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Abstract

The theory and implementation of an algorithm used in generating descrip-
tions of p-groups are described. Some applications and details of the performance
of the algorithm are provided.

1 Introduction

In a 1977 paper, Newman gave a theoretical description of an algorithm that can be
used to generate descriptions of finite p-groups. The theory and implementation of this
algorithm, now known as the p-group generation algorithm, are described in detail in
this paper. The description of the implementation is intended to be sufficient to allow
a reader to write a similar implementation if it is required. In addition, space and
time limitations on the performance of the algorithm implementation are discussed.
An extension of the algorithm is developed which partially solves these problems.

A partial implementation of the algorithm was carried out by Alford, Ascione,
Havas, Leedham-Green and Newman in 1976. For an early application, see Ascione,
Havas and Leedham-Green (1977). A complete implementation of the extended al-
gorithm was carried out by Newman and the author in 1986. Some of the material
presented in Section 2 of the paper has appeared in a condensed form in Newman
(1977); such material is included here for completeness.

The implementation of an extended p-group generation algorithm has permitted a
computer based determination of the groups of order 128 and 256 to be carried out for
the first time. A detailed description of this work is provided in James, Newman and
O’Brien (1990) and in O’Brien (to appear). The problem of describing all groups of a
fixed order by giving one presentation for each isomorphism type of group of that order
was initiated by Cayley (1878). For a detailed bibliography on the history of group
determinations, see O’Brien and Short (1988).

In a 1940 paper, P. Hall described a classification theory for groups of prime-power
order. He defined an equivalence relation, isoclinism, on groups which splits them
into a number of mutually exclusive families. Hall showed that there are 10 isoclinism
families of the groups of order p®, where p is an odd prime. In the 1930s, he and Senior
used the theory of isoclinism to determine the 340 groups of order dividing 64 which
are classified into 27 families. This work formed the basis of the tables for the groups
of order dividing 64 later published by Hall and Senior (1964). Easterfield (1940) used



isoclinism as the basis of his classification of the groups of order p°, where p is an odd
prime, as did James (1980) in his work on this classification. James et al. (1990) used
the method described by Hall to calculate the isoclinism families of the groups of order
128; the reader is referred to that work for a further discussion of the subject. No
detailed comparison of the algorithm described here with that given by Hall has been
carried out.

2 The theory of the p-group generation algorithm

Finite groups of prime-power order may be described uniformly using power-commutator

presentations. The generating set is a finite set {ai,...,a,}. The defining relations
are:
a = ]I a’,f(z’ ), 0<B(i,k)<p, 1<i<n,
k=it1
n .« .
laj,a] = [ &%, 0< 86,5k <p, 1<i<j<n.
k=j+1

Presentations of this kind were first defined by Sylow (1872) who proved that every
group of order p" has a power-commutator presentation on n generators. If such a
presentation on n generators defines a group of order p”, then the presentation is
consistent.

A number of algorithms for the computation of power-commutator presentations of
finite p-groups have been developed. These are known as nilpotent quotient algorithms.
An implementation of a nilpotent quotient algorithm is described in Havas and Newman
(1980). Some important aspects of the implementation of this algorithm are recalled
below.

Let G be a d-generator p-group of order p”. Additional structure is imposed on a
consistent power-commutator presentation of G so that, for each ay in {agy1,...,a,},
there is at least one relation whose right hand side is a;. Exactly one of these relations
is taken as the definition of a;. The definitions are of two types: either ¥ = a;, where
i < k and q; is a pth power of some element or ¢ < d; or [a;, a;] = ar where i < j <k
and 7 < d.

A weight function, w, is also defined on the n generators according to the following
rules:

(i) w(a;))=1fori=1,...,d;
(ii) if the definition of ay is af, then w(ax) = w(a;) + 1;
(iii) if the definition of ay is [a;, a;], then w(ax) = w(a;) + w(a;).

Wamsley (1974), Havas and Newman (1980), and Vaughan-Lee (1984) show that
weighted power-commutator presentations can be used to reduce the amount of con-
sistency checking required on the presentation.



The Havas and Newman implementation uses a variation of the lower central series
known as the lower erponent-p central series. This is the descending sequence of
subgroups

G=DR(G)>...> P1(G) > P(G) > ...

where P;(G) = [Pi_1(G), G]1P;,_1(G)? for i > 1.

If P.(G) =1 and c is the smallest such integer then G has ezponent-p class c. A
group with exponent-p class ¢ is nilpotent and has nilpotency class at most c. In this
paper, the class of G refers to the exponent-p class of G. Nilpotency class is explicitly
indicated as such.

Three important properties of the lower exponent-p central series are collected to-
gether for later reference.

1. If # is a homomorphism of G then P;(G)0 = P;(G9).
2. If N < G and the quotient G/N has class ¢ then P.(G) < N.
3. If G is a finite p-group then P;(G) is the Frattini subgroup of G.

Given a description of a group G, a prime p, and a positive integer ¢, the nilpotent
quotient algorithm constructs a consistent power-commutator presentation for the
largest p-quotient of G' having class ¢. In theory, one can deal with group descriptions
given in various ways - in practice, the Havas and Newman implementation accepts
only finite presentations, possibly combined with exponent laws.

The ability to construct such presentations for finite p-groups provided the frame-
work for the development of the p-group generation algorithm. This algorithm calcu-
lates (presentations for) particular extensions, known as immediate descendants, of a
finite p-group. Let G be a finite p-group with (minimal) generator number d and class
c.

Definition 2.1 A group H is a descendant of G if H has generator number d and the
quotient H/P,(H) is isomorphic to G. A group is an immediate descendant of G if it
1s a descendant of G and has class ¢+ 1.

Clearly, G is a descendant of the elementary abelian group, G/P;(G), of order p¢;
also, G/P;;1(@G) is an immediate descendant of G/P;(G) for i < ¢. Thus, it is possible
to calculate G using an iterative method of calculating immediate descendants, starting
with the elementary abelian group of rank d. Since every group can be calculated in
this way, it is theoretically possible to obtain a complete list of all d-generator p-groups.
In practice, it is desirable that the list is both complete and irredundant - that is, a
representative of each isomorphism type is present and no two elements in the list have
the same isomorphism type. The following theorem is fundamental in an attempt to
construct such a list.

Theorem 2.2 Let G be a d-generator p-group. Then there exists a group, G*, where
every d-generator group H having a central elementary abelian p-subgroup, Z, such
that H/Z is isomorphic to G, is a homomorphic image of G*.



Proof Let F' be the free group of rank d freely generated by ay,...,as, and let R be
the kernel of a homomorphism 6 from F onto G. Define R* to be [R, F|RP and G* to
be F/R*. Then G* has d generators and, since R < F, R* < R.

Since H is a d-generator group and has a quotient which is isomorphic to G, the
homomorphism, #, may be factored through H and the resulting homomorphism, v,
of F' onto H maps R into Z. Since Z is elementary abelian and central, 1) maps both
R? and [R, F] to the identity in H. Thus, the image of R* in H is the identity and H
is a homomorphic image of F//R*.0

Lemma 2.3 The isomorphism type of G* depends only on G and not on R.

Proof Let R; and R, be normal subgroups of F; let F//R; = G; and F/Ry = G5 where
G1 = (5. Following the notation of Theorem 2.2, R}, G7, R5, and G are defined. This
theorem shows that G7 is isomorphic to G3, since each is a homomorphic image of the
other.O

It follows from Theorem 2.2 that every immediate descendant of GG is isomorphic
to a quotient of G* and, since F//R has class ¢, G* has class at most ¢ + 1.

Some of the notation established in Theorem 2.2 is used, without reference, in the
remainder of the paper. The group G* = F'/R* is the p-covering group of G. The factor
group R/R* is the p-multiplicator of G and the nucleus of G is P.(G*). An allowable
subgroup is a subgroup of the p-multiplicator which is the kernel of a homomorphism
from G* onto an immediate descendant of G.

Given G, the first step in the generation algorithm is to calculate G*. An important
requirement of an efficient algorithm for the construction of immediate descendants of
G is to characterise the required quotients of G* easily.

Theorem 2.4 A subgroup is allowable if and only if it is a proper subgroup of the
p-multiplicator of G which supplements the nucleus.

Proof Let M/R* be an allowable subgroup - that is, the kernel of a map from F/R*
onto an immediate descendant H of G. Since G has class ¢ and H has class ¢ + 1,
it is clear that M is a proper subgroup of R. Property 2 shows that P.(F) is a
subgroup of R and M is also a subgroup of R and, hence, M P.(F) is a subgroup of
R. Following Theorem 2.2, Ry is a subgroup of P.(H). Since F//R has class ¢, P.(F1))
is also a subgroup of R showing that Ri) equals P.(H). But Rt also equals R/M
and P.(H) = (P.(F)M)/M. Therefore, R/M = (P.(F)M)/M giving R = P.(F)M.
Hence, R* can be factored out showing that (M/R*)P.(F)R*/R* = R/R*. Property 1
gives the required statement.

Conversely, let M/R* be a proper subgroup of the p-multiplicator that supplements
the nucleus. Then (P (F)M)/R* = R/R* and, hence, (P,(F)M)/M = R/M. Prop-
erty 1 gives P,(F/M) = R/M. Since F/M is a quotient of F/R* it has generator
number d and the quotient (F/M)/P.(F/M) is isomorphic to G showing that F/M is
a descendant of G. But P.(F/M) = R/M which is non-trivial and, therefore, F//M
has class ¢ + 1 and is an immediate descendant of G.O



If G has immediate descendants, it is capable; otherwise, it is terminal. Clearly, G
is capable if and only if G* has class exactly ¢+ 1. Hall and Senior (1964) described a
p-group, G, as capable if there exists a group whose central quotient is isomorphic to
G.

If G is capable, on taking factor groups of G* by allowable subgroups a complete
list of immediate descendants is obtained; this list usually contains redundancies. To
eliminate these redundancies, an obvious equivalence relation is defined on the allowable
subgroups: two allowable subgroups M;/R* and M,/R* are equivalent if and only if
their quotients F'/M; and F/Mj, are isomorphic.

A complete and irredundant set of immediate descendants of G' can be obtained by
factoring G* by one representative of each equivalence class. In practice, this definition
is useful only because the equivalence relation can be given a different characterisation
by using the automorphism group, Aut GG, of G. An extension of each automorphism,
«, of G to an automorphism, o*, of G* is described below. The action of o* when
restricted to the p-multiplicator of G is uniquely determined by « and «o* induces a
permutation of the allowable subgroups. It is shown that the equivalence classes of
allowable subgroups are exactly the orbits of the allowable subgroups under the action
of these permutations.

Theorem 2.5 Let M,/R* and My/R* be subgroups of F/R* which are contained in
R/R* and let ¢ be an isomorphism from F/My to F/My. Then there exists an auto-
morphism, o, of G* which maps M;/R* to My/R* and the map from F/M; to F/M;
induced by o agrees with ¢.

Proof For each i € {1,...,d}, let b; be a word in F' such that a;M;¢ = b;My. Using
Property 1, it follows that

(R/My)¢p = P.(F/My1)¢ = Pe((F/My)¢) = Po(F/Mz) = R/M,.

Therefore, ¢ induces an automorphism, «, on F/R.

A mapping, o, is now defined for the automorphism, «, of F/R. For each i €
{1,...,d}, choose a representative u; in F' of the coset a;R c; then a;Ra = u;R. Let
v(ay,...,aq) be a word in F; then v(ay,...,a5) R = v(uq, ..., uqg)R. Iffv(ay,...,aq) is

an element of R, then R = v(uy, ..., uq) R. But Ra = R and, therefore, v(uy,...,uq)
is in R. Since R* = [R, F]RP, it follows that if w(as,...,aq) is an element of R* then
w(u1,...,uq) is also an element of R*.

Assume that wi(ai, ..., aq)R* = ws(as,...,aq)R* where each w; is a word in F.
Then wy(ay,...,aq) ‘wi(ay,...,aq) € R*. Using the result obtained in the previous
paragraph, it follows that wy (u1, ..., uqs) R* = wy(uy,...,uq)R*.

The mapping a* can now be defined as follows: for each word w(ay,...,aq) in F,
put

w(ay,...,aq)R o™ =w(uy,...,uq)R".
Clearly, o* is a homomorphism and it remains to show that it is onto. But

« is an automorphism of F/R and a;Ra = u;R; therefore, F//R* is generated by
{wiR",...,ugR*, R/R*}. Since R/R* < P,(F/R"), it follows that

F/R*={(aiRa",...,aqR" ™) .
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Hence o is an automorphism of F//R*.

While o* is not uniquely determined by «, its restriction to R/R* is. This is
established by the following argument. Assume that a;Ra = u;R = u;r;R = v;R
for some non-trivial 7; in R. Then there are two automorphisms, af and «j, where

w(a,...,aq)R*af = w(uy,...,ug)R* and w(ay,...,aq)R*al = w(vy,...,vq)R*. Since
each « is an automorphism, (R/R*)a; equals R/R*. Therefore, restricting both au-
tomorphisms to R/R* shows that both w(uy,...,us) and w(vy,...,ve) are elements of

R. But words in R are products of pth powers and commutators; since [v;, v;|R* =
[uj, w;]R* and vf R* = u} R*, it follows that w(us,...,uq) R* = w(vy,...,vg)R*. There-
fore, the restriction of o* to R/R* is uniquely determined by «.

It remains to establish that (M;/R*)a* is equal to My/R*. Let w(aq, ..., aq) be an
element of M, and let a* denote the restriction of o* to R/R*; then

w(ay, ..., aq)Ra* =w(b, ..., bg)R*.
It is now shown that w(by,...,by) € Mo:
w(bla R bd)M2 = w(b1M2a R bdM2)

= w(a1M1¢7 ERI adM1¢)

w(al, ceey ad)Mld)
= M1¢
== M2 .

It follows that (M;/R*)a* is a subgroup of M,/R* and, since both have the same index
in F/R*, they are equal.O

Lemma 2.6 FEvery automorphism « of F/R extends to an automorphism o* of F//R*
and the restriction of o* to R/R* is uniquely determined by c.

Proof The results follows from Theorem 2.5, where both M;/R* and M,/R* are
chosen to be the p-multiplicator, R/R*.00
The automorphism «* is called an extended automorphism.

Lemma 2.7 Fach extended automorphism o induces a permutation of the allowable
subgroups.

Proof The nucleus, P,(F/R*), of G is characteristic and the p-multiplicator, R/ R*, is
fixed by o*. Let M/R* be an allowable subgroup. Then

(M/R*)a"P.(F/R") = (M/R")P.(F/R"))a" = R/ R’

showing that (M/R*)a* is an allowable subgroup. Clearly, the mapping is one-to-one
and onto and is, therefore, a permutation.O

The permutation of the allowable subgroups induced by o* is denoted by o' and, as
in the case of the restriction of o* to the p-multiplicator, o’ depends only on the auto-
morphism « of G. Let P be the permutation group generated by the o' corresponding
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to the automorphisms « of G. The mapping o — «' is a homomorphism from Aut G
onto P.

The following theorem is fundamental in determining the equivalence classes of the
allowable subgroups.

Theorem 2.8 The orbits of the allowable subgroups under the action of P are exactly
the equivalence classes of the allowable subgroups.

Proof Let M;/R* and M,/R* be allowable subgroups in the same equivalence class;
then F//M, and F'/Ms, are isomorphic. By Theorem 2.5, there exists an automorphism,
o*, of F/R* which maps M;/R* to M;/R* and «o* induces a permutation o/ of the
allowable subgroups. Thus, (M;/R*)a/ = My/R* showing that M;/R* and My/R* lie
in the same orbit.

In order to establish the converse, it is simpler to use the following general result,
which can be established easily. Let N be a normal subgroup of a group H and let
v be an automorphism of H; then H/N = H/N~. Now, let M;/R* and My/R* be
allowable subgroups that are elements of the same orbit under P. Then there exists
a permutation, «, of the allowable subgroups such that (M;/R*)o/ = Ms/R*. This
permutation is induced by an automorphism, o*, of '/ R* where (M;/R*)a* = M/ R*.
Using the general result, it follows that there is an isomorphism from F'/M; to F//M,.0

An irredundant list of immediate descendants of G is now obtained by choosing
a representative of each orbit of P and constructing the corresponding factor group.
Each factor group is a representative of a different isomorphism type.

Thus, given a p-group G, the p-group generation algorithm produces a complete
and irredundant list of its immediate descendants. In order to iterate the algorithm
by applying it to the capable, immediate descendants of GG, a generating set for the
automorphism group of each immediate descendant is required. The automorphism
information is calculated as a part of the generation algorithm.

Definition 2.9 The stabiliser, Sy -, of an allowable subgroup M/R* is the group of
automorphisms (¢ € Aut G : (M/R*)(* = M/R* ).

Let ¢ be an element of Sy;/r+- and let ¢* be an arbitrary extension of ¢ to an auto-
morphism of F/R*. Then (* fixes M/R* and, hence, its restriction to an immediate
descendant, F//M, of G can be calculated. The automorphism group of F//M is de-
scribed in the following theorem.

Theorem 2.10 Let S consist of the restriction to F/M of one ¢* for each automor-
phism ¢ in Syyp+ and let V' be the group of all automorphisms of F /M whose restriction
to G is the identity. Then Aut F/M = SV.

Proof Let v be an automorphism of F//M. For each i € {1,...,d}, choose a represen-
tative u; in F' of the coset a;M~; then a;M~ = u; M. By Property 1, «y fixes P.(F/M)
which equals R/M; therefore, v can be restricted to F'//R to give an automorphism, (.
If ¢ equals the identity then v € V. Otherwise, consider an extension, (*, of ¢ to F//R*
where

w(a,...,aq)R*C* = w(uq,...,ug)R*.
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It is now shown that ¢* stabilises M/R*. Let w(ay,...,aq4) be an element of M; then

w(uy, ..., ug)M = wuM,... usM)
= w(aley,...,adM'y)
= w(ay,...,aq) My
= My
= M.

Therefore, ¢* stabilises M/ R* and its restriction, (f to F//M can be calculated. Clearly,
(*isin S. It is now established that (* can be written as a product of ~ and an element
of V. By appropriate choice of representatives, a; R*(* = u;r; R* where r; € R. Then
f * is defined by

azMCA* = U%TZM

The set {uy,...,uq} is a generating set for F//M. Define an automorphism, 6, of F'/M
by

The restriction of 6 to F /R is the identity; therefore, 6 is an element of V. Clearly,
¢* = ~0; it follows that v = (*6~1, where (* € S and # € V.O

3 An implementation of the p-group generation al-
gorithm

In any implementation of the p-group generation algorithm, there is a natural division
of the calculation of the immediate descendants according to their order. The algorithm
implementation is described for the calculation of the immediate descendants having
order p"*s of a group of order p™, where s is a positive integer known as the step
size. Immediate descendants of order p"** are sometimes known as s-step immediate
descendants.

The algorithm takes as input a group description and a generating set for its auto-
morphism group and produces a set of descriptions of the immediate descendants of the
group that have a fixed order. The group descriptions are consistent power-commutator
presentations.

Let the starting group G have order p", generator number d, and class c. A top-level
outline of the algorithm for the construction of its immediate descendants of order p™**
is the following:

construct a consistent power-commutator presentation for the p-covering group
of G and determine its nucleus;
iof the order of the nucleus is less than p® then stop;
for each generator o of Aut G
calculate an extended automorphism o*;
calculate the permutation o of the allowable subgroups induced by o*;
calculate orbits of the group generated by the permutations o';



for each orbit
choose a representative;
calculate its stabiliser;
factor the p-covering group by the representative allowable
subgroup to obtain an immediate descendant;
calculate its automorphism group;

In the remainder of this section, refinements of the steps in this algorithm are
described.

3.1 The p-covering group and nucleus

Given a consistent power-commutator presentation for GG, the p-covering group algo-
rithm produces a consistent power-commutator presentation for its p-covering group,
G*. The implementation of the p-covering group algorithm is part of the Havas and
Newman implementation of the nilpotent quotient algorithm and a detailed description
is provided in Havas and Newman (1980).

The p-multiplicator is an elementary abelian group and can be viewed as a vec-
tor space over the field of p elements. The number, ¢, of defining generators of the
p-multiplicator is its rank. These generators, in the consistent presentation of G*, are
named Gp1,-- -, Gpiq-

A feature of the machine implementation is that the generators of the p-multiplicator
are introduced in order by decreasing weight; in adding generators of the same weight,
those defined by commutators are added first.

The nucleus of G can be determined using the following lemma.

Lemma 3.1.1 The nucleus of G is generated by [a;, a;] and o} where a; is a generator
of weight ¢, i € {1,...,d}, and i < j.

Thus, when G* has been computed, the definitions of the generators can be used
to determine the nucleus. Let the nucleus have rank r, where 1 < r < ¢. Since the
generators of the nucleus have weight ¢+ 1, and the generators are introduced in order
by decreasing weight, these generators are a,1, ..., Gyir.

3.2 Calculation of extended automorphisms

A generating set, {aq, ..., an,}, is supplied for Aut G; each automorphism is described
by its action on each of the defining generators, a4, ..., aq, of G. The exponents of the
image of each of these generators under the action of each automorphism are stored.

Let o be an element of the generating set of Aut F//R. In Section 2, the action
of a on the free group generators ai,...,aq is described by a; Ra = u; R, for each 7 in
{1,...,d}, where u; is a word in the generators ay,...,aq. Further, the action of an
extended automorphism o* on the defining generators of G* is given by a; R*o* = u; R*
forie {1,...,d}. Let w(ai,...,a;_1) be the definition of a; fori € {d+1,...,n+ ¢};
then put the corresponding u; equal to w(uy, ..., u;_1).



Let v(ay,...,aq) be an arbitrary element of R; then v(uy,...,uq) is an element of R
and, by definition, v(ay,...,aq) R*a* =v(uy,...,uq)R*. Since o* is an automorphism,
R/R* is fixed under its action and, modulo R*, u,; = a‘sn"jrl .. .ai’iq, forie{1,...,q}
where 0 < §;; < p.

The action of each extended automorphism on the p-multiplicator of GG is stored as
a matrix in order to facilitate the computation of images of the allowable subgroups.
The action of o* on each generator a,; is written as a 1 X g vector, where the entries
are the image exponents ¢;;; the ¢ vectors are assembled as a ¢ X ¢ automorphism
matriz, Ags.

3.3 A method for representing allowable subgroups

In order to compute the images of the allowable subgroups under the action of the
extended automorphisms, each subgroup is represented by a suitable matrix.

Let U be a u x v matrix. In any non-zero row of U, the first non-zero entry is the
leading entry of that row. The matrix U is left echelonised if it satisfies the following
conditions.

(i

(ii) Every column containing the leading entry of a row has all other entries zero.

)
)
)
)

The leading entry of every non-zero row is 1.

(iii) Each zero row of U comes below all non-zero rows of U.

(iv) Let there be z non-zero rows where 1 < z < u and let the leading entry of row i
appear in column ¢; fore =1,... ;2. Then t; <ty < ... <t{,.

Every u X v matrix is equivalent under elementary row operations to a unique left
echelonised matrix (see, for example, Birkhoff and Mac Lane, 1965, p. 165).

The allowable subgroups for a fixed step size s, where 1 < s < r, are known as
s-step allowable subgroups and the group generated by the permutations induced on
these is denoted by P. By Theorem 2.4, the s-step allowable subgroups are those
subgroups of the p-multiplicator that have order p?—* and supplement the nucleus.
Thus, the intersection of an s-step allowable subgroup with the nucleus has order p"—*.
Borrowing some notation from linear algebra, the rank of a subgroup of order p?=* is
q — s. The s-step allowable subgroups are subspaces of rank ¢ — s that supplement a
fixed subspace of rank r in a space of dimension gq.

A one-to-one correspondence is now established between s-step allowable subgroups
and some s X ¢ left echelonised matrices.

Let M/R* be an arbitrary s-step allowable subgroup. Recall that the nucleus,
N/R*, has basis {ani1,---,an1r}- The representation of the allowable subgroups is
described relative to this fixed basis. The intersection of M/R* with the nucleus has
rank r — s. An ordered set, Ky g+, consisting of s elements of {ap1,...,an,} that
together with this intersection generates the whole of N/R* is calculated. This set spans
a complement in N/R* of the intersection of M/R* with N/R*. Figure 1 illustrates
the situation.
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Figure 1: Lattice diagram illustrating the positions of various subgroups of F'

A procedure for calculating such an ordered set is now described. Let U = M/R*.
Consider the subgroup (U, a1 ); if it is larger than U then a,, is the first element
of Kyygr-. Now, put U equal to this subgroup and repeat this step with each of
An42; - - -, Gngr iD turn to obtain the s elements of Ky p+. At the jth step, the subgroup
is (U, an1;) and Kyype = {@nikyy-- - Gniy, }, Where each k; < j. If (U, a,4 ;) # U, then
add a,4j to Kyr/ge; else apqj = waf;%l .. .afLi+ki, where w € M/R* and 0 < & < p. The
ordered set K /g = {@ntky,-- -, Gnik, }>, Where each k; < r, is a definition set of M/R*.

A linear transformation, 6, is defined from R/R*, a space of dimension g, onto the
subspace of dimension s spanned by K /g<. The map 6 acts as the identity on the
elements of K g-; for each a,; not in Ky p-,

Up+40 = aflﬂrkl . .aflﬁrks )
where the exponents & for k; > j are zero. Therefore, M/R* is the kernel of 6.

The s x r initial segment submatriz of an s X ¢ matrix consists of the first r columns
of the matrix. The matrix of 0 relative to the basis {ant1,- .., aniq} is a left echelonised
s X g matrix, which has an s x r initial segment submatrix having rank s. Thus, each
allowable subgroup can be identified with a left echelonised s x ¢ matrix, which has an
s X r initial segment submatrix having rank s. This matrix is the standard matriz of
the allowable subgroup.

Given an arbitrary left echelonised s X ¢ matrix which has an s x r initial segment
submatrix having rank s, it defines a linear transformation from the p-multiplicator
with its usual basis to a space of dimension s and the kernel of this transformation
is an s-step allowable subgroup. If the procedure described above is applied to this
subgroup, it is easy to see that the definition set obtained is the same as that which
can be read off from the matrix. Thus, each allowable subgroup has only one definition
set.
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The allowable subgroups are constructed as kernels rather than as images because,
in this way, each is represented as an s X ¢ matrix rather than as a (¢ — s) X ¢ matrix.
This choice is advantageous since, in practice, the value of s is small and is, generally,
less than that of ¢ — s.

In practice, the standard matrices of the allowable subgroups are written down in a
linear order. A definition set is an ordered s element subset of {a,1,-- -, anir} and the
number of such sets is (:) The definition sets are chosen in a lexicographic order and
all of the allowable subgroups determined by a particular definition set are also ordered.
In order to write down explicitly the permutations of the allowable subgroups, a label
is associated with each standard matrix and, hence, each allowable subgroup. The
enumeration of the subgroups is now reviewed briefly and the label for each subgroup
defined.

A basis consisting of ¢ — s generators for each allowable subgroup is obtained by
choosing a definition set, K = {an 4,5 -, nyik, }, from the r generators of the nucleus.
Let a,4; be an element of {an1,..., 0,44} that is not contained in K. For each of
these ¢ — s generators, an element h; that has the following definition can be written
down:

& —&sj
h’j = Opiky - - - Opgk, Ontj (1)

where, for each a1y, in K,

e 10 p=1} ifh<y
b {0} otherwise

These g — s elements, h; for a,; € K, generate an s-step allowable subgroup.

Consider the standard matrices of the allowable subgroups determined by the chosen
definition set K. The elements of K determine the positions of those entries of the
standard matrices whose values are fixed - either 0 or 1 - and those whose values
range over {0,...,p — 1}. The latter positions are available. The number of available
positions in row [ of one of these matrices is ¢ — k; — (s — ). One method of counting
the number of allowable subgroups having definition set K is to count the number of
available positions. Thus, the number of allowable subgroups determined by K is p*(¥)
where z(K) = gs — >}, ki — s(s — 1) /2. The total number of allowable subgroups or,
equivalently, the degree, D, of the permutation group P is:

D = Zp‘”(K) .
K

The label of an allowable subgroup is a positive integer in {1,...,D}. Let M/R*
be an allowable subgroup and let S = (&;;) be its standard matrix. For the purpose
of defining the label of S, the definition set, K, of S is written as {k1,...,ks}. The
lexicographic ordering of the definition sets is now formally defined.

Definition 3.3.1 Let K and K* be two definition sets; then K > K* if there exists
anlin {1,...,s} where k; >k} and k; =k} for 1 <i<lI.

12



The unique label for S has two components. The first is the offset Ok, which is the
number of standard matrices determined by definition sets that occur earlier in the

linear ordering:
Ok = Z "
K*<K

The second component is the position of S relative to K. A position function is defined
on the available positions and its range is {0,...,z(K) — 1}. The value 0 is assigned
to the left-most available position in the first row of the matrix. The assigned value
increases across the available positions in each row in turn; the value z(K)—1 is assigned
to the right-most available position in the last row having an available position. Let
y(i,7) be the value of the position function for the available position (i, 5) in S. More
formally, y(i, 7) is given by the following equation:

Y f) =3k~ (s—1) — |{t:j<t<qtgK}| .

=1

Definition 3.3.2 The label L of S is defined by the following equation:

L= Z Zfijpy(i’j) +O0k+1

i=1 j

where & is the (i,7) entry in S and, for each i, the second summation is over j such
that k; < j <qand j € K.

3.4 Calculation of permutations

The labelling scheme is chosen, in part, to facilitate the calculation of the permutations
of the allowable subgroups which is now discussed. Let « be an automorphism of
G} recall that the action of the extended automorphism o* on the p-multiplicator is
represented by a ¢ x ¢ automorphism matrix A,- = (J;;) where, using additive notation,
Uni@* = 251 Oijlnyj.

The equivalence relation defined on the allowable subgroups provides an equivalence
relation on the standard matrices of the allowable subgroups.

Recall that an allowable subgroup, M/R*, is the kernel of a map, 6, from the
p-multiplicator to the space which has as its basis the definition set of M/R* and the
matrix of this map is the standard matrix, S. Then (M/R*)a* " is the kernel of the
map «o*f. It is now shown that the matrix of the product o*f is given by SAL.: let
an+; be an element of the basis of the p-multiplicator, then

(angia™)0 = 6ij(ant40)

M-

<
Il
—

|
M=

S
(5ij Z §ljan+1cl
=1

<.
I
—

|
NE

q
(Z §Lj5ij)an+k, .
j=1

N
I
-
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Consider the sx ¢ matrix SAZL,. The matrix S has an sxr initial segment submatrix
which has rank s. But the nucleus is characteristic and o* is an automorphism; there-
fore, SAL. has an s x r initial segment submatrix which has rank s. An s X s invertible
matrix corresponds to an automorphism of the image space and does not change the
kernel of #. Therefore, left echelonisation of SAZL, gives the unique standard matrix of
(M/R*)o™".

The permutations of the allowable subgroups induced by the inverses of the au-
tomorphisms of, ..., a;, generate the same group as the automorphisms themselves.
Take the smallest set of s X ¢ matrices that contains S and is closed under right mul-
tiplication by the transposes of Aa:, ..., Aqy, . Left echelonisation of the matrices in
this set gives exactly the standard matrices corresponding to the allowable subgroups
in the orbit of M/R*.

These facts are used in the calculation of the permutations induced by the extended
automorphisms. The standard matrices of the allowable subgroups are written down
and their products by the transposes of the automorphism matrices calculated. In
practice, the product A,-S” is computed and its transpose is left echelonised. The
label of the standard matrix obtained is then computed and stored. Thus, the machine
implementation constructs the inverse of the permutation induced by the extended
automorphism o*.

The labelling of the matrices representing the allowable subgroups is arranged so
that the results of the matrix multiplications can be obtained by adding columns of
the automorphism matrix. If A is a ¢ X ¢ matrix and v a 1 x g vector, (vy,...,v,), the
product A(vy,...,v,)7 equals (A1)v; + ...+ (A,)v, where A; is the ith column of A.

The application of this in building up the images is best illustrated by example:
for a particular step size, say 2, and for p # 2. The standard matrices are processed
by increasing label; thus, the first definition set chosen is {an11, ani2}. The standard
matrix, S, corresponding to the allowable subgroup labelled 1 is

1 00 ... 0

010 ...0)"
The product AST equals (A4;, A;). The standard matrix, S, corresponding to the
allowable subgroup labelled 2 is

In this case, the product AST, which equals (A4; + A3z, A;), can be obtained by adding
the column Az to A; in the previously computed product, (A;, As). To compute the
required product for the standard matrix corresponding to the allowable subgroup
labelled 3, it is only necessary to add the column Aj to the sum A; + As.

3.5 Orbit and stabiliser calculations

If the automorphism group of G is soluble, it can be described using a PAG-presentation,
in which a sequence of generators is supplied relative to a composition series for the

14



group. Presentations of this type were introduced by Jiirgensen (1970) who used the
term AG-system to describe them. The calculation of the orbits in this case is based
on an algorithm of Leedham-Green which is described in Laue, Neubiiser and Schoen-
waelder (1984). Each element of the automorphism group can be written uniquely
as a product of the supplied defining generators and this fact is used in computing a
stabiliser for each orbit representative.

If the automorphism group is insoluble, the system CAYLEY (see Cannon, 1984) is
used to perform these calculations. The orbit algorithms implemented in CAYLEY are
described in Butler (1984, Part II, Chapter 1). The insoluble automorphism group case
is handled using an interface between the implementation of the p-group generation
algorithm and this system. The permutations of the allowable subgroups are calculated
and transferred to CAYLEY, where orbits and their representatives are determined.

The general purpose stabiliser algorithms present in CAYLEY can be used to cal-
culate the stabiliser of an orbit representative in the permutation group. However, the
determination of the generators of the stabiliser as words in the defining generators of
the permutation group, and hence their recognition as words in the defining generators
of Aut GG, remains a problem. One reasonable method of calculating the stabiliser is
to build up systematically the orbit of the representative under P and to keep track of
stabiliser words. The order of the stabiliser is known in advance since the size of the
orbit is known. When sufficient generators for the stabiliser have been obtained, the
process terminates.

If the stabiliser of an orbit representative is soluble, the corresponding immediate
descendant has a soluble automorphism group. In iterating the p-group generation
algorithm, it is preferable to use the more efficient machinery for computations with
soluble automorphism groups. Thus, the solubility of the stabiliser of each orbit repre-
sentative is checked and, where appropriate, a CAYLEY procedure is used to calculate
a PAG-generating sequence for the stabiliser. Each orbit representative and a gener-
ating set for its stabiliser are written to a file and this information is transferred back
to the implementation of the p-group generation algorithm.

3.6 Setting up the immediate descendants

Recall that the leading term of each orbit is chosen as its representative. The repre-
sentatives are organised as a list in which they are ordered by increasing label. This
list determines the sequence in which descriptions of the immediate descendants are
produced. A generating set for the allowable subgroup determined by a representa-
tive can be written down easily and a presentation for the appropriate factor group
calculated. The new generators introduced have weight ¢ + 1 and have definitions as
commutators or pth powers; therefore, the presentation obtained is a weighted consis-
tent power-commutator presentation.

The description of the automorphism group required for iteration of the algorithm
is now discussed. If an immediate descendant is terminal, no description of its auto-
morphism group is required. In order to save space, usually only descriptions of the
capable groups are saved to a data file for later access. Thus, the p-covering group of
each immediate descendant, H, is constructed and the nuclear rank of H determined.
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If H is capable, the automorphism group of H is calculated, using Theorem 2.10.

The performance of the implementation depends heavily on the number of auto-
morphism group generators, as this determines the number of permutations that must
be constructed and also affects the time taken in the calculation of orbits. The per-
formance can be improved by noting that if the action of an extended automorphism
on the p-multiplicator of a group is trivial, it induces the trivial permutation on the
allowable subgroups and plays no role in determining the orbits of the allowable sub-
groups.

Lemma 3.6.1 The extensions of the inner automorphisms of G act trivially on the
p-multiplicator.

Thus, the automorphism group description supplied to the implementation is a set of
automorphisms that together with the inner automorphisms generates the automor-
phism group. Such a description is supplied by a user for the automorphism group
of the starting group. When the automorphism group of an immediate descendant H
is being calculated, the implementation discards the inner automorphisms induced by
the generators of weight c in H.

The group V, of Theorem 2.10, has a generating set {6;;} where each 6,; is de-
fined as follows:

0,']'1 Q; —  Q0pqj fOI“’iE{l,...,d},jE{l,...,S},
ap — ag for ke {1,...,d}\ {i}.

The ds generators of V' obtained in this way may not all be required in the iteration of
the algorithm as some combinations of these generators may be inner automorphisms
of H. First, the commutators of the generators of weight ¢ in H with the defining
generators of H are calculated. Let a; be a generator of weight ¢ and let a; be one of
the defining generators; then [a;, a;] = agﬂrl ...ap%,, where 0 < Aj<pforj=1,...,s.
If the commutator is non-trivial, one of the non-zero exponents in the result, say A;,
can be chosen and the corresponding generator 6;; may be discarded.

In order to remove as many generators from {6;;} as possible, a standard eche-
lonisation is carried out. Let x be the number of generators of H having weight c.
The exponents of the words obtained from the commutator calculations are assem-
bled as an x X ds matrix which is echelonised from left to right. Automorphisms that
can be removed are determined using the entries in the echelonised matrix. The first
non-zero entry (if any) in each row of the matrix determines an automorphism that
can be removed, since this automorphism can be obtained as a combination of inner
automorphisms and those generators of V' that are retained.

The supplied description of Aut G is a set of automorphisms that together with
the inner automorphisms of G generates Aut G. The stabiliser that is computed for
an allowable subgroup, M/R*, is the stabiliser of M/R* in the group generated by
the supplied set of automorphisms. The computed stabiliser together with the inner
automorphisms of G generates the stabiliser of the allowable subgroup in Aut G. For
each generator ¢ of the computed stabiliser, the action of an extended automorphism
(* on each of the defining generators of G* is first computed and the restriction of (*

16



to H is then determined. The remaining 0;;s and the restrictions of the (*s to H form
a generating set for Aut H modulo the inner automorphisms of H.

The previously computed power-commutator presentation of H* as well as the
automorphism information is now written to a data file where it may be accessed
as required. The next iteration of the algorithm begins by calculating the actions of
the extended automorphisms on the p-multiplicator of H.

Throughout this discussion, the value of the step size was fixed. When a new step
size is chosen, the relevant steps of the algorithm are repeated. Options are provided
that permit a user to select a range of step sizes. The construction of all immediate
descendants of the starting group is the default for the implementation.

4 Characteristic subgroups in the p-multiplicator

Some practical limitations of the implementation described in the previous section
are now discussed. The internal structure of the p-multiplicator is used to develop a
modification of the basic algorithm that removes some of these limitations.

The performance of the implementation depends heavily on the number of allowable
subgroups of a particular step size; that is, the degree, D, of the permutation group
P constructed. The generating permutation induced by each extended automorphism
is temporarily stored in image form in an integer array, having dimension D, before
being used in the calculation of the orbits. The storage requirement for this array
is a limiting factor on the implementation. As an example, in calculating the 2-step
immediate descendants of the elementary abelian group of order 16, which has a 2-
multiplicator and nucleus of rank 10, the degree of P is 174 251. The time taken
in calculating the generating permutations for P and in determining its orbits is an
additional limiting factor.

The algorithm performance can be improved by using structural features of the
p-multiplicator, such as the presence of characteristic subgroups of the p-covering group.
In general, the structure of the p-multiplicator allows the set of allowable subgroups to
be divided up into a number of smaller sets that are unions of orbits. These divisions
allow the construction of permutation groups of smaller degree.

The use of characteristic subgroups in the p-multiplicator for this purpose is now
described in the cases of practical interest. Let the p-multiplicator, R/R*, have rank q.
Let C/R* be a proper, non-trivial, characteristic subgroup of G* in the p-multiplicator
and let C'/R* either contain the nucleus, N/R*, of G or be contained in N/R*. The
nucleus of G relative to C'//R* may be defined as the intersection of N/R* with C/R*. In
the first of these cases, the relative nucleus is N/R* and, in the second case, the relative
nucleus is C'/ R*. Similarly, allowable subgroups relative to C'/ R* may be defined as the
intersection of the allowable subgroups of the p-multiplicator with C/R*. The relative
allowable subgroups supplement the relative nucleus in C/R*. Figures 2 and 3 illustrate
the two cases that arise.

The generation algorithm may, first, be applied using the subgroup C/R*. The
allowable subgroups relative to C//R* can be described by choosing relative definition
sets. The orbits of the relative allowable subgroups under the actions of the extended
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Figure 3: Case II - the characteristic subgroup is in the nucleus

automorphisms are calculated, the stabiliser for each orbit representative constructed,
and the appropriate factor groups constructed. Each of the factor groups constructed
is a reduced p-covering group. Since C'/R* is a proper subgroup of R/R*, the degrees
of the permutation groups constructed are smaller than that obtained by applying the
algorithm to the whole of the p-multiplicator.

Let M/R* be an allowable subgroup of R/R* such that M/R*NC/R*, an allowable
subgroup relative to C'//R*, is an orbit representative. Denote M/R*NC/R* by M;/R*.
Then F/R* is factored by M;/R* to obtain the reduced p-covering group F/M;. The
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subgroup R/M, is the reduced p-multiplicator of F/M; and N M, /M, is the nucleus of
the reduced p-covering group. The stabiliser of M;/R* is called the stabiliser of F'/M;.
The p-multiplicator rank of each reduced p-covering group is less than gq.

Each reduced p-covering group, F'/M;, is now processed. The allowable subgroups
of the reduced p-multiplicator that supplement the nucleus of F'/M; can be described
and their orbits under the action of the stabiliser of F//M; calculated. On factoring
F/M; by the orbit representatives, immediate descendants of G are obtained. The
calculation of immediate descendants of a group by processing each reduced p-covering
group, in turn, is known as intermediate stage calculations.

Lemma 4.1 Fvery immediate descendant of G is a factor group of one of the reduced
p-covering groups. The isomorphism types of the immediate descendants are determined
by the orbits of the allowable subgroups of each reduced p-covering group under the
action of its stabiliser.

In the previous discussion, the characteristic subgroup chosen is a subgroup that
either contains the nucleus of G or is contained in the nucleus. These are the cases of
practical interest, but the discussion also applies to any characteristic subgroup in the
p-multiplicator where the allowable subgroups relative to this characteristic subgroup
supplement the relative nucleus.

In the above description, a characteristic subgroup is chosen in the p-multiplicator,
orbits of the allowable subgroups relative to this subgroup computed, and reduced
p-covering groups constructed. Each reduced p-covering group is then processed in
turn. The orbits of allowable subgroups of its reduced p-multiplicator are computed
and factor groups constructed to give immediate descendants. However, the selection of
a characteristic subgroup and the computation of orbits of allowable subgroups relative
to this subgroup may be iterated.

Let F'//M; be a reduced p-covering group where M;/R* is a representative allowable
subgroup relative to the characteristic subgroup chosen at the first stage. A subgroup
in the reduced p-multiplicator of F'//M; is chosen that is characteristic under the action
of the stabiliser and contains the nucleus of F//M; or is contained in it. This subgroup
must contain the definition set of M;/R*. The allowable subgroups relative to this
subgroup are now described, their orbits computed under the action of the stabiliser,
and factor groups (that is, reduced p-covering groups) constructed. In turn, a suit-
able characteristic subgroup in the reduced p-multiplicator of each of these reduced
p-covering groups can be determined and the computations iterated. When the cho-
sen characteristic subgroup equals the reduced p-multiplicator of a reduced p-covering
group, immediate descendants of G' are obtained and the iteration terminates.

The implementation of the algorithm for the construction of immediate descendants
by intermediate stage calculations is now described. It is possible to design an imple-
mentation so that any characteristic subgroup that contains the nucleus or is contained
in it can be chosen. However, such an implementation would require a change of basis
to be performed on the representative allowable subgroups in order to factor them from
the p-covering group. A simpler alternative is to choose a characteristic subgroup that
is also an initial segment in the p-multiplicator.
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Definition 4.2 Let k be an element of {0,...,q — 1}. The k-initial segment subgroup
in the p-multiplicator is { Gpy1, .-, Gpiks1 )-

In the implementation, the subgroups chosen are characteristic, initial segment sub-
groups that have the smallest possible rank. This choice permits the reduced p-covering
groups to be constructed easily and ensures that space requirements are kept to a min-
imum.

Two natural divisions in the implementation arise, depending on whether the char-
acteristic subgroup chosen contains the nucleus or not.

Let s be a fixed step size. Initially, the characteristic, 0-initial segment subgroup,
C, in the p-multiplicator is calculated using the following method: initialise C' to equal
(@ny1); check the action of each extended automorphism on a,; and, if necessary, add
new generators to C'; now, apply the automorphisms to the new generators until C' is
characteristically closed. This calculation is easy, since the action of each extended
automorphism on each of the generators of the p-multiplicator has been calculated.
Let t be the rank of C.

The case where the nucleus is contained in C (that is, ¢ is at least r) is first
discussed. The notation G* and Aut G is used to denote a reduced p-covering group
and the automorphism group acting, respectively. Note that these variables and C' are
updated in the course of the following description.

1. Set G* equal to G* and Aut G equal to Aut G.

2. The orbits of the allowable subgroups relative to C' under the actions of the
extensions of the generators of Aut G are determined and the stabilisers of the
orbit representatives are calculated, as outlined in Section 3 above.

3. For each orbit representative in turn, G* is factored by the appropriate allowable
subgroup, giving a reduced p-covering group whose reduced p-multiplicator rank
has been decreased by ¢ — s.

4. If C is the reduced p-multiplicator of G*, the reduced p-covering groups obtained
in step 3 are the immediate descendants of the starting group. The generators
of the group V', of Theorem 2.10, are calculated for each capable descendant and
the algorithm terminates.

5. Otherwise, C' is a proper subgroup of the reduced p-multiplicator of G*. For each
orbit representative, the variable G* is set equal to the corresponding reduced
p-covering group obtained in step 3 and Aut G is set equal to the corresponding
stabiliser. The characteristic, s-initial segment subgroup, C, is now determined.
Let it have rank ¢. Steps 2 to 5 are repeated for G*.

The second case, where the characteristic, O-initial segment subgroup is properly
contained in the nucleus, is more complex.

1. Set y; equal to s +t — r and ¥, equal to the minimum of s and t.
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2. For each step size, s', running from y; to ¥, reduced p-covering groups are con-
structed. Each reduced p-covering group has a nucleus whose rank r = r + s’ — t.
If the step size is 0, the (reduced) p-covering group is factored by the whole of
the characteristic subgroup.

3. Each of the reduced p-covering groups is processed in turn. First, determine
the characteristic, s'-initial segment subgroup C, which has rank ¢. If ¢ is at
least r then proceed as outlined in the first case. Otherwise, the intersection of
an allowable subgroup relative to C with the subgroup generated by the first s
generators of the nucleus must be trivial. Therefore, in describing the allowable
subgroups relative to C, the definition sets used in Equation (1) of Section 3.3
must be selected to satisfy this condition. The parameter y; now takes the
maximum of s’ and s +¢ — r and y,, as before, takes the minimum of s and ¢.
Steps 2 and 3 are now repeated.

The storage requirement for the construction of immediate descendants of a group
using intermediate stage calculations is usually significantly smaller than that required
in a single iteration of the algorithm. As an example, in calculating 2-step immediate
descendants of the elementary abelian group of order 16, the largest degree of a per-
mutation group constructed is only 651 while a permutation group of degree 174 251
is constructed in a single iteration. If the rank of the p-multiplicator is greater than
about 10, the cumulative time taken for the intermediate stage calculations is usually
less than that taken by a single iteration over the full p-multiplicator because of the
difference in time taken to access storage locations. Thus, the application range of the
algorithm has been significantly extended.

In the implementation, an option is provided that allows a user to select a char-
acteristic, initial segment subgroup. This option has been used to help demonstrate
the internal consistency of the implementation. Information on orbit sizes and the
number of immediate descendants obtained by selecting subgroups of different rank
has been compared and agreement found. The subgroup chosen by the user is checked
for characteristic closure by applying the extended automorphisms to its generators.

The calculation of immediate descendants by intermediate stage calculations, pro-
ceeding through characteristic, initial segment subgroups of the smallest possible rank,
is the default mode for the implementation.

The use of characteristic, initial segment subgroups in this way was sufficient to
permit a complete and independent determination of the groups of order 128; this work
is described in James et al. (1990). It also permitted the determination of a majority
of the groups of order 256. However, in determining 3-step immediate descendants
of the elementary abelian group of order 32 and 2-step immediate descendants of the
elementary abelian group of order 64, permutation groups of very large degree (in
excess of 6 000 000) are constructed and a new method was required to complete
these calculations. The central idea of this method is to use known information on the
orbits of s-step allowable subgroups to obtain information on the orbits of (s+1)-step
allowable subgroups; it is described in detail in O’Brien (1988, to appear).
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5 An example of some calculations

In this section, some of the immediate descendants of a group of order 16 are calculated.
Subject to the convention that all relations whose right-hand sides are trivial are not
shown, the group, GG, has a consistent power-commutator presentation:

(ay,...,a4 : a2 = a4, [az,a1] = az ). It is isomorphic to a split extension of Cy x Cy
by Cy acting invertingly and has 2-covering group

L2 2 _ 2 _ 2 _
(ai,...,as : aj =a, a5 = ag, a3 = g, a5 = ar,

[a2,a1] = as, [a3,al] = a5, [G3, a2] = QGg, [04,62] = Q506 ) .

It is capable, having nuclear rank 3; its nucleus is { as, ag, a7 ).
A PAG-generating sequence, in reverse order, for the automorphism group is

Qo a —— a1a4, Q9 : a +—— a3, Q3: ap +—— a10a203
Ay +H—— Q9 Ao +H—— Q204 Ao FH—— (A20a30G4 .

The automorphism matrix representing the action of o} on the 2-multiplicator of G is
the identity; the matrices, A,; and A,;, are, respectively:

Some immediate descendants of order 32 are calculated by proceeding through in-
termediate stage calculations. For the purpose of illustration, the nucleus, { as, ag, a7 ),
is chosen. Case I of the algorithm outlined in Section 4 is relevant.

The first definition set is {as} and the associated allowable subgroups relative to
the characteristic subgroup are (ag%ﬁ,ag%?). Their standard matrices have the
form (1,&,&) and labels running from 1 to 4. The second definition set is {ag} and
the relative allowable subgroups are (as,ag'a7). Their standard matrices have the
form (0,1, &) and labels 5 and 6. The third and final definition set is {a7}; its relative
allowable subgroup is ( as, ag ) which has a standard matrix (0,0, 1) and label 7. Thus,
the induced permutations have degree 7.

Since the action of both o] and o on the characteristic subgroup is the identity,
P is cyclic, generated by (2,6)(4,5), and there are 5 orbits, namely: {1}, {2,6}, {3},
{4,5}, and {7}.

On factoring G* by (ag,a7) (which is stabilised by all three automorphisms), the
reduced 2-covering group, G’*, is obtained:

( ay,...,06 af = Q4, a% = Gg, [02,(11] = as, [a3,a1] = as;, [a4,a2] = as > .

The characteristic, 1-initial segment subgroup equals the whole of the reduced
2-multiplicator of G*. The extended automorphism af acts as the identity on the
reduced 2-multiplicator while o and o3 have the same action:

(7))
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The two allowable subgroups, (afl ag ), are interchanged by the extended automor-
phism, giving one immediate descendant. The subgroup (ag) is stabilised by «; and
asag and the presentation for the immediate descendant is:

(ai,...,as : a® = ay, [ag,a1] = a3, [a3,a1] = as, [ag,00] = a5 ) .

This group is capable, having 2-multiplicator rank 4 and nuclear rank 1. Neither of
the generators of V' are required for iteration. The remaining four reduced 2-covering
groups may be processed similarly to obtain six other immediate descendants of order
32.

Another example of calculations, including the construction of the starting group
G for this example, is given in Newman (1977).

6 Implementation performance and use

The implementation of the p-group generation algorithm is combined with that of the
nilpotent quotient algorithm in a single program, which is known as the Nilpotent
Quotient Program. The program is written in FORTRAN 77 and is designed for use
on virtual memory machines. It is planned to include a complete implementation of
the algorithm in Version 4 of CAYLEY.

Both implementations of the algorithm have been used in a number of contexts.
Ascione et al. (1977) used the program to generate a list of 3-groups of order at most 3'°.
Leedham-Green and Newman have used it to obtain descriptions of 3-groups having
nilpotency co-class 2. In work on p-groups having nilpotency co-class 1, Newman has
used it to obtain descriptions of 5-groups having orders at most 5%°.

Newman and O’Brien have used the implementation in checking the work of James
(1980) and others on groups of order p°, for p odd. It was used by Baldwin (1987) to
determine a complete list of the 505 groups of order 3°.

The implementation was used by James (1983) in work on 2-groups of nilpotency
co-class 2. It was also used by Newman and O’Brien to obtain information on 2-groups
of nilpotency co-class 3.

The CPU time taken to obtain a complete list of descriptions of the 2328 groups
of order 128 using the current implementation on a VAX 8700 is 8 minutes. For
the groups of order 256, the CPU times taken to obtain complete lists of the 540 2-
generator groups, the 6190 3-generator groups, and the 20 241 4-generator groups are,
respectively, 2 minutes, 18 minutes, and 60 minutes. On average, 70% of the CPU time
taken in calculating the immediate descendants of a group is spent on computing the
generating permutations and orbits. The CPU time taken to calculate the generators
for a 2-generator insoluble permutation group of degree 174 251 is 1.5 minutes. For a
soluble group having composition length 16 and degree 3280, the time taken to calculate
its generating permutations and to construct its 113 orbits is 12 seconds. For a soluble
group having composition length 16 and degree 11 011, the time taken to construct
its generators and 321 orbits is 39 seconds. For a soluble group having composition
length 12 and degree 33 880, the time taken to construct its generators and 5830 orbits
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is 110 seconds. All of the above times are rounded and averaged over a number of
calculations.

The time taken in calculating the permutations is directly proportional to the degree
and the number of generators of the permutation group constructed. The complexity
of the algorithm as a whole is determined by the algorithms used in computing the
orbits of this permutation group. An analysis of orbit algorithms is provided in Butler
(1984, Part 11, Chapter 1).

With access to “reasonable” computational time and space resources, the imple-
mentation can construct permutations of about 1 000 000 allowable subgroups and
calculate the orbits of these subgroups. The implementation has been used in calcu-
lating generating permutations for 2-generator insoluble groups having degrees about
2 000 000 and 6 000 000. These computations took about 22 minutes and 120 minutes
of CPU time respectively.
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