.

A minimal normal subgroup of G/F' is elementary abelian. It cannot have order n since
0,(G/F) =1 by (iv) and [18, 9.17, p. 159], so it has order dividing |SL(2,n)|/n = n? —1.
Thus (v) holds.

To prove (vi), we define for each h € F' a homomorphism 6y: F/Z — Z by 0y: gZ —
[g,h]. If p=mn then 6} is trivial, which yields the contradiction that F' is abelian. [l

Remark. In Theorem 3.5, Fit(G)/Z(G) is the unique minimal normal subgroup of
G/Z(G). Thus G/Z(QG) is centreless.
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Proposition 3.6. Let G be a finite soluble primitive subgroup of GL(n,IFp).
(i) Fit(GQ) is conjugate to an irreducible subgroup of M(n,[F,) with diagonal subgroup
of index n.
(ii) |Z(G)| is divisible by n.
(iii) G/Z(QG) splits over Fit(G)/Z(G), and all complements of Fit(G)/Z(G) in G/Z(QG)
are conjugate.

Proof. We use Theorem 3.5 several times.

Since F := Fit(G) is a nilpotent p'-subgroup of GL(n,F,), it follows that F is
monomial (see [16, 18.4, p.580]). Let F be a conjugate of F in M(n,F,); then
Z:=27Z(G) < D(n,F,)NF and so 1 < |F : D(n,F,) N F| < n%. Since F is irreducible,
D(n,F,) N F # Z, for otherwise C,, x C,, is a transitive permutation group of degree n.
Now (i) follows.

For (ii), note that if n does not divide |Z| then H?(F/Z,Z) = 0 by, for example, the
Schur-Zassenhaus Theorem; so F' splits over Z implying that F' is abelian.

Let C/F be a minimal normal subgroup of G/F. We have H'(C/F,F/Z) =0, i>1,
and after factoring out trivial cohomology we get H(G/F,F/Z) = H(G/C,(F/Z)°/F).
If (F/Z)C/F # 0 then Z(C/Z) N F/Z is a nontrivial normal subgroup of G/Z in F/Z,
but F/Z is minimal normal and self-centralising in G/Z. Hence H'(G/F,F/Z) = 0 as
required. O

Corollary 3.7. If G is a finite soluble primitive subgroup of GL(n,F,) then G/Z(G)
>~ (Cn x Cy) X H for some irreducible subgroup H of SL(2,n), where the semidirect
product is formed with respect to natural action of H on the underlying 2-dimensional
GF(n)-space.

Soluble groups are our primary focus. We will not attempt construction of P; , an
arduous task as evidenced by [8, Theorem 8.4.2]. We include P, since its construction
is not much extra work.

We adopt a simplifying restriction for P, 4, treating only the nonmodular case, which
ensures that the characteristic p and characteristic zero representation theories coincide
(see, for example, [18, 15.13, p.268]). This not a serious restriction in degrees 2 and 3,
since it produces at most two exceptional values of p.

To end the section we mention a fact used without further comment, a consequence of
the Deuring-Noether Theorem [17, 1.22, p.26]. Let K be a field, n any positive integer,
and suppose G, H are finite subgroups of GL(n,K) such that G, H are conjugate in
GL(n,L) for an extension field L of K. Then G and H are conjugate in GL(n,K).

4. DEGREE 2

Short [22, Chapters 3-5] describes how to list the soluble irreducible subgroups of
GL(2,q). His results were not generally implemented, although lists for GL(2,p) where
p? < 256 form part of the library “Irredsol” in GAP [13] and MAGMA [4].

In this section we list all irreducible subgroups of GL(2,q). Our methods are substan-
tially different to Short’s (especially for monomial and F,-primitive groups) and carry
over to other degrees.

4.1. The sublist A, ,.
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Lemma 4.1. Let o be a generator of GF(q%)*, and define

s O 1
T\ —aftt a+tal )°

Let v be a divisor of ¢> — 1 but not g — 1. Then A(r) = (b\~1/") is an irreducible
subgroup of GL(2,q) of order r. An irreducible abelian subgroup of GL(2,q) is conjugate
to A(r) for some r.

Proof. See [22, §2.3]. As b is the companion matrix of z2 — (o + a4)z + a2l € GF(q)[z],
which has roots a,a? over F,, b is GL(2,F,)-conjugate to (o, a?). Hence |b| = ¢ — 1
and (b) is an irreducible subgroup of GL(2,q), by Maschke’s Theorem. O

4.2. The sublist Mj,. This section covers the same ground as [22, Chapter 3] but
avoids the error of [22, Theorem 3.5.2].

To list the absolutely irreducible subgroups of M(2,q) we apply results from [11]. We
first assume that p is odd. Let a be the nontrivial 2 x 2 permutation matrix, and recall
the definitions of the diagonal matrices z;, w;, and the monomial groups H (3, j, k), made
before [11, Theorem 5.1]. That is,

zi = (wi,wi), W= (wi,w; ")
where w; € [F, has order 21+l wf = wj_1, and
H(iaja ]-) = <G,, Zis wj)a H(Za]a2) = <(J,Zi_|_1, wj)a H(Za]73) = <aa Zi+1Wj+1, wj)'

Theorem 4.2. Let G be an irreducible subgroup of M(2,F,) conjugate to a subgroup of

M(2,q). Then G is conjugate to Go X Gy for some 2-subgroup Ga of M(2,q), and odd
order subgroup Gy of D(2,q) normal in M(2,q).

(i) Suppose =1 mod 4, and let a be a generator of O2(GF(q)*), |a| =2¢, t > 2.
Then Go is GL(2, q)-conjugate to one of

H(i,j,1) 0<i<t—1,1<j<t—-1
H(i,j,2) 0<i<t—2,1<j<t-1
(a(a,1), wy) 1<j<t—~1

H(i,j,3) 0<i<t—2,1<j<t—-2
H(t—1,t—1,3)

if Go is scalar, and to one of

(a)

H(4,5,1) 0<ij<t—1

H(,j,2) 0<i<t—20<j<t—1
(a(a, 1), wy) 0<j<t-1

H(i,j,3) 0<i,j<t—2
H(t-1,t—1,3)

if Go is nonscalar.
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(ii) Suppose q =3 mod 4. If Gy is scalar then Gy is M(2,q) -conjugate to
<a’7 (17 _1) )a

whereas if Go is nonscalar then Go is GL(2,q)-conjugate to one of
(a)
(a, (-1,-1))
(a(1,-1))
(a, (1,-1)).
Distinct elements of the list consisting of all GoGo with Gy and Gor as prescribed in (i),
(ii) are not GL(2,q) -conjugate.

Proof. By [11, Theorem 5.1], G is conjugate to GGy where Gy < D(2,FF,) is an odd
order normal subgroup of M(2,F,), and Gy is (a) or some H(i,j,k). Since Gy is
conjugate to a subgroup of D(2,q), Gor must be in D(2,q).

(i) Suppose Gy = H(i,j,k). Then G has a scalar of order 2!, so i < t — 1, and
(wj,w; ') € Go implies j <t —1 by [11, Lemma 4.2].

The groups H(i,5,1), 0 <i,57 <t—1,and H(3,5,2), 0<j<t—-1,0<3i<t—2,
are contained in M(2,q). Although H(t — 1,7,2) £ GL(2,q), H(t — 1,5,2)¥t+ =
<a’(wt—1, 1),’111_7' ) < M(Qa Q) :

Now suppose Gy = H(%,5,3). If i,j <t—2ori=j5 =1t—1 then Gy < M(2,q).
However, the hypotheses tr(G2) C GF(q) and (a) 1 <t—2, j=t—1,0or (b) i=¢t—1,
1 <j <t—2, lead to the contradiction w; € GF(g): in (a), by [11, Lemma 4.2], and in
(b), because wjy1 + “’;4}1 # 0. It remains to consider that Go = H(t — 1,0,3) and Gy is
nonscalar. In that case the diagonal subgroup of GoGo is the unique subgroup of index
2, s0 is in D(2,q) if G2Gy has a conjugate in M(2,q). But H(t —1,0,3) has a diagonal
element of order 2/*!. Hence G cannot be H(t —1,0,3).

For all H(i,j,k) we have i > 0, and the lower bound on j is determined by whether or
not Gy is scalar, according to [11, Theorem 5.1]. Combining that information with the
upper bounds on %, j derived earlier yields (i) in its entirety.

(ii) Here H(0,0,3) = (a, (1,—1)) = Dg is a Sylow 2-subgroup of M(2,q). If Gy is
scalar then G is nonabelian, so must be conjugate to H(0,0,3). If Go is nonscalar then,
as in (i), G has no diagonal elements of order greater than the exponent of D(2,q). After
calculating orders we verify that the possibilities for G2 are H(0,0,k), 1 <k < 3. Only
H(0,0,2) is not in M(2,¢), and this group is D(2,F,)-conjugate to (a(1,—-1)).

A group G2Gy listed in this theorem is a conjugate of a group listed in [11, Theorem
5.1], so groups appear irredundantly by [11, Theorem 5.3]. O

If p # 2 then we take My, to be the list of all groups G2G'y as specified in Theorem 4.2.
The odd order normal subgroups N of M(2,q) contained in D(2,q) are easily found;
cf. [11, Remark 5.2]. For any prime p let Z denote the scalars of D(2,F,) and set
W =D(2,F,) NSL(2,F,). We have |ZNW| =2 and N < ZW. Choose zw € N where
2z € Z,w € W are of odd order. Since (zw)?® = zw™! € N, we see that z,w € N. Thus
N < (ZND(2,q9)) x (WND(2,q)). Let w be a generator of GF(¢)* and r be a prime
divisor of ¢ — 1. Set w, = w1/ where r* is the largest r-power dividing ¢ — 1, and
define z;,, w;, to be the diagonal matrices (w!',wl'), (W', w, ™) respectively. Then N
is one of the r-subgroups of (z;,, wj,) of D(2,q), 0 <4,j <s.
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If p = 2 then, by Proposition 3.2, groups in My, are of the form (a, N) where N
is a nonscalar odd order normal subgroup of M(2,q) in D(2,q). It is straightforward to
prove that if N # N then (a, N) and (a, N) are not GL(2, ¢)-conjugate.

4.3. The sublist PMj,. In contrast to Section 4.2, it would be arduous to recognise
PMy , within a list of the finite irreducible subgroups of M(2,F,). Instead we use Short’s
classification [22] of prime degree primitive metacyclic linear groups over finite fields.

Proposition 4.3. Let a be a generator of GF(q)*, and suppose q — 1 = 2!, | odd.
Denote the scalars of GL(2,q) by Z. Set

1 0
T\ at+ar -1

and let A be the Singer cycle generated by the matriz b of Lemma 4.1. Then it is valid to
define PMa 4 to be the list of all groups

(c, &), (cb® ", A)

where A ranges over the subgroups of 1~4 OJiorder not dividing 2(q — 1),~Z ranges over
the subgroups of A such that O2(A) £ A, |A| does not divide ¢ —1, O3(ANZ) # 1, and
k is defined by Ox(AN Z) = (p(@-D/2" ),

Proof. This proposition paraphrases [22, Theorem 4.2.7]. As defined above PM3 , consists
of pairwise nonconjugate primitive subgroups of GL(2,¢q). An element of this list is F,-
monomial because it has a nonscalar abelian normal subgroup. By Proposition 3.3, an
[F, -monomial primitive subgroup of GL(2,q) normalises an irreducible abelian subgroup
of GL(2,q); hence it is conjugate to a subgroup of the normaliser of A and so to an

element of the stated list. O
4.4. The sublist Py ,.

Proposition 4.4. Let G be an F, -primitive subgroup of GL(2,q).

(a) Suppose p is odd. Then G/Z(G) is isomorphic to one of
(1) A4;
(ll) S47
(i) As,
(iv) PSL(2,9),
(v) PGL(2,q),
where q is a p-power such that log, q divides log,q.
(b) Suppose p=2. Then G/Z(QG) is isomorphic to one of
(i) A5 (logyg even),
(i) PSL(2,q),
(iii) PGL(2,q),
where @, q¢ > 3 are p-powers such that log, § divides logy q and 2log, q divides
logy q.

Proof. By Proposition 3.4 there is an I, -primitive subgroup G of SL(2, ¢?) with central
quotient G* = G/Z(G). If p = 2 then G < SL(2,q), and by Theorem 3.5 (vi), G*
is insoluble. Then by work of Dickson (see [16, 8.27, p.213]), G* is a group as in the
statement of the proposition, or p is odd and G* = PSL(2,q) and log, q divides 2log, g,
or G has a nontrivial cyclic normal subgroup, or G has a nontrivial normal elementary
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abelian p-subgroup. It is easy to prove that neither of the two latter cases is possible: the
preimage of a cyclic normal subgroup of G* in G is abelian and normal, hence central;
and if G* had a normal elementary abelian p-subgroup then its preimage in G would be
in Fit(G), but p does not divide |Fit(G)| by Theorem 3.5.

We now show that log,q divides log,q when p is odd, G* = PSL(2,q), and log, ¢
divides 2log, q. Suppose ¢ = p", r = 2, and s = log,q = ml. As G* is isomorphic to a
subgroup of PGL(2, q), we get that s > r and (p"+1)(p" —1) divides 2p*~"(p*+1)(p®*—1).
If m is even then we are done, so let m = 2k + 1. Certainly p” + 1 is not a power of 2,
so we can choose an odd prime divisor ¢ of p" + 1. Then t divides p®* + 1 or p* —1, so it

divides p* 4+ 1+ 0 or p* — 14 o, where o = (p?! + 1) (Zlep(%_%“)l(—l)i) . Since

o = Zp(Qk 2i+3)1 +Zp(2k 2z+1)( 1)i

=1

- _ Z 2k 21+1)l+ Zp2k 21—|—1)l( 1)1’

=1
= pl(—l) -7’
t divides either p'+1 or p'—1. Inboth cases, t divides p"—1, so t < 2, a contradiction. [

To list p'-subgroups of GL(2,q) as in (a)(i)—(a)(iii) and (b)(i) of Proposition 4.4 we
use some very old results, due to Jordan and Klein, which amount to a classification of
the finite subgroups of SL(2,C) (see Blichfeldt [3, Chapter 3]). The classification rests
on an isomorphism ¢: PSU(2) — SO(3), coming from conjugation action of SU(2) on
R3, where the former is identified with the unit quaternions and the latter with the
unit quaternions having zero real part. This much is very familiar from Lie group theory.
Similarly, the finite subgroups of SO(3) are known: up to conjugacy, there are two infinite
families, one of cyclic groups and one of dihedral groups, and three groups isomorphic
to Ay, Sy, and As. (The latter three isomorphism types can be determined purely
algebraically. The noncyclic subgroups of SO(3) are permutation groups of finite degree
such that each nontrivial element has precisely two fixed points, and each point stabiliser
is a maximal cyclic subgroup. Such a group is the union of its maximal cyclic subgroups,
which are the point stabilisers. Different point stabilisers intersect trivially.) Given that all
homomorphisms involved are explicit, and that one may get explicit generating rotations
for the finite subgroups of SO(3), it is possible to write down generators for corresponding
inverse images in SU(2) of those groups under the composite of the natural homomorphism
SU(2) — PSU(2) and ¢. (For our purposes this is the vital point. Analogues of the
elements S, U, V, and Wy of SL(2,C) given in [3, §57, 58, pp. 70-73] will be chosen
as generators for the [F,-primitive subgroups of GL(2,F,) defined in Sections 4.5 and
4.6.) Moreover, it is clear that a finite subgroup of SU(2), and thus a finite subgroup of
SL(2,C), is SL(2,C)-conjugate to one of these inverse images or to a splitting subgroup
of index 2 in one of them. However, leaving aside the cyclic case, no inverse image splits
over its centre, the full group of scalars. Those with dihedral central quotient are dicyclic,
irreducible and monomial. Those with central quotient A4, Sy, or As in PSU(2) are
Schur double covers of Ay, Sy, or As, respectively; they are all primitive. (A dicyclic
group is a double cover if and only if it has order divisible by 8.) The covers of the
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alternating groups are unique, whereas S has two covers, and the one in SL(2,C) is the
binary octahedral group.

4.5. The sublist P5 . If r > 3 then PSL(2,7) and PGL(2,r) are insoluble. Thus,
by Theorem 3.5 (vi) and Proposition 4.4, there exists a soluble IF,-primitive subgroup
G of GL(2,q) only if p is odd, and G has central quotient As; = PSL(2,3) or
Sy =2 PGL(2,3). Note that these isomorphism types may be inferred from Corollary 3.7:
SL(2,2) & S3 has irreducible subgroups C3 and S3 acting on the underlying GF(2)-space
Fit(G)/Z(G) = Cy x Cq; further (Cy x C3) x C3, (Cy x C2) x S3 are isomorphic to Aq4,
Sy respectively.

Theorem 4.5. Suppose p > 5. Let w € GF(p?) be a primitive fourth root of unity, and

define
s — 1 w-1 w—1
T2\ w+l —(w+1) )7
Let E be the set of even order scalars in GL(2,q). If ¢ =1 mod 3, for each z € E select

a scalar v, € GL(2,q3) such that v = z, yet v, & (2). Define P%,q to be the following
list of subgroups of GL(2,TFp) :

<3’ (wa _w)7 z)

(1,8, (w,—w))  g=1mod3 and v, € GF(q) only
as z ranges over E. An By, -primitive subgroup of GL(2,q) with central quotient A4 has
centre of even order, and is conjugate to a group in 7321’(1. FEach group in P%,q s conjugate
to an F, -primitive subgroup of GL(2,q) with central quotient A, . Distinct groups in ’P21,q
are not GL(2,F,) -conjugate.

Proof. This is an application of [11, Theorem 5.4]. The conditions on v, ensure |v,| = 3|z|.
An element of F, of order divisible by 3 lies in GF(g) only if ¢ = 1 mod 3, and as
det(s) = 1, the necessity of the condition v, € GF(q) is apparent. Let G = (s, (w, —w)).
The conjugacy classes of G/H = A4 have representatives gH, g € {1, (w,—w), s, s2},
and therefore tr(G) = {0,+1,+2} C GF(g). Similarly, tr({(v,s, (w,—w))) C (v, )GF(q).

Hence an element of P21,q has trace values in GF(q), so it is conjugate to a subgroup of
GL(2,q) by [18, 9.14, p. 150]. O

Remark. If ¢ = 3 mod 4 then no element of 7321,(1 is in GL(2,q), but all groups may be
rewritten over GF(g) using the algorithm of Glasby & Howlett [14]. This issue does not
arise if ¢ = 1 mod 4.

Remark. Let (@) be the scalar subgroup of GL(2,¢3). In Theorem 4.5, z = (@~ V/7 for
some (even) r dividing ¢ — 1, and if ¢ = 1 mod 3 then we can take v, = ol —1)/3r

The techniques used to prove [11, Theorem 5.4] are also basic in the next result.

Theorem 4.6. Suppose p > 5. Let w € GF(p?) be a primitive fourth root of unity and
a € GF(p?) be a square root of 2. Define s as in Theorem 4.5, and

_l 1+ w 0
“= 0 1-w /"
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For each scalar z € GL(2,q) of even order choose a scalar p, € GL(2,¢%) such that
p2 = z, and denote the set of all pairs (z,u,) by E. If p=+1 mod 8 or log,, q is even
then define ’PZQ,q to be the list of groups

(s, u, 2)
(s, peu, 2)  py € GF(q) only

(2, pz) ranging over E; otherwise P%yq is the list of all ( s, p,u, z) such that u,a € GF(q).
An T, -primitive subgroup of GL(2,q) with central quotient Sy has centre of even order,
and is conjugate to a group in 'Piq. Each group in 'P22,q is conjugate to an I, -primitive
subgroup of GL(2,q) with central quotient Sy. Distinct groups in ’P22,q are not GL(2,TF,)-
conjugate.

Proof. Suppose G is an [, -primitive subgroup of GL(2, ¢) with centre Z = (z) such that
G/Z = S4. By Proposition 3.6 (ii), |Z| is even. By the Universal Coefficient Theorem,

H*(G/Z,7) = Ext(S4/8S4, Z) x Hom(H(S4), Z) = Ext(Cy, Z) x Hom(Cs, Z).

Say the extension-equivalence class of G corresponds to [£] € H*(G/Z,Z). We cannot
have [{] € Ext(S4/S},Z), as £ is trivial on the normal fours group in S4, so gives rise
to an Sy-extension of Z with a noncyclic abelian normal subgroup (cf. Proposition 3.3).
Thus there are only two possible isomorphism types for G. Each type of group contains
a copy of SL(2,3), the unique Schur cover of A4. The one for which the Ext component
of [¢] is nontrivial has a noncentral element squaring to z, and does not contain a Schur
cover of Sy if |Z| > 4.

Since G splits over its group of odd order scalars, we may assume Z is a 2-group. If
|Z| = 2 then G is isomorphic to one of the two Schur covers of S4: namely GL(2,3), or
the binary octahedral group, call it B. Now GL(2,3) has two faithful irreducible ordinary
representations of degree 2, but these are related in the usual way (cf. [11, Proposition
2.12]) by the nontrivial outer automorphism of GL(2,3), so there is a single conjugacy
class of irreducible subgroups of GL(2,F,) isomorphic to the p'-group GL(2,3). Similarly
there is a single conjugacy class of irreducible subgroups of GL(2,F,) isomorphic to B.
Let K1 = (s, u) and Ky = (s, wu) where w € GF(p?) is a square root of —1. Using
s3 = (usu)® = 1 and (sus)? = u* = (—1,-1), it is not difficult to check that K; = B
and Ky = GL(2,3). Note that K; but not K3 is in SL(2,F,), so K; and K, are not
conjugate. Both K; and K5 are nonabelian and hence absolutely irreducible, and they
are primitive because neither has an abelian subgroup of index 2 (since SL(2,3) is the
unique subgroup of index 2 in a Schur cover of Sy).

If | Z| = 2 then we have seen that G is conjugate to precisely one of K; or K;. Assume
|Z| > 4. If G contains K; (up to conjugacy) then it contains Ky, and vice versa, and G
is conjugate to K1Z = KoZ = (s, u, z). Suppose now that G does not have a subgroup
isomorphic to K; or Ky, so that g?> = z for some g € G\ Z. Let pu, € GL(2,¢?) be a
scalar such that u? = z, so (G, p,) has a subgroup K conjugate to Ky, generated by
the noncentral involution yu;'g and a copy of SL(2,3); say K® = Ky, z € GL(2,F,).
Then G*/Z = Sy is a subgroup of H = (KyZ, p,)/Z = Sy x Cy. Now H has only two
subgroups isomorphic to Sy, namely K2Z/Z and (s, p,u, z)/Z. We can discard Ko Z/Z
as a possibility for G*/Z, so G* must be (s, p,u, z).

It has been demonstrated that G is conjugate in GL(2,F,) to G; = (s, u, z) or Go
= (s, pyu, z), and Gy 2 Go. Since G1 X = GoX = K; X, where X denotes the scalars
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of GL(2,F,), it follows that G; and G5 are [F,-primitive, and both have central quotient
Si. Let H = (s, (w,—w), z). We have H < G1 NGy and |Gy : H| = |G : H| = 2,
and, as noted in the proof of Theorem 4.5, tr(H) C GF(q). If h € H then tr(uh) =
a~l(tr(h) + tr((w, —w)h)) € aGF(qg). Thus tr(G1) C (a)GF(g). Similarly tr(Gy) C
(pra)GF(q). Since a = tr(u) € tr(G1), G1 is conjugate to a subgroup of GL(2,p) if
and only if 2 is a quadratic residue mod p, that is, p = +1 mod 8. Alternatively, if log, g
is even then o € GF(p?) C GF(q). In either case G should be in our list, and G should
be there too, as long as u, € GF(g). However, if log,q is odd and p = +3 mod 8 then
a € GF(p?) \ GF(p), but GF(q) N GF(p?) = GF(p), so only G5 can have a conjugate in
GL(2,q). The test for this is simply whether or not tr(u,u) = u,a € GF(q). O

Remark. If ¢ = 3 mod 4, then no element of Pg,q is in GL(2,q), but all groups may be
rewritten over GF(q) using the algorithm of [14].

Theorem 4.7. Suppose p > 5. After all necessary rewriting, Py, = 7321,(1 UPQZ,q is a list
of the soluble F, -primitive subgroups of GL(2,q).

4.6. The sublist P3 .

Theorem 4.8. Suppose p > 5. Let w € GF(p?) be a primitive fourth root of unity and
let B € GF(p?) be a square oot of 5. Define s as in Theorem 4.5, and

1— 1
w 22 —w(H)

-1 1

e

(i) There is an [, -primitive subgroup of GL(2,q) with central quotient As if and only
if g==x1 mod 5.

(ii) Suppose ¢ = +1 mod 5. Let P, be the list of all groups
<37 (w7 —LU), v, Z)

as z ranges over the even order scalars in GL(2,q). Every element of 'Pg’,q is I, -
primitive and has central quotient As. Conversely, such a subgroup of GL(2,q) is
conjugate to a single group in ’Pg,q.

Proof. Let G an F,-primitive subgroup of GL(2,q) with centre Z such that G/Z = As.
If |Z| is even then H?(G/Z,Z) = Cy, otherwise H?>(G/Z,Z) = 1. From the ordinary
character table of As it can be seen that G does not split over Z. Therefore |Z| is
even and G contains the unique Schur cover of As, namely SL(2,5). The two faithful
irreducible degree 2 representations of SL(2,5) in characteristic p > 5 are related by
the nontrivial outer automorphism of SL(2,5), so there is a single conjugacy class of
irreducible subgroups of GL(2,F,) isomorphic to SL(2,5).
Let H = (s, (w,—w), v) and

K =z, z9, x3 | ac“;’ = :c% = m% = (l‘1$2)3 = (m2$3)3 = (m1m3)2 =1).

It is easy to deduce that K = As. Since s = 1, (w, —w)? = v? = (-1,-1), (s(w,—w))?
= ((w,—w)v)® =1, and (sv)? = (=1,-1), we see that H/{(—1,—1)) is a homomorphic
image of K, hence must be all of K. As H has an element of order 4, unlike A5 x Cy, H
cannot split over its centre. Therefore H = SL(2,5), and G is conjugate to HZ. Clearly
’P23,q is irredundant (it contains a single group of each order 60z).
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A set of representatives for the conjugacy classes of K is {1, z1, 2, 12273, Z322T1 }.
Using the epimorphism of H onto K defined by s — z1, (w,—w) — x2, v — z3, we
can then calculate that, up to multiplication by —1, the elements of H have trace in
{0,1,2,(1+p8)/2, (1 —pB)/2}. Thus g € GF(q), which is equivalent to ¢ = +1 mod 5,
by quadratic reciprocity. O

Proposition 4.9. Let p = 5. The list Pg,q consisting of all groups (SL(2,5), z), z an
even order scalar in GL(2,q), is a list of the B, -primitive subgroups of GL(2,q) with
central quotient As.

The next few results are needed to list the insoluble absolutely irreducible subgroups
of GL(2,q) with central quotient other than As.

Lemma 4.10. If p is odd then PSL(2,q) does not have a faithful representation of degree
2 over GF(q).

Lemma 4.11. A5 =2 PSL(2,q) if and only if ¢ =5; As = PGL(2,q) if and only if ¢ = 4.

Lemma 4.12. Let K be an algebraically closed field and 1. a subfield of K. Suppose G
is a subgroup of GL(n,L) that is irreducible over K. Then, modulo scalars, Ngr,, k) (G)
< GL(n,L).

Proof. If x € Ngp(n,x) (G) then zy € Cqrn k) (G) for some y € GL(n,L), by the Deuring-
Noether Theorem. By the hypotheses about K and G, Cgynx)(G) is scalar. O

Proposition 4.13. Suppose n > 3, or n = 2 and q > 3. Let E be any extension of
GF(q). If G is a subgroup of GL(n,E) isomorphic to SL(n,q) then G is irreducible over
E, and is conjugate to SL(n,q).

Proof. Some ideas in this proof were suggested to us by L. G. Kovécs.

It is known that GF(q), hence E, is a splitting field for SL(n, q); see the main theorem
of [20]. Thus the image of any irreducible E-representation of SL(n,q) is conjugate to a
group over GF(q) (see, for example, [18, 9.8, p.148]). The result will follow once we show
that G is irreducible, because SL(n,q) is the unique subgroup of GL(n,q) isomorphic to
SL(n,q).

Suppose the EG-module E™ has a composition series factor of dimension m < n, so
there is an irreducible representation G — GL(m,q). If m # 1 then this further implies
that GL(m,q) has a subgroup with quotient PSL(n,q) (if mm = 1 then the representation
is trivial). But ¢"(" Y/2 divides |PSL(n,q)|, whereas the highest power of p dividing
|GL(m, q)| is ¢"(™~1)/2 Therefore all EG-composition factors of E™ are 1-dimensional,
and a conjugate of G is unitriangular. But then G is a p-group. O

Theorem 4.14. Suppose p is odd and q > 5. Let a be a generator of GF(q)* and let g
be a power of p such that log, q divides log,q and g >3 if p=3. Set r = (¢—1)/(g—1).
For each q define a list Ly g of subgroups of GL(2,q) as follows:

((a®,a®), SL(2,q)) only if p#5, orp=5and §>5
((a"?,077/2), (f,0%), SL(2,7)) T even

((a(””/?,a(s_”ﬂ), (e, ), SL(2,7)) s,r both odd or both even,
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where s > 1 ranges over the divisors of ¢ — 1 such that (¢ — 1)/s is even. Then define
’Pg,q = U ﬁQaq °
q

(i) Every group in P25,q is absolutely irreducible and has central quotient PSL(2,q) or
PGL(2,q) for some @, and no group has central quotient As.
(ii) An absolutely irreducible insoluble subgroup G of GL(2,q) with central quotient
other than As is conjugate to a group in P25,q.
(iii) Distinct groups in Pg”q are not conjugate.

Proof. (i) SL(2,q) is an insoluble absolutely irreducible subgroup of GL(2,q), and hence
s0 too is every group in P§ . By Lemma 4.11, and because (//2,a~"/2) = (a”,1) mod
scalars and GL(2,q) = ((a",1), SL(2,q) ), every group has central quotient as described.

(ii) Denote the scalars of GL(2,q) by Z and set Z(G) = X = ((a®,a*)), where s
divides ¢ — 1. By Proposition 4.4 (i), G/X is isomorphic to PSL(2,q) or PGL(2,q) for
some g such that log, g divides log,q. Thus G has a subgroup H of index at most 2
with Z(H) = X and such that H/X = PSL(2,7). By [19, Theorem 9.1, p.189] (which
cites R. Steinberg), the multiplier of PSL(2,q) has order 2 unless ¢ = 9, in which case the
multiplier has order 6. Hence there are just two possible isomorphism types for H. One
of these, the direct product, is not relevant by Lemma 4.10. Therefore |X| = (¢ —1)/s is
even and there is a subgroup K of H isomorphic to the unique Schur cover of PSL(2,q),
viz. SL(2,7). The only normal subgroup of H = KX isomorphic to K and containing
the scalar of order 2 is K, so K is characteristic in H and therefore normal in G.

By Proposition 4.13, K is absolutely irreducible and conjugate to SL(2,q). We can
therefore assume that SL(2,g) is a normal subgroup of G, and so |G : SL(2,7)X]| <
2. If this index is 1 then the structure of G is transparent: G is generated by SL(2,q)
and (o, a®). Consequently, from now on let the index be 2, that is, G/X = PGL(2,q).
Lemma 4.12 tells us that G < GL(2,7)Z, and so GZ = GL(2,3)Z. Thus

GL(2,9)Z/SL(2,q)X = G/SL(2,q)X xSL(2,q)Z/SL(2,q)X = CoxCs (1)

If s is odd then there is a single possibility for G in GL(2,7)Z, and if s is even then
there are two possibilities (remember G £ SL(2,3)Z). To obtain generators for these,
we seek an involution of GL(2,¢)Z/SL(2,q)X not in SL(2,q)Z/SL(2,q)X . A preimage
g of this involution in GL(2,¢)Z may be expressed as (a",1)z, some z € Z. For the
square of (", 1)z to be in SL(2,7)X it is necessary that a"z? € X; in other words, there
is some (d,d) € X such that §/a” has a square root in GF(g). This occurs if and only
if either GF(q)* < (GF(g)*)?, or GF(q)* £ (GF(g)*)? and X £ (GF(q)*)?, which in
turn is equivalent to r being even, or r and s both being odd. If r is even then we
take g = (&’/?,a7"/?), and G is generated by SL(2,7)X and either g when s is odd, or
g(a®/?,0%/?) when s is even. If r,s are odd then we take g = (a(*17)/2 o(5=7)/2) This
now accounts for all groups in L 4.

(iii) Since the set { PSL(2,q), PSL(2,q), PGL(2,q), PGL(2,q) } for a power g of p
contains an isomorphic pair only if ¢ = ¢, there is no overlap between the different £, .
For the same reason, a group of the type listed first in £, 4, which has central quotient
PSL(2,q), is not conjugate to a group of the second or third type. If groups of the second
and third type were conjugate, by = € GL(2,q) say, then z € GL(2, ¢)Z; but after passing
to quotients in (1), z would have trivial conjugation action. O
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Theorem 4.15. (i) After rewriting over GF(q), ’Pg’,q U 7’5’,(1 (p >5) or P;‘,q U 7325,,1
(¢ >p=5) is alist P3, of the insoluble F,-primitive subgroups of GL(2,q).
(ii) If g =5 then P35 = {SL(2,5), (SL(2,5), (4,1)), GL(2,5)} is a list of the insol-
uble irreducible subgroups of GL(2,5).

This completes the classification of the irreducible subgroups of GL(2,q) for all p > 5.

5. DEGREE 3
5.1. The sublist Aj3,.

Theorem 5.1. Let o be a generator of GF(q®)*, and define

0O 1 0
b= 0 0 1
a; 02 Qa3

where ay = oLy = —(a?tt + ot 4 oﬂ2+1), and a3 = a+al + o . Let r be
a divisor of ¢> — 1 but not ¢ — 1 nor ¢> — 1. Then A(r) = (b(qs_l)/r) is an irreducible
subgroup of GL(3,q) of order r. An irreducible abelian subgroup of GL(3,q) is conjugate
to A(r) for some r.

Proof. Cf. the proof of Lemma 4.1. O

5.2. The sublist M3 ,. Following earlier practice, we construct a list of the finite irre-
ducible subgroups of M(3,[F,) and then rewrite the relevant part of that list in GL(3,q).

Denote by ¢ and d the 3 x 3 permutation matrices obtained from the identity by
permuting its columns as (123) and (12), respectively. The transitive subgroups of S3
are S3 = (¢, d) and C = (c). Observe that ¢ acts by conjugation on a diagonal matrix
to cycle forward the main diagonal entries; d swaps the first two diagonal entries.

Proposition 5.2. Let K be an algebraically closed field and G be a finite subgroup of
M(3,K). Set M =D(3,K) NG.
(i) If 1G = C then G is D(3,K)-conjugate to (cz, M3) x My, where z is a scalar
of 3-power order such that z> € Ms.
(ii) If 7G = S3 then G is D(3,K)-conjugate to (c, dz, My ) x My , where z is a scalar
of 2-power order such that z> € M.

Proof. (i) is clear by Lemma 3.1 and the fact that H?(G/Mzs, M3) = 1.

(ii) Certainly G splits over My 3y, and by (i), G is D(3 K)—conjugate to HMs 3y
where H = (cz., dm, My, M3), z. a scalar of 3-power order, z2 € M3, and m € D(3 K)
We may write m as the product of a scalar z; and a diagonal matrix (@,o 'w,w™1)
in SL(3,F,). The relations ¢™¢ = ¢ and d> = 1 in S3 imply that (@,w~',1) =
2(1,0,0 Y (w,w,w )t and (w,w,w ?) = zd_ mod My Mj3, from which we conclude
that in H (and relabelling as necessary), m may be chosen as zg(1,w,w™'). Then
(w2, w,w) and (w,w 2, w) are in the C-module M>M3, up to multiplication by scalars.
Therefore

H(Lw,wZ) = (Czc(wﬁ,w,w), dzd(wilawzawil)’ M?a M3>
= <CZC, dZd, M27 M3>

after relabelling. Since zg € MsMs, if we express zg4 as the product of its 2-part, 3-part,
and {2,3} -part, then it is evident that z; is a 2-element, at least mod MsMjs. Similarly
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we can assume z. is a 3-element. But (cz.)? = (cz.)”! mod MyMs, which implies
zg € M3 and hence z. € Ms. O

Remark. For a generalisation of the claim in Proposition 5.2 (ii) that G has a (monomial)
conjugate containing 7G up to scalars, see [2, Theorem 6.10].

Lemma 5.3. A group as in Proposition 5.2 (i) is not isomorphic to a group as in Propo-
sition 5.2 (ii).

Until further notice, in this section p > 5.

Proposition 5.4. (Cf. [2, Theorem 5.4].) Let G be a finite subgroup of M(3,F,). Then
G is irreducible if and only if 1G = C or S3 and M :=D(3,F,) NG is nonscalar.

Proof. Suppose G is irreducible; then 7w is transitive and hence is S or C'. If M is
scalar then the 1-dimensional F,-space spanned by the all 1s vector is invariant under G,
by Proposition 5.2; that is, G is reducible.

Suppose M is nonscalar and 7G = C or S3, so that G has a nonabelian subgroup H
with 7H = C and H ND(3,F,) = M. The p'-group H is isomorphic to a subgroup of
GL(3,C), and if the latter were reducible then all of its irreducible characters would have
degree 1, by Ito’s theorem [18, 6.15, p.84]. But then H would be abelian. Hence H and
thus G is irreducible. O

We now determine the finite C-submodules and S3-submodules of D(3,F,). Bécskai
does this in Chapters 3 and 4 of [2]. Much of what we present for submodules of 3-power
order can be extracted from Conlon [5], although he does not always give explicit matrix
generators for groups.

Let Z be the scalars of GL(3,F,), U be the subgroup of D(3,F,) consisting of all
diagonal matrices (w,w !,1), and set W = U¢. Neither U nor W is a C'-module, but
UxW = D(3,F,) NSL(3,F,) is. Also D(3,F,) = ZUW, and |ZNUW| = 3.

Let 7 # p be a prime, and for i > 0 inductively select primitive r*th roots of unity
w;r € [, such that Wiy, = Wigr- Define

_ . . i L . -1 . . -1

iy = (wz,ra Wi ry wz,r)a Ui r = (wz,ra Wi 1), Wiy = Ujp = (sz,ra Wi )

c _ ,—1, -1 d _ ,—1

Note that wy, = u;  w; =, uj, = u; .,
= U, x W, =2 (Creo X Creo is one of

and 'wz‘-f,, = uj,w;,. A finite subgroup of (UW),

(Uig, Wiy ) <Ué+k,rwj+k,ra Uiy, Wyr )
for some 4,5 > 0, k > 1, and 1 <1 < r¥ —1 such that [ is coprime to r: this may
be deduced from the Goursat-Remak Theorem (see [21, 1.6.1, p.35]), which will be used
again later. For one of these subgroups to be a C-module, i must equal j. Certainly
(uir, wiy) is a C-module. Suppose M = (ué+k,rwi+k,r, Uiy, Wiy ) is a C-module. Then

P—i+1 _

12 l c, _
Witk r (ui—l—k,rwi—i—k,r) Uy g r Witk,r € MW= <wi,r>

so that [2—I1+1 = 0 mod r*. Conversely, if 1> —{+1 = 0 mod r* then M is a C-module;
furthermore r is odd and (completing the square) —3 is a quadratic residue mod r. If
r # 3 then (%) =1 by quadratic reciprocity. Hence r =1 mod 3. Summing up: if r = 2
mod 3 then the C'-submodules of (UW), are

(Uig, wiyp), >0
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and these are also precisely the S3-submodules of (UW),. If r =1 mod 3 then there are
additionally the C-submodules

(ué+k’rwi+k,r, Uig, Wiy ), >0, k>1, 2—14+1=0mod r*,

which are not, however, S3-modules. The two distinct solutions of I2 — 4+ 1 = 0 mod r*
may be found recursively in the manner explained before [10, Theorem 2.3.3].

Now suppose r = 3. There is a solution of > — [+ 1 = 0 mod 3* only if ¥ = 1. The
finite C-submodules of (UW)3 are then

2 .
(uig, wiz), (Uiy13Wit1,3, Wig, wig), >0,

with order 3% in the first instance and 3%*! in the second. All C-submodules of (UW)3
are S3-modules too.

Theorem 5.5. Let r be a prime, 7 # p.
(i) A finite C-submodule of D(3,F,) of r-power order is one of
<zi,'ra Uj,ry wj,r)

l —
(Zir, Wi g pWithrs Ujirs wjr) =1 mod3 only

if r#3, where 3,5 >0, k>1, 12 —1+1=0 mod r*, or one of
<Zi,3,uj',3, wj,3) i,j 21 ori:j:O

2 . .
(23, U541 3Wit1,3, U3, wi3)  1>1, >0

2
(Zi41,3U5 11 3Wi41,3, Uj3, Wi3) |
(22, qu?, | qw; Uj 3, Wi3) ny21
i+1,3%541,3%W5+1,3> ©5,3, W53
2
(Zi41,3Uj11,3, Ui sWie13, Ujs, W) | ,
2 2 121,720
<zz'+1,3uj+1,3a Uj41,3W5+1,35 Uj,3; wj3)
if r=3.
(ii) A finite Ss-submodule of D(3,F,) of r-power order is one of
<zi,ra Ug,r;s Wy,r )
,j >0, 4if r#3, or one of
(23, uj3, w;3) h,j>lori=35=0

2 . .
(%3, Uji13W)+1,3, Uj3, W53 ) 1>1,572>0

(241,305 41 3Wj 41,3, Wiz, Wiz) |
2 2 1,21
(zi+1,3uj+1,3wj+1,3> Uj,3, wj,3>
if r=3.
Proof. Cf. [9, §3.1] and [2, Chapter 3]. Since a section of (UW), is annihilated by
1 + ¢ + ¢2, only sections of order 3 can be C-isomorphic to sections of Z. Thus when
r # 3 only “Cartesian” C-submodules arise in the direct product Z, x (UW),. On the

other hand, the order 3 sections of (UW)s, a uniserial C'-module (see [5, Lemma 1.5] or
[2, Lemma 3.8]), are

2 2
(ujy13Wit1,3, U5z, Wiz )/(uis, wiz),  (ujt1,3, Wi+1,3)/(Uj11 3W)+1,3, Uj3, Wi3),
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j >0, and the first but not the second of these is S3-trivial, whereas both are C-trivial.
Every nonidentity finite C-submodule of (ZUW)3 contains the scalar 21,3, and once this is
factored out (set j > 1 for the first kind of order 3 section of (UW)3 stated above) we have
a direct product on which the Goursat-Remak Theorem may be brought to bear. Non-
Cartesian C'-modules are obtained for each of the two C'-isomorphisms from one length
3 section of Z3/(z13) onto a length 3 section of (UW)3/(z1,3). The S3-submodules of
(ZUW )3 can be picked out from the C-submodules, or by construction, as the Ss-trivial
sections of (UW)3 are known. O

The next proposition resolves S3-conjugacy among C-submodules of D(3,q) of 3'-order.

Proposition 5.6. Let R be the set of all primes not equal to 3 dividing q — 1, with Ry
the subset of primes congruent to 1 mod 3. For each r € R, denote by r° the largest
r-power dividing q — 1, and define

Cl,r = {(z’i,T7 Ujry wj,r) | 0<4,5< 67”}'

For each k > 1 and r € Ry, choose a single solution [, of ?—14+1=0 mod *, and
define

l .. .
CQ,T = {(zi,ra ujifk,r,-wj-i-k,'l‘a Uj.r, wj,r) | 0 < 1,7 < €r, k <er— .7}:

C3,r = {<Zi,r, U;Tk,rwj-kk,'h Ujr, Wy )7 <zi,r, U;;Z;’;cwj—kk,ra Ujry wj,r) | 0<14,75 <ep,
k<er— ]}
Then let C be the list consisting of all M = [],cgr M, where either M, € Cy, for all r,
or for some 7 € Ri, Mz € Cor and M, € Ci, if r < 7, M, € C1,UC3, if 7 > T.
A C-submodule of D(3,q) of 3'-order is Ss-conjugate to an element of C, and no two
distinct elements of C are Ss-conjugate.

All these groups bar the C(i,0,2,¢) are nonabelian. Aided by the order formulae
Clij Lo = 3%, [CG,5,2.6) = |CG33) = [CG,4,4)] = 3425+, [CG,4,5)
= 3%+2 it is easy to see that the C(i,4,k,e) and C(i,75,k) are distinct for distinct
values of the parameters i, 7, k, €.

Theorem 5.7. Let G be a finite irreducible subgroup of M(3,F,) with 7G = C. Then G
is GL(3,Fp) -conjugate to G3 x Gy where Gy := O3 (G) < D(3,F,), and if Gy is scalar
then Gs is one of C(i,4,1,¢), C(i,4,2,¢), C(i,4,3), C(i,5,4), C(i,35,5), 4,5 > 1 and
e € {0,1}, whereas if Gy is nonscalar then G3 is C, one of the aforementioned 3-groups,
or some C(i,0,2,¢) or C(i,0,5).

Proof. Let M be the diagonal subgroup of G. By Proposition 5.2 (i), G is D(3,F,)-
conjugate to (cz, M3 )My, where z € Z3 and 2> € M3. Referring to Theorem 5.5
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(i), we discover that either z € SL(3,F,) mod M3 and then G is D( 3,F,)-conjugate
to (¢, M3)My by Lemma 3.1, or M3 is an Ss-module and z = zz+13 mod Ms,
n € {0,1,2}, where 3" is the order of the scalar subgroup of Mz. Now ((cz?,, 3, M3 Y M3 )¢
= (cziy1,3, M§ )M, so n can be restricted to {0,1}. Similarly, note that

(€ 21305413, U1 3Win13, Ui, wi3)? = C(6,5,5), i>1, j>0.

At this stage we can see that G is M(3,F,)-conjugate to G3Ms , where G3 is one of
the choices stated for nonscalar My = (3 (every nondiagonal subgroup of M(3,F,) of
order 3 is conjugate to C). Further, if My is indeed nonscalar then G3Msy is irreducible
by Proposition 5.4.

Assume now that Ms is scalar. Let

1 1 1
m = 1 w13 wi3
2
]. w:[’s wl’g

Then ™ = w1 3, ufly = ¢ 1213, and wily = ¢!, s0 C(i,1,1,1)™ = C(4,0,5). Hence we
include C(i,7,5) Mg only for j > 1. By Proposition 5.4 G is irreducible if and only if G3
is nonabelian. We ensure this by taking j greater than 0 when G3 = C(i,4,2,¢). O

Lemma 5.8. Every group listed in Theorem 5.7, apart from the C(i,1,1,e)Gy with Gy
scalar, has a unigue abelian normal subgroup of index 3.

Proof. If G3G3 has more than one abelian normal subgroup of index 3 then its diagonal
subgroup has scalar subgroup of index 3, containing Gy . By Theorem 5.7 and the order
formulae before the theorem, we see that this can happen only if G = C(i,1,1,¢). O

Lemma 5.9. Let G and H be isomorphic finite irreducible subgroups of M(3,F,).
(i) 1"G=7H=C or tG=nH = S3.
(ll) If TG = 53 then 0{2 3}I(G) = 0{2 3}/ (H) .

Proof. (i) is just Proposition 5.4 and Lemma 5.3. For (ii) we use the fact that the groups of
diagonal matrices Oy 3)/(G) and Oyy 3y (H) have the same scalar subgroup and order, and
hence must be equal, since those two parameters completely determine an S3-submodule
of (ZUW)g ; see Theorem 5.5 (ii). O

Proposition 5.10. Let G, H be finite subgroups of M(3,TF,) such that 1G = nH = C.
If G™ = H and M™ = N for some m € GL(3,F,) and nonscalar subgroups M of
D(3,F,) NG, N of D(3,Fy,) N H, then m € M(3,FF,).

Proof. Bacskai [2, (2.14)] proved a version of this result for subgroups of M(n,C), n prime,
and his proof is valid for groups over [, . O

Proposition 5.11. Let T be the list of all G3 appearing in the semidirect products G3Gg
of Theorem 5.7, with Gy nonscalar. Distinct groups in T are not isomorphic, except that
c(i,1,1,1) 2 C(:,0,5), i > 1.
Proof. We reconcile our notation for 3-subgroups of M(3,F,) with the notation Py, Py,
Pyio, Pus of [5, §2]. If k is even then Py = 0(1,5,1,0) Pus = 0(1,’;,1,1) Py =
C(l,%£ —1,5), and Py = C(l —1,5)4. If k is odd then Py = C(I,%5,2,0), Pys =
C(l,%52,2,1), Pyr = C(1,%554,3), and Pyp = C(1, %551, 4). Therefore

{C(Z’]’ 1,6)’ C(Z,J’ 2’ E)’ C

3),
7”]’3)’ C(Z’J’ )’ (7]’ ) (Z 0’5) |E€{O’1}’ Z’JZ]‘}
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is a sublist of the list consisting of all Pyo, Pris, Pki1, Prio for k> 2, 1 > 1. According
to [5, Proposition 3.3], the only isomorphism between two distinct groups in the latter
list is Pgy & Py2, k even, which translates to C(l, 5 —1,5) = C(I,£ —1,5)¢. However
C(l,k-1,59 ¢ T.

Suppose G, H € T are isomorphic. There is a single element of 7 of order 3, so by the
preceding paragraph G or H is in {C(4,0,2,¢), C(4,0,5) | € € {0,1},4 > 1}. The only
abelian groups in 7 are the C(i,0,2,¢), and C(4,0,2,0) % C(4,0,2,1), leaving us with
the possibility that G, H € {C(3,0,5), C(i,1,1,¢)}. We saw in the proof of Theorem 5.7
that C(7,0,5) and C(i,1,1,1) are conjugate. Since C(%,0,5) but not C(i,1,1,0) has a
cyclic normal subgroup of index 3, the proof is complete. O

Define {2,3}-subgroups S(i,j, k,l,m,n) of M(3,[F,), 1 <m < 4, as follows:
S(iajakalaman) = <T(Z’]a m)7 dz]g+1,2’ k25 UL,2, wl,2>7 kal > Oa ne {Oa 1}5

where

T(i,5,2) = C(,5,2,0) 121,720
T(i,j,m) = C(,5,m) 3<m<4, 4,5 >1.

The S(i,7,k,l,m,n) are distinct for distinct values of the parameters i,...,7.

Lemma 5.12. Let G be a finite subgroup of M(3,K), K any field, such that G = Ss.
Then G has a unique subgroup H of index 2 such that |H: A| = 3 for some abelian
normal subgroup A of H.

Proof. We claim that H is the subgroup of G containing A = D(3,K) NG and such that
wH = C. Suppose K # H is another subgroup of the same kind, with abelian normal
subgroup B of index 3. Since 7K < S3 and K is not diagonal nor contains a subgroup of
diagonal matrices of index 3, it follows that 7K = S3. Denote AN K by A*. We cannot
have A*B = B because S3 has no normal subgroup of index 3. Thus A*B = K. But
then S3 is isomorphic to the abelian group B/(B N A*). O

Theorem 5.13. A finite irreducible subgroup G of M(3,F,) such that #G = S3 is
GL(3, Fp) -conjugate to one and only one group S(i,j,k,l,m,n)M where M is a finite
Ss-submodule of D(3,Fp) of {2,3} -order, and either M is nonscalar, or M is scalar and
[>1o0rj>1.

Proof. By Proposition 5.2, G is D(3,F,)-conjugate to (c, dz, Nyg3) ) N2 3y where N
= D(3,F,) NG and z € Zy, 22 € Ny. The choices for Ny and Nyy,3y are given in
Theorem 5.5 (ii), and (¢, N3) is one of the T'(i,j,m) appearing in the definitions of the
S(i,7,k,l,m,n). We ensure N is nonscalar, as required by Proposition 5.4, by stipulating
that No, N3, or M = Ny 3y is nonscalar.

Suppose (S(i,j, k,I,m,n)M)* = S(', 5, k',I",m',n')M' for some = € GL(3,Fp). Then
M = M' by Lemma, 5.9, and the equalities i =4, j =35/, k=K', =1, and m =m'
follow from Lemma 5.12, Proposition 5.4, and Proposition 5.11. By [11, Theorem 8.10 (i)],
z is monomial — the sole situation in which conceivably = ¢ M(3,F,) involves conjugacy
between (C(i,1,1,0), d, z;2) and (C(i,1,1,0), dzgy1,2), groups which have more than
one abelian normal subgroup with quotient S3 (here [ = 0 and M is scalar). But a
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Sylow 2-subgroup of the second group is (dzyy1,2), whereas a Sylow 2-subgroup of the
first group is noncyclic. So we are left to consider n = 0 and n’ = 1, in which case

(d, zk2, w2, wi2)® = (dzk41,2, W2, Wi2)
for some z € M(3,F,). Therefore z17¢ = 2119 mod (2k2, w2, w2 ), further implying
that (zx412) C SL(3,F,). This is absurd. Hence 1 = 7'. O
At last we can list the absolutely irreducible subgroups of M(3,q).

Theorem 5.14. Let G be an irreducible subgroup of M(3,F,) conjugate to a subgroup of
M(3,q). Let a be a generator of O3(GF(q)*), |a| = 3!, and set |O2(GF(q)*)| = 2.
(i) Suppose G = C'. Let C be as in Proposition 5.6. Then G is conjugate to a group
in My, defined for t > 1 to be the list of all subgroups G3Gy of M(3,q), Gz a
C -submodule of D(3,q) of order not divisible by 3, and G3 one of

C, Gz nonscalar only

C(4,75,1,0) 1<i<t

C(i,j,1,1) 1<i<t—1 $1<j<t

(c(a,1,1), uj3, wj3z)

C(i,4,2,0) 1<i<t lo<j<t—1,
C(i,3,2,1) 1<i<t—1 but 7 > 1 when

2 Gy is scalar
(cla,1,1), ufyy swjen 3, uj3, wi3) g

C(i,7,3) 1<i4,j<t—lori=j=t
0(2,354) 1Siajst_1
C(i,7,5) 1<i<t—1,0<j<t—1, butj>1 when Gy is scalar,
where Gy € C when G3 is C, C(i,5,1,0), C(i,4,2,0), C(i,35,3), or C(i,5,4),
and Gy is unrestricted otherwise. If t =0 then Mg’q consists of the CGy with
Gy € C nonscalar.
(ii) Suppose 7G = S3. Then G is conjugate to a group in Mg’q, defined to be the
list of all subgroups S(i,j,k,l,m,n)M of M(3,q), where M is an Ss3-submodule
of D(3,q) of {2,3} -order, and S(i,j,k,l,m,n) is as defined before Lemma 5.12,
with 0 < k,l <s, ne€{0,1}, n=0 if k = s, and the other parameters range as
follows:
m=1, 1<4,j<t
m=1, i=75=0, M nonscalar or [ > 1 only
=2, 1<1<t, 0<j<t—1, butj>1if M is scalar and | =0
=3, 1<ij<t—lori=j=t>1
m=4, 1<4,j<t—L.
(iii) M3q:= Mg,q U Mg"q consists of absolutely irreducible subgroups of M(3,q).
(iv) Distinct groups in Mz q are not conjugate.

m
m

Proof. (i) It suffices to assume G = G3Gg is in the list of Theorem 5.7. Clearly
Gy < D(3,q), and if G3 is normalised by Ss3 then by Proposition 5.6 we may take
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Gy € C. For some 4,5 > 0, (23, uj3, w;3) < G, and ¢ < t. Since a conjugate of G
lies in a Sylow 3-subgroup of M(3,¢), and the latter has exponent 3'™!, we have |u;3| <
31 s0 j<t+4+1.If j=t+1 then uj3 is conjugate to cm for some m € D(3,q). But
tr(em) =0, and if wj3 +w;§ +1=0 then j=1. Thusif ¢ > 1 then j <t¢. If GF(¢)*
has trivial Sylow 3-subgroup then G5 = C and Gy is nonscalar. From now on, ¢t > 1.

If G3=0C(i,j,1,e), 1<j<t,and 1 <i<torl<i<t—1 according as € =0 or
e = 1, respectively, then G < M(3,q). However C(t,5,1,1) £ M(3,q). By Lemma 5.8,
the diagonal subgroup of every other G is conjugate to a subgroup of D(3, ¢), so must also
be in D(3,q). Since C(i,t,2,¢) has an element (w? w ', w™!), w® = «, not in D(3,q),
we insist j < t if G3 = C(i,7,2,¢). For the same reason, if G3 is C(i,4,3) or C(i,7,4)
and ¢ <t—1 then j <t—1, although i = j =t is allowed for G3 = C(3, j,3). Suppose
Gs = C(i,7,5), so that G5 contains the diagonal subgroup of C(i,j,2,¢). Therefore j
cannot be ¢, and 1 <t —1 too.

With parameter ranges as indicated, all groups are visibly in M(3,¢) except for the
C(t,4,1,1)Gy and C(t,4,2,1)Gs . In each case here we conjugate by (1,w !, w 2) to get
a group in M(3, q), generated by the same diagonal subgroup and c(a,1,1).

(ii) By Theorem 5.13, G is the product of some S(i, 7, k,l,m,n) and an S3-submodule
of D(3,F,) of {2,3} -order. It follows from Lemma 5.12 that the diagonal subgroup of G
isin D(3,q), and thus 0 < k,/ < s. Now if kK = s and n = 1 then G contains the element
dzs11,2 which has trace outside GF(q), so we exclude that pair of parameter values. The
restrictions on 7 and j come from (i).

(iii) We reiterate that groups in M3, are irreducible over I, by Proposition 5.4.

(iv) We appeal to Lemma 5.3 and Theorem 5.13 to discount conjugacy between different
groups in M3, or between a group in M3, and one in M3 . Suppose G, H € Mj , are
conjugate. By Proposition 5.11, either G3 = Hs, or G3, Hs € {C(i,1,1,1), C(4,0,5)} and
Gy, Hs are nonscalar. Since C(i,1,1,1), C(4,0,5) are certainly not M(3,F,)-conjugate,
by Lemma 5.8 and Proposition 5.10 we have G7* = Hs = G5 and G% = Hjy for some
m,m € M(3,F,), #m = mm. If ¥m € C then Gy = Hy. If 7m ¢ C then G% is
D(3,TF,)-conjugate to G3, and so the diagonal subgroup of G3 is an S3-module. From
the definitions it may then be seen that G¢ = G3. But in this case Gy, Hy € C, and
distinct elements of C are not S3-conjugate. O

Remark. The list of S3-submodules of D(3, q) of {2,3} -order may be easily written down
from Proposition 5.6.

We leave as an exercise the formulation of an equivalent to Theorem 5.14 for fields of
characteristic 3, by employing Proposition 3.2 for projection C'.

5.3. The sublist PM3,.

Proposition 5.15. Let G be an absolutely irreducible GF(q)-primitive F, -monomial
subgroup of GL(3,q). Then G has an irreducible abelian normal subgroup.

Proof. We invoke Proposition 3.3 several times. Observe that G has an abelian normal
subgroup A where G/A is isomorphic to C or S3. Suppose G/A = C. If A is scalar then
G is abelian; but G is absolutely irreducible and so A is irreducible. Suppose G/A = Ss.
If A is reducible then G has an abelian subgroup of index 2 containing A, which is not
scalar; so A must be irreducible. O



LINEAR GROUPS OF SMALL DEGREE OVER FINITE FIELDS 23

Proposition 5.16. Let a be a generator of GF(q)*, and write ¢ —1 = 3!, | coprime to
3. Denote the scalars of GL(3,q) by Z. Let A be the Singer cycle generated by b as in
Theorem 5.1, and let a be the matriz whose ith row is the first row of b4~14, 1 < i < 3.
Then it is valid to define PM3 4 to be the list of all groups

(a, Ay, (ab® " A)

where A ranges over the subgroups of 1~4 ofvorder not dividing 3(q — 1),~Z ranges over
the subgroups of A such that O3(A) £ A, |A| does not divide ¢ —1, O3(ANZ) # 1, and
k is defined by O3(ANZ) = (b(q?’*l)/?’lc ).

Proof. Heeding Proposition 5.15, we follow Short’s prescription [22, Theorem 4.2.7] as in
Proposition 4.3. 0

5.4. The sublist P35 ,. By Proposition 3.6 (i), Ps3 , is nonempty only if ¢ =1 mod 3,
implying p # 3 and if p = 2 then log, q is even. Henceforth p > 5.

Corollary 3.7 tells us that a soluble primitive subgroup of GL(3,F,) has central quotient
Ty, := (C3 x C3) x L where L is an irreducible subgroup of SL(2,3), and the conjugation
action of L on C3 x C3 is the natural action of a subgroup of SL(2,3) on its underlying
vector space. The possible isomorphism types for L are Cy, Qs and SL(2,3). Since, for
each isomorphism type, there is a single conjugacy class of subgroups of SL(2,3) of that
type, each choice of L determines a single isomorphism type of T7,. An easy exercise
establishes that Tsr,(2,3) has the following power-conjugate presentation:

3 2 .2 2 .3 .3
(z1, x2, T3, T4, T5, e | 2} =1, 25 =25 =x4, 25 =25 =23 =1,
1 1 __ T2 __
To" = XT2T3T4, Ty = T2, Ty~ = T3L4,
TEt = T578, TP = T5T6, Ts® = T3, Tyt = T%,

T2 _ 2 T3 _ T4 _ .2
Tg? = TsTg, Tgo = 5, Tg' = Tg )

with the usual convention that trivial conjugate relations are omitted (for example, zg*
= zg). We have (z9, 23) = Qg, (z2, £3) X (x1) = SL(2,3), and (x5, zg) = C3 x Cs
is the underlying GF(3)-space.

For each L, we determine first all isomorphism types of extensions of a scalar group
Z by Tp; then, for each isomorphism type G (apart from those with a noncyclic abelian
normal subgroup), from its character table and knowledge of its automorphism group,
we find the number of GL(3,IF,)-conjugacy classes of irreducible primitive subgroups of
GL(3,F,) isomorphic to G. Finally we demonstrate explicitly the required number of
linear groups in each case. We can assume the only primes dividing |Z| are 2 or 3.

Note that Aut(Z) x Aut(77)-action accounts for all possible isomorphisms between
extensions of Z by T}, , because such an extension has centre precisely Z (77}, is centreless).

In the sequel we use the results of routine computations in MAGMA: Holt’s algorithm
[15] to determine Schur multipliers of permutation groups and our package [12] to construct
cocycles for central extensions of soluble groups.

First let L = (xz2) = Cy. The derived subgroup of T¢, is C3 x Cs and its Schur
multiplier has order 3. Suppose Z is a (nontrivial) 3-group. An extension of Z by T¢,
contains the (unique) Schur cover S of T¢,: this can be seen in the usual fashion. By the
Universal Coefficient Theorem, H?(T¢,,Z) = Hom(Hy(T¢,),Z) = Hom(Cs, Z) = Cjs.
Denote the elements of Hom(H2(T¢,), Z) as [xi], 1 <1 <3, [x1] trivial. We may write
Xi as u;¢ where ¢ is a 2-cocycle Tg, — Ha(T¢,) and p; € Hom(Hy(T¢,), Z). Further,
if 0 is the inversion automorphism of Z then Ouy = us, so [x2]? = [x3] = [Buad] = [x3].
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Consequently [x2], [x3] give rise to isomorphic extensions. The splitting extension of Z
by T¢, is forbidden here (by primitivity), and since x2 maps into the minimal subgroup
of Z, an extension arising from [x2] contains a subgroup isomorphic to S, as claimed. A
power-conjugate presentation for S is

(Y1, ¥2, U3, Y, U5 | ¥i=w2, V3 =yl =yi=1y2=1,
Y3t = y3ys, ¥§* = 3, (%)
Yy = ysyiys, Y5 = YiVE, vy® = yay? ).

Lemma 5.17. The subgroups of GL(3,F,) isomorphic to S are in three conjugacy classes.

Proof. The automorphism group of S has three orbits in the set of faithful irreducible
ordinary characters of S of degree 3. O

Let w € F, be a fixed primitive cube root of unity, and let ¢, z := 213 = (w,w,w),
wi=w3=(Lw,w™!), u:=u1 3= (w,w™!,1) be as in Section 5.2. Define

1 1 1

1 2
v=—7 l w w
wow 1 ? w

Observe that v € SL(3,F,) and |v| = 4. (In the proof of Theorem 5.7, (w — w?)v was
called m. The choice of v and other generators is suggested to us by [3, pp. 108-109].)
We have the following relations involving ¢, w, u, z, and v:

z=uww t, u=w, w'=ulwl d=w uw=clz, w' =c

Fix a square root ¢ € I, of —1. Consider the three subgroups

S1=(v,¢, z,u,w), Soe={(-v,¢ 2 u w), S3={(w,c 2z, u w)
of GL(3,F,). Each of these groups is a split extension of C(1,1,1,0) = (¢, z, u, w)
(notation defined before Theorem 5.7) by a cycle of order 4. Thus |S;| = 108 for all i.

Remark. If H is a soluble absolutely irreducible F, -primitive subgroup of GL(3,q) then
by Theorem 3.6, Fit(H) is conjugate to a subgroup of M(3,F,). Indeed, if |Z(H)| = 3
then a Sylow 3-subgroup of Fit(H) is conjugate to C(i,1,1,0).

Lemma 5.18. Sl = SQ = 53 =~ 5.

Proof. Let y3 = w, ys = *u?, ys = z, and y; = v. It is readily checked that all relations

in the power-conjugate presentation (*) for S hold in S;. Since S; = (v, c*u?, z,w) and
|S1| = 108 = |S|, we deduce that S; = S. The other two isomorphisms follow after
replacing y; = v by y1 = —v and y; = wv respectively. O

Proposition 5.19. Let ¢ =1 mod 3. Let L be the list consisting of all groups
<Sla$>’ <8’2’$>a

and

(S5, z) q=1 mod4 only,
as (z) runs over the set of distinct odd order scalar subgroups of GL(3,q) such that the
3-part of |z| is not 3. Every group in L is a soluble F, -primitive subgroup of GL(3,q),
and distinct groups in L are not conjugate. An F, -primitive subgroup of GL(3,q) with
central quotient T, and odd order centre is conjugate to a group in L.
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Proof. Fit(S;) = C(1,1,1,0) is absolutely irreducible, and each S; is F, -primitive because
its central quotient does not have a normal subgroup of index 3 or 6. Therefore each
group in L is F,-primitive. Suppose (S;, ) and (Sj, 2’) are conjugate. Both groups
have the same centre Z = (z,z) = (z, 2'), and S;Z3 and S;Z3 are conjugate. By
Proposition 3.6 (iii), if K,K are complements of Fit(S;Z3) in S;Z3 of order 4 then
K73, K75 are conjugate; since v € SL(3,F,) and det(ww) = —¢ and det(—v) = —1, it
follows that 7 = j.

If the 3-part of |z| is 3 then (S;, z) = (S;, ') € L, where z’ is scalar of odd order
whose 3-part is not 3. The restrictions on |z| also mean that groups (S;, z) in £ are
distinct for different values of i, z.

A subgroup of GL(3,F,) isomorphic to S is conjugate to one and only one of S;, Sy,
or S3 by the preceding and Lemmas 5.17, 5.18. Thus if G < GL(3, ¢) is primitive over [,
has centre of odd order, and central quotient T¢, , then a conjugate G of G contains some
S;. Let Z(G) = (z). Then (S;, z)/{z) = Tc, implies G = (S;, z). Since tr(w) = ¢,
necessarily ¢ =1 mod 4 if 7 = 3. 0

Now suppose |Z| is even. We then have H?(T¢,, Z) = Ext(Cjy, Z3) x Hom(Cs, Z3). Let
[¥x] be a 2-cocycle class in H%(T¢,, Z), where [1)] € Ext(Cy, Z2) and [x] € Hom(C3, Z3)
= (3. If [x] = 0 then a corresponding extension of Z by T, has an abelian normal
subgroup that is noncyclic (an extension of Z by C3 x C3), so [x] # 0, by primitivity.
As already observed, the two nontrivial possibilities for [x] are related by the inversion
automorphism of Zs. Likewise, if 4 divides |Z| then the two elements of Ext(Cy, Z2) of
order 4 are related by an automorphism of Zs (that fixes the cocycle class of order 2). We
deduce that there are exactly two isomorphism types of extensions of Z by T¢, if |Z| =2
mod 4, and exactly three types if 4 divides |Z].

Let H < GL(3,F,) be a primitive extension of Z by T¢,. Suppose |Z| = 2 mod 4.
The two possible isomorphism types for H are distinguished by the fact that one has a
subgroup isomorphic to the Schur cover S of T¢,, while the other does not. In the first
case H = 517 = S37Z or H = 537, up to conjugacy, and in the second case there exists
h € H of order 8. Let v € F, be a primitive eighth root of unity, so that ( H, v) has a
subgroup isomorphic to S, and thus contains S1Z or S3Z up to conjugacy. Then H/Z
is a subgroup of (S;Z, v)/Z = Tg, X Cs, i =1 or 3, and there are two subgroups of this
direct product that could be H/Z, which leads to the conclusion that H is conjugate to
one of

(vv, ¢, u, Z), (1/_11), cu, Z), (wv,c,u,Z), (u/_lv, c,uy, Z).

The first and fourth of these groups coincide, as do the second and third. Define
vg € SL(3,[F,) by

1 1l w w

_ 2 2

Vg = 3 w w w
w—w

W oW w

Then v*? = v~!, and vy normalises (¢, u, Z ). Hence the first and second groups above
are conjugate. Since tr(vv) = v, either group is conjugate to a subgroup of GL(3,q) only
if ¢ =1 mod 8, in which case the group is actually in GL(3,q).

Suppose 4 divides |Z|. One isomorphism type of H (the one with cocycle that has
a trivial Ext component) contains some S; up to conjugacy, and since here « € Z there
is a single GL(3,[F,)-conjugacy class of groups isomorphic to H, namely the one with
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representative S1Z = SoZ = S3Z. For H of the other two isomorphism types, we mimic
previous arguments to find that H is conjugate to one of

<>\IU7 c’ u7Z>’ <>\2’U7 c’ ,U,,Z)

where )\ is a scalar whose fourth power generates Z,. Also these two groups are non-
conjugate (for a Sylow 2-subgroup of one, ( Av), is cyclic, but a Sylow 2-subgroup of the
other, (A\?v, Z3), is noncyclic).

The following theorem collects together the various results for L = Cy.

Theorem 5.20. Let ¢ =1 mod 3, and fiz a primitive eighth root of unity v € F,. Define
’Piq to be the list of all groups

<Sla 33)
S1, x')

Sy, o) } q =1 mod 4 only

(vv,c,u, ') qg=1 mod 8 only

n

éig:zz g: Z: z,,; } g =1 mod 16 and A\y» € GF(q) only

where (x), ('), (z") run over the distinct scalar subgroups of GL(3,q) such that |z|
is odd, |z'| =2 mod 4, |z"| =0 mod 4, \y» € Fp is a fourth root of z", and for groups
(Si, z), (Si,z'), (Si, 2"), the 3-parts of |z|,|z'|,|z"| are not 3. Every group in ’Pg’q is
a soluble T, -primitive subgroup of GL(3,q), distinct groups in P?},q are not conjugate, and
an [, -primitive subgroup of GL(3,q) with central quotient (Cs x C3) x Cy is conjugate
to a group in P?}’q.

The methods used above for L = Cy may now be applied with equal effectiveness when
L= Qg and L = SL(2,3). We briefly discuss vital ingredients of the construction in those
cases and then present the resultant lists.

Let L = Qg. As usual 3 divides |Z|. Observe that T, has pc-presentation

(29, T3, T4, T5, Tg | T3 = a3 = x4, TF = 13 = 23 =1,

T = T3T4, T§® = TsTe, Te® = Ta, To' = T8,

TE? = T573, TG = T5, TE = 2% )
with (z2, z3) = Qgs. Relabel v as vy, and let v be as defined before Theorem 5.20.
The mapping z2 — v1, x3 — vy defines an isomorphism (zo, 3) — (v1, v2). We have
TQS/TéQS = C2 X Cg and HQ(TQS) = Cg, SO H2(TQ8,Z) = 02 X CQ X 03 if |Z| is even,
and H%(Tq,, Z) = Cs if |Z| is odd. Further, Aut(Z) x Aut(Tg,) action on H%(Tg,, Z)
(discarding extensions with noncyclic abelian normal subgroups) yields two orbits in the
former case and one in the latter, so we have either one or two possible isomorphism types
of extensions of Z by T, , depending on whether |Z| is odd or even.

There are two distinct conjugacy classes of subgroups of GL(3,F,) isomorphic to the
Schur cover S of Tg,. (Cf. Lemma 5.17. Again the cover is unique, since [T, /T, | and
|H2(Tq,)| are coprime.) One of these is represented by the subgroup

Sl = <Ula V2, C, 2, U, ’LU)
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of SL(3,F,). Note that v{®* = vy where

1

U3 = (8&)_ 7676)a

e € F, a cube root of w?. The other class is represented by
SZ = <U17 —v2, ¢, 2, U, w)

A Sylow 2-subgroup of Si, but not of Sy, lies in SL(3,F,), so S; and Sy are certainly
nonconjugate.

Let H be a primitive extension of Z in GL(3,F,) such that H/Z = Ty,. If |Z] is
odd then H contains a conjugate of S; or So, so that H is conjugate to S1Z or S»Z.
Suppose |Z| is even. Here H splits over its Hall 2'-subgroup, with complement Hs that
is an extension of Zy by Qs. One isomorphism type of H contains S; or S2, and so
contains both; hence H = §17. Suppose H has one of the other isomorphism types; then
H does not have a subgroup conjugate to S; or Sy, meaning that Hs does not split over
Zy. We can discover the structure of H by considering cocycle classes in Ext(Qs/Q%, Z2) -
Let 7 be a scalar whose square generates Zs, so that ( H, 7) contains S;. Looking at
(H, 17)/7Z = Tg, x C2, we recognise

<IU17-5 V2, C, U, Z>’ <U15 V2T, C, U, Z)7 <U17-a V2T, C, U, Z)

as candidates for H. Using v%* = v and v%® = vivy ', we see that all three groups are
conjugate.

Theorem 5.21. Let ¢ =1 mod 3. Define P??’q to be the list of all groups

< 517 .'L')

< ‘52’ :II)

<S1, 37’)

(Tprv1, v2, ¢, u, ') q=1 mod 4 and T,» € GF(q) only

where (z), (z') run over the distinct odd order and even order scalar subgroups of
GL(3,q), respectively, 1,0 € Fy is a square root of =', and for groups (S;, z), (S;, =),
the 3-parts of |z|,|x'| are not 3. Every group in P?%,q is a soluble T, -primitive subgroup
of GL(3,q), distinct groups in P;f”q are not conjugate, and an Iy -primitive subgroup of
GL(3,q) with central quotient (Cs X C3) X Qg is conjugate to a group in ’P??,q.

Finally, let L = SL(2,3). Since TSL(2,3)/TSIL(2,3) = Hy(Tsp(2,3)) = Cs, we can assume
for the moment that Z is a 3-group, so H2(TSL(2,3),Z) 2 (3 x C3. There are three
distinct isomorphism types for a primitive extension H of Z in GL(3,F,) such that
H/Z = Tsy(2,3)- In particular we have the following three pairwise nonisomorphic Schur
covers of Tgp,o3) in GL(3,Tp):

Sl = <U17 V2, U3, C, %, U, UJ), 52 = <Ula V2, VU3, C, 2, U, 'LU),
S3 = <U17 V2, V2’U3a c, z, U, ’U))
where v € [, is a cube root of z. Any Schur cover of Ty (p3) in GL(3,F,) is conjugate
to some S;. Suppose |Z| =3, i > 1, and let = be a generator of Z. Let v; be a scalar
of 3-power order such that v = 12370 (thus v; € Z), and define
G(’L, ]-) = <U1, V2, U3, C, T, U, w)a G(Za2) = <’l)1, V2, V303, C, T, U, UJ),
G(i,3) = (v1, v2, V2v3, ¢, T, u, ).
Note that G(1,7) = S;.
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Proposition 5.22. Let g =1 mod 3. A primitive absolutely irreducible subgroup G of
GL(3,q) with centre Z = (x) of 3-power order and central quotient Tgy, 2 3) 15 GL(3,Fp)-
conjugate to G(i,7) for a unique pair of values (i,7).

Proof. We have already dealt with the case 1 = 1, so let 7 > 2. From our cohomological
deliberations we know that either (a conjugate of) G contains some S;, or G has an
element cubing to x or 22, modulo Z3. In the first case G = G(i,1); note that G(i,1) for
i > 2 contains all the Sjs. Otherwise, G/Z is a subgroup of (S;Z, v;)/Z = SL(2,3) x C3
for some j. We can take 5 = 1. Since SL(2,3) has a unique subgroup of index 3, there
are two choices for G, and these are precisely G(i,2), G(i,3). O

Corollary 5.23. Let ¢ =1 mod 3, and let 3! be the largest power of 3 dividing g — 1.
Define P??,q to be the list of all groups

(G(i,1),z) q=1 mod9 only
(G(3,2), z) ev; € GF(q) only
(G(3,3), z) ev? € GF(q) only

1<i<t, (x) ranging over the scalar subgroups of GL(3,q) of 3'-order. Groups in ’ngq
are pairwise nonconjugate soluble F, -primitive subgroups of GL(3,q). An F,-primitive
subgroup of GL(3,q) with central quotient (C3 x C3) x SL(2,3) is conjugate to a group in
P3,.

a

Remark. Groups in Pj ¢ are pairwise nonisomorphic.
)

Theorem 5.24. If ¢ = 1 mod 3 then P31,q U 7332,(1 U P§’7q is a list P3, of the soluble
absolutely irreducible T, -primitive subgroups of GL(3,q); if ¢ # 1 mod 3 then no such
groups exist.

This completes the classification of the soluble irreducible subgroups of GL(3,¢) for all
odd gq.

6. ELECTRONIC ACCESS TO THE CLASSIFICATION

A database of parametrised presentations for the groups is publicly available; it is
designed for MAGMA [4], but the data is available to other computer algebra systems.
Its contents are procedures which encode the generating sets and constructions presented
here: these take as input the degree and field and return the relevant list of groups.

The conjugating element constructed by the rewriting algorithm of Glasby & Howlett
[14] depends on various random selections; hence the rewritten group returned may vary up
to conjugacy. In all other respects the outcome of our procedures is completely determined.

We have taken steps taken to ensure that our determination and the resulting database
are accurate. For sufficiently “small” finite fields E, we can compute directly in MAGMA
all irreducible subgroups of GL(n,E) for n = 2,3, and determine whether two given
subgroups are conjugate. For all prime powers up to 100, we established a complete
correspondence between our lists and the results of these direct computations. We also
obtained (numerical) agreement between our results and those of [7] and its extension.

In Table 1 we report the time ¢ in CPU seconds to construct all k£ soluble irreducible
subgroups of GL(3,¢) using MAGMA V2.10 on an 800 MHz processor.
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q k t

5 22 1 0.01
54| 2274 6
59 520 | 0.1
510 1 29416 | 27
5151162528 | 95
17° 362 1
97° | 61032 | 105

TABLE 1. Number of soluble irreducible subgroups of GL(3, q)
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