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Abstract

We use algorithms developed recently for the study of linear groups
to investigate a sequence of matrix groups defined over GF(2); these are
images of representations of certain finitely presented groups considered by
Soicher in a study of simplicial complexes related to the Suzuki sequence
graphs.

1 Introduction

In [25], Soicher considered a sequence of simplicial complexes known as Γn-
complexes, and classifies a more restricted type, known as Γ∗

n-complexes, for
n ≤ 8. These complexes arise naturally in connection with a sequence Γn of
graphs, the Suzuki sequence graphs. The automorphism groups of these graphs
are well-known for n ≤ 6. For example, Aut(Γ6) = Suz: 2, where Suz is the
sporadic simple group of Suzuki. Our notation for the structure of finite groups
follows that of [8].

Soicher established that the automorphism group of a Γn-complex is a quotient
of the finitely-presented (n+ 2)-generator group

Un := 〈a, u0, u1, . . . , un | a2, u2
i (0 ≤ i ≤ n), (au0)

3, (u0u1)
3, (u1u2)

8,

(uiui+1)
3 (2 ≤ i < n), (aui)

2 (i ≥ 1), (uiuj)
2 (i+ 1 < j), a−1(u1u2)

4 〉.

We thank J.N. Bray, L.G. Kovács, L.H. Soicher and B. Souvignier for valuable discussions
and suggestions. This work was supported in part by the Marsden Fund of New Zealand via
grant UOA 0412. 2000 Mathematics Subject Classification. Primary 20C20

1



Alternatively, Un is the group defined by the Coxeter diagram

b b b b b p p p b b
a u0 u1 u2 u3 un−1 un

8

with the extra relation a = (u1u2)
4. He proved that U2

∼= L3(2) : 2 and U3
∼=

(3× U3(3)) : 2.

The automorphism group of a Γ∗
n-complex is a quotient of the group U∗

n, which
is the quotient of Un obtained by adjoining the additional relator (u0u1u2u3)

8.
(This element generates the normal subgroup of order 3 in U3.) In [24], Soicher
proved that, for 3 ≤ n ≤ 8, U∗

n is isomorphic to U3(3) : 2, J2 : 2, G2(4) : 2, 3 · Suz: 2,
Co1 × 2, and 2 · (Co1 o 2), respectively.

In unpublished work, Richard Parker described a construction for two linear
representations of Un over GF(2): these are identical for even n but distinct for
odd n > 1. They are also representations of U∗

n for n ≥ 3. For n ≥ 2, the
representations have degree 6 · 2m−2 and 6 · 2m−1 when n = 2m − 1, and degree
6 · 2m−1 when n = 2m. We describe the construction in Section 2. We denote the
images of the representations of U∗

n as Gn and, when n is odd, Gl
n, respectively.

(The superscript l means ‘large’.)

One of the major projects in computational group theory during the past 15
years has been the development of effective algorithms for analysing the struc-
ture of linear groups defined by generating matrices over a finite field. For a
recent survey of this project, see O’Brien [21]. Implementations of some of the
resulting algorithms are available in Magma [4] as part of a package developed
by Leedham-Green and O’Brien. Although the machinery is not yet complete, it
frequently allows us to identify the composition factors of a given linear group.

As a case study, we used this machinery to study Parker’s groups Gn and Gl
n

for n ≤ 20, hence for groups of degree at most 3072. This motivated us to
develop some additional machinery and to exploit some (reasonably well-known)
representation-theoretic results.

Some of the algorithms used in our computations are Monte Carlo or Las Vegas:
they rely on random selection. A Monte Carlo algorithm may return an incorrect
answer to a decision question, but the probability of this event is less than some
specified value. If one of the answers given is always correct, then it is one-sided.
A Las Vegas algorithm never returns an incorrect answer, but may report failure
with probability less than some specified value. At appropriate points we indicate
the nature of our reliance on the outcome of such algorithms.

The outline of the paper is the following. We first describe the matrix represen-
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tations of Parker. In Section 3 we consider some basic computations with linear
groups. We then discuss a geometric-based approach to the study of linear groups,
and introduce the concept of a composition tree (see [15] or [21]) whose leaves are
the composition factors of a group. In Section 6 we record some module-theoretic
results which assist in our structural analysis. In Section 7 we report the struc-
ture of the groups, commenting on the individual cases. In Section 8 we show
that our results establish the existence of a Γ∗

n-complex for n = 10. Finally we
consider briefly the finitely-presented groups.

2 The representations

We now describe generating sequences Xn and X l
n for the matrix groups Gn and

Gl
n over GF(2) for n ≥ 1, where X l

n and Gl
n are defined only for odd n.

For n ≥ 2, if we map the generating sequence [a, u0, . . . , un] of Un (or of U∗
n when

n ≥ 3) to Xn or X l
n, then we obtain Parker’s representations of Un (or of U∗

n

when n ≥ 3).

For (m ×m)– and (n × n)–matrices α and β, the Kronecker product K(α, β) of
α and β is defined to be the (mn ×mn)–matrix in which the entry in position
((i− 1)n+ k, (j − 1)n+ l) is equal to αijβkl, for 1 ≤ i, j ≤ m, 1 ≤ k, l ≤ n. Note
that K(α, β)K(γ, δ) = K(αγ, βδ) provided that all of the matrices involved are
defined.

Define

α :=


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , β :=


0 1 0 0 0 1
1 0 0 0 0 1
0 0 1 1 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 ,

γ :=

(
0 1
1 0

)
, δ :=


1 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

 , ε :=

(
1 1
0 1

)
,

where all matrices are over GF(2), and let Ik denote the k × k identity matrix
over GF(2).

We define X1 = X l
1 = [(βγ′)4, α, β] where γ′ := K(γ, I3). For n > 1, we define

Xn and X l
n recursively. If n = 2m is even, then we set Xn[i] := X l

n−1[i] for
1 ≤ i ≤ n+ 1, and Xn[n+ 2] := K(γ, I3·2m−1).
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If n = 2m − 1 is odd, then we define Xn by Xn[i] := Xn−1[i] for 1 ≤ i ≤ n + 1,
Xn[n + 2] := K(ε, I3·2m−2), and X l

n by X l
n[i] := K(I2, Xn[i]) for 1 ≤ i ≤ n + 1,

X l
n[n+ 2] := K(δ, I3·2m−2).

That these define representations of Un and U∗
n is readily verified. For n ≤ 3 this

can be checked directly and, for larger n, it can be proved by induction on n by
making use of the matrix identities (γε)3 = I2, (δK(γ, I2))

3 = (δK(I2, γ))
3 = I4,

(K(δ, I2)K(I2, δ))
2 = I8.

3 Some basic computations

If we are given G ≤ GL(d, q), a natural question is: what is the order of G?
The Schreier-Sims algorithm, first introduced for permutation groups by Sims
[22], can sometimes provide an answer. We review this briefly; for a detailed
discussion, see [9, Chapter 4].

Let a group G act faithfully on Ω = {1, . . . , n}. Recall that a base for G
is a sequence of points B = [β1, β2, . . . , βk] such that the sequence stabiliser
Gβ1,β2,...,βk

= 1. This determines a chain of stabilisers

G = G(1) ≥ G(2) ≥ · · · ≥ G(k) ≥ G(k+1) = 1,

where G(i) = Gβ1,β2,...,βi−1
. A strong generating set for B is a subset S of G such

that G(i) =
〈
S ∩G(i)

〉
, for i = 1, . . . , k.

The main task in setting up such a data structure is the construction of basic
orbits – the orbit Bi of βi+1 under G(i). Observe that |G(i) :G(i+1)| = |Bi|. Sims
used Schreier’s Lemma to obtain a deterministic algorithm to construct the strong
generating sets. By contrast, Leon’s random Schreier-Sims [17] used random
elements of G. It is usually significantly faster, giving smaller strong generating
sets. Its results can be verified; see, for example, [9, Section 6.3].

If we simply exploit the natural faithful action of G ≤ GL(d, q) on the vectors in
V = GF(q)d, then the basic orbits are usually very large; if G is simple, the first
orbit length is often |G|. By choosing base points having shorter basic orbits, we
extend significantly the range of application of the Schreier-Sims. Butler [5] devel-
oped the algorithm for linear groups, choosing as base points the one-dimensional
subspaces of V . A general strategy to select good base points was introduced by
Murray & O’Brien [18].

Despite various limitations imposed by the basic orbit sizes, the algorithm and
its variations underpin most of the long-standing machinery for computing with
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linear groups. The implementations in Magma are very effective for “moderate”
degree representations defined over “small” fields.

Celler & Leedham-Green [7] presented a deterministic algorithm to compute the
order of g ∈ GL(d, q). In summary, from a consideration of the minimal polyno-
mial of g, they first obtain a “good” multiplicative upper bound for |g| and then
use a “divide-and-conquer” strategy to obtain the order.

Many of the algorithms developed recently for linear groups rely on random
selections, and the analysis of their performance assumes that we select uniformly
distributed random elements. Magma uses the product replacement algorithm of
Celler et al. [6]. Leedham-Green & O’Brien [16] presented a variation to construct
random elements of a normal subgroup, described by a normal generating set.

In the same paper they describe an algorithm to decide if a group G is perfect.
By taking commutators of generators, we construct a normal generating set for
G′, the derived subgroup of G. For each generator g of G, we compute the orders
oi of elements ghi for randomly chosen elements hi of G′. If the greatest common
divisor of the oi is 1 (and we check this after each choice of hi), then we have
proved that g ∈ G′.

More generally, this algorithm can decide membership in an arbitrary normal
subgroup N of G. In particular, Babai & Shalev [2] proved that if N is simple
and non-abelian, then we can test membership in N in Monte Carlo polynomial
time.

4 A geometric approach

A classification of the maximal subgroups of the classical groups by Aschbacher [1]
underpins the geometric approach to the study of linear groups.

Let Z denote the group of scalar matrices of G. Then G is almost simple modulo
scalars if there is a non-abelian simple group T such that T ≤ G/Z ≤ Aut(T ),
the automorphism group of T . In summary, Aschbacher’s classification implies
that a linear group preserves some natural linear structure in its action on the
underlying vector space V and has a normal subgroup related to this structure,
or it is almost simple modulo scalars.

In more detail, if G is a maximal subgroup of a classical group, then it is in at
least one of the following Aschbacher categories.

C1. G acts reducibly.

5



C2. G acts imprimitively.

C3. G acts on V as a group of semilinear automorphisms of a (d/e)-dimensional
space over the extension field GF(qe), for some e > 1, and so G embeds in
ΓL(d/e, qe).

C4. G preserves a decomposition of V as a tensor product U ⊗W of spaces of
dimensions d1, d2 > 1 over F .

C5. G is definable modulo scalars over a subfield.

C6. For some prime r, d = rm and G/Z is contained in the normaliser of
an extraspecial group of order r2m+1, or of a group of order 22m+2 and
symplectic-type.

C7. G is tensor-induced.

C8. G normalises a classical group in its natural representation.

C9. Otherwise G is almost simple modulo scalars.

The first seven categories have a normal subgroup associated with a decompo-
sition. The C9-class consists of absolutely irreducible, tensor-indecomposable,
primitive groups which are almost simple modulo scalars, cannot be defined over
a proper subfield, and are not classical in their natural representation.

In broad outline, this theorem suggests that a first step in investigating a linear
group is to determine (at least one of) its categories in the Aschbacher classifi-
cation. If a category is recognised, then we investigate the group structure more
completely using algorithms designed for this category. Usually, we have reduced
the size and nature of the problem. For example, if G ≤ GL(d, q) acts imprim-
itively, then we obtain a permutation representation of degree dividing d for G.
If a proper normal subgroup N exists, we recognise N and G/N recursively, ulti-
mately obtaining a composition series for G. Many questions about the structure
of G can then be answered by consideration of its composition factors.

5 The composition tree

In ongoing work, Leedham-Green and O’Brien have developed the concept of
a composition tree, which seeks to realise and exploit the Aschbacher classifica-
tion. Leedham-Green [15] provided a detailed description of this concept and its
practical realisation. Here we summarise it briefly.

6



A composition series for a group G can be viewed as a labelled rooted binary tree.
The nodes correspond to sections of G, the root node to G. A node that corre-
sponds to a section K of G, and is not a leaf, has a left descendant corresponding
to a proper normal subgroup N of K and a right descendant corresponding to
K/N . The right descendant is an image under a homomorphism; usually these
arise naturally from an Aschbacher category of the group, but we also exploit
additional ones for unipotent and soluble groups. The left descendant of a node
is the kernel of the chosen homomorphism.

The tree is constructed in right depth-first order. Namely, we process the node
associated with K: if K is not a leaf, construct recursively the subtree rooted at
its right descendant I, then the subtree rooted at its left descendant N . Each
leaf is a composition factor of the root group G.

It is easy to construct I, since it is the image of K under a homomorphism φ.
We generate a random element of N as follows. Let K = 〈x1, . . . , xm〉, and let
I = φ(K) = 〈x1, . . . , xm〉. Choose random k ∈ K, and evaluate φ(k) ∈ I. If we
establish that φ(k) = w(x1, . . . , xm), then k · w(x1, . . . , xm)−1 ∈ N . By selecting
sufficient random elements of K, we construct with high probability a generating
set for N .

Observe that this strategy assumes that we can write an arbitrary element of I as
a word in its defining generators. A major ongoing goal is to develop constructive
recognition algorithms which perform such a task. Currently they are available
for certain classes of groups; see [21] for details.

If N is nontrivial, we can usually find some elements randomly, by computing kr,
where k is a random element of K and r is the order of kN in K/N .

If we know presentations for K/N and N , then we can construct one for K; see
[15] for details. If so, we can decide that we have constructed a generating set
for N – and not just one for a proper subgroup of N .

5.1 Identifying the composition factors

A natural question is: identify the non-abelian composition factors of G. A non-
constructive recognition algorithm names a simple group G. (More precisely, it
may establish that G contains a particular named group as a subgroup.)

Neumann & Praeger [19] presented a one-sided Monte Carlo algorithm to decide
whether or not a subgroup of GL(d, q) contains SL(d, q). Niemeyer & Praeger
[20] answered the corresponding question for an arbitrary classical group in the
natural representation; their algorithm is available in Magma. A positive answer
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– that the input group is classical – is guaranteed to be correct. Our applications
of these algorithms in Section 7 rely on positive answers only.

Babai et al. [3] presented a Monte Carlo algorithm to name a black-box group
of Lie type in known defining characteristic. In 2001 Malle and O’Brien devel-
oped a practical implementation of this algorithm in Magma. It also includes
identification procedures for the other quasisimple groups. If the non-abelian
composition factor is sporadic, then we identify it by considering the (projective)
orders of random elements. Similar methods can be used to deduce the degree of
an alternating group.

5.2 Membership in other categories

We briefly mention the algorithms used to decide membership in other categories
relevant to this paper. Magma uses the MeatAxe, a Las Vegas algorithm, to
decide if G acts reducibly on its underlying vector space; it also uses a Las Vegas
algorithm to test isomorphism of modules. See [9, Chapter 7] for details of both
algorithms. Holt et al. [11, 12] present algorithms, implemented in Magma, to
decide if an absolutely irreducible group acts imprimitively or semilinearly; if the
answer is positive, then it is demonstrably correct.

6 A module argument

We now consider a situation which arises frequently in our analysis of these groups
and exploit module structure to obtain more detailed structural information.

Let F := GF(q), and let M be the d-dimensional right module over F on which
G ≤ GL(d, q) acts. Suppose that G acts reducibly on M with submodule M1 of
dimension d1 and quotient M2 := M/M1 of dimension d2, where d1 + d2 = d. We
make a basis change to bring the elements of G into the block form(

A 0
C B

)
(6.1)

where the diagonal blocks A and B are (d1×d1)– and (d2×d2)–matrices, respec-
tively.

Thus G has the structure N.H, where N is the subgroup of G consisting of
matrices of the form (

I 0
C I

)
(6.2)
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and H ∼= G/N is isomorphic to the group having elements of the form(
A 0
0 B

)
induced in the obvious way from the elements ofG. (We are not of course claiming
that the matrices of this form necessarily constitute a subgroup of G.)

Since N acts trivially on M1 and M2, we may also regard M1 and M2 as modules
over H. Let H1 and H2 be the images of the projections of H onto the upper and
lower diagonal blocks, respectively (so H is a subdirect product of H1 and H2).
The following allows us to obtain readily some structural information about H.

Lemma 6.1. (i) Let h ∈ H, and let h1 and h2 be the projections of h onto H1

and H2. If |h| > |hi| for i = 1 or 2, then |H| > |Hi|.

(ii) If M1 is isomorphic as FH-module to either M2 or to the dual of M2, then
H ∼= H1

∼= H2.

Proof. (i) is clear. Let K1 and K2 be the kernels of the actions of H on M1 and
M2, respectively. Then K1 and K2 consist of those elements of H that induce the
identity on the upper and lower diagonal blocks, respectively, and H/Ki

∼= Hi

for i = 1, 2. If M1 is FH-isomorphic to M2 or to its dual, then K1 = K2, and so
K1 = K2 = 1 and the result follows.

Let L be the elementary abelian group of order qd1d2 consisting of all matrices
that have the form 6.2 defined above. Then H1 ×H2 acts by conjugation on L,
thereby making it into a module for H1 ×H2 over F = GF(q). Conjugating an
element of form 6.2 by one of form 6.1 results in the (d2 × d1)–matrix C being
replaced by B−1CA. In particular, if we denote the matrix of form 6.2 in which
C is a matrix with a single one in position (i, j) by eij, and let A = (αij) and

(B−1)T = (βij), then eij is conjugated to
∑d2

k=1

∑d1

l=1 βikαjlekl. This demonstrates
that, as an F (H1 ×H2)-module, L ∼= M∗

2 ⊗F M1, where M∗
2 denotes the dual of

the module M2. By [14, VII, Lemma 8.8 b)], we also have L ∼= HomF (M2,M1).

The subgroup N of L can be regarded in the same manner as a module for H
under the conjugation action. However, it is not in general a GF(q)-submodule of
the restriction of L to H, but only a GF(p)-submodule, where q = pe is a power
of the prime p. Then N has GF(p)-dimension k for some k with 0 ≤ k ≤ ed1d2.

In practice, this is not very useful if ed1d2 is very large. Since N has potentially
large order (and consequently many generators), constructing its generating set
remains a challenging open problem. Recall from Section 5 that we can construct
some elements of N . If ed1d2 is not too large (the current limit of practicality
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in Magma is about 80000 for q = 2), then we can compute (deterministically)
the GF(p)H-submodule that they generate, and thereby obtain a lower bound
for |N |.

The following theoretical result is sometimes applicable. Since q = p = 2 in the
examples of Section 7, we shall avoid complications arising from the fact that, in
general, N is only a GF(p)-submodule of L, by assuming that q = p.

Lemma 6.2. If N is nontrivial, H = H1 ×H2, F = GF(p), and M1 and M2 are
absolutely irreducible FH-modules, then N = L.

Proof. Since H2 acts trivially on M1 and H1 acts trivially on M2, we may regard
M1 and M2 as absolutely irreducible F -modules for H1 and H2, respectively.
By [13, V, Satz 10.3 b)], the tensor product of irreducible modules V1 and V2

over an algebraically closed field for finite groups A1 and A2 is irreducible as an
(A1×A2)-module. The same result holds for absolutely irreducible modules over
an arbitrary field, since such modules remain irreducible when we extend to the
algebraic closure of the field. Hence N ∼= M∗

2 ⊗FM1 is an irreducible FH-module,
and the result follows.

Remark. More generally, if M1 and M2 are irreducible FHi-modules over an
arbitrary field F of non-zero characteristic, and Ei = EndFG(Mi) for i = 1, 2,
then M1 ⊗F M2 is an irreducible F (H1 ×H2)-module if and only if |E1 :F | and
|E2 :F | are coprime. We are grateful to L.G. Kovács for pointing this out to us.

Knowledge of presentations for H = G/N and N would allow us to verify conclu-
sively that we have constructed N , rather than a proper subgroup. In the absence
of a presentation, we know of no general method to obtain an upper bound for
the order of N . But, as we shall see in the examples below, we can sometimes
use specialised knowledge to deduce such.

7 The groups Gn and Gl
n

We summarise the results of our investigations into the structure of the groups
Gn and Gl

n in Table 1. The times given are in seconds, and are the totals for all
Magma commands executed for the computations involving that group. These
can vary considerably from run to run. They were carried out using Magma 2.12
on a 400MHz Ultrasparc with 4GB of memory. By combining the results of our
computations and the theoretical results presented in Section 6, we were able to
prove these results in all cases.
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n Dim Gn time Dim Gl
n time

1 6 S4 0
2 6 L(2, 7) : 2 0
3 6 U(3, 3) : 2 0 12 U(3, 3) : 2 0
4 12 J2 : 2 1
5 12 G2(4) : 2 2 24 G2(4) : 2 2
6 24 3 · Suz: 2 14
7 24 Co1 129 48 2× Co1 95
8 48 Co1 o 2 208

9 48 Co1 o 2 213 96 2242
. (Co1 o 2) 348

10 96 SL(48, 2) . 2 9
11 96 Ω+(96, 2) 12 192 2× Ω+(96, 2) 43
12 192 Ω+(96, 4) . 2 59

13 192 Ω+(96, 4) . 2 57 384 2962
.Ω+(96, 4) . 2 20239

14 384 SU(192, 2) . 2 69
15 384 Ω+(384, 2) 274 768 2× Ω+(384, 2) 1211
16 768 Ω+(384, 2) o 2 993

17 768 Ω+(384, 2) o 2 1040 1536 23842
. (Ω+(384, 2) o 2) 2480

18 1536 SL(768, 2) . 2 4560
19 1536 Ω+(1536, 2) 12637 3072 2× Ω+(1536, 2) 129643
20 3072 Ω+(1536, 4) . 2 589724

Table 1: The structure of the groups Gn and Gl
n

For n ≥ 10, there is evidence of a pattern emerging with period 8: namely Gn

and Gl
n have similar structures to Gn+8 and Gl

n+8. But the evidence is too limited
to justify a conjecture about their structure for arbitrary n.

Five of the nine Aschbacher categories arise when analysing the structure of these
groups. These are C1, C2, C3, C8 and C9.

The C9-groups that arise are L(2, 7) : 2, U(3, 3) : 2, J2, G2(4) : 2, 3 · Suz: 2, and
Co1. They are sufficiently small for us to recognise them constructively using the
base and strong generating set method described in Section 3. The simple socles
of the two largest examples, 3 · Suz and Co1, arise as subgroups of SL(12, 4) and
SL(24, 2), respectively. By sampling (projective) orders of random elements as
discussed in Section 5.1, we were able to identify their isomorphism types with a
high probability of correctness. Using the method described in Section 3, we es-
tablished that both groups were perfect, so it remained only to verify their orders
deterministically to complete their identification. In applying the Schreier-Sims,
we chose base points appropriate to these representations, and so the remaining
computations were efficient. For 3 · Suz, we completed the verification using the
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matrix representation; for Co1, we constructed a faithful permutation represen-
tation of degree 98280, and used this to confirm the order of the group.

We now discuss the groups in Table 1 individually. Let F := GF(2). The groups
Gn for 2 ≤ n ≤ 7 are C9-groups, whereas G11, G15 and G19 are C8-groups.

For 1 ≤ n ≤ 5, we immediately established using the standard Magma func-
tions Order and ChiefFactors (both using variations of the Schreier-Sims algo-
rithm), that Gn, and also Gl

n when n is odd, are isomorphic to S4, L(2, 7) : 2,
U3(3) : 2, J2 : 2, G2(4) : 2, respectively. This, together with the identification of G6

as 3 · Suz: 2, confirms certain results of [25].

The C8-groups arising are SL(48, 2), SL(768, 2), Ω+(96, 2), Ω+(96, 4), Ω+(384, 2),
Ω+(1536, 2), Ω+(1536, 4), and SU(192, 2). We readily identified these groups
using the algorithm mentioned in Section 5.1. We confirmed that the orthogonal
groups are of type Ω+ rather than SO+, by proving that they are perfect using
the algorithm outlined in Section 3.

The groups G6, G12, G13, G14 and G20 are C3-groups. Hence they have a normal
subgroup N that acts irreducibly but not absolutely irreducibly, and so N can
be rewritten as a group acting absolutely irreducibly in smaller dimension over a
larger field. The elements outside of N act as field automorphisms on N . In each
of these examples, |Gn :N | = 2, and N can be rewritten as a group of degree half
the original dimension over GF(4). For G6, we identified N as 3 · Suz; otherwise,
N is a C8-group; in all cases these were recognised as described above.

We commented in Section 5 upon the difficulty of obtaining generators of normal
subgroups N of G that arise in the composition tree program. However, in these
examples |G/N | = 2, and we readily calculated Schreier generators for N .

The groups G8, G9, G10, G16, G17 and G18 are C2-groups, with two blocks of
imprimitivity. Again we have a normal subgroup N of index 2 for which we
found Schreier generators, but here N acts decomposably with two components
of degree half of the original. The restricted actions on the components are
C8-groups in each case, and they were recognised as before.

Since these C8-groups S are simple, there are only two possibilities for the struc-
ture of N : either N ∼= S or N ∼= S × S. We used Lemma 6.1 to distinguish
between these possibilities. For G8, G9, G16 and G17, we found elements in N
for which the restrictions onto the two components have different orders. Thus
N ∼= S×S in these examples and, by [10, Theorem 3] for example, G is isomorphic
to the wreath product S o 2. For G10 and G18, the FN -modules corresponding to
the actions on the two components were dual to each other. Hence N ∼= S; so
G10 and G18 are SL(48, 2) and SL(768, 2), respectively, extended by the duality
automorphism.
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The remaining examples, Gl
n for odd 3 ≤ n ≤ 19, are C1-groups with two ir-

reducible constituents each having dimension d/2, where d is the dimension of
Gl

n. From the discussion in Section 6, we learn that Gl
n
∼= Nn.Hn, where Nn

is an elementary abelian group of order 2k with 0 ≤ k ≤ d2/4, and Hn ≤
GL(d/2, 2) × GL(d/2, 2). In each of these examples, the FHn-modules (referred
to as M1 and M2 in Section 6) corresponding to the actions on the two compo-
nents of Hn are isomorphic. Hence, by Lemma 6.1, Hn ≤ GL(d/2, 2), and Hn

acts faithfully on each of the two components. We analysed the structure of Hn,
and found that Hn

∼= Gn in each case.

For Gl
3 and Gl

5 we verified immediately with the Magma function ChiefSeries

that Gl
n
∼= Hn, so Nn is trivial.

For Gl
7, G

l
11, G

l
15 and Gl

19, the derived group [Gl
n, G

l
n] acts decomposably with two

components of dimension d/2. Since Hn is perfect, this implies that [Gl
n, G

l
n] ∼=

Hn, and Gl
n
∼= Nn × Hn. By using Schreier generators, as described earlier, we

were able to show that |Gl
n :Hn| = 2, so Gl

n
∼= 2 × Hn. Alternatively, the fact

that Nn is nontrivial and Gl
n
∼= Nn ×Hn enables us to deduce theoretically that

|Nn| = 2, as follows. We saw in Section 6 that Ln
∼= HomF (M2,M1), where Ln is

the module for Hn consisting of all matrices of the form 6.2. But M1 and M2 are
isomorphic absolutely irreducible modules for Hn, and so the submodule of fixed
points of Ln under the action of Hn corresponds to HomFHn(M2,M1) which has
dimension 1 over F . Since Nn clearly lies in the fixed point submodule in these
examples, we conclude |Nn| ≤ 2.

In the remaining examples, Gl
9, G

l
13 and Gl

17, the subgroup Nn is much larger.
For Gl

9 and Gl
13, we constructed in Magma the FHn-module Ln defined in Sec-

tion 6, and then constructed the submodule generated by a few randomly chosen
elements of Nn to prove that |N9| ≥ 2242

and |N13| ≥ 2962
. For Gl

17, Ln has di-
mension 3842 = 147456; although we could define Ln in Magma, we were unable
to construct its submodules.

For Gl
9, we used the permutation representation of degree 98280 of Co1 to obtain

a presentation of H9
∼= Co1 o2, which we could then use to prove that |N9| = 2242

.
We also applied an alternative approach to Gl

9, however, which proved more
generally applicable, in particular to the other two examples. We first found
generators for the subgroup N9.H

′
9 of index 2 in Gl

9, where H ′
9 = Co1 × Co1.

We then found that the restriction of the natural module M for Gl
9 to N9.H

′
9 is

decomposable with two isomorphic components of dimension d/2 = 48. Hence,
by Lemma 6.1, N9.H

′
9 acts faithfully on each of these components, so we can

restrict to the action on one of them. This restricted action is reducible with two
irreducible constituents of degree d/4 = 24, from which it is clear that |N9| ≤ 2242

.

We were able to find the corresponding decomposition for Gl
17, and thereby de-
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duce in the same way that |N17| ≤ 23842
, but in this case we could not find a lower

bound for |N17|. However, by the theory described in Section 6, N17 is a submod-
ule of the tensor product M∗

2 ⊗M1 for the direct product Ω+(384, 2)×Ω+(384, 2),
where M1 and M2 are both equal to the natural module for Ω+(384, 2). Since
this natural module is absolutely irreducible, it follows from Lemma 6.2 that
|N17| = 23842

. We can apply the same argument to Gl
9.

At first sight, it seems not possible to apply a similar argument to find an upper
bound for |N13|, since H13 is semilinear rather than imprimitive. However, if we
regard Gl

13 as a subgroup of GL(384, 4) rather than of GL(384, 2), then H13 is
imprimitive. We now find the analogous decomposition to that of Gl

9 and Gl
17

and so deduce that N13 has dimension at most 962 as a vector space over GF(4).
But the GF(4)-dimension of N13 is just the GF(4)-dimension of N13 ⊗F GF(4),
which is equal to the dimension of N13 over F = GF(2), and so |N13| ≤ 2962

.

8 The existence of Γ∗n-complexes

We now consider what our analysis of Parker’s representations says about the
existence of Γ∗

n-complexes for larger values of n.

Theorem 4 of [25] provides conditions sufficient for the construction of a Γn-
complex from a known Γn−1-complex. Suppose that we have an epimorphism
φ : Un → G for a finite group G and let Hi := φ(〈a, u0, . . . , ui〉) for 1 ≤ i ≤ n.
Then the restriction of φ to 〈a, u0, . . . , un−1〉 induces an epimorphism ψ : Un−1 →
Hn−1. We call ψ a Γn−1-map if Hn−1 = Aut(L) for some Γn−1-complex L, and if
certain other technical conditions are satisfied; see [25, Definition 4] for a precise
definition. Further φ is a Γn-map if Hn−1 is a core-free subgroup of G and

Hn−1∩Hφ(un)
n−1 = Hn−2. Observe that Hn−2 is always a subgroup of Hn−1∩Hφ(un)

n−1 ;
if Hn−1 is a core-free subgroup of G, then it cannot be normalised by φ(un), so
a sufficient condition for equality is that Hn−2 is a maximal subgroup of Hn−1.
Corresponding assertions apply with Un replaced by U∗

n and Γn by Γ∗
n.

Let υn : Un → Un+1 be the homomorphism induced by mapping each generator of
Un to the generator of Un+1 with the same name. If we denote Parker’s represen-
tations by φn : U∗

n → Gn and φl
n : U∗

n → Gl
n, then it is immediately clear from the

definitions of φn and φl
n in Section 2 that there are embeddings ιn : Gn → Gl

n+1

(n even) and ιn : Gl
n → Gn+1 (n odd) such that φnιn = υnφ

l
n+1 (n even) and

φl
nιn = υnφn+1 (n odd).

Consider the case when n = 9. Theorem 6 of [25] shows that ψ = φ8 is a Γ8-map,

H8 = ι8(G8) is a core-free subgroup of Gl
9, and H7 = ι8ι7(G

l
7) = H8∩Hφ(u9)

8 since
ι7(G

l
7) is a maximal subgroup of G8. As Soicher comments at the end of Section
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4 of [25], this shows that φ = φl
9 is a Γ∗

9-map, and establishes the existence of a
Γ∗

9-complex with automorphism group isomorphic to Gl
9 = 2242

. (Co1 o 2).

Since ι8(G8) is a maximal subgroup of G9 (it is a complement in the extension
2242

. (Co1 o 2) that acts irreducibly on the subgroup 2242
) and ι9(G9)

l is clearly a
core-free subgroup of the almost simple group G10 = SL(48, 2) . 2, we deduce the
existence of a Γ∗

10-complex with automorphism group isomorphic to SL(48, 2) . 2.

However, as was pointed out to us by J.N. Bray, any intersection of two conjugates
of SL(48, 2) . 2 in Gl

11 = 2×Ω+(96, 2) that contains a subgroup 2242
. (Co1 o2) must

necessarily contain the larger group 2242
. (Sp(24, 2) o 2). Hence the condition

H9 = H10 ∩ Hφ(u11)
10 does not hold, and so these methods cannot be applied to

construct Γ∗
n-complexes for n > 10.

9 The presentations

We now briefly consider the finitely-presented groups Un and U∗
n. Soicher [25]

proved that U2
∼= L3(2) : 2 and U3

∼= (3×U3(3)) : 2, and commented that “U4 may
in fact be infinite”.

We can confirm this. In 2005 Bernd Souvignier (private communication) exhib-
ited a subgroup of U4 having a free abelian quotient of dimension 4. He used
the low-index subgroup algorithm [23, Section 5.6] to investigate subgroups of
index 36 in the subgroup of U4 of index 200 that maps onto U3(3). The kernel
K of the map of one of these subgroups onto a 2-quotient of order 25 has such
an abelianisation. Note that K has index 691200 in U4; we have also found a
subgroup of index 172800 in U4 with infinite abelianisation.

It seems plausible that the homomorphism υn from Un to Un+1 defined in Section 8
is an embedding for all n, which would imply that Un is infinite for all n ≥ 4.
However we were not able to prove this. Neither did investigations of subgroups
of low index in Un for n ≥ 5 yield a proof that they are infinite.

Of course U∗
n may also be infinite for sufficiently large n ≥ 9, but again we failed

to prove this. For n ≥ 5, Un and U∗
n have perfect derived group of index 2. For

n > 8, the only finite homomorphic images of U∗
n of order greater than 2 that

we could construct are those listed in Table 1; these do not provide subgroups of
sufficiently low index to allow us to compute their abelianisation. We established
that the derived groups of U∗

9 , U∗
10 and U∗

11 have no simple homomorphic images
of order up to 108.
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