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Abstract

We classify the radical subgroups and chains of the O’Nan and Rudvalis
simple groups O'N and Ru, and then verify the Alperin weight conjecture and
the Dade final conjecture for the two groups.

1 Introduction

In [2] and [3], we presented a (modified) local strategy to decide the Alperin and Dade
conjectures for the finite simple groups and demonstrated its computational effective-
ness by using it to verify these conjectures for the Conway simple group Co, and the
Fischer simple group Figs. In [4], we verified the two conjectures for the Fischer simple
group Fiyy using the local strategy. In this paper, we apply the strategy to verify the
Alperin and Dade conjectures for the O’Nan and Rudvalis simple groups, O'N and Ru.

The ordinary conjecture for the Rudvalis simple group Ru has been verified by Dade
(see [9], p. 99), so it suffices to verify the projective conjecture for the covering group
2.Ru. However, the calculations to verify the projective conjecture also allow us to
establish the ordinary conjecture, and so for completeness, we include its verification.

Let G be a finite group, p a prime and B a p-block of G. Alperin [1] conjectured
that the number of B-weights equals the number of irreducible Brauer characters of
B. Dade [8] generalized the Knorr-Robinson version of the Alperin weight conjecture
and presented his ordinary conjecture exhibiting the number of ordinary irreducible
characters of a fixed defect in B in terms of an alternating sum of related values for
p-blocks of some p-local subgroups of G. Dade [11] presented several other forms of his
conjecture and announced that his final conjecture needs only to be verified for finite
non-abelian simple groups; in addition, if a finite group has a cyclic outer automorphism
group, then the projective invariant conjecture is equivalent to the final conjecture.

The outer automorphism groups of O’'N and Ru have orders 2 and 1 respectively.
Hence Dade’s final conjecture for O'N (respectively for Ru) is equivalent to the invariant
(ordinary) conjecture for O'N (Ru) and the projective invariant conjecture for 3.0’'N
(2.Ru).
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The paper is organized as follows. In Section 2, we fix notation and state Alperin’s
weight conjecture, and Dade’s ordinary, invariant, projective, and projective invariant
conjectures. In Section 3, we recall our modified local strategy and explain how we
applied it to determine the radical subgroups of O'N and Ru. In Sections 4 and 5,
we classify the radical subgroups of O’'N and Ru, respectively, up to conjugacy and
verify Alperin’s weight conjecture. In Sections 6 and 7, we do some cancellations in
the alternating sum of Dade’s conjecture when p = 2 or 3, and then determine radical
chains (up to conjugacy) and their local structures. In Sections 8 and 9, we verify
Dade’s invariant conjecture for O'N and ordinary conjecture for Ru. In Sections 10 and
11, we verify Dade’s projective invariant conjecture for 3.0'N and 2.Ru, respectively.
Four appendices provide details of the degrees of character tables.

2 The Alperin and Dade conjectures

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) = R, where
O,(N(R)) is the largest normal p-subgroup of the normalizer N(R) = Ng(R). Denote
by Irr(G) the set of all irreducible ordinary characters of G, and let Blk(G) be the set of
p-blocks, B € Blk(G) and ¢ € Irr(N(R)/R). The pair (R, ) is called a B-weight if ¢

has p-defect 0 and B(p)® = B, where the number logp(;g‘)”p) is the p-defect of ¢, B(y)

is the block of N(R) containing ¢ and B(p)® is the block of G corresponding to B(¢p)
under the Brauer correspondence. A weight is always identified with its G-conjugates.
Let W(B) be the number of B-weights, and ¢(B) the number of irreducible Brauer
characters of B. Alperin conjectured that W(B) = ¢(B) for each B € Blk(G).

Given a p-subgroup chain

C:Php<P<---<P, (2.1)
OfG, define |C|:’I’L, Cv:Py< P < "'<Pk;, C(C):C(;(Pn), and
N(C) = No(C) = N(Py) A N(P) N+ N(By). (2.2)

The chain C is said to be radical if it satisfies the following two conditions:

(a) Pp=0,(G) and (b) P, = O,(N(Cy)) for 1 <k < n.

Denote by R = R(G) the set of all radical p-chains of G.

Let Z be a cyclic group and G* = Z.G a central extension of Z by G, and C' € R(G).
Denote by Ng-(C) the preimage n~! (N (C)) of N(C) in G*, where 7 is the natural group
homomorphism from G* onto G with kernel Z. Let p be a faithful linear character
of Z and B* a block of G* covering the block B(p) of Z containing p. Denote by
Irr(Ng« (C), B*,d, p) the irreducible characters ¢ of Ng-(C) such that ¢ lies over p,
d(¢) = d and B(x)¢ = B* and set k(Ng-(C), B*,d, p) = |Irr(Ng-(C), B*, d, p)|.

Dade’s Projective Conjecture [11]. If O,(G) = 1 and B* is a p-block of G*
covering B(p) with defect group D(B*) # O,(Z), then

> (=1)9Kk(Ng(C), B*,d, p) =0, (2.3)
CeR/G

where R/G is a set of representatives for the G-orbits of R.
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If, moreover, E* is an extension of G* centralizing Z and Ng«(C,1)) is the stabi-
lizer of (Ng-(C),%) in E*, then Ng-/g-(C,%) = Ng-(C,1)/Ng-(C) is a subgroup of
E*/G*. For a subgroup U* < E*/G*, denote by k(Ng«(C), B*,d,U*, p) the number
of characters v in Irr(Ng-(C), B*, d, p) such that Ng«/g-(C,%) = U*. In the notation
above, the Projective Invariant Conjecture is stated as follows.

Dade’s Projective Invariant Conjecture [11]. If O,(G) = 1 and B* is a p-block
of G* covering B(p) with D(B*) # O,(Z), then

> (~1)“k(Ne-(C), B*,d,U*, p) = 0. (2.4)
CeR/G

k(NG* (0)5 B*v d7 u, /)) = k(NG* (C), B*, d, U*, p)

In particular, if Z = 1, then p is the trivial character of Z, G* = G and B* is a block
B of G, we set U = U* and

k(N(C), B,d,U) = k(Ng- (C), B*,U*, p).

Then the Projective Invariant Conjecture is reduced to the Invariant Conjecture.
Dade’s Invariant Conjecture [11]. If O,(G) = 1 and B is a p-block of G' with
defect d(B) > 0, then

> (=1)“k(N(C), B,d,U) = 0. (2.5)
CER/G

Moreover, if E* = G* =G and Z =1, then U* = 1 and p is the trivial character of
Z. We set B* = B, and so

k(Ne-(C), B*,d,U*, p) = k(Ng(C), B, d).

Thus the Projective Invariant Conjecture is reduced to the Ordinary Conjecture.
Dade’s Ordinary Conjecture [8]. If O,(G) = 1 and B is a p-block of G with
defect d(B) > 0, then
> (=1)“Ik(N(0C), B,d) = 0. (2.6)

CeR/G

3 The modified local strategy

The maximal subgroups of O'N were classified by [14], [19] and [20], and those of Ru
were classified by Wilson [18]. Using these results, we deduce that each radical 2- and
3-subgroup R of G is also radical in a maximal subgroups M of G' and further that
Ng(R) = Ny (R), where G = O'N or Ru.

In [2] and [3], a modified local strategy was developed to classify the radical sub-
groups . We review this method here.

Step (1). We first consider the case where M is a p-local subgroup. Let Q = O,(M),
so that ¢ < R. Choose a subgroup X of M. Using MAGMA, we explicitly compute
the coset action of M on the cosets of X in M; we obtain a group W representing this
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action, a group homomorphism f from M to W, and the kernel K of f. For a suitable
X, we have K = () and the degree of the action of W on the cosets is much smaller
than that of M. We can now directly classify the radical p-subgroup classes of W,
and the preimages in M of the radical subgroup classes of W are the radical subgroup
classes of M.

Step (2). Now consider the case where M is not p-local. We may be able to find
its radical p-subgroup classes directly. Alternatively, we find a subgroup K of M such
that Nx(R) = Ny (R) for each radical subgroup R of M. If K is p-local, then we apply
Step (1) to K. If K is not p-local, we can replace M by K and repeat Step (2).

Steps (1) and (2) constitute the modified local strategy. After applying the strategy,
possible fusions among the resulting list of radical subgroups can be decided readily
by testing whether the subgroups in the list are pairwise G-conjugate.

In the investigations of the conjecture for O’'N, we used the minimal degree represen-
tation of O’'N as a permutation group on 122760 points and a representation of 3.0'N
as a permutation group on 368280 points. These representations were constructed by
performing coset enumerations over particular subgroups of the finite presentations for
O’N and 3.0'N given by Soicher [13]. In the investigations of the conjecture for Ru, we
used the minimal degree representation of Ru as a permutation group on 4060 points
and a representation of 2.0'N as a permutation group on 16240 points. The maximal
subgroups of O’N and Ru were constructed using details supplied in [6] and the black-
box algorithms of Wilson [17]. Note that algorithms for constructing these maximal
subgroups are described on the Atlas website, http://www.mat.bham.ac.uk/atlas/. We
also made extensive use of the algorithm described in [7] to construct random elements,
and the procedures described in [2] and [3] for deciding the conjectures.

The computations reported in this paper were carried out using MAGMA V.2.6-2
[5] on a Sun UltraSPARC Enterprise 4000 server.

4 Radical subgroups and weights of O'N

Let ®(G,p) be a set of representatives for conjugacy classes of radical p-subgroups of
G. For HK < G, we write H <¢g K if z7'Hz < K; and write H € ®(G,p) if
r7'Hz € ®(G,p) for some z € G. We shall follow the notation of [6]. In particular,

if p is odd, then pi™*" is an extra-special group of order p'*2” with exponent p; if

is + or —, then 2,77 is an extra-special group of order 2'*?” with type 6. If X and
Y are groups, we use X.Y and X : Y to denote an extension and a split extension of
X by Y, respectively. Given a positive integer n, we use Ep» or simply p" to denote
the elementary abelian group of order p", 7, or simply n to denote the cyclic group
of order n, and Dy, to denote the dihedral group of order 2n.

Let G be the simple O’Nan group O'N and E = Aut(G) = G.2. Then
G| =2-3*-5-7-11-19-31,
and we may suppose p € {2, 3,7}, since both conjectures hold for a block with a cyclic
defect group by [8] and [10].

We denote by Irt°(H) the set of ordinary irreducible characters of p-defect 0 of a
finite group H and by d(H) the number log,(|H|). Given R € ®(G,p), let C(R) =
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Cg(R) and N = Ng(R). If By = By(G) is the principal p-block of G, then (c.f. (4.1)
of [2])
= S W (N/C(R)R)|, (11)
R

where R runs over the set ®(G, p) such that the p-part d(C(R)R/R) = 0. The character
table of N/C(R)R can be calculated by MAGMA, and so we find |Irt’(N/C(R)R)|.

Lemma 4.1 The non-trivial radical 7-subgroups R of O'N (up to conjugacy) are given
in Table 1, where (H), and (H), denote subgroups of O'N such that (H), ~ H ~ (H)
and (H), #ox (H)y. In particular, T permutes (7%), and (7%), for some T € E\O'N.

R_|CR) | Ne(B) | Ne(R) | I (V/C(R)R)
(7, 72 7%: Ly (7): 2 7% Ly(7): 2 2
(7 72 7%: Ly(7): 2 7% Ly(7): 2 2
7}|_+2 7 7}|_+2 ( Dg) 7}|_+2: (3 X D8)2 15
Table 1: Non-trivial radical 7-subgroups of O'N
PRroOF: It follows by [20, Proposition 3.5]. O

Lemma 4.2 The non-trivial radical 3-subgroups R of O'N (up to conjugacy) are given
in Table 2

R| C(R)| N | Ng(R) | [Ir®(N/C(R)R)|
32| 32 x Ag | (3%:4 x Ag).2 N.2
3 3| 3%:2.Dyy N.2 14

Table 2: Non-trivial radical 3-subgroups of O'N

PROOF: Suppose R is a radical 3-subgroup of G = O’'N and N(R) = Non(R) and
let K = (3%:4 x Ag).2 and K, = 3%:2!*%. Dy be maximal subgroups of G. By [20,
Proposition 3.4], any 3-local subgroup of O'N is conjugate to a subgroup of K; or Ko,
so we may suppose N(R) < K; and R € ®(Kj;,3) with N(R) = Nk, (R) for some i.
Since a Sylow 3-subgroup 3% of K is the only radical subgroup of K; properly con-
taining O3(K;) = 3% and Ng,(3%) = 3%.22.23 it follows that O3(K;) and O3(K>) are
the only non-trivial radical subgroups, up to conjugacy of O'N. The centralizers and
the normalizers of R can be obtained by M AGMA. O

Lemma 4.3 The non-trivial radical 2-subgroups R of O'N (up to conjugacy) are given
in Table 3, where S € Syl,(O'N) is a Sylow 2-subgroup of O'N.

PROOF: Let M; =~ 4.13(4):2, My ~ (3%:4 x Ag).2 and M3 ~ 43.13(2) be maximal
subgroups of G = O'N. Suppose R is a non-trivial radical 2-subgroup of G. By Yoshiara
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R C(R) N | Ng(R) | [Irr®(N/C(R)R)|
22122 x 3%:4 | (22 x 3%:4).5; N.2
4| 4.Ly(4) 4Ls(4):2| N2
Dg | 2x3%4| (Dgx 3%4).2 N.2
13 13 $.L2) | N2 1
4.24 1 4244, | N2 1
(4 x 22).24 4] 4x 29288, | N2 1
(42 x 2).2% 22 | (42x2).23.8; | N2 1
S 2 S N.2 1

Table 3: Non-trivial radical 2-subgroups of O’'N

[20, Proposition 3.3], we may suppose R € ®(M;,2) such that N(R) = Ny, (R) for some
1, where 1 <1 < 3.
(1) Let 4 = O9(M;). Applying the local strategy of [3] to M, we have

®(4.L5(4).2,2) = {4, Dg, 4.2%, (4 x 2%).2%, S},
where S € Syl,(G). In addition, Ny, (R) = N(R) for each R € ®(M;,2), so we may

suppose ®(M1,2) C ®(G, 2).
(2) Apply the local strategy to My. We may take

D((3%:4 x Ay).2,2) = {4,2% Dg,4 x 22,5},

where S’ € Syl,(Ms). Moreover, Ny, (R) = N(R) for R € {22, Dg} and Ny, (R) #
N(R) for R € @(MQ, 2)\{22, Dg}

(3) Let 43 = O,(M3) and apply the local strategy to Mz = 43.L3(2). We may take

®(43.L3(2),2) = {43, (4* x 2).23, (4 x 2?).2*, S},

and in addition, Ny, (R) = N(R) for each R € ®(Mj3,2). We may suppose ®(M3,2) C
®(O'N, 2).

This completes the classification of radical 2-subgroups of G. The centralizers and

normalizers of R € ®((G, 2) are given by MAGMA. From the orders of the radical sub-

groups and their centres, we conclude that each radical subgroup is stabilized by some
element of E\G. O

Lemma 4.4 Let G = O'N, and let BIK*(G, p) be the set of p-blocks with a non-trivial
defect group and Irr* (G) the characters of Irr(G) with positive p-defect.

(a) If p="1, then It°(G,7) = { By}, Irr(By) = Irr™ (G) and £(B,) = 19.

(b) If p = 3, then BIk(G, 3) = {By, B1} such that D(By) ~ 3%. In the notation of [6,
p. 133],
Irr(B1) = {x2, x11, X125 X135 X145 X15}»
Irr(Bg) = Irr" (G)\Irr(By). Moreover, £(By) = 5 and {(B,) = 14.
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(c) If p=2, then BIk(G,2) = {By, B1} such that D(B,) ~ Dg. In the notation of [6,
p. 133], Irr(By) = {x2, X3, X4, X7, X10} and Irr(By) = Irr ™ (G)\Irr(By). Moreover,

Proor: If B € BIk(G,p) is non-principal with D = D(B), then D is a radical p-
subgroup and Cg(D) is not a p-group. Thus p € {3,2} and D € {32,224, Dg}. Since
Cg(4)/4 = L3(4) has a unique character, the Steinberg character 6, it follows that
N(0) = N(4) = 4.L3(4):2, where 0 is regarded as a character of C;(4) and N(0)
is the stabilizer of 6 in N(4). In particular, N(0)/Cs(4) = 2 and 4 is not a defect
group. Similarly, since Cg(2?) = 22 x 3%:4 < D3Cg(Dg) = Dg x 3%:4, it follows
that Dg normalizes any block of Cg(2%), so that 22 is also not a defect group. Thus
D € {3?% Dg}, and G has exactly one block B; with D(B;) =¢ D since N(D) has
exactly one orbit on non-trivial characters in Irt’(C(D)D/D).

Using the method of central characters, Irr(B) is as above. If D(B) = Dg, then
¢(B) is the number of B-weights (see [15]), so that ¢(B;) = 3 when p = 2. Suppose
p=3and B = B;. Then D(B) = 3% and it contains a unique class of non-trivial
elements x in O'N, so that £(B) = k(B) — £(b), where k(B) = |Irr(B)| = 6 and b is the
unique block of Cox(z) = 3% x Ag inducing B. Thus £(b) =1 and £(B;) = 5.

If £(G) is the number of p-regular G-conjugacy classes, then ¢(By) can be calculated
by the following equation due to Brauer:

(G)= | 4B)+|Ir%G)|

BeBIKY(G,p)

This completes the proof. O

Theorem 4.5 If B is a p-block of G = O'N, then the number of B-weights is the
number of irreducible Brauer characters of B.

Proor: If D(B) is cyclic, then the Alperin weight conjecture for B follows by [8]. If
D(B) = Dg, the Alperin weight conjecture for B follows by [15]. If D(B) = 3%, then
N(3%)/Cs(3?) ~ Qg is a quaternion group and B has exactly five B-weights.

If B is the principal block By, then the proof of Theorem 4.5 follows by Lemmas
41, 4.2, 4.3, 4.4 and (4.1). 0

5 Radical subgroups and weights of Ru
Let G be the simple Rudvalis group Ru. Then

|G| =2".3%.5%. 71329,
and by [8] and [10], we may suppose p € {2, 3,5}.

Lemma 5.1 The non-trivial radical 5-subgroups R of Ru (up to conjugacy) are given
wn Table 4.



R| C(R) | N | [In°(N/C(R)R)|
515X A5 5:4 x A5

52 52 | 52: GLy(5) 4
5112 5| 5:F2:4.Dg 14

Table 4: Non-trivial radical 5-subgroups of Ru

Proor: By MAcGMA, G has 3 radical 5-subgroup classes and by the structures of
maximal subgroups [18], Theorem 2 (cf. [6], p. 126), each radical 5-subgroup R is the
largest normal 5-subgroup of a maximal subgroup and N(R) is maximal. a

Lemma 5.2 The non-trivial radical 3-subgroups R of Ru (up to conjugacy) are given
in Table 5.

R| C(R) | N | [1re® (N/C(R)R)

3 | 3.Mqy 3.A4.22

32 32 | 32:GLy(3) 2
34t 31342 Qs:2 7

Table 5: Non-trivial radical 3-subgroups of Ru

PROOF: As shown in the proof of [18], Section 2.6, G has 3 local subgroups, N(3A4) =
3.46.2%, N(3%) = 3%GLy(3) and N(311?) = 317%:Qg:2. Thus 3 = O3(N(34)),
32 = 03(N(3%) and 31" € Syl3(G) are radical 3-subgroups of G. By MacMa, G
has exactly three classes of radical 3-subgroups. This completes the proof. O

Lemma 5.3 The non-trivial radical 2-subgroups R of Ru (up to conjugacy) are given
in Table 6, where Sz(8) is the Suzuki group.

R C(R) N(R) | [Irt°(N/C(R)R)|

22 | 22 x Sz(8) | (2% x Sz(8)):3
26 26 26:U5(3): 2 1
2.24+6 2 2.24+6 Gy 0
93+8 93 93+8, [,(2) 1
2.24+6: 9 2 2.2446:2 G, 1
93+8, 92 92 93+8.92 G, 1
2.24+6. 92 2 2.24+6: 22 G, 1
9.24+6. D, 2 9.24+6. D, 1

Table 6: Non-trivial radical 2-subgroups of Ru



PROOF: Let M; ~ 25:U3(3):2, M, ~ (22 x Sz(8)):3, My ~ 23t8: [4(2) and M, ~
2.2476: S5 be maximal subgroups of G = Ru. As shown in the proof of [18], Sec-
tions 2.4-2.6, My = N(24), My = N(Oy(C(2B))), and M3 = N(Z(O2(N(K)))),
where K € Syl,(M;). Moreover, 26 = Oy(M;) is 2A-pure and there is an involu-
tion u € M3\O3(M3) such that 26 < C(u) with |C(u)| = 2®. We use this information
and random elements constructed using the algorithm of [7] to construct the maximal
subgroups.

If R is a non-trivial radical 2-subgroup of G = Ru, then Q;(Z(R)) is elementary
abelian. As shown in the proof of [18], Sections 2.4-2.6, we may suppose N (€ (Z(R))) <
M, for some 7 where 1 < i < 4. Thus Ny, (R) = N(R) and R € ®(M;,2).

(1) Apply the local strategy of [2] to My = 2.24%5: S5. Then we may take

®(My,2) = {2.2416,2.2476. 2 22416, 92 9 94+6. D1 (5.1)

where 2.247%: Dy € Syl,(M,) is a Sylow 2-subgroup of M,. In addition, Ny, (R) =
N¢(R) for each R € ®(My,2). We may suppose ®(My,2) C &(G,2).

(2) Similarly, applying the local strategy of [2] to M3 = 23*8: [3(2), we may take
O (Ms,2) = {2318 231892 2 94+6. 92 9 2476 Dg}, (5.2)

and Ny, (R) = Ng(R) for each R € ®(M3,2). We may suppose ®(Mj3,2) C (G, 2).
(3) Applying the local strategy of [2] to M, = (2% x Sz(8)): 3, we may take
®(M,,2) = {2%,2% x 2°13},
where 22 x 2373 € Syl,(M,). In addition, C'(22 x 2373) = 25 and N(2% x 2%3) #£
N, (22 x 2313) = (2% x 2373:7): 3.
(4) Again, applying the modified local strategy of [3] to M; = 2%: U3(3): 2, we may

take
®(M,,2) = {25,20.2.24 2622 23 5"},

where S' € Syl,(M;). In addition, Ny, (R) # N(R) for R € ®(My,2)\{2°}, and

moreover,

262.24.8;, if R = 26.2.24,
Ny, (R) = { 269293 G, if R = 269293 (5.3)
S’ itR=29".
This completes the classification of radical 2-subgroups of G. The centralizers and
normalizers of R € ®(G, 2) are given by MAGMA. O

Lemma 5.4 Let G = Ru, and let BIK®(G,p) be the set of p-blocks with a non-trivial
defect group and Irt* (G) consists of characters of Irr(G) with positive p-defect.

(a) If p = 5, then Irt®(G, p) = {By, B}, where By = By(G) is the principal block
of G and D(B;) ~ 5. Lift each character of Ru to a character of the covering group
2.Ru. Then each B; is also a block of 2.Ru and Irt°(2.Ru, p) = {By, By, By}. In the
notation of [6, p. 127], Irr(B1) = {xs, X23, X25, X28, X32}, 1Irr(By) = Irr™ (G)\Irr(B)
and Trr(By) = It (2. Ru)\Irr(G). Moreover, ¢(B;) = 4 and £(By) = 18.
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(b) If p = 3, then BIk(G,2) = {By, By, Bo} such that D(B;) ~ D(By) ~ 3. Lift
each character of Ru to a character of the covering group 2.Ru. Then each B; is
also a block of 2.Ru and Ir1°(2.Ru, p) = {By, By, Ba, B3, By} with D(B3) ~ 3% and
D(By) ~ D(By) ~ 3.2 In the notation of [6, p. 127],

{X65 X8> X10} ifi=1,
II'I'(BZ') = {X7a X28, X29} Zfl = 2,
{Xa1, x42, X3, Xa4, Xa7, Xa8} if i =3,

and in addition, Irr(By) = Irr™ (G)\(Irr(B;) U Irr(By)) and
Irr(By) = Irr™ (2.Ru)\ (Irr(G) U Irr(Bs)).

Moreover, £(B;) = {(B3) = 2 and £(By) = 9.

(¢) If p=2, then BIk(G,2) = {By, B1} such that D(B;) ~ 22. Lift each character
of Ru to a character of the covering group 2.Ru. Then Irt®(2.Ru, p) contains two blocks
By(2.Ru) and B1(2.Ru). In the notation of [6, p. 127], Irr(B1) = {X32, X34, X35, X36 }
and Trr(By) = Irr ™t (G)\Irr(By), Irr(Bi(2.Ru)) = Irr(By) U {x49, X50, X60} and

Irr(By(2.Ru)) = Irr(By) U (Irr* (2. Ru) \ (Irr(G) U Irr( By (2. Ru)))).
Moreover, £(B;) = 3 and {(By) = 6.

ProoOF: If B € BIk(G, p) is non-principal with D = D(B), then Irr’(C(D)D/D) has
a non-trivial character, so by Lemmas 3.1, 3.2 and 3.4, D € {5, 3, 2%}, and moreover,
if @ € {5,2%}, then G has exactly one non-principal block B with D(B) =g @, since
Ir?(C(Q)Q/Q)| = 1. If D = 3, then |Iit’(C(D)D/D)| = 2, so G has exactly 2 blocks,
We use the method of central characters to prove that Irr(B) is as claimed. If D(B)
is cyclic or isomorphic to 2%, then £(B) is the number of B-weights (see [8] and [15]),
so that
{B;)=<¢2 ifp=3andi>1,
3 ifp=2andi=1.
If £(G) is the number of p-regular G-conjugacy classes, then ¢(By) can be calculated
using the following equation due to Brauer,

(G)= | «B)+ @)

BeBIk°(G,p)

{4 ifp=5and =1,

This completes the proof. O

Theorem 5.5 Let G = Ru and let B be a p-block of G. Then the number of B-weights
s the number of irreducible Brauer characters of B.

PROOF: We may suppose B has a non-cyclic defect group and D(B) % 22. Then the
proof of Theorem 5.5 follows by (4.1) and Lemmas 5.1, 5.2, 5.3 and 5.4. a
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6 Radical chains of O'N
Let G = O'N, E = Aut(G) = O'N.2, C € R(G) and N(C) = Ng(C).

Lemma 6.1 In the notation of Lemma 4.1, the radical T-chains C of G (up to con-
jugacy) are given in Table 7. In addition, T permutes each pair (C(2),C(4)) and
(C(3),C(5)) for some T € E\G.

C N(C) | N&(©)
c(1) 1 O'N| O'N.2
C(2) 1< (7). | T7%SLy(7):2| N(O)
CB)|1<(T?), <72 | 72 (3x2%) | N(C)
C(4) 1< (7),| T7SLy(7):2| N(O)
C(B) | 1< (), <Tif| T2 (3x2%) | N(CO)
C(6) 1< 72 | 72 (3% Dg) | N(C).2

Table 7: Radical 7-chains of O'N

Proor: It follows by Lemma 4.1.

Lemma 6.2 In the notation of Lemma 4.2, the radical 3-chains C of G (up to conju-
gacy) are given in Table 8.

C N(C) | Ns(C)
Cc(1) 1 O'N O'N.2
C(2) 1<3% | (3%:4x 462 | NO)2
CB3)|[1<3<3 312228 | N(O).2
C(4) 1< 3t 3424 Dy N(C).2

Table 8: Radical 3-chains of O'N

Proor: It follows by Lemma 4.2.

Lemma 6.3 (a) In the notation of Lemma 4.3 and its proof, the radical 2-chains C (i)
for 1 < i < 8 and their normalizers are given in Table 9. Moreover, Ng(C(i)) =
N(C(4)).2 for each i.

(b) Let R%(G) be the G-invariant subfamily of R(G) such that R°(G)/G = {C(i) :
1<i<8}. Then

>

CeR(G)/G

(-DI°K(N(C), By, d, u) = (—=1)°Ik(N(C), By, d, u)

D

CeRY(G)/G

for all integers d,u > 0.

11



C N(O)
c(1) 1 O'N
C(2) 1<4 4.L3(4): 2
C(3) 1 <22 < Dy Dg x 3%:4
C(4) 1< 22| (22 x 32:4).5,
C(5) 1<22<4x2? (4 x 22).53
C(6) | 1 <22< Dg<4x Dg 4 x Dy
C(7) 1<43<(4%x2).28 | (4%2%).28.5;
C(8) 1 <43 43.L3(2)

Table 9: Radical 2-chains of O’'N

PROOF: (b) Let C' be a radical 2-chain such that
C':1< P <...P, (6.1)

and let C € R(G) be given by (2.1) with P, € ®(G, 2).
Case (1). Let R € ®(4.L3(4):2,2)\{4} and define G-invariant subfamilies M*(R)
and M°(R) of R(G), such that
MT(R)/G = {C'eR/G: P =R},
M(R)/G = {C'eR/G:P=4,P,=R}. (6.2)

For C' € M™(R) given by (6.1), the chain
g(C:1<4<P/=R<...<P, (6.3)

is a chain of M°(R), N(C") = N(g(C")) and Ng(C") = Ng(g9(C")) = N(C").2. Thus
for any B € Blk(G),

k(N(C"), B,d,u) = k(N(g(C")), B, d, u). (6.4)
In addition, g induces a bijection between M*(R) and M°(R), so we may suppose
c¢ U MABRUM®).

Re®(M1,2)\{4}

By Lemma 4.3, we may suppose P, € {22,4,43 (4% x 2).23} and if P, = 4, then
C =onx C(2).

Case (2). Let (4?x2).2% be a subgroup of ®(4%.L3(2), 2), and let M*((42%2).23) and
MP°((4%x2).2%) be the G-invariant subfamilies R(G) defined by (6.2) with 4 replaced by
43 and R by (4% x2).23. Then Ng((4?x2).2%) = N((42%x2).2%).2 = Ny, s)((42 % 2).2%)
and so for B € Blk(GQ) and integers d,u > 0, (6.4) holds for C" € M™*((4% x 2).23),
where g(C') is defined by (6.3) with 4 replaced by 4% and R by (42 x 2).23. We may
suppose

C & (MT((4% x 2).2%) U M°((4% x 2).2%)).

12



Let C': 1 <43 < Sand g(C') : 1 < 4% < (4x2?).2* < S. Then N(C') = N(g9(C")) = S
and Ng(C") = Ng(g(C")) = 5.2, so that (6.4) still holds. It follows that we may suppose
that P1 #O’N (42 X 2)23 and if P1 = 43, then C €0O'N {0(7), 0(8)}

Case (3). Suppose P, = 22, so that N(2?) = (22 x 3%:4).S;. By MAGMA, we may
take
(2% x 3%:4).55,2) = {2%, Dg, 4 x 2%,4 x Dg}

and NN(22)(D8) = Dg x3%:4 = Cg(Dg)Dg, NN(22)(4X22) = (4)(22).53, NN(22)(D8 ><4) =
Dg x 4 and Ny, 22)(R) = Ny(22)(R).2 for each R € ®((2* x 3°:4).53,2).

Let C":1 <22 <4x Dgand g(C") : 1 <22 <4x2%<4x Dg. Then N(C') =
N(g(C") = 4 x Dg and Ng(C") = Ng(g9(C")) = (4 x Dg).2, so that (6.4) holds. Tt
follows that if P, = 22, then C €y {C(3),C(4),C(5),C(6)}.

The proof of (a) follows easily by that of (b) or Lemma 4.3. O

Remark 6.4 Let G* be a covering group of G = O'N, p a faithful linear character
of Z(G*) and B* a block of G* covering the block B(p) containing p. If D(B*) #
O,(Z(G*)) and p = 2, then

Z (_1)|C|k(NG*(C)aB*ada p) = Z (_1)‘C|k(NG*(C)’B*ﬂda ,0)
CeR(G)/G CeRY(G)/G

for all integers d > 0.

The proof of the Remark is the same as that of Lemma 9, since N(C') = N(g(C"))
implies Ng«(C") = Ng«(g(C")).
7 Radical chains of Ru

We use the notation and terminology of Sections 2 and 5. Let G = Ru, C' € R(G) and
N(C) = Ng(O).

Lemma 7.1 In the notation of Lemma 5.1, the radical 5-chains C of G (up to conju-
gacy) are given in Table 10.

Q

| | No| ¢ | N(©)
C(1) ) 1<5| 54x A;
C(3) 1<5<52|5:4x5:2| C(4)| 1<5%]5%GLy(5)
C(5) | 1<5 <52 | 514242 | O(6) | 1 <542 | 5172:4.Dg

—_

Table 10: Radical 5-chains of Ru

Proor: It follows by Lemma 5.1. O
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Lemma 7.2 (a) In the notation of Lemma 5.2, the radical 3-chains C(i) for 1 <i <4
and their normalizers are given in Table 11.

C | | NOoy | N

1 Ru| C@2)| 1<3| 3.44.22
C(3) |1 <32 <32 | 31292 | O(4) | 1< 32| 3%GLy(3)

Table 11: Radical 3-chains of Ru

(b) Let R%(G) be the G-invariant subfamily of R(G) such that R*(G)/G = {C() :
1<i<4}. Then
> (-D)kN©),B,d) = Y (-1)KN(C),B,d)

CeR(G)/G CeRY(G)/G
for all integers d > 0 and B € R(G).

ProoF: If C is a chain given by (2.1), then we may suppose P, € ®(G,3). Suppose
Py = 3. By MacMaA, ®(3.46.2%,3) = {3,317} and N(R) = N3 4,22(R) for each
R € ©(3.44.2%,3). Let C" : 1 < 3 < 31" and ¢(C") : 1 < 3172, Since Nj 4422(311?%) =
Nry(3172), it follows that N(C") = N(g(C")), so that
k(Nru(C"), B,d) = k(Nru(9(C")), B, d)

for any block B of Ru with D(B) # 1 and any integer d. Since |C'| = |g(C")| + 1, it
follows that we may delete the two chains C' and ¢(C") in the right hand side of (2.6).
We may suppose P; #g 312 and if P, = 3, then C' =¢ C(2). If P, = 3?, then either
C =¢ C(4) or |C| > 2, so that P is a radical subgroup of N(3?) and P, > 3?. So
P, = 3172 is a Sylow subgroup of N(3%).

This proves (b) and the proof of (a) follows easily by Lemma 5.2. 0

Lemma 7.3 (a) In the notation of Lemma 5.3 and its proof, the radical 2-chains C (1)
for 1 < ¢ <10 and their normalizers are given in Table 12.

C N(C)
C(1) 1 Ru
C(2) 1< 26 96 Uy(3): 2
C(3) 1< 20 < 26:2.24 26:92.94.S,
C4)| 1<26<20:220 <8 S’
C(5) 1 < 26 < 26:22.23 96:92 93 3,
C(6) 1<22| (2% % S2(8)):3
C(7) 1 <22 <22 x2%%3 | (22 x 2573:7): 3
C(8) 1 < 238 23+, [5(3)
C(9) | 1 < 2.246 < 2.24+6:92 | 2944692 g,

C(10) 1 < 2.24+6 2.24%6. G

Table 12: Radical 2-chains of Ru
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(b) Let R%(G) be the G-invariant subfamily of R(G) such that R°(G)/G = {C(i) :
1 <i<10}. Then

Z (_1)‘C|k(N(C)’B’d) = Z (_1)‘C|k(N(C)’B’d)

CeR(@Q)/G CeRY(G)/G
for all integers d > 0 and B € BIK’(G).

PrOOF: (b) Let C € R(G) be given by (2.1) with P, € (G, 2).

Suppose P, = Oy(M;) = 2%. Then we may suppose P, € ®(M,,2) when |C| > 2.
Let C':1 <20 < S and g(C") : 1 < 26 < 20:22.2% < §') where S’ € Syl,(M;). Then
N(C") = N(g(C")) = N(S') and we may suppose C' #g C' and C #5 ¢g(C"). Thus
C e {C(2),C(3),C4),C(5)}-

If P, = Oy(M,) = 22, then C € {C(6),C(7)}.

Suppose P; = Oy(M3) = 238 Then we may suppose ®(M3,2) C ®(G,2). Let
R € ®(M;,2)\{23%8}, so that N(R) = Ny, (R). Let MT(R) and M°(R) be subfamilies
of R(G) given by (6.2) with 4 replaced by 23*8. Then for C' € M™(R) given by (6.1),
the chain

g(C):1<2* < Pl=R<Py<...<P, (7.1)
is a chain in M°(R) and N(C") = N(g(C")). For any B € Blk(G) and for any integer
d>0,

k(N(C"), B,d) =k(N(g(C")), B, d). (7.2)
In addition, g is a bijection between M™*(R) and M°(R). So we may suppose
c¢ U (MBRUMM).
RE®(M3,2)\{25+8}
Thus P, ¢ {2318.92 2.24%6:22 2948 De} and if P, = 23*8 then C =g C(8).

.From the proof above, we may suppose P, € {2.2476,2.2446: 21 Let MT(2.2416:2)
and M?9(2.2476:2) be defined as (6.2) with 4 replaced by 2.2t and R by 2.24%6:2. If
C' € M*(2.24%5:2) and ¢(C") is defined by (7.1) with 232 replaced by 2.2*%, then g
is a bijection between M1 (2.2*%6:2) and M°(2.2%5:2), and N(C') = N(g(C")). Thus
(7.2) holds and we may suppose

C ¢ (MT(2.2475:2) U M°(2.2475:2)).

In particular, we may suppose P, #¢ 2.246:2 and if P, = 2.24% and |C| > 2, then
Py #62.2476:2. Let C': 1 < 2.2% < Sand g(C") : 1 < 2.2476 < 2.24%6:92 < S, Then
N(C") = N(g(C")) = N(S) and (7.2) holds. Thus C €5 {C(9),C(10)}.

This completes the classification of the radical 2-chains; the normalizers of the
chains are also given by the proof above or that of Lemma 5.3. O

Remark 7.4 Let G* be a covering group of G = Ru, p a faithful linear character
of Z(G*) and B* a block of G* covering the block B(p) containing p. If D(B*) #
O,(Z(G*)) and p =2 or 3, then

Z (_1)|C|k(NG*(C)’B*7d7 p) = Z (_1)‘C|k(NG*(C)7B*ﬂd’ p)

CeR(G)/G CeRY(G)/G

for all integers d > 0.
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The proof of the Remark is the same as that of Lemma 12, since N(C') = N(g(C"))
implies Ng«(C") = Ng«(g(C")).

8 Dade’s invariant conjecture for O'N

Let N(C) be the normalizer of a radical p-chain C. If N(C) is a maximal subgroup of
O'N, then the character table of N(C) can be found in the library of character tables
distributed with GAP [12]. If this is not the case, we construct a “useful” description
of N(C) and attempt to compute directly its character table using MAGMA.

If N(C) is soluble, we construct a power-conjugate presentation for N(C') and use
this presentation to obtain the character table.

If N(C) is insoluble, we construct faithful representations for N(C) and use them
as input to the character table construction function. We employ two strategies to
obtain faithful representations of N(C).

1. Construct the actions of N(C') on the cosets of soluble subgroups of N(C).

2. Construct the orbits of N(C) on the underlying set of O'N; for the stabilizer of
an orbit representative, construct the action of N(C') on its cosets.

The tables listing degrees of irreducible characters referenced in the proof of Theo-
rem 8.1 are in Appendix A.

Theorem 8.1 Let B be a p-block of G = O'N with positive defect. Then B satisfies
the invariant conjecture of Dade.

PRrROOF: We may suppose B has a non-cyclic defect group and let E = Aut(G) = O'N.2.
(1). Suppose p = 7, so that by Lemma 4.4 (a), we may suppose B = Bj. Let
C = C(2), C" = C(3). By Lemma 6.1, N(C) =~ 7% SLy(7):2 = Ng(C), N(C") ~
7112: (3 x 2%) = Ng(C"), whose degrees are given in Tables A-18 and A-19. Thus
19 ifd=3andu=1,
k(N(C(2)), Bo, d, u) =k(N(C(3)), Bo, d,u) = {2 ifd=2andu=1  (81)
0 otherwise.
Since Ng(C(4)) = N(C(4)) = N(C(2)) and Ng(C(5)) = N(C(5)) = N(C(3)), it
follows that
k(N(C(4)), Bo,d, u) = k(N(C(5)), Bo, d, u),

which is also give by (8.1).
Similarly, N(C(6)) ~ 7}+2.(3 x Dg) and Ng(C(6)) = N(C(6)).2, whose degrees are
given in Tables A—20 and A 21, respectively. By Lemma 4.4 (a) and [6, p. 133], we

have .
10 ifd=3and u=2,

10 ifd=3andu=1,
4 ifd=2andu=2,

0 otherwise.

k(G, By, d,u) = k(N(C(4))), By, d, u) =

This implies the theorem when p = 7.

16



(2). Suppose p = 3, so that by Lemma 4.4 (b), B = By or B;. By Lemma 6.2,
N(C(2)) =~ (3%:4 x A¢).2 and Ng(C(2)) = N(C(2)).2. By Macma, N(C(2)) and
Ng(C(2)) have 30 and 45 irreducible characters, respectively, whose degrees are given
in Tables A-12 and A-13. In addition, N(C(2)) has two blocks and the principal block
contains exactly 24 irreducible characters. By Lemma 4.4 (b) and [6, p. 133], we have

4 ifd=2andu=2,
k(G, By,d,u) = k(N(C(2))), B,d,u) = {2 ifd=2and u=1,
0 otherwise.
The group N(C(3)) =~ 3*:22.23 and Ng(C(3)) = N(C(3)).2 have 24 and 36 irreducible

characters, respectively, whose degrees are given in Tables A-14 and A-15. It follows
that

16 ifd=4and u =2,
k(N(C(2))7 BO) d: ’U,) = k(N(C(3)))’ B17 d; U) = { 8 ifd=4and u= 1,
0  otherwise.

Similarly, N(C(4)) ~ 3*2".Dyy and Ng(C(4)) = N(C(4)).2 have 18 and 24 irre-
ducible characters, respectively, whose degrees are given in Tables A-16 and A-17.

Thus
10 ifd=4and u =2,

k(G, By, d,u) = k(N(C(4))), By, d, u) = { 8 ifd=4andu=1,
0 otherwise.

This implies the theorem when p = 3.

(3). Suppose p = 2, so that by Lemma 4.4 (c) and [15], we may suppose B = B,.

The groups N(C(3)) ~ Dg x 3%:4 and Ng(C(3)) = N(C(3)).2 have 30 and 45
irreducible characters, respectively, whose degrees are given in Tables A-3 and A-4. In
addition, N (C(3)) has two blocks and the principal block contains exactly 20 irreducible
characters. Similarly, N(C(4)) ~ (22 x 3%:4).S; and Ng(C(4)) = N(C(4)).2 have 30
and 45 irreducible characters, respectively, whose degrees are given in Tables A—5 and
A-6. Moreover, the principal block of N(C'(4)) also contains exactly 20 irreducible
characters. It follows that

16 ifd=5and u=2,
k(N(C(3)), Bo, d,u) = k(N (C(4))), Bo, d, u) = { 4 ifd=4andu=2,  (8.2)
0  otherwise.
Similarly, N(C(5)) ~ (4 x 22).S3 and N(C(6)) ~ 4 x Dg both have 20 irreducible

characters, and the degrees of Irr(N(C(5)) are given in Table A-7. In addition, each
element of Ng(C(i)) = N(C(7)).2 fixes each character of N(C(i)) for ¢ = 5,6. Thus

K(N(C(5)), By, d, u) = k(N(C(6)), By, d, u), (8.3)

which is also given by (8.2).

Set k(i,d,u) = k(N(C(i)), Bo,d,u). The group N(C(7)) ~ (4 x 2?).2*.S3 and
Ng(C(7)) = N(C(7)).2 have 24 and 33 irreducible characters, respectively, whose
degrees are given in Tables A-8 and A-9. By Lemma 4.4 (c) and [6, p. 133], the values
k(1,d,u) and k(7,d,u) are as in Table 13.
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Defect d || 99 |8 |8|7 |76 |4 | otherwise
Number u 0
k(1,d,u) [4[4[4]2[1][2]1]2 0

[\
—
[N}
—
—
[\
[\

Defect d || 99 |8 |8|7| 7|6 |6 | otherwise
Number u || 2 21112 2 0
k(7,d,u) [4[4[4]2[3[2]3]2 0

—_
—_
—_

Table 13: Values of k(1,d,u) and k(7,d, u)

If k(odd, d,u) = ¥c 1,73 k(N(C(7)), Bo, d, u), the values are recorded in Table 14.

Defect d |99 |8 |8 |7 |76 4 | otherwise
Numberu || 212|121 ]2]1]2 0
k(odd,d,u) ||[8 |8 |8 |4 |44 |4 2 0

Table 14: Values of k(odd, d, u)

The groups N(C(2)) ~ 4.L3(4):2 and Ng(C(2)) = N(C(2)).2 have 31 and 44
irreducible characters, respectively, whose degrees are given in Tables A-1 and A-2. In
addition, N (C(2)) has two blocks and the principal block contains exactly 26 irreducible
characters. Similarly, the groups N(C(8)) ~ 43.L3(2) and Ng(C(8)) = N(C(8)).2 have
18 and 24 irreducible characters, respectively, whose degrees are given in Tables A-10
and A-11. The values k(2,d, u) and k(8, d, u) are as in Table 15.

Defect d |99 |8 | 8|7 |7|6]|6]| 4| otherwise

Numberu || 212|121 ]2]|1]2 0

k(2,d,u) ||4]4(4|2[3]|2|3|2]|2 0
Defect d || 99|88 | 7| 7|6 | otherwise
Numberu || 2121|212 0
k(8 d,u) ||[4]4]|4]2]|1|2]1 0

Table 15: Values of k(2,d,u) and k(8,d, u)

If k(even, d, u) = Yicq0,4y K(N(C(2)), By, d, u), the values are recorded in Table 16.

Defect d |99 |8 |8|7|7|6|6]| 4| otherwise
Numberu || 2121|212 ]1]2 0
k(even,d,u) || 8 |8 |8 |4 |4|4|4]|2]|2 0

Table 16: Values of k(even, d, u)

This implies the theorem. O
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9 Dade’s ordinary conjecture for Ru

If C is a radical p-chain of Ru, then the character table of Ng,(C) can either be found
in the library of character tables distributed with GAP or computed directly as in
Section 8. The tables listing degrees of characters in Irr(Ng,(C)) referenced in the
proofs of Theorem 9.1 are in Appendix B.

Theorem 9.1 Let B be a p-block of the simple Rudvalis group G = Ru with a positive
defect. Then B satisfies the ordinary conjecture of Dade.

PRrROOF: We may suppose B has a non-cyclic defect group, so that p € {2,3,5}.

(1) Suppose p = 5, so that by Lemma 5.4 (a), we may suppose B = By. If C'is a
radical chain of G, then denote by b;(C) the block of Ng,(C) inducing B; for i =0, 1.

By Lemma 7.1, Ngy(C(2)) ~ 5:4 X A5 and Ng,(C(3)) =~ 5:4 x 5:2, have 25 and 20
irreducible characters, respectively, whose degrees are given in Tables B-13 and B-14.
In addition, the principal block of Ng,(C(2)) contains exactly 20 characters of defect
2. It follows that
20 ifd=2,
0  otherwise.

The groups Ngy(C(4)) ~ 5:GLy(5) and Ng,(C(5)) =~ 51t%:4% both have 29 irre-
ducible characters, whose degrees are given in Tables B-15 and B-16, respectively. It
follows that

uNmm@»Bm@:uwa@»Bm@:{ (9.1)

25 ifd=3,
k(Nru(C(4)), By, d) = k(Nru(C(5)), By, d) = { 4 ifd=2, (9.2)
0  otherwise.

The group Ngy,(C(6)) ~ 5172:4.Dg has 25 irreducible characters, whose degrees are
given by Table B-17. It follows by Lemma 5.4 (a) that

20 ifd=3,
k(G, By, d) = k(Ngu(C(6)), By, d) = { 5 ifd=2, (9.3)
0  otherwise.
Thus Theorem 9.1 follows when p = 5.

(2) Suppose p = 3, so that by Lemma 5.4 (b), B = By. The groups Ng,(C(3)) ~
31+2:22 and Ngy(C(4)) = 3%: GL4(3) both have 11 irreducible characters, whose degrees
are given in Tables B-11 and B-12, respectively. It follows that

9 ifd=a3,
k(Nru(C(3)), Bo, d) = k(Nra(C(4)), By, d) = { 2 ifd=2,
0 otherwise.

The group Ngy(C(2)) =~ 3.46.2? has 20 irreducible characters, whose degrees are
given in Table B-10. In addition, the principal block of Ng,(C(2)) contains exactly 14
irreducible characters of defect 3 and 2. It follows by Lemma 5.4 (b) that

9 ifd=3,
k(G, By, d) = k(Nra(C(2)), By, d) = { 5 ifd=2,

0 otherwise.

19



Thus Theorem 9.1 follows when p = 3.

(3) Suppose p = 2, so that by Lemma 5.4 (c¢), we may suppose B = By or B;. Since
D(B,;) =~ 22, it follows by [15] that Dade’s ordinary conjecture holds for B;. We may
suppose B = B,.

First, we consider the chains C such that the defect d(Ng,(C)) = 8, so that C €
{C(6),C(7)}.

The subgroups Ngy(C(6)) =~ (22 x Sz(8)): 3 and Ng,(C(7)) ~ (22 x 3373:7): 3 have
28 and 24 irreducible characters, respectively, whose degrees are given in Tables B-5
and B-6. It follows that

16 ifd =38,
K(Nuy(C(6)), Bo, ) = k(N (C(7)), Bo, d) = {8 ifd=7,

0  otherwise.
Now we consider the chains C such that d(Ngy(C)) = 12, so that
Ce{C(2),C(3),C4),C06)}

Set k(i,d) = k(N(C(4)), By, d). The groups Ngu(C(3)) ~ 25:2.2*.53 and Ng,(C(5)) ~
26:22.23 S5 have 47 and 56 irreducible characters, respectively whose degrees are given
in Tables B-2 and B-4. The values k(3,d) and k(5, d) are as in Table 17.

Defect d H 12 ‘ 11 ‘ 10 ‘ 9 ‘ 8 ‘ otherwise
k(3,d) |16 [12]12 |3 |4 | 0

Defect d H 12 ‘ 11 ‘ 9 ‘ 7 ‘ 6 ‘ otherwise
k(5,d) |16 [28[9]2]1] 0

Table 17: Values of k(3,d) and k(5, d)

If k(oddy, d) = Yie35) k(N (C(4)), By, d), the values are recorded in Table 18.

Defect d | 12 [ 11 [ 10| 9|8 |7 | 6 | otherwise
k(oddy,d) [ 3240|1212 [4 |21 0

Table 18: Values of k(odd, d)

The groups Ng,(C(2)) =~ 2%: U;(3): 2 and Ng,(C(4)) ~ S’ have 30 and 73 irreducible
characters, respectively whose degrees are given in Tables B-1 and B-3. The values
k(2,d) and k(4, d) are as in Table 19.

20



Defect d ‘ 1211119 ‘ 6 ‘ otherwise
k(2,d) 16 [12] 1] 1] 0

Defect d || 12 | 11 [ 10 | 9|
k(4,d) [[ 16 | 28 | 12| 11 |

‘ 7 ‘ otherwise
| 2] 0

8
4

Table 19: Values of k(2,d) and k(4, d)

If k(eveny, d) = Yica,03 K(N(C(7)), By, d), the values are recorded in Table 20.

Defect d || 12| 11| 10| 9| 8| 7| 6 | otherwise
k(eveny,d) [ 3240|1212 |4 |21 0

Table 20: Values of k(even;, d)

It follows that .

5 (=1) “OK(Nuw (C)), B, d) = 0.
=2
Finally, we consider the chains C' € {C(1),C(8),C(9),C(10)}. Then Ng,(C(9)) ~
2.24+6: 22 S, has 52 irreducible characters, whose degrees are given in Table B-8. From
Lemma 5.4 (c), the values k(1,d) and k(9, d) are as in Table 21.

Defect d || 14 | 13 | 12 | 11 | 7 | otherwise
k(1,d) | 8] 6] 4]12]2] 0
Defect d || 14 | 13 [ 12 [ 11 10 | 9 | 8 | 7 | otherwise
k(9,d) | 8[10]16|10| 4|1|2]|1]| 0

Table 21: Values of k(1,d) and k(9, d)

If k(oddy, d) = icq1,0y k(N (C(4)), By, d), the values are recorded in Table 22.

Defect d || 14 | 13 [ 12 | 11|10 | 9 | 8 | 7 | otherwise
k(oddy,d) 16 |16 [20 |22 4[1[2]3 ] 0

Table 22: Values of k(oddy, d)

The groups Ngy(C(8)) =~ 23%8: L3(3) and Ng,(C(10)) =~ 2.24%5: S5 have 35 and 49
irreducible characters, respectively whose degrees are given in Tables B-7 and B-9.
The values k(8, d) and k(10, d) are as in Table 23.
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14|13 ] 12| 11 | 10 | 9 | otherwise
6 1

| 4]12] 4|1 0
Defect d || 14 | 13 | 12 | 11 | 8 | 7 | otherwise
k(10,d) || 8]10|16|10 |23 | 0

Table 23: Values of k(8,d) and k(10, d)

If k(eveny, d) = Y icqs,10 K(V(C(4)), Bo, d), the values are recorded in Table 24.

Defect d | 14 |13 [ 12|11 ]10| 9| 8 | 7 | otherwise
k(evens,d) || 16 |16 [20 [ 22| 4|1]2] 3] 0

Table 24: Values of k(even,, d)

It follows that .
> (—)IOIK(Ngy(C(3)), Bo,d) = 0

{1,8,9,10}

and so Dade’s ordinary conjecture holds. O

10 Dade’s projective conjecture for 3.0'N

Let C be a radical p-chain of O'N and N3 on(C) = 3.Non(C). Then the character
table of N3 on(C) can either be found in the library of character tables distributed
with GAP or computed directly using MAGMA as in Section 8.

Let H = N3 .ox(C) and let ¢; and (; be the faithful linear characters of Z(3.0'N).
Denote by Irr(H | ;) the subset of Irr(H) consisting of characters covering (;. The
tables listing degrees of characters in Irr(H | (;) referenced in the proofs of Theorem
10.1 are in Appendix C.

Theorem 10.1 Let B be a p-block of G = 3.0'N with D(B) # O,(G). Then B
satisfies the projective conjecture of Dade.

PrOOF: We may suppose B has a non-cyclic defect group and let N(C) = Ng(C) for
each C' € R(O'N).

(1). Suppose p =7, S = 74" € Syl;(G) and C = C(7) is a radical chain of O'N.
Since Ng(S) = 3 x S: (3 x Dg), it follows that G has exactly three full defect blocks
Bo, Bl, Bs. By MAGMA,

k(N(C(Z))a BE? da CE) = k(NO'N(C(l))a BO(OIN)7 d)7 (101)
for integers £ € {1,2}, d > 0 and 7 > 2. In addition, by [6, p. 133], (10.1) still holds
when ¢ = 1 and k(G, ;) NTrr(By) = 0, so we may suppose B € {B;, Bo}. Since
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k(Non(C(7)), Bo(O'N),d) = >0 k(Now(C(7)), Bo(O'N), d, u) for each i, Theorem
10.1 follows by the proof (1) of Theorem 8.1.

(2). Suppose p = 3. Then G has eight blocks, Blk(G,3) = {B; : 0 < i < 7} such
that D(B;) ~ 3 for 1 = 2,...8 and D(B;) ~ 3. In the notation of [6, pp. 156-159],
Irr(By) = Irr(By(O'N)) U {x; : j € {39,40,41,42, 43, 44,53, 54,55, 56} }
UL, Irr(B;) = {x; : j € {21,22,25 — 28,61 — 64,69,79,71 — 76} }
Irr(By) = Irr " (G)\ (UL, Irr(B;))
We may suppose B = By or B;. It follows by Tables C-1, C-5, C—6 and C-7 that

14 ifd=3,

0 otherwise,

k(Ng(C(3)), By, d, ¢) = {

fori=1,...,4 and in addition,

k(G, By, d, () = k(Na(C(2)), By, d, ;) {5 if d =2,

0 otherwise.
This proves the theorem when p = 3.

(3) Suppose p = 2. Then G has three blocks By, By, By with full defect and one
block with defect group Dg and in addition, Irr(G | {;) NIrr(By) = 0. We may suppose
B = B; or Bs, and suppose By covers the block of Z(G) containing (.

The groups N(C(3)) ~ Dg x 3.3%:4 and N(C(4)) ~ 3.(2% x 3%:4) both have ex-
actly 20 irreducible characters covering (;, and the degrees of Irr(Dg:3.3%:4 | {;) and
Irr(3.(2% x 32:4) | ;) are given in Tables C-3 and C—4. It follows that

16 ifd =5,
k(N(C(3))7 BZ; d7 CZ) = k(N(C(4)))7 B@; d, CZ) = { 4 if d= 4,
0 otherwise.

By MAGMA, the degrees in Irr(N(C(7)) | () is the same as that in Irr(By(Non(C(7))))
for i = 5,6,7,8. It follows by (8.3) that

k(N(C(5)), Be, d,Ge) = k(N(C(6))), Be, d, o).
Set k(i,d) = k(N(C(4)), B, d, (). The degrees of Irr(G | {;) are given by Table C-1

(cf. [6, p. 133]). It follows by Tables C-1 and 13 that the values k(1, d) and k(7, d) are
as in Table 25.

Defect d || 9| 8| 7| 6| 4 | otherwise
k(1,d) [[8[6]3]1]2] 0

Defect d | 9| 8| 7| 6 | otherwise
k(7,d) [ 8]6]5]5] 0

Table 25: Values of k(1,d) and k(7, d)
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If k(odd, d) = Yicq1,7y k(N (C(4)), Be, d, (¢), the values are recorded in Table 26.

Defect d H 9‘ 8 ‘ 7 ‘ 6 ‘ 4 ‘ otherwise
k(odd,d) |16 [ 12|86 |2 | 0

Table 26: Values of k(odd, d)

The group N(C(2)) ~ 3.4.L3(4): 2 and the degrees of Irr(N(C(2)) | (¢) are given in
Table C-2. In addition, the values k(8,d) can be determined by Table 15. Thus the
values k(2, d) and k(8,d) are as in Table 27.

Defect d H 9 ‘ 8 ‘ 7 ‘ 6 ‘ 4 ‘ otherwise
k(2,d) |8|6|5]5]2] 0
Defect d

“9‘8‘7‘6‘0therwise
k(8,d)[[8]6]3]1] 0

Table 27: Values of k(2,d) and k(8, d)

If k(even, d) = Yic0,4y K(N(C(2)), By, d, (), the values are recorded in Table 28.

Defect d H 9 ‘ 8 ‘ 7 ‘ 6 ‘ 4 ‘ otherwise
k(even,d) | 16 [ 12 |8 |6 | 2 | 0

Table 28: Values of k(even, d)

This implies the theorem. O

11 Dade’s projective conjecture for 2.Ru

Let C be a radical p-chain of Ru and Ny gy (C) = 2.Ngy(C). Then the character table
of Nogy(C) can either be found in the library of character tables distributed with GAP
or computed directly using MAGMA as in Section 8.

Let H = Nygy(C) and let € be the faithful linear characters of Z(2.Ru). Denote by
Irr(H | €) the subset of Irr(H) consisting of characters covering £&. The tables listing
degrees of characters in Irr(H | &) referenced in the proofs of Theorem 11.1 are in
Appendix D.

Theorem 11.1 Let B be a p-block of G = 2.Ru with D(B) # O,(G). Then B satisfies
the projective conjecture of Dade.

PROOF: We may suppose B has a non-cyclic defect group and let N(C) = Ng(C) for
each C € R(Ru).
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(1) Suppose p = 5, so that by Lemma 5.4 (a), B = Bs.
Given 3 < i < 6 and C(i) € R(Ru), it follows by MAGMA that the degrees in
Irr(Nora(C(7)) | €) are the same as that in Irr(By(Nru(C(7)))), so that

k(NZRu(C(i))? B7 d: 6) = k(NRu(O(Z))a BO(Ru)7 d)a

which are given by (9.1), (9.2) and (9.3). The degrees of characters in Irr(No g, (C(2)) |
€) are given in Table D-10. It follows by Lemma 5.4 (a) that the equations (9.1), (9.2)
and (9.3) still hold if we replace k(Ngy(C()), Bo(Ru),d) by k(Noru(C(i)), B, d,§).
This implies Theorem 11.1 when p = 5.

(2) Suppose p = 3, so that by Lemma 5.4 (b), we may suppose B = Bj or
B,;. By MAGMA, the degrees in Irr(Nygr,(C(4)) | £) N Irr(By) is the same as that
in Irr(By(Ngry(C(7)))) for i > 2, so that

k(N2.Ru(C(i))a B4’ da g) = k(NRu(C(Z))a BO(RU)’ d)

Again by Lemma 5.4 (b) and [6, p. 127] the equation above also holds when ¢ = 1.
In addition, Noy(C(2)) has exactly one block b3(C(2)) inducing Bs and Irr(b3(C(2)))
consists of 4 irreducible characters of degree 9 and 2 of degree 18, so that by Lemma
5.4 (b),

6 ifd=2,

0 otherwise.

k(Moo (C(1)), By, ) = K(Nara(C(2)), Bs,d,€) = {

Thus Theorem 11.1 follows by Proof (2) of Theorem 9.1.

(3) Suppose p = 2, so that by Lemma 5.4 (¢), we may suppose B = By(2.Ru).

By Lemma 7.3, Nyg,(C(6)) =~ 2.(2% x Sz(8)): 3, Noru(C(7)) =~ 2.(22 x 33+3:7):3,
and the degrees of Irr(No gy (C(6)) | €) and Irr(Na gy (C(7)) | €) are given in Tables D-5
and D—6, respectively. It follows that

8 ifd=8,
k(NZRu(C(6))a BO: da 6) - k(NQRu(C(7))a BOa da 6) = { 6 ifd= 7,
0 otherwise.

Set k(i,d) = k(N(C(i)),B,d,€). By Lemma 7.3, Nogy(C(3)) =~ 2.26:2.2%.5;
Noru(C(5)) > 2.28:22.23.5;, and the degrees of Irr(Vy, Ru( (3)) | £) and Irr(Nogu (C(6)) |
€) are given in Tables D-2 and D4, respectively. The values k(3,d) and k(5, d) are as
in Table 29.

Defect d || 11
k(3,d) | 8[18]3] 0

k(5,d) | 8]10]9]4| 0
Table 29: Values of k(3,d) and k(5, d)
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If k(oddy, d) = Yicqs 5 k(N(C(4)), B, d, ), the values are recorded in Table 30.

Defect d H 11 ‘ 10 ‘ 9 ‘ 8 ‘ otherwise
k(oddy,d) [ 16 |28 | 12 | 4 | 0

Table 30: Values of k(odd, d)

By Lemma 7.3, Nogy(C(2)) =~ 2.25:U3(3):2, Nagu(C(4)) ~ 2.5', and the degrees
of Irr(Noru(C(2)) | €) and Irr(Nogy(C(4)) | €) are given in Tables D-1 and D-3,
respectively. The values k(2,d) and k(4, d) are as in Table 31.

Defect d | 11 | 10 | 9 | 8 | otherwise
k(2,d) || 8[10]1[4] 0

Defect d | 11 | 10 | 9 | otherwise
k(4,d) || 8[18 11| 0

Table 31: Values of k(2,d) and k(4, d)

If k(even;, d) = Yicq0,4y K(N(C(7)), B, d, §), the values are recorded in Table 32.

Defect d H 11 ‘ 10 ‘ 9 ‘ 8 ‘ otherwise
k(eveny,d) [ 16 | 28 [ 12 | 4 | 0

Table 32: Values of k(even;, d)

It follows that 5
> (=1) Ok (Ni (C (), B, d, €) = 0.
i—2
By Lemma 7.3, No gy (C(9)) ~ 2.2.24%5:22 S5 and the degrees of Irr( Nz, (C(9)) | €)

are given in Table D-8. From Lemma 5.4 (c), the values k(1,d) and k(9, d) are as in
Table 33.

Defect d || 13 | 12 | 11 [ 10 | 9 | 8 | otherwise

k(1,d) || 8] 2] 3] 2|5]2] 0
Defect d || 13 | 12 | 11 | 10 | 9 | otherwise
k(9,d) || 8] 2[11] 9]1] 0

Table 33: Values of k(1,d) and k(9, d)

If k(oddy, d) = Yicq1,01 K(N(C(4)), B, d, §), the values are recorded in Table 34.
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Defect d || 13 [ 12 | 11 | 10 | 9 | 8 | otherwise
k(oddy,d) [[16 | 4|14 [11]6 2| 0

Table 34: Values of k(odd,, d)

By Lemma 7.3, Naoru(C(8)) =~ 2.2378: L5(3), Nogru(C(10)) ~ 2.2.24%6: S5 and the
degrees of characters in Irr(Nogy(C(8)) | &) and Irr(Nogy(C(10)) | &) are given in
Tables D-7 and D-9. The values k(8, d) and k(10, d) are as in Table 35.

Defect d || 13|12 | 11|10 | 9 | 8 | otherwise
k@B, d) || 8] 2| 5| 2|21 0

Defect d || 13|12 | 11|10 | 9 | 8 | otherwise
k(10, d) 81 21 9] 914|1 0

Table 35: Values of k(8,d) and k(10, d)

If k(eveny, d) = Yicqs10) k(N (C(4)), B, d,§), the values are recorded in Table 36.

Defect d || 13 | 12 | 11 [ 10 | 9 | 8 | otherwise
k(eveny,d) |16 | 41411 |62 0

Table 36: Values of k(even,, d)

It follows that

) (—1)I€Ok(Nyzo(C(3)), B,d, &) = 0

{1,8,9,10}

and so Dade’s projective conjecture holds. O
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A The degrees of irreducible characters of chain
normalizers of O'N

Degree || 120 |35[36]40 |56 |64 |70 | 7290|126 | 128 | 160
Number [ 2] 3| 6| 2| 1] 3] 4] 2| 1| 3| 1] 1| 2

Table A-1: The degrees of characters in Irr(4.L3(4): 2)

Degree || 1|20 |35]40 |56 | 64|70 | 72|90 | 112 | 126 | 128 | 160 | 180
Number |4 6| 4| 2] 2| 4| 6] 3| 2| 1] 2] 3| 4| 1

Table A-2: The degrees of characters in Irr((4.L3(4): 2).2)

DegreeH 1‘2‘4‘8
Number | 16 | 4 | 8 | 2

Table A-3: The degrees of characters in Irr(Dg x 3%: 4)

DegreeH 1‘2‘8‘16
Number |32 [ 8|4 1

Table A—4: The degrees of characters in Irr((Dg x 3%:4).2)

Degree | 1]2]3|4|8]12
Number |8 [4[8[4|2]| 4

Table A-5: The degrees of characters in Irr((2? x 3%:4).S3)
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Degree | 1[2] 3[8[16]24
Number || 16 |8 |16 | 2| 1] 2

Table A—6: The degrees of characters in Irr((2% x 3%:4).53.2)

Degree H 1 ‘ 2 ‘ 3
Number | 8 | 4 | 8

Table A—7: The degrees of characters in Irr((4 x 22).S3)

Degree | 123 |4|6|8]12]24
Number [2[1]6[2]5[4| 3] 1

Table A-8: The degrees of characters in Irr((4 x 22).2%.53)

Degree |12 |3|6|8]12]|16 |24
Number |4 [2][4[8[5] 7] 1] 2

Table A-9: The degrees of characters in Irr((4 x 22).2%.55.2)

Degree || 13 |6 |7 |8 |14 |21 |28 |42
Number [ 1[2[1]3]1] 1] 2| 3| 4

Table A-10: The degrees of characters in Irr(43.L;3(2))

Degree || 1|3 |6|7]8]14]28|42]56 | 84
Number |2 [4[2]2[2] 3] 2| 5| 1| 1

Table A-11: The degrees of characters in Irr(43.L;3(2).2)

Degree |

A -

Number |

Table A-12: The degrees of characters in Irr((3%:4 x Ag).2)
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Degree [ 1|2 |8|9|10]16|18]20|32|64| 72|80

Number |4 [3[2]4[12] 4| 3| 3] 1] 4] 2| 3

Table A-13: The degrees of characters in Irr((3% 4 x Ag).2.2)

Degree | 1|28 32
NumberH8‘6‘8‘ 2

Table A-14: The degrees of characters in Irr(3%.22.23)

DegreeHl‘ 2‘4‘ 8‘64
Number |8 [10 | 1|16 | 1

Table A-15: The degrees of characters in Irr(3*.22.23.2)

Degree | 1|2 |4|5]|8]80
Number |2 [2]2[6]2] 4

Table A-16: The degrees of characters in Irr(3*: 2174.Dyy)

Degree | 1|4 ]5]|10 |16 | 80
Number |4 |5 4] 2] 1] 8

Table A-17: The degrees of characters in Irr(3*: 24.Dy4.2)

Degree | 16| 7|8]48]96
NumberH2‘7‘2‘5‘ 2‘ 3

Table A-18: The degrees of characters in Irr(7%: SLy(7): 2)

Degree H 1‘6‘12‘42
Number || 12 | 4| 3| 2

Table A-19: The degrees of characters in Irr(71+2: (3 x 22))
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Degree | 1[2]12]24]42
NumberH12‘3‘ 4‘ 1‘ 4

Table A-20: The degrees of characters in Irr(7112.(3 x Dg))

Degree | 1]2]24 42
NumberH12‘9‘ 4‘ 8

Table A-21: The degrees of characters in Irr(7172.(3 x Ds).2)

The degrees of irreducible characters of chain
normalizers of Ru

Degree || 16| 7|14 |21 |27 |42|56 |63 |64 | 126 | 189 | 378
Number |2 [2]2] 3| 2| 2| 1] 1] 4] 1| 2| 4] 4

Table B-1: The degrees of characters in Irr(2°: U3(3): 2)

Degree || 12| 3|4|6]8]12]24]48
Number |45 |12[2]7[1]10| 2| 4

Table B-2: The degrees of characters in Irr(26:2.2%.55)

Degree || 1] 2| 4| 8[16 |32
Number || 16 | 28 [ 12 [ 11| 4] 2

Table B-3: The degrees of characters in Irr(S’)

Degree | 1[2 ]3| 624 |32]64
Number [ 8 |4 [8]24] 9] 2] 1

Table B—4: The degrees of characters in Irr(25: 22.23.53)

1]105 192|195 273
3] 4] 1] 4] 1

DegreeHl‘3‘14‘4
(1] 6]

2649
Number H3 2‘ 3‘

Table B-5: The degrees of characters in Irr((2? x Sz(8)): 2)
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Degree | 13 |7 |14 21 | 42
Number [3[9[3] 6] 1] 2

Table B-6: The degrees of characters in Irr((22 x 2373:7): 3)

24 | 28 | 42 | 56 | 84 | 112 | 224 | 336

Degree | 1|3 |6|7|8]21]
(tl2frfrje] af 7[ 2] 5] 4] 2] 2] 1] 2

Table B-7: The degrees of characters in Irr(23+8: L3(3))

Degree |12 |3|4|6|8]12|24|48 |64 96| 128
Number || 2 [1[6]2]9[4]14] 6] 4| 2| 1| 1

Table B-8: The degrees of characters in Irr(2.24%5:22.5;)

Degree | 1| 4| 5| 6] 10| 12| 15|20
Number 21 2| 2| b5 4 2 41 4
Degree || 24 | 30 | 40 | 60 | 120 | 128 | 192
Number || 3| 1| 1| 8 6 3 2

Table B-9: The degrees of characters in Irr(2.24%6: S)

Degree | 1]9]10]12]16| 18|20 | 30
Number |4 [4] 2| 3| 2] 2] 1] 2

Table B-10: The degrees of characters in Irr(3.44.2?)

DegreeHl‘?‘él‘G
NumberH4‘4‘1‘2

Table B-11: The degrees of characters in Irr(34%: 2?)

Degree | 1|2 |3|4|8]16
Number [ 2 [3[2]1]2] 1

Table B-12: The degrees of characters in Irr(3%: GLy(3))
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C

DegreeHl‘3‘4‘5
Number |4 |8 |5[4] 2] 1| 1

Table B-13: The degrees of characters in Irr(5:4 x As)

DegreeHl‘2‘4‘8
Number || 8 [ 8] 2] 2

Table B-14: The degrees of characters in Irr(5:4 x 5:2)

Degree | 1| 4|5]6]24]96
Number |4 |10 |46 ] 4] 1

Table B-15: The degrees of characters in Irr(5%: GLy(5))

Degree | 1[4 16|20
Number |16 |8 | 1| 4

Table B-16: The degrees of characters in Irr(51%: 4?)

Degree HI‘Q‘S
Number [ 8[6[4] 2] 4| 1

Table B-17: The degrees of characters in Irr(5%:4.Dg)

The degrees of irreducible characters of chain
normalizers of 3.0'N

Let ¢; and (, be the faithful irreducible characters of the cyclic group 3 = Z(3.0'N). For
a radical p-chain C' € R(O’'N), denote by Irr(N3.on(C) | ¢;) the irreducible characters
of the stabilizer N3 o/n(C) covering the character ;.

Degree 342 495 0643 | 52668 | 58311 | 58653 | 63612 | 111321

Number 2 2 3 2 1 1 1 1

Degree || 116622 | 122760 | 169290 | 169632 | 175770 | 207360 | 253440

Number 1 1 2 2 1 3 1

Table C-1: The degrees of characters in Irr(3.0'N | §;)
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D

Degree | 6| 15|21 |36 | 72| 84|90 | 96 | 120 | 126 | 168
Number [ 2] 6| 2| 2| 1] 3] 3] 2 3] 1] 1

Table C-2: The degrees of characters in Irr(3.(4.L3(4):2) | )

Degree H 3 ‘ 6
Number H 16 ‘ 4

Table C-3: The degrees of characters in Irr(Dg x 3.3%:4 | ;)

Degree H 3 ‘ 6 ‘ 9
Number | 8 | 4 | 8

Table C—4: The degrees of characters in Irr(3.(22 x 3%:4) | ;)

Degree || 18 | 27| 36 | 45 | 54 | 90
Number || 8| 4] 1] 4] 1] 1

Table C—5: The degrees of characters in Irr(3.(3%:4 x 4¢).2 | ()

Degree | 9| 18
Number || 8 | 6

Table C—6: The degrees of characters in Irr(3.(3*.22.23) | ¢;)

Degree | 9| 18 | 36 | 45 | 72
Number [ 2] 2| 2| 6] 2

Table C-7: The degrees of characters in Irr(3.(3*: 2™.Dyp) | G)

The degrees of irreducible characters of chain
normalizers of 2.Ru

Let £ be the faithful irreducible character of the cyclic group 2 = Z(2.Ru). For a
radical p-chain C' € R(Ru), denote by Irr(Nygy(C) | €) the irreducible characters of
the stabilizer Ny g, (C) covering the character €.
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Degree || 28 | 36 | 56 | 168 | 216 | 224 | 252 | 288 | 336
Number | 4| 2] 3| 4] 3| 2] 2| 2| 1

Table D—1: The degrees of characters in Irr(2.(2°.U5(3):2) | &)

Degree | 4 | 8|12 ]16 |24 | 48
Number 4[| 7] 4| 1]11] 2

Table D-2: The degrees of characters in Irr(2.2.2.2%.53 | £)

Degree H 4 ‘ 8 ‘ 16
Number || 8 | 18 | 11

Table D-3: The degrees of characters in Irr(2.5" | §)

Degree | 8 | 12 | 16 | 24 | 32
Number | 2] 8| 9] 8] 4

Table D-4: The degrees of characters in Irr(2.26.22.23.5; | €)

Degree | 2 | 28 | 128 | 182 | 210 | 390
Number | 3] 6| 3] 3] 1| 1

Table D-5: The degrees of characters in Irr(2.(2% x Sz(8)):3 | £)

Degree | 26| 14 | 28
Number | 3[2] 3] 6

Table D-6: The degrees of characters in Irr(2.(22 x 23%3:7):3 | £)

Degree | 28 | 56 | 64 | 84 | 96 | 112 | 128 | 336
Number || 4| 2] 2] 4] 2 3| 1] 2

Table D-7: The degrees of characters in Irr(2.(2378: L3(3)) | €)
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Degree || 12 | 16 | 24 | 32 | 48 | 64 | 96
Number | 8| 4] 2] 7| 7] 1] 2

Table D-8: The degrees of characters in Irr(2.(2.2476:Sy) | £)

Degree || 12 | 16 [ 32 | 48 | 60 | 64 | 80 | 96 | 120 | 128 | 160

Number | 4] 4] 1| 1| 4] 4] 4] 4] 2| 1] 4

Table D-9: The degrees of characters in Irr(2.(2.2*%5: S5) | £)

Degree |2 |46 |8 16 | 24
Number |8 [4[4]2] 1] 1

Table D-10: The degrees of characters in Irr(2.(5:4 x A;) | &)
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