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I. I NTRODUCTION

The existence of a binary self-dual doubly-
even [72, 36, 16] code remains a long-standing
question, first posed by Sloane [17] in 1973.
Determining the automorphism group of such
a code may be a useful first step to construct
it. In a series of papers [4], [5], [7], [10],
[14], [15], [20], both its order and structure
were investigated. The strongest result is the
following established in [6].

The automorphism group of a binary self-
dual doubly-even[72, 36, 16] code has order
5, 7, 10, 14, 56, or a divisor of72.

In this paper, we exclude all groups of
order72, 56 and all but one group of order36,
obtaining the following.

Theorem The automorphism group of a binary
self-dual doubly-even[72, 36, 16] code has or-
der 5, 7, 10, 14, or d whered divides18 or 24,
or it is A4 × C3.

Critical to our proof is the observation that
if a codeC has a specific automorphism group
G, thenC is a submodule of the group algebra
KG where K is the binary field. We use a
variety of results, some new, from modular

representation theory to deduce significant con-
sequences for the structure ofKG when C is
a self-dual doubly-even[72, 36, 16] code. We
apply these results to devise a practical algo-
rithm to decide ifG is the automorphism group
of C. Finally we use this algorithm to study
KG computationally. IfKG does not satisfy
the requisite properties, then we conclude that
G cannot be the automorphism group of the
code; otherwise our algorithm constructsC. For
groups of order 36 (with the noted exception),
56, and 72, this program was successful.

All computations were carried out using
MAGMA [1]. The minimum distance of a code
was determined using the algorithm of Brouwer
& Zimmermann [3]. We use the descriptions
and identifiers of the groups of certain orders
provided by the SMALL GROUPS library [2].

II. BACKGROUND AND NOTATION

Let K be the binary fieldF2 and letKG =
{
∑

g∈G kgg | kg ∈ K} denote the group
algebra of a finite (multiplicative written) group
G over K. The multiplication in the algebra
KG is given by the multiplication in the group
G extended linearly.

If H is a subgroup ofG, then we may write
G = ∪s

i=1Hgi where {g1, . . . , gs} is a set of
transversals fromH in G. Let KG

H denote the
K-vector space generated by{Hg1, . . . ,Hgs},
hence KG

H = ⊕s
i=1KHgi. For an arbitrary

g ∈ G we haveHgig = Hgj where1 ≤ j ≤ s
depending oni. Thus KG

H is a KG-module
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via this action and is the permutation module
corresponding to the permutation action ofG
on the cosetsHgi. In particular,KG = KG

H

for H = 〈1〉.
If we considerKG

H as the ambient space of
a code thenHg1, . . . ,Hgs are used as the fixed
basis. The natural non-degenerate bilinear form
on KG

H which defines the concept of duality for
codes is given by

(Hgi,Hgj) = δij . (1)

Observe that the form(· , ·) is G-invariant since

(Hgix,Hgjx) = (Hgi,Hgj)

for all x ∈ G and i, j = 1, . . . , s. In particular,
for the group algebraKG = KG

1 the bilinear
form is given by

(g, h) = δgh. (2)

Let C be a binary linear code of length
n with automorphism groupG. Thus C is a
subspace of the vector spaceV = Kn. Via
the action ofG as a group of permutations on
the coordinate positions, the spaceV carries
the structure of a (right)KG-module. SinceC
is invariant underG, we deduce thatC is a
submodule ofV . The module structure of the
ambient spaceV can be described as follows.
If i1, . . . , is are representatives of the orbits of
G on Ω = {1, . . . , n} and if Gi denotes the
stabilizer ofi ∈ Ω in G, then

V = Kn = KG
Gi1

⊥ . . . ⊥ KG
Gis

. (3)

Furthermore, if |G : Gij
| = nj (the length

of the orbit containingij), then the elements
in the first componentKG

Gi1
have non-zero

entries in the firstn1 positions, those in the
second componentKG

Gi2
have non-zero entries

in positionsn1 +1, . . . , n1 +n2, and so on. The
bilinear form onV is the orthogonal sum of the
bilinear forms on the componentsKG

Gij
.

III. PRELIMINARIES

As above letV denote the ambient space
of a binary codeC with automorphism group
G.

Lemma 1: If V = Kn = KG and C =
C⊥ is doubly-even then the Sylow2-subgroup
of G is not cyclic.

Proof: See the main result of [18], or [12,
Theorem 4.4].

Lemma 2 requires some facts from repre-
sentation theory which we now recall. IfV is a
KG-module thenV ∗ = HomK(V,K) becomes
a KG-module via

v(fg) = (vg−1)f

wherev ∈ V, f ∈ V ∗ and g ∈ G. The module
V ∗ is thedual moduleof V . If V ∗ is isomorphic
to V as aKG-module thenV is self-dual (as
a module). Recall that the trivialKG-module
is K on which all elements ofG act as the
identity; it is self-dual. The regularKG-module
V = KG is also self-dual sinceα : KG →
KG∗ defined by

x(yα) = (x, y)

for x, y ∈ KG and (· , ·) as in (2) is an
isomorphism. It is well know that

KG = P1 ⊕ . . . ⊕ Pm

with indecomposable modulesPi. By the Krull-
Schmidt Theorem [9, Chap. I, Theorem 11.4],
this decomposition is unique up to isomor-
phism. Each summandPi is a projective in-
decomposable modulefor KG. Since thePi

are direct summands ofKG, a free module,
they have a particular structure which we now
describe.

Lemma 2:Let P be an indecomposable
direct summand ofKG.

a) P has a largest completely reducible sub-
module, namely its socleS := soc(P ),
andS is irreducible.

b) P has a unique maximal submodule J(P )
andP/J(P ) ∼= S.

c) The isomorphism type ofP is uniquely
determined by the isomorphism type ofS.
(We call P the projective coverof S and
write P = P (S).)

d) Let Q be a direct sum of projective in-
decomposable modules; i.e. an arbitrary
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projective module. IfQ is a submodule or
a factor module of some moduleW thenQ
is (up to isomorphism) a direct summand
of W .

Its proof can be found in [11, Chap. VII,§10–
11].

Lemma 3:Let V = Kn = KG and sup-
pose that all of its projective indecomposable
modules are self-dual modules and occur with
multiplicity 1 in a direct decomposition ofKG.
If C = C⊥ ≤ KG then

soc(C) = soc(KG).
Proof: Write V = KG = P1 ⊕ . . . ⊕

Pm with projective indecomposable modules
Pi. By assumption, thePi are pairwise non-
isomorphic. Obviously,

soc(V ) = soc(P1) ⊕ . . . ⊕ soc(Pm),

and soc(Pi) = Si for pairwise non-isomorphic
irreducible modulesSi, by Lemma 2 c). Sup-
pose that, for somei, soc(Pi) 6⊆ soc(C). Since
the socle ofP is irreducible,C ∩Pi = 0. If we
define α : V → C∗ by c(vα) = b(v, c) for
v ∈ V andc ∈ C then we easily see that

V/C = V/C⊥ ∼= C∗

since Ker α = C⊥ = C (see [19, Proposition
2.3]). ThusPi is (up to isomorphism) a submod-
ule of C∗. It follows thatP ∗

i is a factor module
of (C∗)∗ ∼= C. HencePi is (up to isomorphism)
a factor module ofC sinceP ∗

i
∼= Pi. Thus there

is a chain

0 ≤ X ≤ Y ≤ C ≤ Z ≤ U ≤ V

of KG-modules with

Y/X ∼= U/Z ∼= Pi.

Applying Lemma 2 d), the projective indecom-
posable modulePi has multiplicity at least two
in V = KG, contradicting the assumption of
the lemma.

In order to carry out computations success-
fully, we need a finer splitting of the ambient
spaceV as given in (3). Note thatKG is both

a left and a rightKG-module. Thus we may
write

KG = B1 ⊕ . . . ⊕ Bs (4)

with two-sided idealsBi. If we write

1 = f1 + . . . + fs (5)

with fi ∈ Bi, then thefi are in the center of
the algebraKG and fifj = δi,jfi. Moreover
Bi = fiKG = KGfi. We say that (5) is
a decomposition of1 into central orthogonal
idempotents. If Bi cannot be split into a non-
trivial direct sum of two-sided ideals then we
call Bi a block andfi a block idempotent. The
block idempotentfi is uniquely determined by
the blockBi.

To obtain an orthogonal decomposition in
(4) with respect to the bilinear form onKG
defined in (2), we need a particular property of
the idempotentsfi. Letˆ: KG → KG denote
the antialgebra automorphism ofKG defined
by g → g−1 for g ∈ G. Suppose that allfi in
(5) satisfyf̂i = fi. Then

KG = B1 ⊥ . . . ⊥ Bs. (6)

For, if x, y ∈ KG and i 6= j, then

(Bi, Bj) = (xfi, yfj) = (fixf̂j , y) =
(fixfj , y) = (fifjx, y) = (0, y) = 0.

(7)

Moreover, the restriction of(· , ·) on Bi is non-
degenerate, or in other wordsBi

∼= B∗
i as a

right KG-module. Finally, we putVi = V fi

andCi = Cfi ⊆ Vi for i = 1, . . . , t. Note that
Vi andCi areKG-modules since thefi are in
the center ofKG.

Lemma 4:Consider an arbitraryV as in
(3).

a) V = V1 ⊥ . . . ⊥ Vt andC = C1 ⊥ . . . ⊥
Ct asKG-modules.

b) If C = C⊥ thenCi is a self-dual code in
Vi for i = 1, . . . , t.
Proof: a) Clearly,V = V f1 ⊕ . . . ⊕ V ft

andC = Cf1⊕. . .⊕Cft by standard arguments
(see [11, Chap. VII, Theorem 12.1]). The proof
that the decompositions are orthogonal is as in
(7). For, letv andw be elements inV = Kn.
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Since G is a group of isometries onV , we
have (vg, w) = (v, wg−1) for all g ∈ G. In
particular,

(Vi, Vj) = (V fi, V fj) = (V, V fj f̂i) =
(V, V fjfi) = 0

for i 6= j. This proves that the decompositions
of V andC are orthogonal.
b) SinceC = C⊥ in V andCi ⊆ Vi, it follows
that Ci = C⊥

i in the spaceVi.

The basic algorithm
Let C be a binary self-dual doubly-even
[72, 36, 16] code. We use the following algo-
rithm to demonstrate that a specified groupG
is not the automorphism group ofC.

First, we search for pairwise orthogonal
central idempotents inKG, sayf1, . . . , ft, such
that f̂i = fi for i = 1, . . . , t and

1 = f1 + . . . + ft.

Finding such decompositions is easy since
the groups we consider are solvable and small.
For instance, ifH is a normal subgroup ofG
of odd order then we may takef1 =

∑
h∈H h

andf2 = 1 − f1.

Lemma 4 implies thatC = Cf1 ⊥ . . . ⊥
Cft whereCfi is a self-dual doubly-even code
in V fi.

Next we carry out the following steps:

Step 1. In eachV fi we compute all self-dual
doubly-even andG-invariant codes, sayUi, of
minimum distance at least16. We call such
codesgood. Let Li be a listing of all good
codes inV fi.
Step 2. We construct all modulesU in
L := {U = U1 + . . . + Ut | Ui ∈ Li}.
Step 3.We compute the minimum distance of
everyU ∈ L.

Suppose that the minimum distance for all
U ∈ L computed in Step 3 is strictly smaller
than16. SinceC is one particular module inL,

the groupG cannot be the automorphism group
of C.

In the remainder, letC always be a binary
self-dual doubly-even[72, 36, 16] code with au-
tomorphism groupG.

IV. EXCLUDING |G| = 72

Throughout this section we assume that
|G| = 72. Since elements of order 2 and 3 in
G act fixed-point-freely on the72 coordinate
positions (see [4, Theorem 5.3] and [5, Theorem
1.1]), the action ofG on the positions is regular:
namely,G has just one orbit on the72 positions.
Thus C is a self-dual doubly-evenG-invariant
code in the group algebraKG.

To show that none of the50 groups of
order 72 occurs as an automorphism group of
C, we proceed as follows. By Lemma 1, we
may assume that the Sylow2-subgroup ofG
is not cyclic. Among the remaining 43 groups,
precisely three do not have a normal subgroup
of order3. They are:

(i) G = (C3 × C3).Q8

(ii) G = (C3 × C3).D8

(iii) G = (C3 × C3).(C4 × C2)

whereQ8 is the quaternion group of order8,
D8 the dihedral group of order8, and Cn is
cyclic of ordern.

For G of type (i), the ambient spaceKG
has exactly602361 submodules of dimension
36. All have minimum distance strictly smaller
than 16. Thus G cannot be the automorphism
group ofC.

Next we consider the groupG of type
(ii). Let H = 〈x, y〉 denote the normal Sylow
3-subgroup ofG. The conjugation action of
D8 on H has three orbits: namely1, the orbit
x, x2, y, y2, and the orbitxy, x2y, xy2, x2y2.
We putf1 =

∑
h∈H h, f2 = x+x2+y+y2 and

f3 = xy+x2y+xy2 +x2y2. One easily checks
that thefi are central orthogonal idempotents
in KG and 1 = f1 + f2 + f3. Furthermore,
fi = f̂i for i = 1, 2, 3. Finally, dimKGf1 = 8
anddim KGf2 = KGf3 = 32. We now follow
the three steps of the algorithm described
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above.

Step 1. The componentKGf1 contains exactly
6 modulesU1 ∈ L1. In each ofKGf2 and
KGf3 there are90 modulesU2 ∈ L2 resp.
U3 ∈ L3.

Step 2. We compute all6 × 90 × 90 modules
U ∈ L.

Step 3. All modulesU ∈ L have minimum
distance strictly smaller than16.

ThusG is not the automorphism group ofC.

Finally, the group in (iii) can be ruled out
similarly: we check all4 × 90 × 90 modules
U ∈ L.

There remain 40 groups of order 72
which have a normal subgroupH of order
3. Let f =

∑
h∈H h. Clearly, f is a central

idempotent inKG which satisfiesf̂ = f . We
put f1 = f and f2 = 1 − f and apply the
algorithm. For37 of these groups, all relevant
U ∈ L have minimum distance strictly smaller
than 16. Consequently these groups do not
occur as automorphism groups.

In three cases it was not possible to com-
pute directlyL2. These are:
(α) G = [(C3×C3)×(C2×C2)]〈t〉 where the

involution t inverts all elements of order
3 and the Sylow2-subgroup ofG is a
dihedral group of order8.

(β) G = C3 × C2 × A4 where A4 is the
alternating group on4 letters.

(γ) G = (C3 × A4)〈t〉 where the involutiont
acts nontrivially onC3 and A4〈t〉 ∼= S4.

In case(α) let T = {1, t2, t
−1
2 , . . . , t5, t

−1
5 }

be a Sylow3-subgroup ofG. If we put f1 =∑
t∈T t andfi = ti + t−1

i for i = 2, . . . , 5 then

1 = f1 + . . . + f5

is a decomposition of1 into central pairwise
orthogonal idempotents. Since thefi are also
block idempotents andfi = f̂i, we may apply
the algorithm.

In Step 1 we get6 good codes in the
block KGf1 and 18 in each blockKGfi for
i = 2, . . . , 5. Step 2 produces 629856 modules
U . Step 3 shows that all have minimum distance
strictly smaller than16. This eliminates (α).

Next let G = C3 ×C2 ×A4 and letx be a
generator of the normal subgroup of order3. We
put f1 = 1 + x + x2 andf2 = 1 − f1. Clearly,
f1 and f2 are central orthogonal idempotents
with 1 = f1 + f2. Since thefi are again
block idempotents andfi = f̂i, we proceed as
above. One computes thatdim KGf1 = 24, so
dim KGf2 = 48. The block KGf2 contains
exactly three irreducible modules, all of dimen-
sion 2. Lemma 3 implies that soc(Cf2) =
soc(KGf2). We now compute the spacesU =
U1 + soc(KGf2) for all U1 ∈ L1. (Here we
take only a particular subspace ofKGf2 in
Step 1 which is contained in theKG-submodule
Cf2 of C.) All such modules have minimum
distance strictly smaller than16. Thus a group
of type (β) cannot be the automorphism group
of C.

In the last caseG = (C3 × A4)〈t〉 where
the involution t acts non-trivially onC3 and
A4〈t〉 ∼= S4. We again putf1 = 1 + x + x2

wherex generates the normal subgroup of order
3 andf2 = 1−f1. As in case (β), dim KGf1 =
24 and dim KGf2 = 48. The block KGf1

contains7607 submodules, exactly48 are good.
The componentKGf2 has 9576333 submod-
ules, exactly5184 are good. All modules inL
have minimum distance strictly smaller than 16.
Thus we have eliminatedG and this completes
the proof for|G| = 72.

V. EXCLUDING |G| = 56

Throughout this section we assume that
|G| = 56. Let T denote a Sylow7-subgroup
of G.

Lemma 5:G has a normal subgroupH of
order 8 isomorphic toC2 × C2 × C2, and G
has an element of order7 which permutes the
7 involutions ofH. Moreover, the action ofG
on the72 coordinate positions has three orbits
of lengths56, 8, 8.
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Proof: Observe that [6, Lemma 2] implies
|NG(T )| = 7 or 14. Since |G : NG(T )| ≡
1 mod 7 we get |NG(T )| = 7. Thus G has
exactly 8 Sylow 7-subgroups and contains6 ·
8 = 48 elements of order7. Hence the Sylow
2-subgroup ofG is normal. Since a7-element
does not centralize an involution,G has exactly
7 involutions. This implies that the Sylow2-
subgroup is elementary abelian. By [4, Theorem
5.3], an involution has no fixed points, and by
[8, proof of Proposition 4.1], an element of
order 7 has exactly two fixed points. Thus the
Cauchy-Frobenius Lemma [16, Theorem 3.22]
implies that the action ofG on the coordinate
positions has

1

56
(56 + 8 · 6 · 2) = 3

orbits, say of lengthsm1,m2,m3. Sincemi |
56 and m1 + m2 + m3 = 72, we find the
unique solutionm1 = 56,m2 = m3 = 8 (up
to renumbering).

Just one of the 13 groups of order 56,
namely56#11 in the notation of the SMALL -
GROUPS library, satisfies Lemma5.

Lemma 6:Let G be the group56#11.

a) V = K72 = KG ⊕ P1 ⊕ P2 whereP1
∼=

P2
∼= KG

T . The elements ofKG have non-
zero entries only in the first56 positions,
the elements ofP1 only in position57 up
to 64, and the elements ofP2 only in the
last 8 positions.

b) P1
∼= P2 is the projective coverP (K) of

the trivial moduleK.
c) C ∩ (P1 ⊕P2) = {0, v} wherev has entry

1 exactly in the last16 coordinates.
d) If C0 = KG∩C ⊆ KG thenC0 contains

the all one-vector ofKG and dim C0 =
21.
Proof: a) This follows immediately by

Lemma 5.
b) It is easy to see thatPi is isomorphic to
the KG-moduleeKG wheree = 1

|T |

∑
t∈T t.

Sincee2 = e we getKG = eKG⊕(1−e)KG.
Thus Pi is a direct summand ofKG. Since
dimPi = 8, and a result of Dickson (see [11,

Corollary 7.16]) implies that8 | dimPi, we
deduce thatPi must be indecomposable. Since
Pi is a permutation module, it contains the
trivial module as a submodule. Thus, by Lemma
2, the socle ofPi must be the trivial module.
c) Note thatP1 ⊕ P2 has non-zero entries in at
most the last16 coordinates. Thus, if

C ∩ (P1 ⊕ P2) 6= 0

then the intersection containsv as the only non-
zero vector, since the minimum weight ofC is
16. Suppose that

C ∩ (P1 ⊕ P2) = 0.

In this case the projective moduleP1 ⊕ P2 is
(up to isomorphism) a submodule of the factor
module

K72/C = K72/C⊥ ∼= C∗.

SinceP ∗
i
∼= Pi it follows that

(P1 ⊕ P2)
∗ ∼= P ∗

1 ⊕ P ∗
2
∼= P1 ⊕ P2

is a submodule ofC∗∗ ∼= C. Since a projec-
tive submodule or factor module is always a
direct summand (see Lemma 2 d)), the module
P1

∼= P2 occurs (up to isomorphism) in a
direct decomposition ofV = K72 into inde-
composable modules with multiplicity at least
4. This contradicts the fact thatV contains the
projective cover of the trivial module exactly
three times sinceKG contains it only once.
d) SinceC contains both the all one-vector of
length72 andv, it contains their sum which has
a 1 as entry exactly in the first56 coordinates.
By repeated shortening ofC (16 times), we see
that dim C0 = 21 sincedimC = 36.

Recall that for aKG-moduleV the socle
soc(V ) := soc1(V ) is defined as the largest
completely reducible submodule ofV . Induc-
tively, we define thek-th socle sock(V ) of V
by

sock(V )/sock−1(V ) = soc(V/sock−1(V )).

We call soc1(V ) ⊆ soc2(V ) ⊆ . . . the socle
seriesof V .
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Lemma 7:Let G be the group56#11. Its
group algebraKG has the following properties.

a) There are (up to isomorphism) exactly
three irreducible modules: the trivial mod-
ule K and two modulesV resp.V ∗ with
V 6∼= V ∗, both of dimension3.

b) The projective coverP (K) of the trivial
moduleK has exactly4 submodules dif-
ferent from 0, namelyK ⊂ V1 ⊂ V2 ⊂
P (K) with V1/K ∼= V , V2/V1

∼= V ∗ and
P (K)/V2

∼= K.
c) LetP (V ) andP (V ∗) denote the projective

covers ofV resp.V ∗. Then soc3(P (V )) 6=
P (V ), but soc4(V ) = P (V ). The same
holds forV ∗.

d) C0 ≤ soc3(KG).
Proof: a) Over the fieldF8, the group

G has exactly7 irreducible modules since the
normal Sylow2-subgroupH is in the kernel of
every irreducible module. Over the binary field
K we have only three irreducible modules, the
trivial one K and two modulesV andV ∗ 6∼= V
of dimension3. The latter are direct sums of3
Galois conjugate modules overF8 of dimension
1.
b) By the proof of Lemma 6 we know that
P (K) ∼= eKG = eKH wheree = 1

|T |

∑
t∈T t.

Thus, P (K) is the regular moduleKH on
which T acts by conjugation. This proves al-
ready that the moduleP (K) has exactly4
submodules different from0, namely

eJ3 ⊂ eJ2 ⊂ eJ ⊂ eKH

whereJ = {a | a ∈ KH, a has even weight}
is the unique maximal ideal inKH. Observe
that the factor modulesJ i/J i+1 are irreducible
and J/J3 is not completely irreducible. Since
P (K) ∼= P (K)∗ the assertion now follows.
c) This is a consequence of the fact thatP (V ) ∼=
P (K) ⊗ V resp.P (V ∗) ∼= P (K) ⊗ V ∗.
d) Note thatKG = P (K) ⊕ P (V ) ⊕ P (V ∗).
Since the weights of the code words inC0

are divisible by2, the subcodeC0 is contained
in the unique maximal idealM of KG with
KG/M ∼= K. Thus, if C0 6⊆ soc3(KG) then
C0 contains a direct summand isomorphic to

P (V ) or P (V ∗). This contradicts the fact that
dim C0 = 21 anddim P (V ) = dim P (V ∗) =
24.

To excludeG as an automorphism group
of C we proceed as follows. In soc3(KG)
we compute all self-orthogonal submodules of
dimension21. The 1394667 such modules all
have minimum distance strictly less than16.

Hence a group of order56 is not an auto-
morphism group of a binary self-dual doubly-
even[72, 36, 16] code.

VI. EXCLUDING |G| = 36

Throughout this section we assume that
|G| = 36. Since neither involutions nor el-
ements of order3 have fixed points by [4,
Theorem 5.3] and [5, Theorem 1.1], the action
of G on the 72 coordinate positions is fixed-
point-free. Thus the ambient spaceK72 is an
orthogonal sum of two copies of the regular
moduleKG:

V = K72 = KG ⊥ KG,

where the firstKG has non-zero entries in the
first 36 positions and the second in the last36.

There are (up to isomorphism)14 groups
of order 36. For each groupG, we deduce,
using Schur’s algorithm [13] as implemented in
MAGMA , that all of its irreducible representa-
tions, and hence all of its projective indecom-
posable modules, overK are self-dual. Thus the
blocks of KG are self-dual and consequently
we may write

1 = f1 + . . . + ft

with block idempotentsfi = f̂i ∈ KG. Recall
thatG is 2-nilpotentif it has a normal subgroup
N where 2 ∤ |N | and G/N is a 2-group. If
G is 2-nilpotent, then each block contains (up
to isomorphism) exactly one irreducible module
(see [11, Chap. VII, Theorem 14.9]). This is true
for all but two groups: 36#3 and 36#11.

We now proceed as follows. LetLi be a
listing of good codes inV fi for i = 1, . . . , t,
and letL consist of all codesU = U1+ . . .+Ut

with Ui ∈ Li.
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# Group Dimensions of irreducible modules dim V fi dim sock(V ft)

1 D18 × C2 1, 2, 6 8, 16, 48 24, 48
2 C9 × C4 1, 2, 6 8, 16, 48 12, 24, 36, 48
3 1, 2, 6 24, 48 12, 36, 48
4 C9 · C4 1, 2, 6 8, 16, 48 24, 48
5 C9 × C2 × C2 1, 2, 6 8, 16, 48 12, 36, 48
11 A4 × C3 1, 2, 2, 2, 2 24, 48 12, 36, 48

TABLE I

DATA FOR CERTAIN GROUPS OF ORDER36

Case 1.For each group36#i with 6 ≤ i ≤ 10
and12 ≤ i ≤ 14, we compute

U = U1 + . . . + Ut

where Uj runs over all codes inLj for j =
1, . . . , t. None of the codesU is doubly-even
and of minimum distance at least16. Hence
none of these groups is an automorphism group.
(Of course, we can terminate our investigation
for a particular group if the set of modules
U1 + . . . + Us wheres < t does not contain a
doubly-even code of minimum distance at least
16.)

Thus it remains to consider36#i for
i = 1, 2, 3, 4, 5, 11. In Table I, for each group
we list dim V fi for i = 1, . . . , t and the
dimensions of the socle series ofV ft, the
component of dimension48. Where the group
has a name indicating its structure, we use this.

To prove Lemma 9 we need Lemma 8
which easily follows from the fact that projec-
tive KG-modules are injective (see [11, Chap.
VII, Theorem 7.8]).

Lemma 8:Let W be aKG-module and let
P be a projectiveKG-module with soc(P ) ∼=
soc(W ). Then W is (up to isomorphism) a
submodule ofP .

Lemma 9:Let f = f̂ be a central idempo-
tent of KG and suppose thatKGf contains
only one irreducible module (up to isomor-
phism) as composition factor. Then

2 dim soc(Cf) ≥ dim soc(V f).

Proof: Let S be the unique irreducible
module belonging toKGf and suppose that
soc(KGf) contains S with multiplicity m.
Since V = KG ⊕ KG, the socle ofV f
has a direct decomposition consisting of2m
direct summands (all isomorphic toS). Suppose
that soc(Cf) has m′ < m direct summands.
Clearly, all of them are isomorphic toS. Then

Cf ≤ P1 ⊕ . . . ⊕ Pm′ ≤
P1 ⊕ . . . ⊕ Pm′ ⊕ . . . ⊕ P2m = V f

(8)

where allPi are isomorphic to a projective in-
decomposable moduleP with socle isomorphic
to S. To see this, note that

Cf ≤ P1 ⊕ . . . ⊕ Pm′ = W

follows directly from Lemma 8. Furthermore
V f is projective and contains onlyS as a
composition factor. ThusV f is a direct sum of
projective indecomposable modules isomorphic
to P andW is (up to isomorphism) a submod-
ule and hence a direct summand ofV f , which
proves (8). Finally note thatP ∼= P ∗ and

V f/Cf = V f/(Cf)⊥ ∼= (Cf)∗.

As in Lemma 3,(Cf)∗ contains more direct
summands isomorphic toP than Cf . This
contradicts the Krull-Schmidt Theorem.

Case 2. To deal with the groups36#i for
i = 1, 4, we modify the computation of all
good codes in the componentVt := V ft of
dimension48. Note that the irreducible module
in Vt has dimension6 and the socle series of
Vt has dimensions24, 48. Applying Lemma 9,
we proceed as follows.
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(i) We compute all submodules of dimension
12 in soc(Vt).

(ii) For each submoduleM in (i) we compute
all irreducible submodulesS in Vt/M and
take thepullbackof S in Vt: namely,{v |
v ∈ Vt, v + M ∈ S}. This leads to a list,
sayM1, of submodules of dimension18
in Vt.

(iii) We remove from M1 all submodules
which are not good.

(iv) For all U in M1 we compute all irre-
ducible submodules ofVt/U and take their
pullbacks inVt. This leads to a listM2 of
submodules of dimension24 in Vt.

(v) We remove fromM2 all modules which
are not good and obtainLt.

For 36#1 the list M1 is already empty
which rules out this group. For36#4 we obtain
a non-empty listLt and proceed as in Case 1
to rule out this group.

Case 3. Next we consider36#3 and 36#5.
Both groups have exactly three irreducible mod-
ules which have dimension1, 2 and 6 respec-
tively. Since36#5 is 2-nilpotent, there are three
blocks. But36#3 is not2-nilpotent and has two
blocks. In this case the principal block contains
the trivial module and the irreducible module
of dimension2. Thus both groups have a block
which contains the irreducible module, sayW ,
of dimension6. If f is the corresponding block
idempotent thenV f = P1 ⊥ P2 with Pi

∼=
P (W ), which has socle series

W
W W

W
.

We rule out both groups using the algorithm
described in Case 1. To construct the listL of
good codes inV f , we distinguish two cases:
(α) good codes which contain soc(V f);
(β) good codes which have an irreducible so-

cle.
To find the good codes in (α) we apply the

following result.
Lemma 10:Let Cf be a good code inV f

with soc(V f) ⊆ Cf . ThenCf ⊆ soc2(V f).

Proof: If soc(V f) ⊆ Cf then (w, 0) ∈
Cf ⊆ V f = P1 ⊥ P2 for all w ∈ soc(P1).
Note that(Cf)⊥∩V f = Cf sinceCf is good.
Let (x, y) ∈ Cf . Thus

0 = ((w, 0), (x, y)) = (w, x)

for all w ∈ soc(P1). Since the restriction
of (· , ·) to P1 is non-degenerate,x must be
an element of soc2(P1) since it is the only
maximal submodule inP1. By a symmetry
argument, we see thaty ∈ soc2(P2). Thus
(x, y) ∈ soc2(P1) ⊥ soc2(P2) = soc2(V f).

To construct the list of good codes in (α)
we search, according to Lemma 10, for all
submodules, sayX, in soc2(V f) of dimension
12 and take their pullbacks inV f , i.e.

{v | v ∈ V ft, v + soc2(Vt) ∈ X}.

The resulting listLα contains only those mod-
ules which are good. We combine the modules
from Lα with the good modules from the other
blocks, and establish that all resulting codes
have minimum distance strictly smaller than 16.

Lemma 11:A good code in (β) is a pro-
jective indecomposable module.

Proof: Let Cf be a code in (β). Since the
socle ofCf is irreducible,Cf is a submodule of
the projective coverP of soc(Cf), by Lemma
8. Sincedim Cf = 24 = dim P , we deduce
that Cf = P .

To construct the list of good codes in (β)
we proceed as follows. First we search for
all submodules ofV f/soc(V f) of dimension
18 by taking maximal submodules of maximal
submodules. By Lemma 11, we only consider
those which have a12-dimensional socle. In
the next step we take the pullbacks inV f of
the remaining codes, which have dimension30,
and construct all their maximal submodules.
Finally we test self-orthogonality and minimum
distance at least 16. For both36#3 and36#5,
the resulting list is empty.

Case 4.The remaining groupG is 36#11 and
is isomorphic to A4 × C3. There are5 irre-
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ducible modulesK,W1,W2,W3,W4 of dimen-
sion 1, 2, 2, 2, 2 and two blocks. The principal
block containsK and sayW1. Furthermore, if
P0 = P (K) andPi = P (Wi)

KG = (P0 ⊕ P1) ⊥ (P2 ⊕ P3 ⊕ P4) =
KGf1 ⊥ KGf2

with block idempotentsf1 = 1 + y + y2 where
C3 = 〈y〉 and f2 = y + y2. Note that f1

defines the principal block. The socle series of
the blocks are as follows:

KGf1 =
1 W1

W1 ⊕ W1 1 1
1 W1

KGf2 =
W2 W3

W3 W4 ⊕ W2 W4

W2 W3

W4

⊕ W2 W3

W4

It is easy to determine thatL1 contains exactly
192 good codes inV f1. However we were
unable, using existing resources, to determine
the good codes inV f2 and hence we are not
able to eliminate this case.
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