GENERATING RANDOM ELEMENTS OF A FINITE
GROUP

FraANK CELLER
Lehrstuhl D fiir Mathematik, RWTH, 52062 Aachen, Germany

CHARLES R. LEEDHAM-GREEN
School of Mathematical Sciences, Queen Mary and Westfield College,

University of London, London E1 4NS, United Kingdom

ScorT H. MURRAY
Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

AvLice C. NIEMEYER
Mathematics Department, University of Western Australia, Nedlands,
WA 6009, Australia

E.A. O’BRIEN
Centre for Mathematics and its Applications, School of Mathematical Sciences,
Australian National University, ACT 0200, Australia

Abstract

We present a “practical” algorithm to construct random elements
of a finite group. We analyse its theoretical behaviour and prove that
asymptotically it produces uniformly distributed tuples of elements. We
discuss tests to assess its effectiveness and use these to decide when its

results are acceptable for some matrix groups.

1 INTRODUCTION

How do we select random elements from a large finite group G? Our answer
will depend on the type of description we have for the group. If G is a per-
mutation group, we can construct a base and strong generating set; if G is
a finitely-presented soluble group, we can obtain a power-conjugate presenta-
tion. In both cases, we can use these special descriptions to obtain random
elements.

Our algorithm is designed for the case where G is described by a generating
set X, and we have no convenient canonical form for the elements of G. In
particular, we consider the case where G is a subgroup of GL(d,q), the group
of non-singular d x d matrices defined over GF'(q), for ¢ a prime-power. We
seek to develop a “practical” algorithm for matrix groups having degrees up
to the hundreds.

Since elements of G can only be constructed as words in X, the problem
is to construct words that will define random elements of G. We face a funda-
mental problem: the cost of a single matrix multiplication is O(d®). Hence our
requirement of practicality dictates that we perform only a small number of
matrix multiplications. However, Holt & Rees (1992) demonstrate that words
of length up to 20 in the supplied generators are far from random.

Babai (1991) proposed a general solution to the problem. Let n be an up-
per bound for the order of G. His algorithm finds a set of O(logn) elements
in O((logn)®) multiplications. Using this set, a sequence of nearly uniformly
distributed random elements can then be obtained in O(logn) multiplications
for each element. Since logn < d*loggq, the cost to obtain the set can be
O(d"(logq)°). Babai’s primary aim was to provide an algorithm which is
guaranteed to produce nearly uniform elements with large probability within
O((logn)®) number of steps, for some constant ¢. Beals implemented a version
of this algorithm, incorporating various heuristic shortcuts, and it is used as
a component in his implementation of the algorithm of Babai, Beals & Rock-
more (1993) to decide finiteness of a matrix group over a number field. Babai
(personal communication) reports that he and Andras Lukacs have developed
another algorithm for abelian groups: from a given set of £ generators, this

algorithm reaches near uniformity in O(klogn) steps.

Diaconis & Saloff-Coste (1993 and 1994) consider symmetric random walks
on finite groups, and their rate of convergence to the uniform distribution.

In this paper we present an algorithm — the product replacement algorithm
— that generates “random” elements of a finite group efficiently. We specify
the parameters which influence its performance and present the algorithm in
sufficient detail to permit a reader to develop an independent implementation.
It is a black bozx algorithm, following the terminology of Babai (1991), requiring
only the ability to multiply group elements. It generates N -tuples of elements,
where N is a positive integer. We prove that asymptotically these N -tuples are
uniformly distributed among all N-tuples from G which contain a generating
set for G. Our algorithm has some common features with Markov chain Monte
Carlo methods.

At this point, it is worth considering the primary motivation for our work:
namely, its application to the matrix group “recognition” project. Most matrix
group algorithms currently in use rely on first obtaining a permutation rep-
resentation of the group and then using highly-developed permutation group
machinery to carry out structural investigations. In practice, many structural
questions cannot be answered for an arbitrary matrix group because a “mod-
erate” degree permutation representation either does not exist or cannot easily
be found. Aschbacher (1984) classified the subgroups of GL(d, ¢) into nine cat-
egories. His work has provided the theoretical framework for a project which
seeks to develop a “second generation” of matrix group algorithms which use
the inherent matrix structure of the group. We can summarise his classification
as follows: a matrix group is almost simple modulo scalars, or it preserves some
natural linear structure and has a normal subgroup related to this structure.
The first step in “recognising” a matrix group is to determine (at least one
of) its categories in the Aschbacher classification. If a category of the group
can be recognised, we hope to investigate its structure more completely using
algorithms designed specifically for that category.

Algorithms have been developed to recognise some of the Aschbacher cate-
gories. All assume that elements of a matrix group which satisfy certain prop-
erties can be obtained efficiently. For example, the algorithm for imprimitivity
testing of Holt, Leedham-Green, O’Brien & Rees (1994) uses orders and the
structure of characteristic polynomials of randomly-selected elements to rule

out certain possible block sizes. Celler & Leedham-Green (in preparation) use

element orders and minimal polynomial structure to decide whether a group
contains a classical group. In such cases, it is desirable to select at least one
element for each possible value of the chosen property. In addition, some of the
algorithms are Monte Carlo in character. The recognition algorithm for special
linear groups of Neumann & Praeger (1992) searches for (nearly) irreducible
elements in the supplied group. The algorithms for recognising classical groups
of Niemeyer & Praeger (in preparation) search for elements which satisfy the
primitive prime divisor property. In each case, they have determined the pro-
portions of these types of elements in the classical groups. If none is found after
a number of random selections, they conclude with a certain probability that
the given group does not contain a classical group. The excellent theoretical
behaviour of such algorithms is achievable in practice if we have tools available
to generate elements with certain properties in the correct proportion.

Given this motivation, we have two fundamental aims: we seek to generate
elements rapidly and to ensure that they are well-distributed according to
various predicates or criteria. Hence, we design experiments to measure when
the results of our random element generator are acceptable. How do we decide
that the elements are sufficiently random? The only black box test of a random
selector from a very large and featureless set is that it “never” select the
same element twice. In practice, we use properties of fundamental importance
to the recognition project — element order distributions; the proportion of
cyclic matrices; and the proportion of primitive prime divisor elements —
to assess the quality of the output, applying x*-tests to decide when our
selections are acceptable. While our algorithm does not produce uniformly
distributed random elements, we conclude that it achieves our central aims for
these important properties.

The structure of the paper is as follows. We first present the algorithm
and analyse its theoretical performance. In Section 4 we discuss the use of
statistical tests to assess the quality of a random element generator. In Section
5 we explain the specific tests used to assess our algorithm. Finally we report

on the performance of an implementation.

2 THE ALGORITHM

Let a group G be described by a generating set X = {X;,...,X;}. We
choose an integer N > k and initialise an array S of length N to consist of
the generators of GG, where we allow repetitions. The basic operation of the
algorithm takes a pair of random integers 7 # j in [1,..., N], and replaces S[i
by S[i|S[j] or S[j]S[i]. We carry out a preprocessing step by executing this
basic operation a number of times, K. We now execute the basic operation
and return the resulting value of S[i] as the random element.

Note that S at all times contains a generating set for G. This method has
the advantage that, after the preprocessing, only one multiplication is required
for each random element. In addition, since we replace S[i], we hope that the
process of finding new random elements increases the randomness of S. Since
the effective cost of the algorithm is K O(d”), we hope to demonstrate by
experiment that, for some small value of K (preferably independent of the
degree d), the elements obtained are sufficiently random for our purposes.

In practice, we make a random choice of whether to replace S[i] by S[¢]S[j]
or S[j]S[i], and our later discussion is independent of this. The key choices in
this algorithm are the number of basic operations, K, which must be carried
out as part of the preprocessing to obtain a reasonable distribution, and the
length, N, of §.

One obvious disadvantage of the technique is that the elements returned
are not independent of each other. For example, if a sequence of elements
is generated, then a consecutive triple of the form a,b,ab will occur in the
sequence with probability greater than 1/N?.

The algorithm presented here is based on an idea of Leedham-Green and
Soicher. Holt & Rees (1992) use a variation of this technique, which can be
obtained by a suitable choice of parameters K and N. In their version, the
supplied generating set is first enlarged by adding max(k, 10) new elements to
give N generators in all; the new generators are constructed by taking words
of length about 30 in the supplied generators. About N? basic operations are
carried out in preprocessing the array S'.

3 AN ANALYSIS OF THE ALGORITHM

Recall that S is the array constructed during the initialisation part of the
algorithm to store copies of the supplied generating set of G. Its contents
are modified by the execution of the algorithm. We study the behaviour of
the algorithm and prove that asymptotically the probability distribution of S

tends exponentially to the uniform distribution.

THEOREM 1 Let m be the maximal cardinality of a minimal generating set X
of G, and let N > 2m. LetY be the set of ordered N -tuples of G that generate
G. Let S; be the element of Y obtained by repeating the basic operation t
times. For each v € Y the probability p,(v) that Sy = v tends to 1/|Y| as t
tends to infinity.

Proor. The sequence p; is a Markov chain. More formally, we have
P(Siy1 = v|S;) = P(Sis1 = v|S1,...,S;); that is, Syy1 is obtained from S;
without reference to earlier entries in the chain. Note also that the chain is
homogeneous; that is, this probability is independent of ¢. Following standard
practice, we shall refer to the possible values of S; — that is, the elements of
Y — as states, and t as time.

The first step in proving that the above process behaves as claimed is to
prove that any two states intercommunicate; that is, given states v and w,
there is a time ¢ such that one can move from v to w with positive probability
in time ¢.

Assume first that N = 2m. Let S, and Sy be states. It is easy to see (since
every element of G has finite order) that, if there is a positive probability of
moving from S, to S, in time ¢, then there is a positive probability of moving
from S, to S, (perhaps requiring time greater than ¢). Thus it suffices to find a
state S, such that, for ¢ large enough, there is a positive probability of moving
from S, to S, and from S, to S. in time t. Now S, contains a generating
set zy,...,Ty, say, and S, contains a generating set ¥, ..., yn say. Clearly,
we can get from S, to a sequence consisting of x1,..., %y, Y1, .., Ym IN SOMe
order. Similarly we can get from S, to a similar sequence. It remains to prove
that we can perform any permutation of such a sequence. Since z1,...,z,
generate (G, it is clearly possible to permute any two y;s, and similarly we can
permute any two z;s. Suppose now that we wish to interchange z; and y;.

Since y1,...,Ym is a generating set for G, we may replace x; by xiyj_l. We

6

may then multiply y; on the right by z;y; ! thus replacing y; by z;. Since
Z1,...,%;, 18 a generating set for G, we can now replace xiyj_l by y;. The
general case where N > 2m should now be clear. A chain in which any two
states intercommunicate is said to be irreducible.

We will now prove that the states are aperiodic; that is, for each state v,
the greatest common divisor of the integers ¢ such that there is a positive
probability of the chain returning from state v to v again in ¢ steps is 1. This
is clear, since, with positive probability, we may pass from any state back to
itself going through a state in which one component is the identity, and in this
case we may add 1 to the length of the chain back to our original state by
vacuously multiplying an entry by the identity.

Finally, we prove that the equilibrium distribution for this Markov process
is the uniform distribution. Since the chain is homogeneous, irreducible, and
aperiodic, it suffices to prove that we have a doubly stochastic process; that is,
the matrix whose rows and columns are each labelled by the possible states,
and whose (u,v) entry is the probability that the ¢ + 1 state will be v, given
that the ¢-th state is u, has entries whose row and column sums are all equal to
1. The fact that the row sums are 1 is automatically satisfied for any stochastic
process. If we define a new stochastic process in which we choose, with equal
probability, any ordered pair (u,v) with 1 < u # v < N, and replace S[i
by S[i]S[j]™", then this is the reverse of the given stochastic process, and its
transition matrix is the transpose of that for the original stochastic process.
Since the new matrix has its row sums equal to 1, the original matrix has its

column sums equal to 1 and the result follows. O

It is easy to obtain a qualitative result on the speed of convergence. The
transition matrix p of the above Markov process is defined by py, = pyy(1), so
Pl = Puw(t). Now p has one eigenvalue equal to 1, and the other (complex)
eigenvalues have modulus strictly less than 1. This is the Perron-Frobenius
theorem, which applies to Markov chains with finitely many states; see Grim-
mett & Stirzaker (1982, p. 134). It proves the next result.

THEOREM 2 Let M be |Y|. Then for some positive € < 1, for all states u
and v, and for t sufficiently large, |py,(t) —1/M| < €. That is, whatever the
initial state, the probability of having any state after time t tends exponentially

to the uniform distribution.

Although in the limit each element of Y is equally likely, this does not
imply that the process will yield each element of G' with equal probability.
The question which arises is to determine the number of elements of Y that
contain a specified element ¢ of G in some specified place. What can be
proved about the proportion of (N — 1)-tuples of G that generate G? Recent
examples of results in this direction are provided by Kantor & Lubotzky (1990)
and Liebeck & Shalev (to appear); they show that the probability that a pair
of random elements of a simple group generates the group tends to one as the
order of the group tends to infinity. If the proportion of (N — 1)-tuples which
generate G is very close to one, then all elements of G will be almost equally
likely to occur, with a slight bias, for example, away from the identity. Clearly
the number of tuples in Y containing g in some specified place depends only
on the conjugacy class of g (in fact, on its conjugacy class in the holomorph
of G); so it is sufficient to estimate the frequency with which representatives
of the various conjugacy classes of G arise.

Our final objective is to make this theorem quantitative. In practice, our
main concern is to bound the number of basic operations needed to give a
reasonably uniform distribution of elements. While the prospect of proving
realistic bounds seems small, in Section 6 we provide partial answers to this
question.

Clearly, the worst case would arise if the set of states was partitioned into
two subsets, with very few processes taking one from the first to the second. If
the initial state is in one of these subsets, it may take a long time before there
is a reasonable probability of the current state being in the other subset. It

seems unlikely that this can occur.

4 TESTING RANDOMNESS

In Section 3 we prove that the algorithm generates N -tuples which asymptot-
ically exhibit uniform distribution. Our concern is now to decide whether this
good behaviour is reflected in the distribution of the generated elements.

Our task is to test the hypothesis that an algorithm generates uniformly
distributed group elements. An easy test is the following: choose an integer
n which is very large compared to the order of GG; generate n elements of G;

count how often each element is encountered. Since we wish to investigate

groups of both large order and large degree, this approach has limited value.

Niederreiter (1992, Chapter 7) suggests that a good method of testing
pseudo-random number generators is to apply statistical tests to them. We
follow his advice and apply three x?-tests to the results of our algorithm. Holt
& Rees (1992) also used this statistical test to examine the performance of
their method.

We first choose a set, {P,..., P}, of properties where all elements of a
group satisfy one of these and no element satisfies more than one. That is, we
partition the group into b classes. Let G be a group where we know the number
p; of elements that have property P; for 1 < ¢ < b. If we have n uniformly
distributed random elements, then the expected number, ¢;, of elements that
have property P; is np;/|G|. We use the random element generator to obtain
n elements of G and determine the number, n;, of these that have property
P;. We can now compute a x> value for our data. Recall that y? is defined

by
€i)2

XQZZ(ni_

i €i

Associated with the x*-test are two parameters: the number of degrees of
freedom and a x? -probability. The number of degrees of freedom is the number
of independent outcomes. Since the sum of the n; is n, there are at most
b—1 degrees of freedom. The y?-probability, «, is chosen to be small, usually
in the range from 0.01 to 0.1. When both parameters are chosen, we can
determine the critical value, x, such that the probability that a x* random
variable, having b degrees of freedom, exceeds z is «. In particular, we can
carry out a x>-test on a number of independent data sets. If the results of
the tests exceed the critical value more than the number of times determined
by our chosen x?-probability, we reject our hypothesis. This is the “Neyman
Pearson” method of hypothesis testing. Tables of critical values for various
degrees of freedom and y?*-probability are available in the literature.

However, one test of this type is not sufficient to decide that the elements
generated are evenly distributed in the group. For example, assume we choose
just one property P and we test a group having four elements, two of which
have property P. Let g be one of these and let h be an element that does
not have property P. An algorithm that returns either g or h each with
probability 0.5 would pass the x*-test. In an attempt to address the problem

that a chosen test may have little power against certain alternative hypotheses,
we test three sets of properties on independent data. Assume, without loss of
generality, that we fix o as the x?-probability for each of these tests. If the
hypothesis that the algorithm produces uniformly distributed elements is true,
then the probability that all three x*-tests have values greater than their
respective critical values is o® and the probability that one test exceeds the
critical value is 1 — (1 —). For example, if a = 0.05 this probability is 0.14.

5 THE PROPERTIES

We now describe the group-theoretic properties used to test our algorithm.
Recall that a set of properties is used to partition the group. We choose
properties which play a key role in the algorithms developed as part of the
matrix group recognition project. Our motivation is two-fold: we want to
ensure that our algorithm performs well for these properties and theoretical
estimates for the expected results are available.

The first property we test is whether the generated elements have particular
orders. In practice we know — from direct computation or tables of data such
as the ATLAS of Conway et al. (1985) — the frequency distribution of orders
for various groups.

An element of GL(d, q) is cyclic if its characteristic and minimal polynomi-
als are identical. Neumann & Praeger (in preparation) estimate the proportion
of cyclic matrices in the general linear group and classical groups. They expect
that these elements will play an important role in deciding whether a matrix
group preserves a bilinear or sesquilinear form. We test whether the elements
generated are cyclic.

For integers b,e > 1, a primitive prime divisor of b —1 is a prime dividing
b* —1 but not dividing ' —1 for any 1 < i < e. An element of GL(d,¢) whose
order is divisible by a primitive prime divisor of ¢ — 1, where d/2 < e < d, is
a primitive prime divisor element (ppd-element). Penttila, Praeger & Saxl (in
preparation) classify subgroups of the general linear group which contain ppd-
elements. These elements play a fundamental role in the work of Niemeyer &
Praeger (in preparation) to recognise whether a subgroup of GL(d, ¢) contains
a classical group and so they computed the proportion of ppd-elements in

classical groups. We test whether the elements generated are ppd-elements.

10

We now present the theoretical estimates for the proportion of elements in
various groups that satisfy the last two properties. We first need to introduce
some notation from Kleidman & Liebeck (1990). Let V' be the d-dimensional
vector space over GF(q). Let k denote a non-degenerate form on V. Then
A denotes the subgroup of GL(d,q) that consists of all matrices which leave
k invariant up to scalar multiplication and I denotes the subgroup of A that
leaves k invariant. Let S denote the intersection of I and SL(d,). Then Q is
the subgroup S, except if x is a non-degenerate quadratic form, in which case
2 has index 2 in S. Note that if Kk =0 then A = GL(d,q) and Q = SL(d, q);
if k is a non-degenerate symplectic form then Q = Sp(d,q); if k is a non-
degenerate unitary form then) = SU(d, q); if is a non-degenerate quadratic
form then 2 = Q°(d, q). The orthogonal case has three subcases according to
the type of standard basis for V' (see Proposition 2.5.3 in Kleidman & Liebeck);
these are indicated by e being one of o, + or —.

5.1 CYCLIC MATRICES

Neumann & Praeger (in preparation) estimate the probability, vq, that a
random matrix in G, where 2 < G < A, is not cyclic. We summarise relevant

parts of their results:

(i) Special linear group:
1 1
Vg < ———— + —
9(¢* = 1) ¢°

(ii) Symplectic groups:

3., 1
q(¢*>—1) ¢(g-1)

Vg <

(iii) Orthogonal groups where d > 3, p # 2:

2¢° +q+1 3 1
2 + + 2 2
q(¢?—1) 2¢(¢g—1) ¢*(g—1)

(iv) Orthogonal groups with p = 2:

¢ 1 3 N 1
(?—1) q(g—1) 2¢(¢®>—1) 2¢*(g—1)?

vg <

11

5.2 PRIMITIVE PRIME DIVISORS

Let Pr(G) denote the probability of obtaining a ppd-element by a single ran-
dom selection from G'. We summarise relevant parts of Niemeyer & Praeger’s
results. We assume that Q2 < G < A.

(a) In the symplectic case d is even, d > 4, and

3 <Pr(G)<

a<rap 2f +1 7 a<r<aj2 21

1

where a = (d+4)/4 if d = 0(mod 4) and a = (d+2)/4 if d = 2(mod 4).

(b) In the unitary case

)y <Pr@)< Y s+

asres 2f +2 oirep 2f + 1

where a and b are integers with (d — 1)/4 < a < (d + 2)/4 and
(d—2)/2<b< (d—1)/2.

(c) In the orthogonal case with ¢ odd:

(i) For d odd, d > 7,

b

a<r<@ 2 2f 1 a<F(d-2)/2

1 1 2
SPT(G)< Z g‘f‘ﬁ,

where a is an integer with (d+1)/4 <a < (d+3)/4.
(ii) For d even, d > 6, set 6 = 0 in the + case and § = 1 in the —
case. We obtain

1.2
of T d’

1 0

> +
sy 2f 1 d+1

<Pr(G)<)

a<f<(d-2)/2

where a = (d+4)/4 if d = Omod 4 and a = (d+2)/4 if d = 2mod 4.

6 INVESTIGATING THE ALGORITHM

We developed an implementation of the algorithm in GAP 3.4 (see Schénert
et al., 1994). Our algorithm has two parameters: K is the number of basic

operations carried out during preprocessing and N is the size of the array S'.

12

We also select the following: the property used to test the output; the number,
r, of independent executions of the algorithm to perform; the number, n, of
selections to perform during each execution.

Assume that the number of possible outcomes of the tests is b. The im-
plementation constructs an n X b array, R. For each of the r executions, the
implementation records the outcome of selection ¢ in the ¢th row of R. Hence
at the end of r executions, the ¢th row of R records the distribution of r
elements, all obtained after i + K basic operations. We now apply a x*-test
to each of the n distributions of r elements stored in R.

Below, we present our results for a range of examples. We have chosen
commonly available generating sets for these groups — primarily those supplied
by GAP or MAGMA (Bosma & Cannon, 1994). Let & be the size of the supplied
generating set X. We choose N to be the maximum of 2k + 1 and 10, and
use a x?-probability of 0.05.

We choose K to be zero for our tests — that is, we only initialise S and
do not perform any basic operations on its contents. This allows us to decide
most easily when the number of basic operations is sufficient to provide a
“reasonable” distribution. What constitutes an acceptable distribution? Since
we use a y2-probability of 0.05, we record the smallest number, K, of basic
operations where at most 5% of the remaining n — K +1 x”*-tests exceeds the

critical value.

Table 1: Order test for a sample of groups

Group Order K
Jo 604800 | 51
PSp(6,2) 1451520 | 48
Us(2) 13685760 | 56
Aqp 19958400 | 71
HS 44352000 | 49
Moy 244823040 | 57
S1o 479001600 | 53

In Table 1, we report on our testing of order distributions. For each group,

we list its (Atlas or well-known) name and its order. We also list the number,

13

K, of basic operations performed before the distribution settles. Since the
algorithm is black box, in some cases we used permutation (rather than matrix)
representations for the groups. The values of n and r are 150 and 50000,
respectively. Since we know the order distributions for our groups, it is easy
to run a x>-test on the results.

When we carry out our ppd-element and cyclic matrix tests, we have to
work a little harder to apply a x-test to the results. Since we know only a
range for the expected outcome, we must first estimate its value. We then
hypothesise that this estimate is the expected outcome and use our x*-test
to test this hypothesis. We obtain an estimate of the expected outcome by
generating a large number of elements — about 50000 in each group — and
determining the proportion of these which satisfy each property. If the com-
puted value is within the theoretical range presented in Section 5, we use it as

the expected value for the y*-test.

Table 2: Cyclic matrix and ppd-element tests for a sample of groups

Group K. | K,
Sp(10, 16) 18 | 24
Sp(30,7) 77|19
SU(20,25) - | 36
SU(30,7) - | 60

0" (10, 25) 33 | 18

O~ (10, 25) 33 | 31
0~ (20,7) 52 | 31
07(30,8) 29 | 99

In Table 2, for a range of classical groups we report the numbers, K. and
K, , of basic operations performed for the cyclic matrix and ppd-element tests
before the distribution settles. The values of n and r are 150 and 2000,
respectively.

What can we say about the behaviour of K if |X| is fixed and |G| — c0?
For example, consider the behaviour of K for the family of general linear
groups, GL(d,q), as d — oo. Since the order of GL(d,q) is about qdz,

and each basic operation gives rise to one of at most 2N(N — 1) elements

14

of G, we need at least d®logq/log(2N(N — 1)) basic operations to cover the
whole group. Hence, theoretically, we expect that K grows as d?logq. We
investigated the performance of K for a small sample of general linear groups
having degree up to 100 and for a fixed field. We chose two sets of properties

for our investigation:

1. The degree of the largest irreducible factor of the characteristic polyno-

mial of an element.

2. The number of irreducible factors of the characteristic polynomial of an

element.

The first of these properties (for the minimal polynomial) was also used by
Holt & Rees (1992) to assess the quality of their results. Here, as in the case
of ppd-elements and cyclic matrices, we first estimated the expected outcome
by considering a large sample. In Table 3, for a range of general linear groups
we report the numbers, K; and Ky, of basic operations performed for these
two tests before the distribution settles. The values of n and r are 150 and

10000, respectively.

Table 3: Characteristic polynomial tests for a sample of general linear groups

Group K, Ky
GL(50,7) 45 42
GL(60,7) 49 56
GL(70,7) 58 67
GL(80,7) 59 69
GL(90,7) 65 76
GL(100,7) 83 86

It appears that, within the range of our experiment, the value of K is
bounded or at most grows slowly. The fact that a much smaller bound for
K appears to hold than that expected on purely theoretical grounds suggests
that the partitions chosen in our experiments are reasonably evenly distributed
among words of different length. However, we would need to investigate matrix
groups having degrees up to the thousands before being able to reach more

decisive conclusions and currently such investigations are not practical.

15

What influence does the size N of the array, S, have on performance? In
practice, we cannot ensure that N is at least twice the maximal cardinality
of a minimal generating set for G. Hence, Y consists of N-tuples containing
only generating sets in the same Tietze class as the original generating set,
X. Let X have cardinality k. We found that the performance varied little
provided that N was a “small” multiple of £, usually no more than five. If
N is larger than this value, then the number of basic operations required for
preprocessing significantly increases — presumably because the array contains
too many repetitions. We observed best overall performance when we chose
the array size to be the maximum of 2k + 1 and 10.

We have considered briefly the influence of the initial generating set on
the performance on the algorithm. It is not possible to carry out a systematic
study since there is no agreed notion of either a “bad” or “random” generating
set. In practice, common generating sets for linear groups are far from random.
Our investigation suggests that the impact is the natural one: namely, not all
generating sets require the same amount of preprocessing. For example, we
chose two generating sets for Sip: one of cardinality 9 composed entirely of
transpositions, and another of cardinality 2 containing a transposition and
an element of order 10. The number of basic operations required for these
generating sets was 109 and 63 respectively. The equivalent investigation for
Ss gave values of 52 and 43.

We conclude that the product replacement algorithm, with parameter set-
tings N = max(10,2k+1) and K > 60, appears to give adequate performance
for this collection of properties.

Versions of the algorithm are available as part of the standard distribu-
tions of GAP and MAGMA. We have also written a library of procedures to
test the performance of random element generators, which is available on re-
quest. Apart from its use for additional testing, it may be useful in developing
Monte Carlo algorithms. If an algorithm returns an answer based on a certain
theoretical probability, then our programs can be used to check whether the

sample chosen in a particular experiment meets the theoretical requirements.

16

ACKNOWLEDGEMENTS

We thank the following colleagues for very helpful discussions and feed-
back: Laszl6 Babai, Adrian Baddeley, Gene Cooperman, Larry Finkelstein,
Derek F. Holt, Cheryl E. Praeger, and Sarah Rees. Leedham-Green, Murray,
and Niemeyer thank the School of Mathematical Sciences at the Australian Na-
tional University for its hospitality while part of this work was carried out. The
work of Niemeyer on this project was supported by ARC Grant A69230241.
O’Brien thanks both the University of Western Australia and Northeastern
University for their hospitality while this work was being completed. The
computations reported in Table 3 of the paper were carried out using GAP-
MPI, a parallel version of GAP, currently under development by Cooperman

at Northeastern University.

REFERENCES

M. Aschbacher (1984), “On the maximal subgroups of the finite classical
groups”, Invent. Math., 76, 469-514.

Lasz16 Babai (1991), “Local expansion of vertex-transitive graphs and random
generation in finite groups”, Theory of Computing, (Los Angeles, 1991),
pp. 164-174. Association for Computing Machinery, New York.

Lasz16 Babai, Robert Beals and Daniel Rockmore (1993), “Deciding finiteness
of matrix groups in deterministic polynomial time”, Proc. 1993 Interna-

tional Symposium on Symbolic and Algebraic Computation, pp. 117-126.
ACM Press, New York.

Wieb Bosma and John Cannon (1993), Handbook of MAGMA functions. De-
partment of Pure Mathematics, Sydney University.

Frank Celler and C.R. Leedham-Green (in preparation), “Non-constructive
classical group recognition”.

J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson (1985),
Atlas of finite groups. Clarendon Press, Oxford.

Persi Diaconis and Laurent Saloff-Coste (1993), “Comparison techniques for
random walk on finite groups”, Ann. Probab., 21, 2131-2156.

17

P. Diaconis and L. Saloff-Coste (1994), “Moderate growth and random walk
on finite groups”, Geom. Funct. Anal., 4, 1-36.

Geoffrey Grimmett and David Stirzaker (1982), Probability and Random Pro-

cesses. Oxford University Press, London.

Derek F. Holt, Charles R. Leedham-Green, E.A. O’Brien and Sarah Rees
(1994), “Primitivity testing for matrix groups”, preprint.

Derek F. Holt and Sarah Rees (1992), “An implementation of the Neumann—
Praeger algorithm for the recognition of special linear groups”, J. Ezper-
imental Math., 1, 237-242.

W.M. Kantor and A. Lubotzky (1990), “The probability of generating a finite
classical group”, Geom. Dedicata, 36, 67-87.

Peter Kleidman and Martin Liebeck (1990), The Subgroup Structure of the Fi-
nite Classical Groups, London Math. Soc. Lecture Note Ser., 129. Cam-
bridge University Press.

Martin W. Liebeck and Aner Shalev (to appear), “The probability of generat-

ing a finite simple group”, Geom. Dedicata.

Peter M. Neumann and Cheryl E. Praeger (1992), “A recognition algorithm
for special linear groups”, Proc. London Math. Soc. (3), 65, 555-603.

Peter M. Neumann and Cheryl E. Praeger (in preparation), “Cyclic matrices

over finite fields”.

Harald Niederreiter (1992), Random Number Generation and Quasi-Monte
Carlo Methods, CBMS-NSF Regional Conference Series in Applied Math-
ematics, 63. STAM, Philadelphia.

Alice C. Niemeyer and Cheryl E. Praeger (in preparation), “Recognising clas-

sical groups”.

Tim Penttila, Cheryl E. Praeger and Jan Saxl (in preparation), “Linear groups

with orders divisible by certain large primes”.

Martin Schoénert et al. (1994), GAP — Groups, Algorithms and Programming.
Lehrstuhl D fiir Mathematik, RWTH, Aachen.

18

