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Abstract

We report on our construction of a power-commutator presentation for
R(2,7), the largest finite 2-generator group of exponent 7. Our calcula-
tions show that R(2,7) has order 720416 nilpotency class 28, and derived
length 5. The calculations also imply that the associated Lie ring of R(2,7)
satisfies relations which are not consequences of the multilinear identities
which hold in the associated Lie rings of groups of exponent 7.

1 Introduction

We have constructed a consistent power-commutator presentation for R(2,7), the
largest finite 2-generator group of exponent 7. We can read off from the presen-
tation that R(2,7) has order 724! and nilpotency class 28. An easy calculation
with the power-commutator presentation shows that R(2,7) has derived length
5. It also may be of interest that R(2,7) satisfies the 10-Engel identity, but not
the 9-Engel identity.

Newman & Vaughan-Lee [10] constructed presentations for two Lie algebras
connected with R(2,7). First they constructed F(2,7), the free 2-generator 6-
Engel Lie algebra over Z7, and showed that it has class 29 and dimension 237809.
The associated Lie rings of groups of exponent 7 satisfy the 6-Engel identity
[z, 9,9,9,9,y,y] = 0, and since they have characteristic 7 they may be viewed as
Lie algebras over the field Z;. Thus if L(2,7) is the associated Lie ring of R(2,7),
then L(2,7) is a homomorphic image of F(2,7).

However, L(2,7) is known to satisfy identities which are not consequences of
the 6-Engel identity. (This was first discovered by Khukhro [6].) More generally,
the associated Lie rings of groups of exponent p satisfy a sequence of multilinear
identities K, = 0 for n > p. See Theorem 2.4.7 and Theorem 2.5.1 of [13] for
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a description of these identities. By Theorem 2.5.1 of [13], all the multilinear
identities which hold in the associated Lie rings of groups of exponent 7 are
consequences of these identities.

The (p — 1)-Engel identity is equivalent in characteristic p to the identity
K, = 0. Let W(m,p) denote the largest m-generator Lie algebra over Z, sat-
isfying the identities K,, = 0 for n > p. So L(m,p), the associated Lie ring of
R(m,p), is a homomorphic image of W (m, p). Newman & Vaughan-Lee [10] also
constructed W (2,7), and showed that it has class 29 and dimension 20418. Since
our computations show that R(2,7) has class 28, it follows that L(2,7) is a proper
homomorphic image of W(2,7). In fact L(2,7) is the class 28 quotient of W (2, 7):
namely,

L(2,7)=W(2,7)/W(2,7)%.

Thus the associated Lie ring of R(2,7) satisfies relations which are not conse-
quences of the multilinear identities K,, = 0. This is in contrast to groups of
exponent 5. Havas, Wall & Wamsley [4] showed that

L(2,5) 2 E(2,5) 2 W(2,5),

and it was proved in [12] that

Groups of exponent 2 are elementary abelian, and groups of exponent 3 are
nilpotent of class at most 3. It is easy to see that

L(m,p) = E(m,p) = W (m,p)

for p = 2,3 and for all m.

We constructed the power-commutator presentation for R(2, 7) using a special-
purpose implementation of the p-quotient algorithm. We made a number of mod-
ifications to the general-purpose algorithm described in Newman & O’Brien [9]
to enable us to carry out this computation. In particular, we used a modified
data structure to save space, used automorphisms and commutator identities to
facilitate enforcing the exponent law, and used the Baker-Campbell-Hausdorff
formula to compute part of the power-commutator presentation. Our modified
data structure is that used by Newman & Vaughan-Lee [10]. Automorphisms
and commutator identities were used in the study of Burnside groups by New-
man & O’Brien [9] and Vaughan-Lee [12]. We believe that this use of the Baker-
Campbell-Hausdorff formula is new, and estimate that its use reduced the time
required for the construction by a factor of at least 8.

All CPU times reported in the paper were obtained on a Sun UltraSPARC
Enterprise 4000 server, having 3 GB of RAM. The construction and verification
of the power-commutator presentation for R(2,7) took approximately 7725 CPU



hours and used a maximum of 1.5 GB of RAM. (For calculations of this sort it
is important to have the whole presentation in RAM.)

The paper is organised as follows. In Section 2 we review basic features of
the p-quotient algorithm. In Section 3 we discuss the modified data structure. In
Section 4 we discuss enforcement of the exponent law, and in Section 5 we discuss
the use of the Baker-Campbell-Hausdorff formula. We report on the resources
used in Section 6 and finally comment on the accuracy of our computation.

We are particularly grateful to M.F. Newman for a number of useful discus-
sions on how to construct R(2,7). Our approach also draws heavily on the work
of Newman & Vaughan-Lee [10] on Lie algebras associated with R(2,7).

2 The p-quotient algorithm

If G is a group of order p™ where p is a prime, then GG can be described using
a power-commutator presentation. This is a presentation on a generating set
{ai,as, . ..,a,} with n power relations

p _ a(iit+l) afii+2) a(i,n)
a; =01 G coeatm (1)

where 0 < a(i, k) <pfor1 <i< k <n,and (g) commutator relations

a5, ;] = a5 gl (2)
where 0 < (i, j,k) < pfor 1 < j < i<k <n. These presentations are of central
importance in allowing effective computation with finite p-groups (see Sims [11]).
However, a group defined by a power-commutator presentation on n generators
may have order dividing p".

A critical feature of a power-commutator presentation is that every element of
the presented group may be written as a normal word a*a5? ... a%" where each
o; is an integer and 0 < ; < p. An arbitrary word in the generators is converted
to an equivalent normal word by a process called collection. Various strategies for
collection exist; a general discussion can be found in [11, §9.4]. If every element
has a unique normal form, then the power-commutator presentation is consistent
(and so defines a group of order p™). Collection using a consistent presentation
provides a solution to the word problem. The standard method to construct a
consistent power-commutator presentation from an inconsistent one is described
in Appendix B of [13].

The general-purpose implementation of the p-quotient algorithm is used to
construct consistent power-commutator presentations for finite p-groups, described
by a finite presentation or an exponent law. The algorithm in common use today
is based on the “Canberra nilpotent quotient algorithm” originally developed by
Havas & Newman [3]. Over the years this algorithm has been improved and ex-
tended in a number of ways. For a description of the general-purpose algorithm
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and a report of some of these improvements, see Newman & O’Brien [9]. For fur-
ther details see Newman, Nickel & Niemeyer [8]. Here we focus on its application
to groups of exponent p, and so some details are simplified.

The algorithm works along the lower central series of G: having computed
a consistent power-commutator presentation for the largest class ¢ — 1 quotient,
G/7.(G), of G it computes one for the largest class ¢ quotient, G/v.41(G).

In practice, the consistent power-commutator presentations constructed by
the p-quotient algorithm have additional structure.

1. If G/®(G) has rank d, then {ai,...,aq} is a generating set for G.

2. For each ay in {agy1,. .., a,}, there is at least one relation whose right hand
side is a;. One of these relations is taken as the definition of ay.

3. The power-commutator presentation also has an associated weight function:
a generator a; is assigned a weight w(a;) corresponding to the class at which
it is added. The value of w on the generators is the following.

(i) w(a;) =1fori=1,...,d,
(ii) if the definition of ay is a} = ay, then w(ax) = w(a;) +1
)

(iii) if the definition of ay is [a;, a;] = ay, then w(a;) = w(a;) + w(a;).

Note that w(a,) is the class of G. This weight function is extended to

all normal words in a natural way: if a generator a; has weight w(a;) for
i=1,2,...,n, then a{"a3? ... a2 has weight Y., a;w(g;).

The implementation of the general-purpose algorithm by Newman & O’Brien

[9] is available both as a stand-alone program, and as a component of GAP and

Magma. In principle, it can be used to compute a power-commutator presentation

for R(m, q) for an arbitrary number of generators m and an arbitrary prime-power

exponent ¢. Our investigations suggest however that it would take thousands

of CPU years and several GB of RAM to construct a presentation for R(2,7)

using this implementation. Hence we made a number of modifications to the

algorithm to save both time and space. As previously mentioned, our resulting

implementation constructed the presentation in approximately 7725 CPU hours
and used a maximum of 1.5 GB of RAM.

3 The data structure

An implementation of the p-quotient algorithm must store the p-th powers and
the commutators of the power-commutator presentation generators. In practice,
the program must know the coefficients oy; ;) (1 <7 < j < n)and o k) (1 < j <
i < k < n) from equations (1) and (2). There are (n® — n)/6 such coefficients.



Recall that a consistent power-commutator presentation for R(2,7) has 20416
generators. This suggests that we might need to store 1,418, 275,888,480 co-
efficients. Fortunately, most of these coefficients are zero and we exploit this.
Recall that a generator has weight w if it lies in 7, (G)\Vw+1(G). Consider two
generators a;, a; of weights u, v respectively. Since [7,(G), 1 (GQ)] < Yu40(G), the
commutator [a;, a;] only involves generators of weight at least u + v. In other
words, k) = 0 unless a;, has weight at least u 4+ v. In particular [a;, a;] is
trivial if u 4 v is greater than the nilpotency class of G. The saving that this
represents depends on the distribution of weights among the generators of G. In
the case of R(2,7) there remain 1,950,874,630 coefficients o ;x) which could
be non-zero; if each was stored as a single 32-bit integer, then we would need
almost 8 GB to store a power-commutator presentation for R(2,7). In practice,
a large proportion of these remaining coefficients are zero, although generally it
is not possible to predict which ones. The implementation of the general-purpose
p-quotient algorithm only stores the commutator [a;, a;] if weight considerations
imply that it may be non-trivial. In such cases, its value is stored as a sequence
of generator-exponent pairs: if

lai, ;] = aal ..o

where r < s < ... <t and «, f3,...,7 are non-zero exponents, then the value of
[a;, a;] is stored as the sequence

(r’ Of), (S’/B)’ R (t’ 7),

where each generator-exponent pair is stored as a single 32-bit integer. Using
this technique, the power-commutator presentation for R(2,7) could be stored in
just over 2 GB.

However, much larger power-commutator presentations are generated at in-
termediate stages in the calculation. Hence we adopted a different strategy to
store commutators. For each non-trivial commutator [a;, a;], we treated the co-
efficients o k) (1 < k < n) as a vector of length n — i. We noted the positions
of the first and last non-zero entries in this vector, and stored the coefficients be-
tween these two positions as a sequence of 32-bit integers, packing 10 coefficients
into each integer. Since the coefficients lie in the range 0 to 6, only 3 bits are
needed to store a single coefficient. This strategy enabled us to store the power-
commutator presentation for R(2,7) in 660 MB and to complete the calculation
in a maximum of 1.5 GB of RAM. This space saving strategy was also employed
in [10].

4 Exponent checking

We now consider the construction of a power-commutator presentation for R(2,7)
in some more detail. Initially, the p-quotient algorithm constructs a power-
commutator presentation for the largest abelian quotient of R(2,7). Suppose

5



that the class ¢ quotient of R(2,7) is G. The general-purpose algorithm first
constructs a power-commutator presentation for the 7-covering group of G — this
is the largest group H with an elementary abelian central subgroup M contained
in the Frattini subgroup ®(H), with H/M = G. The subgroup M is the p-
multiplicator of G and the class ¢+ 1 quotient of R(2,7) is H/H". The algorithm
now determines a generating set for H' by evaluating h” for certain elements
h € H. If, for example, H is the 7-covering group of the class 27 quotient of
R(2,7), then H has order 73%4% . Further H/H™ = R(2,7) which has order 729416,
Hence H7 is elementary abelian of rank 19079 and so computing a generating set
for H™ by this method would involve computing A7 for at least 19079 elements
h. In practice, the general-purpose algorithm would need to evaluate many more
7-th powers. The standard method of computing A7 is to write h as a normal
word, concatenate 7 copies of this word, and then apply the collection process to
obtain the normal word for A'.

In our computation of the class 28 quotient of R(2,7), the collection of (ajas)”
took approximately 12 CPU days. Hence it would be impossible to evaluate
many thousands of 7-th powers by collection. We now outline how we modified
the general-purpose p-quotient algorithm so that we only needed to compute just
one 7-th power in this way: namely, (a;a3)".

Let G be the class ¢ quotient of R(2,7), and suppose that G has order 7",
and power-commutator presentation generators a,as,...,a,. Let H be the 7-
covering group for GG. The power-commutator presentation generators of H are of
two types. First, H has n generators corresponding to the power-commutator pre-
sentation generators of GG, and these are usually also denoted a4, as,...,a,. Then
H has additional power-commutator presentation generators a,ii,Gpi2,---, 0y
corresponding to the generators of the p-multiplicator M. Every element of H
can be uniquely expressed as a normal word

a1 Qa2 ot
aitay’ ... a;

with 0 < ; < 7fore=1,2,...,t. Now the elements of M are central in H and
of order 7, so

(af'ad? ... alrapitt .. .afi)7 = (a®a$?...a%)" .
Recall G has exponent 7; hence if h € H, then h” € M, and so h” is central in
H. Thus, if h,k € H and hM is conjugate to kM, then h” = k7. We choose a set
of representatives for the conjugacy classes of non-trivial cyclic subgroups of G,

and we choose a set S of normal words in ay,as, ..., a, such that {sM |s € S}
contains a generator for each representative subgroup. Then H is generated by
{s"|s € S}.

The structure of S is of some importance. We construct S using the Felsch
& Neubiiser algorithm [2] for computing conjugacy classes of p-groups. This
algorithm proceeds as follows. For each k£ with 1 < k < n+ 1 we let Gy be the
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subgroup of G generated by {ak, axy1,...,a,}. It is important to note that the
generators a; for 7 = 3,4,...,n have definitions. We assume that ag = [as, a4],
ay = [ag,a1,a1], a5 = [ag, a1, as], and that the weights of the a; form a non-
decreasing sequence. First we choose a set of representatives for the conjugacy
classes of G/G3. Since G is generated by a; and ay,

{a%a) |0 < a,B <6}

is such a set. We extend this set to a set of representatives for the conjugacy
classes of G/G4. If «, B are not both zero, then afa, is conjugate to a?a’ga;’
modulo G4 for all v, and so

{a%a10< a,8<6}U{a|1<a <6}

is a set of representatives for the conjugacy classes of G/G,. We now extend this
set to a set of representatives for the conjugacy classes of G/Gs5, and so on.
Suppose we have a set S, of representatives for the conjugacy classes of G/Gy
of the form af*a5?.. .a:f’ll. We obtain a set Sy,; of representatives for the
conjugacy classes of G /Gy, as follows. Every element of G is conjugate modulo
Gr41 to an element sa* for some s € S;. If s € S; and s is conjugate to say
modulo G441, then s is conjugate to sa,* modulo Gy for all ay. Hence we

define Sy 1 =T UT' where
T = {s € Si | s is conjugate to say modulo Gy},
and
T = {say*|s € Sk, 0 < oy <6, s is not conjugate to say modulo Gy}

Iterating, we obtain a set S,,1 of representatives for the conjugacy classes of G.
The elements of S,;; are normal words of the form a{'a3? ...a2", and we take
our set S of generators for representatives of the conjugacy classes of non-trivial
cyclic subgroups of G to be the non-trivial elements a{'a3”...a%" of S,41 with
the property that the first non-zero entry in the sequence (a1, ag, ..., ay) is 1.
The set S constructed in this way has two key properties: if af*a5?...a0" € S,

then ai'a3?...ap* € S for all non-trivial initial segments a"a3?...ap" (1 <k <

n); also if a*ay? ... a%" € S and either oy or as is non-zero, then a3 = 0. Hence

S contains words of three types:
1. power-commutator presentation generators a,;
2. the words aia} (1 < i < 6);

3. normal words of the form a,af .. .af where 8 # 0, and a; has weight at
least 3.



We used different methods to ensure that words of each type have order 7.

Our implementation of the p-quotient algorithm stores the p-th powers of the
power-commutator presentation generators, so it is easy to verify that a generator
has order 7 by checking that the stored value is trivial. In practice, we modified
the general-purpose algorithm so that the 7-th powers of generators are trivial
throughout the calculation.

We computed (a;a2)” by applying a collection process to the word

(102010201020102010201020102

in the standard way. This collection gave us an element m of the p-multiplicator
M. We then computed the images of m under powers of the automorphism
mapping a; to a;a; and mapping as to a;. This gave the values of (a;ab)” for
1=2,3,4,5,6. At class 28, it took about 12 CPU days to compute the value of
m, but “only” about 2.7 days to compute the images of m under powers of this
automorphism.

We decomposed normal words of the form a,af .. .af where a; has weight at
least 3 as words w.v®, with v = a,. Since v is a generator of weight at least
3, it follows that the group generated by u and v is a proper homomorphic
image of R(2,7). Below, we deduce some commutator identities g;(u,v) = 1
(1 = 1,2,...,6) satisfied by u,v, and prove that evaluating these identities is
equivalent to evaluating (u.v?)".

These identities were obtained as follows. If we consider a commutator w in
u, v, where there are b occurrences of u and ¢ occurrences of v in w, then using the
fact that v has weight at least 3 we deduce that the weight of w is at least b+ 3c.
The Lie algebra calculations showed that R(2,7) has class at most 29 (although
the actual class turned out to be 28), and so w must be trivial if b + 3¢ > 29.

We first constructed the largest group K of exponent 7 satisfying the following
properties:

(1). K is generated by two elements u, v;

(2). if w is any commutator of weight b in u and weight ¢ in v where b+ 3¢ > 29,
then w = 1.

(This is an easy computation using the general-purpose p-quotient algorithm.)
We next observe that each of the following six products of commutators of

weight 7 is an element of ~g(K).
[U7 u? u? u? u? u? u]7
[U’ u’ u’ u’ u’ u’ ’U]s[’l)’ u’ u’ u’ u’ U’ u]4[v’ u’ u’ u’ ’U7 u’ u])
[V, w, u, u, u, v, V][V, u, u, u, v, u, V][V, u, u, u, v, v, )%V, u, u, v, u, v, u] v, u,u, v, v, U, U],
[U’ u’ u’ u’ ’U7 U’ ’U]s[’l)’ u’ u’ U’ u’ ’U’ U]2[IU7 u’ u’ U’ IU’ u’ U]4[U’ u’ u’ IU’ U’ IU’ U]S[,l)’ u’ U’ IU’ u’ U’ u]?
[v,u, u,v,v,v,v][v,u,v,v, u,v,v]*[v, 4, v,v,v,v, U],

[v,u,v,v,v,v,].



We obtained the identities ¢;(u,v) = 1 (i = 1,2,...,6) by expressing each
element as a product of commutators of weight 8 or more in u and v (and so we
deduce six relations for K). It is relevant for our use of these identities to note
that all of the commutators occurring in the expression for ¢;(u, v) have weight at
least ¢ in v (including the commutators of weight 8 or more which do not appear
explicitly above).

We now have the following lemmas.

Lemma 1 Let K be a group satisfying properties (1) and (2) above, and suppose
that the normal closure V of v in K has exponent 7. Suppose further that (uw)” =
u” for allw € V. Then ¢;(u,v) =1 fori=1,2,...,6.

Lemma 2 Let K be a group satisfying properties (1) and (2) above, and sup-
pose that the normal closure V' of v in K has exponent 7. Suppose further that
gi(u,v) =1 fori=1,2,...,6, and that ¢;(vwy, ws) =1 fori=1,2,...,6 and for
allwy € V and all wy € v3(K). Then (uw)” =" for allw € V.

These were proved by straight-forward computer calculation. Using them we
prove the following.

Lemma 3 Let G be a 2-generator group of order 7" and class at most 29. Let G
have a power-commutator presentation with generators ay,as,...,a, (with a3 =
lag,a1], as = [ag, a1, a1], a5 = [ag, a1, as]), where every generator has order 7. Let
k>4 and let Gy, = {(ak, Qx41,- -, 0n). Then gi(u,v) =1 (1 <i<6) forallu € G
and all v € Gy if and only if (wv)” = u” for allu € G and all v € Gy.

Proof. The proof is by reverse induction on k, the result being trivial if K = n+1
since G, = {1}.

First suppose that (uv)” = u” for all u € G and all v € G. Then taking u = 1
we see that the normal subgroup G\ has exponent 7. So if v € G and v € G
(k > 4), then K = (u,v) satisfies the hypotheses of Lemma 1, and ¢;(u,v) =1
fort=1,2,...,6.

Next suppose that ¢;(u,v) = 1 for all u € G and all v € Gf. We suppose
by induction that (uv)” = u” for all u € G and all v € Gy1. In particular this
implies that (av)” = aj' =1 for all v € Gi41, so that Gy, has exponent 7. So if
u € G and v € G (k > 4), then K = (u,v) satisfies the hypotheses of Lemma 2,
and ()" =w’. O

We are now in a position to prove a theorem which shows how the identities
gi(u,v) =1 can be used for exponent checking in groups of exponent 7.

Theorem 4 Let G be a 2-generator group of order 7" and class at most 29.
Let G have a power-commutator presentation with generators ai, as, ..., a, (with
az = [az, a1], ay = [az, a1, a1], a5 = [as, a1, as]), where every generator has order
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7. Let S be the set of generators for representatives of the conjugacy classes of
cyclic subgroups of G obtained using the Felsch-Neubiiser algorithm as described
above. Assume that

(4) (a1as)”" =1 fori=1,2,...,6;

(1) ¢i(aa?.. .af,aq) =1 fori=1,2,...,6 for all words a,a% ... afa;’ € S with
aq of weight at least 3.

Then G has exponent 7.

Proof. Clearly, factoring out by [G7,G] if necessary, we may assume that if
g € G, then ¢" lies in the centre of G. It follows that if g, h are conjugate
in G then ¢° = h7. We need to show that 27 = 1 for all z € S. Now the
elements of S have one of the following forms: a;v, a;abv, asv, azv, v for some
v € G4 = {a4,0as,-..,a,). By hypothesis a] = (a1a%)” = a} = a = 1. So it is
sufficient to show that (uv)” = u” for all u € G and all v € G4.

We prove by reverse induction that if & > 4, then (uv)” = u” for all u € G
and all v € Gy. This is trivial for £k = n + 1 since G, 1 = {1}.

Suppose by induction that (uv)” = u” for all u € G and all v € Gy;;. Lemma
3 implies that ¢;(u,v) =1 (1 <7 < 6) for all w € G and all v € Gi1;. We need
to show that (uv)” = v’ for all u € G and all v € Gy.

Let v € G and v € G§. First note that, just as in the proof of Lemma 3, our
inductive hypothesis implies that G, has exponent 7, so we may suppose that
u ¢ Gg. There is an z € S such that u is conjugate to a power of z. Thus

u = 2™ for some 1 < m < 6 and some g € G. Let z = af"a3”...a2". If
we let y = af'as?...a,*7", then z = yap*w for some w € Gy41. By induction,

2" = (yaz*)", and we show that in fact 7 = y”. This is trivially true if a; = 0.

But if a # 0 then yap* € S, and so our hypothesis implies that ¢;(y,ax) = 1
for 1 <4 < 6. As remarked above, our inductive hypothesis also implies that
gi(u,v) =1 (1 <i<6)forallu € G and all v € Gg;1. By Lemma 2 this implies
that (yap*)” = y”. Hence

U,7 — m?mg — (ya’gkymg — y7mg.

Next consider (uv)’.

2 € Gg11, and then

We can write uv = (ya’z)™ for some 8 > 0 and some

(uv) = (yay2)™? = (yag)™.

So to show that (uv)” = u” we need to show that (ya?)” = y7. Now, from the
way that S was constructed, y € S and either yaf € Sor yaf is conjugate to
an element of the form yw with w € Gyyy. If yab € S then (ya?)7 = y7 by
the argument just given above. If yaf is conjugate to yw with w € Gg.1, then
(yal)" = (yw)” = y7 by induction. Hence (uv)" =w’. O
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We use Higman’s Lemma [5] to check that ¢;(a,a®...a’ a,) = 1 for i =
1,2,...,6 for all words a,a? .. .afag € S with a, of weight at least 3. Its applica-
tion to reduce exponent checking is described in Appendix B of [13]. In summary,
it states that a p-group of class ¢ has exponent p if every normal word of weight
at most ¢ has order dividing p. In particular, it implies that we only need to
compute ¢;(a,a .. .at’B , a,) for words a,a? .. .af ag of weight at most ¢, where c is
the class of G.

When constructing the power-commutator presentation at each class for the
increasing quotients of R(2,7), we only computed g;(a,a? .. .af , aq) for enough
test words to reduce the order of the group to the order predicted by the Lie
algebra calculations. We describe in Section 5 how we did this efficiently.

Finally, we obtained a consistent power-commutator presentation for a group
G of order 72°41% and class 28. We now performed a complete exponent check
on (G. We checked that G admits an automorphism # mapping a; to a;as and
mapping as to a;. If we let Go = (ag,as, ..., axs), then every element of
G is the image of an element of G2 under some power of the automorphism
f. To check that G has exponent 7, it is only necessary to check that G5 has
exponent 7. The proof of Theorem 4 shows that G5 has exponent 7 provided
all of the generators as, as, . .., asa16 have order 7 and ¢;(a,a? ... af ,aq) =1 for
words a,al ... af ay € S with r» > 2. We tested these words using the reductions

provided by Higman’s Lemma.

5 The Baker-Campbell-Hausdorff formula

Let A be the free associative algebra with unity over the rationals Q that is freely
generated by non-commuting indeterminates z,y. We extend A to the ring A of
formal power series consisting of the formal sums

o)
§ Up,
n=0

where u, is a homogeneous element of weight n in A. If a € 21\, and if the
homogeneous component of a of weight 0 is 0, then we define
2 g3
a - -
e"=14+a+ 9] + 3l + ...
in the usual way. The product e®e? € A can be expressed in the form 1 + u for
some u € A, and

ee¥ = ¢
where
o0 un
v = E (-1t
n
n=1



The Baker-Campbell-Hausdorff formula (see, for example, Jacobson [7, Chapter
V]) enables us to compute the homogeneous components of v. The first few
components are given below:

1 1 1 1
v=e+y—sly e+ Slyee] - Sl oyl + oy e 2y +
One important (and surprising) feature of this expression is that the homogeneous
components of v are all Lie elements of A (that is, elements in the Lie subalgebra
of A generated by x and y with respect to the Lie product [a,b] = ab — ba). A
similar formula holds for commutators:

[e%,e"] = e,

where
1 1 1 1 1
w = [y,l'] + E[yaxax] + E[yaxay] + é[y:xamax] + Z[y:xamay] + é[yamayay] +....

These formulae sometimes allow us to define a group structure on a Lie alge-
bra. One example is when L is a finite nilpotent Lie ring of order p™ and class at
most p — 1. We write the element v above as

V=V +Vy+ ...,

where v; is a homogeneous Lie element of weight ¢, for 7+ = 1,2,..., and we
consider the truncated expression

v(z,y) =v1+v2+ ...+ V1.

The denominators of the coefficients that appear in v(z,y) are all coprime to p,
and so if a,b € L, then ¥(a,b) can be interpreted as an element of L. We define

w.”

an operation “o” on L by setting
aob="71(a,b),

for a,b € L. With this operation, (L, o) is a group of order p" and class at most
p — 1, and every finite p-group of class at most p — 1 arises in this way from a
finite Lie ring. This appears as an exercise in Bourbaki [1, Chapter 2.

This connection breaks down for p-groups of class at least p, since the denom-
inators of the coefficients of the terms of weight p in v are divisible by p. Nev-
ertheless, we were able to construct part of the power-commutator presentation
for R(2,7) from that of W(2,7) using the Baker-Campbell-Hausdorff formula.

We describe how this construction works at class 28; however we applied the
same construction in computing the power-commutator presentation for the class
¢ quotient of R(2,7) for 23 < ¢ < 28. We assumed that the class 28 quotient of
L(2,7) is the class 28 quotient of W(2,7). (There is a difficulty here, since at
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this stage we did not know that this was in fact the case; we will address this in
Section 7.)

Let L be the class 28 quotient of W (2,7), and let G be the class 28 quotient
of R(2,7). The Lie algebra calculations of [10] give a product presentation for L

as a Lie algebra over Z;, with a basis by, bs, ..., byos16 and a set of relations
20416
[bi, b]] = Z 5(z’,j,k)blc (1 <j<i1< 20416)
k=i+1

For ¢ > 3 the basis element b; has a definition as a Lie product of by, by. Thus
by = [ba, b1], by = [bo, b1, b;] and so on. Each of the basis elements is assigned a
weight, giving its degree as a Lie product of by, by, so that b3 has weight 2, b,
has weight 3, and so on. The Lie algebra L is graded; if b; has weight u and
b; has weight v, then [b;,b;] is a linear combination of basis elements of weight
u+v. Thus B x = 0 unless by has weight v + v. Similarly G' has a power-
commutator presentation with generators ay, as, . . . , asoa16, power relations a] = 1
(1 <4 <20416), and commutator relations
0,0 = a5 Va5 oz

There is considerable choice in the matter, but it is possible to choose the genera-
tors of G and the basis elements of L so that their definitions exactly correspond
to each other. In other words, if b; (for example) has definition

b7 = [an bla b17 b2]
as a Lie product of b; and by, then a; has definition
ar = [CLQ, ai, a1, a2]

as a commutator of a; and ay. If we do this, then o jx = B, k) whenever
w(ag) = w(a;) + w(a;). Recall from Section 3 that o jx) = 0 whenever w(ay) <
w(a;) +w(a;). As we noted above, 3; jr) = 0 whenever w(b;) # w(b;) +w(b;). So
the coefficients ;1) are determined by the coefficients «y; ;). More critically,
if w(a;) + w(a;) > 23 then all of the coefficients o jx) are determined by the
coefficients S ;x).-

Consider a basis element b, of L where w(b,) > 23. Then b, has a definition

of the form
bn, = [b2, b1, bi, by, . .., by

where i,7,...,k € {1,2}. Let ¢; =e” and ¢, =€¥ and consider
dn (z,
Cn = [62:61761'76]'7 .- -:Ck] = ¢ n(29)

in A. The element d,(z,y) is an infinite Q-linear combination of Lie elements
of A of weight at least w(b,). We compute the truncated expression d,(z,y)
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consisting of terms of weight at most 28. The denominators of the coefficients of
the terms in dy(z,y) are all coprime to 7, and so we can interpret dy,(by,bs) as
£, € L. It is easy to see that

20416

bn=bn+ Y_ b

1=n-+1

for some coefficients v;, and we use the Baker-Campbell-Hausdorft formula to
compute the values of these coefficients. Thus {£, |w(b,) > 23} is a basis for L?3.
Now suppose that 1 < j <4 < 20416 and that w(b;) + w(b;) > 23. Let b; and b;
have definitions

bi = [anblabrabSa .. 'abt]a b] = [bZablabuab’Ua .- abw]

where r,s,...,t,u,v,...,w € {1,2}. Then

[[e2, €1, Cry Cos - - - 1, [C2y €1, Cuy Coy - - -5 €] = €4EY)

in A. The element d(z,y) is an infinite Q-linear combination of Lie elements
of A of weight at least w(b;) + w(b;), and as above we compute the truncated
expression g(x,y) consisting of terms of weight at most 28. Just as above, we
can interpret d(bi,bs) as £ € L. It is easy to see that if w(b;) + w(bj) = m then
¢ e L™ If b, is the first basis element of L of weight m, then we can write

20416

l= Z Vi, jk) Lk
k=n

It turns out that o jk) = Y,k for all £ > n. So if w(a;) +w(a;) > 23, then the
full commutator relation
ara5] = a2 Vs gz

can be computed from the product presentation for L using the Baker-Campbell-
Hausdorff formula. Our proof of this fact relies on the assumption that L is the
associated Lie ring of G. However, our claim that we have a power-commutator
presentation for R(2,7) does not rely on this proof, and so we omit it. We give
a justification for relying on the results of this calculation in Section 7.

We use this observation as follows. Let us denote the class 27 and class 28
quotients of R(2,7) by R(2,7;27) and R(2,7;28) respectively. Recall that the
first step in constructing a power-commutator presentation for R(2,7;28) is to
construct one for the p-covering group of R(2,7;27). To do this, we consider the
relations

_afiygyidl)  aligi42) a(i,5,20415)
ai, aj] =049 42 -+ Gg0q15 (3)
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in R(2,7;27) for j = 1,2. (The class 27 quotient has order 72°45.) About half
of these relations are definitions. For example, the relations [ag,a;] = a3 and
las,a;] = a4 are the definitions of a3 and ay. We first introduce a new power-
commutator presentation generator a; for each of the relations which is not a
definition, and substitute a modified relation

a3, 03] = P el agg i a, (4)
with different values of the index t for each such modified relation. Then we
add relations which make the new generators central and of order 7. The next
step is to compute the new values of the commutators [a;, a;] for j > 2. (These
can always be deduced from the values of the commutators [ag,a1] and [ay, as].)
We now have a power-commutator presentation for a preimage of R(2,7;28). (To
obtain a presentation for the p-covering group of R(2, 7; 27), we should also modify
the power relations a! = 1 in a similar fashion, but our groups have exponent 7,
and so this step is unnecessary.) This presentation may be inconsistent, and so
we enforce consistency (see Appendix B of [13]), obtaining a consistent power-
commutator presentation for our preimage of R(2,7;28). The final step is to
enforce exponent 7.

In our implementation, we only replaced relation (3) by relation (4) when
w(a;) +w(a;) < 23. If w(a;) +w(a;) > 23, we replaced relation (3) by the relation
computed from L with the Baker-Campbell-Hausdorff formula. The relations
computed using this formula involve new power-commutator presentation gen-
erators of weight 28 corresponding to the basis elements of L of weight 28. In
fact there is only one of these, asgs16, but the method would work equally well
if there was more than one. This gave us a power-commutator presentation for
a group which was intermediate between R(2,7;28) and the p-covering group of
R(2,7;27). As usual, we then enforced consistency and exponent relations to
obtain a consistent power-commutator presentation for R(2,7;28). The advan-
tage of this method is that at the final stage there are far fewer consistency and
exponent relations which need to be enforced. Further, we were able to predict
precisely which relations to enforce, because these were precisely the relations
which had an effect in the computation of the class 22 quotient. This reduced
the time for the final part of the calculation by a factor of at least two.

6 Resources

In Table 1 we summarise the ranks of the lower central factors of R(2,7).

Class |12 |3(4|5 |6 (7 |8 |9 [10 |11 |12 |13 |14 15 16 17
Rank |2 1236 |9 |[12]23 36|61 |94 |159|260|406 |640 |985 | 1510
Total |2 358 |14|23|35|58|94|155|249|408 | 668 | 1074 | 1714 | 2699 | 4209
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Class | 18 19 20 21 22 23 24 25 26 27 28
Rank | 2157 | 2992 | 3795 | 4046 | 2850 | 240 96 14 14 2 1
Total | 6366 | 9358 | 13153 | 17199 | 20049 | 20289 | 20385 | 20399 | 20413 | 20415 | 20416

Table 1: Ranks of central factors of R(2,7)

All calculations were carried out on a Sun UltraSPARC Enterprise 4000 server,
having 3 GB of RAM. The process had maximum size 1.5 GB. In Table 2 we record
the approximate CPU hours taken to construct the class k& quotient of R(2,7) for
1<k <28.

Class | CPU hours
<19 30
20 116
21 624
22 552
23 365
24 576
25 1219
26 624
27 960
28 1248

Table 2: Times in CPU hours for class constructions

The considerable variations in times taken to construct classes are primarily
attributable to the use of new algorithmic techniques; for example, at class 22 we
introduced more efficient formulae for exponent checking, the Baker-Campbell-
Hausdorff formula was first used at class 23, and from class 26 onwards we only
enforced consistency and exponent relations which were guaranteed to have an
effect.

Let H be the 7-covering group of R(2,7;28); it took 27 CPU hours to show
using the general-purpose p-quotient algorithm that H/H' = R(2,7;28), thus
demonstrating that R(2,7) has class 28.

The verification that the resulting power-commutator presentation on 20416
generators for the class 28 quotient is consistent took 190 CPU hours; it took
1221 hours to verify that the group has exponent 7.

Once the initial construction of a power-commutator presentation for a group
is complete, it is sometimes possible to regenerate the presentation in a much
shorter time than that taken by the original construction. This is largely because
we can now avoid the redundant consistency and exponent checking performed
by the general-purpose algorithm. No significant saving is possible here since
the computations of power-commutator presentations at classes 26, 27 and 28
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did not perform any redundant consistency or exponent checks. However, a
small proportion of time could be saved through the use of the Baker-Campbell-
Hausdorff formula at earlier classes.

7 Reliability of results

Since the construction of the power-commutator presentation for R(2,7) required
such significant resources, it is unlikely that the calculation will be reproduced in
the near future.

When we reported on progress in constructing R(2,7) at the “Group Theory
and Computation” conference held in Sydney in December 1999, George Havas
from the University of Queensland asked: “When you finish the calculation why
should we believe the results?”. Here we seek to provide a careful answer to this
important question.

A first observation is that we can assert with a very high degree of confidence
that we have a consistent power-commutator presentation for a 2-generator group
of order 7?°*16  class 28, and exponent 7. Although it required large resources
and the use of special-purpose programs to construct this power-commutator
presentation it is completely straight-forward (using the standard consistency
algorithm) to verify that it is consistent. It is also relatively easy to verify that
the group has exponent 7, although it would be difficult to do this without using
commutator formulae such as the identities ¢;(u,v) = 1 described in Section
4. The power-commutator presentation is also available for further testing, if
required.

Next, note that the Lie algebra calculations of [10] imply that the class 28
quotient of R(2,7) has order at most 72°4'6. So, if our claim in the preceding
paragraph is correct, we have a consistent power-commutator presentation for
the class 28 quotient of R(2, 7).

We must justify our claim that R(2,7) has class 28. The Lie algebra calcu-
lations imply that it has class at most 29. We had expected that the class of
R(2,7) would turn out to be 29, and consequently we verified that its class is 28
in three different ways.

Originally we used the Baker-Campbell-Hausdorff formula and a careful se-
lection of test words to construct a consistent power-commutator presentation
for a class 29 group G of order 72418. This group G is a descendant of the class
28 quotient. Our calculations implied that if W (2, 7) was the associated Lie ring
of R(2,7) then G was R(2,7). However, when we performed a complete expo-
nent check on G we found g,h € G whose 7-th powers generated y99(G). So
G could not be R(2,7), and hence the associated Lie ring of R(2,7) must be a
proper quotient of W(2,7). In other words, the associated Lie ring of R(2,7)
is W(2,7)/I for some non-zero ideal I. Further, since the associated Lie ring
of the class 28 quotient of R(2,7) is the class 28 quotient of W (2,7), it follows
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that I < W(2,7)%. Finally, since W(2,7)% is irreducible as a module for the
automorphism group of W (2,7), this implies that I = W (2,7)?°, and hence that
R(2,7) has class 28.

We then did the calculation in a slightly different way. Once again we used
the Baker-Campbell-Hausdorff formula to construct a power-commutator presen-
tation for a group which was intermediate between the p-covering group for the
class 28 quotient of R(2,7) and the class 29 quotient. Then we systematically
tested consistency and exponent, starting with the easiest test words first, un-
til we found a small set of consistency and exponent checks which forced class
28. (We used the same set of consistency and exponent checks as in the earlier
calculation, but we applied them in a different order.)

Finally we proved that R(2,7) has class 28 using the general-purpose p-
quotient algorithm (without using the Baker-Campbell-Hausdorff formula). We
used the standard tails routine to build up a presentation for the p-covering group
of R(2,7;28) and applied consistency and exponent checks in the standard way.
Once again, the calculation showed that R(2,7) has class 28.

Using the general-purpose p-quotient algorithm, the following sets of consis-
tency relations and identities equivalent to exponent verification are sufficient
to force class 28. A sufficient set of consistency relations is (a;a;)ar = a;(ajax)
with ¢ > j > k, k = 1,2, w(a;) + w(a;) > 22. A sufficient set of identities is
[v,u,u,u,u,u,u] = 1 where u = a1, or ay or a;a for i = 1,2,3, and where v
is a power-commutator presentation generator of weight at least 17. These are
particularly simple instances of the relation ¢;(u,v) = 1 considered in Section 4.
If G is a group of class at most 29 and if u € G, v € y17(G), then

(w)" = ¢ - [v, u,u, u, u, u, ul

where c is a product of 7-th powers. So it is a relatively easy calculation with an
implementation of the general-purpose p-quotient algorithm to show that if H is
the p-covering group of our group of class 28, then H/H" has class 28.

Our claim that we have a consistent power-commutator presentation for R(2,7)
relies to a large extent on Lie algebra calculations. But the Lie algebra calcu-
lations and the group calculations confirm each other. We calculated a power-
commutator presentation for the class 22 quotient of R(2,7) without using the
Baker-Campbell-Hausdorff formula. Hence this calculation is independent of the
Lie algebra calculations and shows that the order of the class 22 quotient coincides
with the upper bound given by the Lie algebra calculations. The standard imple-
mentation of the general-purpose p-quotient algorithm was used to construct the
class 18 quotient of R(2,7); the order of each quotient obtained coincides with
the orders obtained using both our modified group program and the Lie algebra
calculations.
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